Endüstriyel Otomatik Kontrol Sistemleri Dönüştürücüler. Mustafa Türker GÜLTEPE mturkergultepe.com

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Endüstriyel Otomatik Kontrol Sistemleri Dönüştürücüler. Mustafa Türker GÜLTEPE mturkergultepe.com"

Transkript

1 Endüstriyel Otomatik Kontrol Sistemleri Dönüştürücüler Mustafa Türker GÜLTEPE mturkergultepe.com

2 İÇİNDEKİLER D D.A.C Nedir? D.A.C Kavramlar D.A.C Yapısı D.A.C Devreleri A.D.C Nedir? A.D.C Yapısı 2

3 İÇİNDEKİLER A.D.C Çalışması A.D.C Devreleri A.D.C Karşılaştırmalar A.D.C Kullanım Alanları F/V Dönüştürücüler F/V Yapısı 3

4 İÇİNDEKİLER F/V Devreleri Yararlanılan Kaynaklar 4

5 D.A.C. nedir? D.A.C., DAC veya D-to-A (Digital to Analog Converter) dilimize dijitalden analoğa dönüştürücü olarak çevirilebilecek özel bir tanımlamadır. Özellikle CD'nin ortaya çıkmasından itibaren, bu medyalara kaydedilen verinin dijital olması sebebi ile, verinin analoğa çevrilmesi amacı ile kullanılmaya başlanmıştır. Bir CD çaların kasasına monte edilmiş halde olabileceği gibi ayrı bir cihaz olarak da kullanılabilir. Özellikle ayrı kullanım profesyonel cihazlarda karşımıza çıkar. Buradaki amaç CD okuma mekanizmasının mekanik titreşimlerinin ve cihaz içerisindeki diğer elektronik bileşenlerin dijitalden analoğa çevirim sırasında etkileşimini minimuma indirmektir. Farklı teknolojilere sahip olsa da, CD, SACD, DVD gibi tüm dijital kayıt platformlarında mutlaka kullanılır. Şekil 0 - D.A.C. Dijital/Analog Çeviriciler (DAC), girisindeki sayısal değerlere karsılık analog bir gerilim veya akım üretmektedir. ADC lerde olduğu gibi bit çözünürlüğü, adım büyüklüğü gibi bir çok kavram DAC lar için de geçerlidir. Fakat DAC ları kullanmak ADC leri kullanmaya nazaran daha kolaydır. Bir çok DAC da, ADC lerde olduğu gibi çevrime baslama, çevrimin bitmesini bekleme gibi kontrol islemleri yoktur. DAC lar sayesinde sayısal olarak çalısan mikroislemci ve mikrodenetleyiciler ile analog mantıkla çalısan cihazların kontrolünü gerçeklestirmek mümkündür. Bilgisayar ve dijital sistemler lojik değerler olan 1 ve 0 değerleri ile çalışır. İkilik sistemin basamakları olan bu değerler analog sistemler için anlamlı değildir. Ayrıca dijital değerlerin insanlar için daha anlamlı olan analog değerlere çevrilmesi gerekir.örnek vermek gerekirse bilgisayarımızda sakladığımız MP3 formatındaki ses dosyaları dijital verilerden oluşur.bu dosyaları dinlemek istediğimizde bilgisayar sistemimize bağlı olan bir ses kartına ve ona bağlı olan bir hoparlör sistemine gereksinim duyarız.bu örnekte ses kartının yaptığı işlem sabit sürücülerimizde saklı olan MP3 dosyasındaki dijital verileri (çok sayıda lojik 1 ve 0 değerleri) hoparlör üzerinde sese çevrilecek olan analog değerlere çevirmesidir. MP3 dosyasından faklı dizilimlerde gelen lojik değerler ses kartında farklı değerlerdeki gerilimlere çevrilecek ve bu gerilim değerleri ise hoparlör üzerinde farklı seslere dönüştürülerek kulağımıza ulaşacaktır. 1 ve 0 gibi dijital bilgileri giriş olarak alan ve çıkışında giriş değerlerindeki değişime göre farklı değerlerde akım veya gerilim üreten devrelere veya entegrelere dijital analog çevriciler ve bu dönüştürme işlemine de dijitalden analoga çevirme işlemi adı verilir. dijital analog çeviriciler kısaca DAC olarak da adlandırılır. Dijital analog çevriciler giriş olarak birden fazla dijital değeri alabilir. Dijital giriş değeri sayısı dijital analog çevricinin bağlı olduğu dijital devrenin çıkış sayısına eşittir.bu konuyu daha iyi anlamak için giriş bölümünde verilen ses kartı örneğini tekrar inceleyelim.ses kartı ana kart üzerinden bilgisayarın data yoluna bağlıdır.dolayısı ile ses kartı analog sinyale dönüştürmek üzere kullanacağı dijital değerleri sistem data 5

6 yolundan alır. Bilgisayarımızın data yolu 32 veya 64 bit olabilir. Dolayısı ile ses kartı MP3 dosyasından her seferde 32 veya 64 bitlik dijital veriyi alarak analog veriye çevirecektir. Sonuç olarak bu bit lerin her birinin bağımsız olarak 1 veya 0 olması dönüşüm sonucunda elde edilecek analog sinyalin akım veya geriliminde değişime yol açar. Böylece biz de hoparlörden farklı tonlarda sesler duyarız. Sonuç olarak girişe uygulanan dijital değerin bit dizilimindeki değişimim çıkıştaki analog sinyalin değerini belirler. 6

7 D.A.C. Kavramlar Dijital verilerin analog veriye çevrilmesinde analog çıkışın değerinin belirlenmesinde etkili olan bazı esaslar ve kavramlar vardır. Çevrim işleminin daha iyi anlaşılması için bu öncelikle bu kavramlar aşağıda açıklanmıştır. 1. LSB Dijital değerlerin daha fazla anlam ifade etmesi için çok sayıda bitin bir arada kullanılması gereklidir. Örneğin bir bit ile sadece iki farklı (1 ve 0) durum ifade edilirken iki bit ile dört farklı durum ifade edilebilir (00, 01, 10 ve 11). Dijital devrelerinde daha fazla çıkış durumu ifade etmek için çok sayıda çıkış biti vermesi olası bir durumdur.ancak bitlerin sayısı çoğalınca dijitalden analoga dönüşüm sırasında bir problem ortaya çıkmaktadır. Çok sayıda giriş biti alan bir DAC bunları çıkışa analog değer olarak aktarırken bitlerin ağırlıklarını (çıkış akım veya gerilimine etki oranını) neye göre belirleyecektir. Bu sorunun çözümü sayı sistemlerinin doğal yapısında çözümlenmiştir. Giriş bitleri peş peşe dizilerek bir ikilik sistemde rakam elde edilirse sağdan sola doğru basamakların değerleri de artmaktadır ve artış oranı sayı sisteminin taban değerine göre üstel şekilde belirlenmektedir. Dolayısı ile girişlerin sıralaması çıkışa etki oranını belirler. Binary(ikili) sayılar yazılırken en sağdaki basamağa en düşük değerlikli bit LSB (Least Significant Bit-) olarak adlandırılır. Dönüşüm sırasında analog çıkış üzerindeki değer değişimine en az etkili olan dijital değerdir. 2. MSB Benzer şekilde en soldaki basamağa en yüksek değerlikli bit MSB (Most Significant Bit) adı verilir. Dönüşüm sırasında analog çıkış üzerindeki değer değişimine en fazla etkili olan dijital değerdir. Şekil 2 - LSB ve MSB Şekil 1- İkilik sayı sisteminde basamak değerleri 7

8 3. Tam Skala (Full scala) Dijital analog çeviricilerde giriş olarak kullanılan bit lerin hepsinin 1 olması durumuna tam skala (Full sclala ya da FS) denir. Giriş olarak verilen tüm bit ler anlamlandırıldığı için çıkış voltajı veya akımı maksimum değerde olacaktır. 4. Çözünürlük (Resolution) Dijital analog çeviricilerin giriş değerlerindeki değişime gösterdiği minimum değişime çözünürlük (Resolution) ya da hassasiyet (sensitivity) denir. Çözünürlük değeri LSB olarak kabul edilen bit in 1, diğer giriş bit lerinin 0 olduğu durumdaki çıkış gerilimine eşittir. Giriş bit lerinin değeri kademe kademe arttıkça çıkış voltajındaki artış çözünürlük kadar olacaktır. Çözünürlük değeri ne kadar küçükse giriş bitlerindeki değişime karşılık gelen analog çıkış değerindeki artışlar o kadar az olacak ve hassasiyet artacaktır. Çözünürlük değeri iki değişkene bağlıdır. Tam skalaya karşılık gelen analog çıkış değeri ne kadar büyükse çözünürlük de o kadar büyük olur. Ayrıca giriş bitlerinin sayısı ne kadar fazla ise çözünürlük de artar. Burada dikkat edilecek nokta çözünürlüğün artması demek sayısal değerinin azalması anlamına gelmektedir. Çözünürlük değerinin matematiksel formülü şöyledir. Çözünürlük = 1 / 2 Giriş bit sayısı Çözünürlük Voltajı = Maksimum Çıkış voltajı * 1 / 2 Giriş bit sayısı Örnek: Maksimum çıkış voltajı 10V olabilen bir bir DAC devresinde 4 adet dijital giriş varsa çözünürlük nedir? Çözünürlük = 1 / 2 Giriş bit sayısı = 1 / 2 4 = 1/16 = 0,0625 başka bir değişle % 6,25 dir. Çözünürlük Voltajı = Maksimum Çıkış voltajı * 1 / 2 Giriş bit sayısı = 10*0,0625=0,625 V Örnek deki DAC devresinin çıkışı 0,046 V katları şeklinde değişecektir. 5. Giriş-Çıkış İlişkisi Giriş bit lerindeki değişim çıkış voltajındaki değişim olarak gözlenmektedir. LSB den MSB ye doğru bit lerdeki ağırlık değeri artacağından çıkış voltajı üzerindeki etkisi de artacaktır. Birim artış çözünürlük değerine eşittir.aşağıdaki şekilde yukarda örnekde verilen DAC devresinin giriş-çıkış ilişkisi gösterilmiştir. Şekil 3 - Giriş-çıkış ilişkisi 8

9 Şekil 4 - İşlemsel yükselteç 1.3. Çalışma Prensibi Dijital değerlerin analog değerlere dönüştürülmesinde kullanılan temel eleman işlemsel yükselteçlerdir. Dijital analog çeviricilerin çalışma prensiplerini anlayabilmek için işlemsel yükselteçlerin çalışması hakkında bilgi sahibi olmak gereklidir. İşlemsel yükselteçler, girişine uygulanan gerilim değerini yine giriş ve çıkışına bağlanan dirençlerle belirlenen bir oranla çıkışa aktaran devre elemanıdır. Giriş değerinin çıkışa etki oranının belirlenebilmesi sayesinde girişi oluşturan dijital değerlerin çıkışa aktarılma oranı belirlenebilmektedir. İşlemsel yükselteçler elektronik alanında çok farklı amaçlarla kullanılabilmektedir. DAC devrelerinde toplayıcı olarak kullanılabilme özelliğinden faydalanır. Giriş bitlerinin çıkışa etki oranı dirençler ile belirlenerek yükseltilmiş bir analog çıkış elde edilebilir. Şekil 4' te verilen toplayıcı devresinde Vg1,Vg2 ve Vg3 gerilimleri önlerine konulan dirençlerin büyüklüğü ile ters orantılı olarak çıkışa aktarılırlar. Ayrıca giriş gerilimi çıkışa aktarılırken R1,R2 ve R3 dirençlerinin eş değeri ile Rf direncinin oranına göre yükseltilerek aktarılır. 9

10 D.A.C.'nin Yapısı DAC ları farklı şekilde sınıflandırabiliriz. Digital Analog çevirim tekniklerine göre, upsampling yapıp yapmadıklarına göre veya çıkışının lambalı, discrete transistorlu veya opamplı olmasına göre. Esasında hemen bütün DAC lar belli modüllerden oluşur; Input katı, Digital Filter ve Upsampling katı, Digital-Analog dönüşüm katı ve çıkış katı. Bu noktada DAC'lerden ses sistemi üzerinden bahsedersem somut bir örnek üzerinden daha akılda kalıcı bir yapı oluşturur diye düşünüyorum. optik bir kablo üzerinden kodlu ışık demetleriyle Toslink üzerinden DAC a iletilir. TOSLink den bahsederken açık hali olarak TOShiba LINK in mucidinin de Toshiba olduğunu söylemeden geçmeyelim. AES/EBU (AES = Audio Engineering Society, EBU = European Broadcasting Union) S/PDIF e çok benzer bir standarddır ve daha çok profesyonel ekipmanlarda ve hi-end hifi de göze çarpar. S/PDIF ile AES/EBU arasındaki temel farklar sinyal seviyesi ve empedans larıdır. Şekil 5 - DAC Block Diagramı Şekil 5 te block diagramı verilmiş olan DAC ı detaylı olarak incelersek; A. Input Bölümü Şayet DAC ayrı bir kutu ise cdp içindeki DAC bölümünden bahsetmiyorsak hemen herbir DAC ın input bölümünde bir Receiver Chip karşımıza çıkar. Burada kullanılan protokol genellikle S/PDIF dir veya AES/EBU dur. S/PDIF aslında cd teknolojilerinin mucitleri olan Sony ve Philips şirketlerinin belirlediği bir standarddır ve açık hali de Sony Philips Digital InterFace dir. Sayısal formattaki sinyal ya metal bir tel üzerinden elektronlarla veya fiber Kodlama her ikisinde de Biphase Mark Code dur. AES/EBU standardı piyasada çok daha fazla balanced kullanım olarak görülür. Aslında hem AES/EBU nun hem de S/PDIF in balanced ve unbalanced şekli vardır ama cihaz üreticileri çok yaygın olarak unbalanced için S/PDIF i balanced için de AES/EBU standardını tercih etmektedirler. S/PDIF ve AES/EBU da kullanılan biphase mark code kodlaması şekil 2 de verilmiştir. Şekilde de görüldüğü üzere kodlanmış sinyalin içinde data ve clock birleşik halde yer almaktadır. 10

11 veya bir zamanlama hatası jitter dediğimiz hatalara sebebiyet verir ki jitter hataları insan kulağı tarafından kolaylıkla farkedilir. Şekil 6 - Clock, Data ve kodlanmış sinyal Transport veya CD Player ın içine bakarsak ses sinyali olarak cdp içinde dolaşan digital sinyalin protocolu I²S dir. I²S (Inter-IC Sound Interface) Philips tarafından geliştirilmiştir. I²S temelde S/PDIF veya AES sinyalindeki clock ve data nın ayrıştırılmış şeklidir. Veya başka bir deyişle bir transport içindeki sinyalin S/PDIF veya AES e dönüştürülmeden evvelki şekli I²S dir diyebiliriz. I²S formatındaki digital sinyal uzun mesafeli taşınamaz, hassas ve dış faktörlerden kolaylıkla etkilenir. Bu nedenden dolayı I²S sinyali transport veya cdp dışına çıkartılırken S/PDIF veya AES e dönüştürülür. Esasen DAC da giriş bölümünde S/PDIF veya AES üzerinden sinyali kabul ettikten hemen sonra I²S e çevirir ve sinyal analog a dönüşmeden evvel entegreler arasında I²S olarak dolaşır. Çok nadir olarak da olsa Transport ile DAC bağlantısı olarak I²S protokolünün kullanıldığı yerler de vardır. Bu durumda I²S kablosu çok kısa tutulmaktadır. Şekil 7 deki I²S formatını yakından incelediğimizde bu formatın çok temel sinyallerden oluştuğunu görebiliriz. SD, 16 bit, 18 bit, 20 bit, 22 bit veya 24 bit olarak serial data yı temsil eder. I²S standardı içinde data boyutu 28 bite kadar uzatılabilir. SCK Serial Bit Clock u temsil etmektedir. Herbir data biti eş zamanlı clock darbesiyle dikkate alınır. Temsili olarak anlatmak gerekirse clock darbesi geldiğinde elektronik kapı açılır data biti içeri alınır ve kapı kapatılır, sonraki clock darbesi bir sonraki data bitini kabul eder. Clock sinyali olmadan data bitleri dikkate alınmaz. Data bitlerinde zamanlama çok önemli değilken clock un zamanlaması jitter açısından çok önemlidir. Clock daki bir kayma WS sinyali Word Select veya Word Clock u temsil eder. Örneğin SD sinyali 16 bitlik ise bu 16 bitlik word un başladığını veya bittiğini ifade etmek için kullanılır. Right ve Left kanal için ayrı ayrıdır. Yüksek anlamlı bit ilk başta veya en sonda olabilir. WS sinyali oluştuğunda tek tek bit katarı olarak alınan bitler 16 bit olarak birleştirilir ve bir hamlede proses edilmek üzere başka bir tampon bölgeye aktarılır. Bütün bu formatlardan ayrı olarak bilgisayarı kaynak olarak kullandığımızda karşımıza çıkan USB ve Firewire interface ve formatları da vardır. Şekil 7 - I2S Bileşenleri Bilgisayardan müzikte isochronous dediğimiz protokol kullanılır. Isochronous burada belirli bir datanın sürekli aynı hızla bir yerden başka bir yere transferini ifade eder. Bilgisayardan müzikte taşınan datanın boyutu ve hızı bilgisayarın işlemcisinde process ettiği data ve ulaştığı hıza göre çok daha düşük kalmasına rağmen bu datanın hızının değişmemesi ve sürekliliği çok önemlidir. İşte bu sürekliliği data bandwidth ini garanti eden Isochronous mode sağlamaktadır. Aslına bakarsak böylelikle bir anlamda USB ve Firewire üzerinden taşınan digital müzik datası CDP nin transportundan taşınan müzik datasına fazlasıyla benzetilmiştir. Her ikisinde de sistem digital 11

12 datayı arkaya bakmadan sürekli bir şekilde bir yerden bir yere transfer eder. Bu benzerliğin bir devamı olarak ve burada kullanılan standardlar yüzünden Bilgisayardan müzikte acaba yapılıyor mu dediğimiz Error Detection ve Correction yapılmamaktadır. Yani Bilgisayar kaynağından DAC a iletilen digital data DAC tarafında kontrol edilip hata varsa yeniden transferinin talep edilmesi gerçekleşmez. Gerekli olup olmadığı bir tartışma konusu olan error correction yani bit perfect dediğimiz olgunun hayata geçebilmesi için audio interface standard larının değiştirilmesi ve mevcut standardın yerine başka standardların kullanılması gerekmektedir. Örneğin yeni bir çalışma şekliyle DAC ile bilgisayar arasındaki transfer hızı arttırılıp DAC tarafında bir tampon bellek veya disk olabilirse DAC ın output unun sürekliliği bozulmayacak şekilde bit perfect çalışma gerçekleştirilebilir. Günümüzde transport dac combo su olarak ve standalone cihaz olarak bu olguyla çalışan cd / sadc player lar artık üretilmeye başlanmıştır. Bu tür cihazlara örnek olarak PS Audio Perfectwave Transport Dac combo, Naim Hdx, ve diğer benzeri cihazları verebiliriz. Bu cihazlar digital anlamda bit perfect olarak çalışabilmektedirler. Tabii bir yanlış anlamaya sebebiyet vermemek açısından bit-perfect demek ideal sesi yakalamak anlamını hiçbir zaman taşımaz. Bit perfect olmayan ama çok daha iyi audio performansı verebilen cihazlar mevcuttur. ederken kimi chip ler 24bit 192 Khz e kadar digital müzik datası kabul etmektedir. Bir diğer farklılık da clock kullanımındadır. Hemen herbir receiver chip input olarak kabul ettiği digital datayı ayrıştırıp bir sonraki aşamaya iletirken ya inputtan aldığı sinyalin içinden ayrıştırdığı ve recover ettiği clock u kullanır veya dışarıdan verilen clock u kullanarak datayı sonraki aşamaya iletir. Genellikle bu özelliğin seçimi için entegrenin bir pini kullanılmıştır. Örneğin TI DIR9001 de 28 no lu pin CKSEL (Clock Selector) bu iş içindir. Sonuç olarak clock kullanımı DAC kutusu yapanların tercihine göredir. Bazı DAC larda hiç clock generator yoktur, input tan aldığı clock u kullanır, bazı DAC larda sadece DAC ın içinde bir clock generator bulunur, bazı DAC lar ise aynı zamanda clock sağlayan başka bir dış üniteden de clock kabul eder. Dışarıdan clock kabul eden DAC lar ve CDP ler genellikle hiend sınıfındadır ve pahalıdırlar. Bilgisayardan müziği bir kenara bırakıp tekrar S/PDIF ve AES/EBU receiver lara dönersek piyasadaki S/PDIF ve AES/EBU Receiver chiplerinin belli başlı yarı iletken üreticileri tarafından geliştiridiğini görebiliriz. DAC kutularının içine baktığımızda Texas Instruments den DIR9001, Cirrus Logic den 8414,8416, Wolfson dan WM8804/8805 ve Japon Asahi-Kasei den AK4114/AK4115 i gibi entegreler receiver chip olarak karşımıza çıkar. Receiver chip ler birbirlerinden az çok farklılık gösterseler de öne çıkan özellikleri kabul ettikleri word genişliği ve hızıdır. Kimi receiver chip ler sadece 18 bit 48khz e kadar data kabul 12

13 Şekil 8 Curve Fitting (Eğri Geçirme)) Öncelikle hemen belirtmek gerekir ki bazı NOS DAC kutularında bu kısım hiç yoktur. Örneğin DIY olarak yaygın bir şekilde TDA154X dac entegreleriyle DAC kutusu yapanlar upsampling ve digital filter çoğunlukla kullanmazlar. Ama esasen 16 bitlik çok eski bu dac entegreleri için dahi zamanında upsampling chip leri yapılmıştır. Örneğin SAA7220 upsampling chip i TDA1541 dac entegresiyle birlikte kullanılır ve word genişliğini arttırmadan 4x upsampling yapabilme özelliğine sahiptir. Buradan da TDA1541 in 176 Khz e kadar digital data kabul ettiğini anlayabiliriz. Upsampling & Digital Filtering yapan entegrelerin bir başka adı da interpolating digital filter dır. Upsampling olayı aslında bir tür interpolasyondur. Bir nevi discrete noktalara yakın mesafelerden bir eğri geçirme işlemidir. Ama tabii bu işlem digital domain de yapıldığından örnekleme sayısının arttırılması gibi de düşünülebilir. Basit olarak düşünürsek örneğin standard cd formatında 16bit 44Khz müzik datası içinde peşpeşe gelen iki değer 16 ve 32 ise bu iki değerin arasına (16+32) / 2 = 24 şeklinde bir değer ilave etme işlemi upsampling dir. Bu işlemin sonucunda 88Khz lik upsample edilmiş bir veri elde etmiş oluruz. Bu işlemde word genişliğini arttırmaya ihtiyaç olmamıştır çünkü 16 ve 32 nin toplamının yarı bölümü tam bir değer vermektedir. Ama şayet peşpeşe gelen bu iki değer 17 ve 32 olsaydı toplamın yarıya bölümü kesirli bir değer verecekti ve elde edeceğimiz değeri 16 bitlik bir word e yerleştirdiğimizde yuvarlama yapıyor olacaktık. İşte bu yüzden pek çok upsampling chip i upsample işlemini yaparken aynı zamanda word genişliğini de arttırır ki kesirli bir değerde yuvarlama yapılmasın ve hata oluşmasın. O yüzden pek çok DAC upsampling sonrasında cd lerdeki standard 16 bitlik word genişliğini 18 bit 20 bit veya 24 bit e taşır. Yine bu bilgiye dayanarak önceden üretilen Philips TDA1541 ve onun eşleğini SAA7220 nin 16 bit olmasından dolayı bu eski entegrelerde upsampling sonrasında yuvarlama hatalarının olabileceğini tespit edebiliriz. Diğer taraftan 16 bitlik dac chip lerini paralel kullanarak çok daha geniş bit uzunluklarına ulaşma teknikleri vardır. Burada belirtilmesi gereken önemli bir konu da upsampling & digital filter entegrelerinin dac entegresinden bağımsız düşünülemeyeceğidir. Upsamping sonrasında elde edilen sayısal müzik datasının word genişliği ve hızı mutlaka dac entegresiyle uyumlu olması gerekir. Örneğin upsampling sonrası 24 bit 192 Khz bir output elde ediliyorsa dac entegresinin de bunu kabul edebilir yetenekte olması gerekir. Dolayısıyla upsampling entegreleriyle dac entegreleri uyumlu olarak üretilirler. Digital filtreleme konusuna gelirsek teorik olarak bir cd kaydı içinde 22Khz in üstünde bir ses sinyali olmaması gerekir ama pratikte cd yapımı aşamasında veya okuma sırasında bu tür parazit sinyaller audio sinyalinin arasına karışabilmektedir. O yüzden kulağın 13

14 duyamayacağı 22 Khz nin üstündeki sinyallerin ortadan kaldırılması esastır. Digital ortamda oversampling sonrasında bu tür parazit sinyallerin filtrelenmesi analog ortama göre çok daha kolay yapıldığından hemen her upsampling chip i aynı zamanda digital filter olarak da çalışır ve 22 Khz in üstündeki sinyalleri yok eder. Şekil 8 deki örnekte (yukarıda) 8x upsample sırasındaki Curve Fitting (eğri geçirme) işlemlerini görüyoruz. Curve Fitting işlemi upsampling in ve hatta DAC ın en önemli aşamalarından birisidir. Curve fitting digitalden analog a çevrim öncesinde temel alınacak sayısal noktaları belirleyen aşamadır. Bu işlemin nasıl yapıldığı konusunda üreticiler pek fazla bilgi vermezler. Ama şekilde de göreceğimiz gibi 16 bitlik cd datasını first order curve fitting işleminden geçirirsek orijinalden oldukça uzak bir sinyal şekli elde ederiz. Order seviyesi arttıkça upsample edilmiş noktalardan oluşacak eğrinin orijinale yaklaştığını, 12th order curve fitting de ise ideal eğrinin yakalandığını görüyoruz. 12th order teoride çok uygun gözükse de pratikte gerçekleştirilmesi son derece zordur. Pek çok bilinen oversampling digital filter entegresi bilinen yöntemlerle interpolasyon yaparken bazı üreticiler bu aşamada kendilerine özel bazı farklı yöntemlerle upsampling yapar. Bunlardan bazıları Wadia, DCS, ARC v.s. gibi hi-end üreticilerdir. Örneğin Wadia da 2x, 4x veya 8x upsampling den çok daha yüksek bir oranla 64x olarak upsampling yapılmaktadır. 64x olarak yapılan upsampling yöntemi de yukarıdaki şekilde verilen 12th order curve fitting e oldukça uygun yapıldığından neredeyse orijinale çok yakın bir sinyal elde edilmektedir. Bana göre bu konu içinde bahsedilmesi gereken bir de JVC nin Victor Company ile ortaklaşa geliştirdirdiği K2 processor bulunur. Digital K2 processor digital audio sinyalinin işlendiği her aşamada kullanılabilir. CD üretiminde, playback aşamasında upsampling sırasında v.s.. Özelliği digital sinyalin içindeki parazitleri ve jitter ı özel bir teknikle düzeltiyor olmasıdır. Bu tekniğin patent i JVC e aittir ve paylaşılmamıştır. Şekil 9 da Digital K2 fonksiyonunu görebiliriz. Şekil 9 JVC Digital K2 Processor Konuyu sonlandırırken tekrar konunun başına dönersek NOS DAC lar oversampling yapan dac lardan daha başarılıdır veya değildir diyemeyiz. Her iki tarafta da çok başarılı dac lar mevcuttur. Örneğin TDA1541 ile yapılmış olan Zanden NOS DAC ses kalitesi son derece başarılıyken oversampling yapan Accustic Arts tube dac da çok başarılıdır. C. Dac Bölümü (Digital den Analog a çevirim) Digital den Analog a dönüşümde kullanılan entegrelerde temel olarak iki ayrı teknik kullanılır. 1 Bit Dac lar ve R-2R Dac lar. 1 Bit dac ların 2-3 bit olarak türevleri de bulunur ama temelde bunlar da Delta Sigma modulasyonu kullandıkları için aynı sınıfa girerler. R-2R dac lar word genişliği kadar biti bir anda process edip analog değere erişirler. Bir sonraki analog değer de aynı yöntemle hesaplanır ve genelde bir integratör yöntemi vasıtasıyla peşpeşe gelen iki analog değer smooth laştırılır ve akıcılık sağlanır. 1 Bit dac lar tamamen farklı çalışırlar. Aslında standard 16 bitlik PCM Redbook cd formatı R- 2R dac lara çok uygunken 1 bit dac lara bu yapı hiç uymaz 1 bit in kodlaması çok farklıdır. 1 bit kodlamayı sacd medyasında dsd olarak görebiliriz. Cd formatındaki datanın 1 bit dac ile process edilmesi için 16 bitlik audio datasının yeniden 1 bit olarak encode edilmesi gerekmektedir. 1 Bit dac ların çalışma prensibi 14

15 temelde son gelen bitin değerine göre anlık olarak mevcut analog değeri arttırılıp azaltılması şeklindedir. 1 Bit dac ların çalışma prensibini anlamak için şekil 6 daki Delta Modulation Coding i inceleyebiliriz. Şekil 10 da sinus olarak gördüğümüz bir analog sinyalin direkt olarak 1 bit encode edilme işlemini (adc) görüyoruz. Şekil 11 de de gördüğümüz üzere örneklenip hesaplanan her yeni değer bir önceki seviye ile karşılaştırılır. Yeni seviye sample edilen önceki değerden daha büyükse son defa encode edilen 1 bit negatif olarak eklenir. Küçükse 1 bit pozitif olarak eklenir. Sonuç olarak delta dediğimiz çok küçük farklar negatif veya pozitif olarak eklenerek 1 bit kodlama yapılır. Ve bu şekilde Şekil 6 da yeşil renkte gördüğümüz 1 bit kodlama mavi renkteki analog sinyali temsil edebilmektedir. Yine bu şekilden bir örnek vermek gerekirse t=1.1 anındaki değer dir. Sistemin hafızasında önceki değer olarak tuturken t=1.11 anına geldiğimizde değerini elde edersek bu iki değerin farkına bakarız ve fark negatif olduğundan eklenecek 1 bit negatiftir diyebiliriz. Böylelikle her yeni gelen değer için (+) veya (-) olarak 1 bit eklenerek dsd stream oluşturulur. Şekil 11 - Düşük Frekanslı 1 Bit Kodlama Delta Modulasyonun daha fazla geliştirilmiş ve bugün piyasadaki 1 bit dac larda kullanılan şekli Sigma Delta modulasyonudur. Temel olarak aynı prensiple çalışır. Burada dikkat edilmesi gereken husus delta modulasyon yaparken örnekleme frekansını belli bir değerin altına düşüremeyeceğimizdir. Redbook CD Audio sinyali için 16 bit/44 Khz yeterli olurken, 1 Bit encoding yapılacaksa 44 Khz son derece yetersiz kalır. Zaten teorik olarak da baktığımızda aynı resolution u yakalamak için 1 bit için en az 704 Khz kullanılmalıdır (16x44Khz=1x704Khz). Günümüzde piyasada Sacd olarak karşımıza çıkan dsd formatında bu standardın biraz daha üstüne çıkılmış ve Mhz kullanılmıştır. Bu resolution un PCM olarak karşılığı en kötü durumda yaklaşık 16/88 Khz dir. Ancak dsd nin yapısı gereği bu karşılaştırma çok doğru olmaz, 1 Bit dsd e haksızlık yapmış oluruz.1 Bit dsd formatı 16/44 PCM sinyalinden çok daha fazla resolution a sahiptir çünkü dsd kodlaması gereği analog sinyalin çok fazla inişli çıkışlı olmadığı durumlarda 16 bitin göreceği işi 1 bit ile dahi görebilirsiniz. Analog sinyal tepedentepeye seyrettiği durumlarda ise 1 bit dsd nin bu avantajı kaybolur ama tabii yine de en kötü durumda bile 16/88Khz standardını yakaladığından bir sorun teşkil etmez. 1 Bit kodlamayı olması gerekenden daha düşük bir frekansta uygulamaya kalkarsak şekil 8 deki durum oluşur. 1 Bit kodlama analog sinyalin gerisinde kalır. Şekil 10 1 Bit Delta Encoding Block Diagramı 15

16 Şekil 12 deki başlangıç noktasına baktığımızda hızla negatif tepe değerine inen analog sinyale yetişemeyen 1 bit kodlamayı görüyoruz. Bunun nedeni yeterince yüksek olmayan örnekleme frekansıdır. Genelde Sigma Delta Modulasyonuyla 1 bit çalışan dac ların hemen hepsinde 1.4 Mhz veya 2.8 Mhz gibi yüksek değerleri tespit edebiliriz. R-2R Dac lar 1 Bit dac lara göre daha eski ve basittirler. Kolay anlaşılır bir çalışma prensibi vardır, word genişliği kadar bitler dizilir ve aynı anda process edilerek analog değere ulaşılır. Şekil 12 de 5 bitlik R-2R resistor network u görüyoruz. Bu resistor network unu 16 bitlik veya 24 bitlik de düşünebiliriz. Bit sayısı artsa da çalışma prensibi yine aynı şekilde olacaktır. Herbir clock cycle ında bu direnç networku kullanılarak analog değer hesaplanır ve çıkışa verilir. Burada önemli olan dirençlerin karakteristiklerinin bozulmaması herzaman aynı değerde kalmalarıdır. O yüzden bu dirençler çok özel seçilirler. Ama yine de 24 bitlik bir R-2R dac da fazlasıyla direnç olacağını bu dirençlerin hepsinin hatasız çalışması gerektiğini dikkate almamız gerekir. az elemanla ve daha kolay bir şekilde yapıldığından R-2R dac lara uygun olup 1 bit dac a hiç uygun olmayan cd datası günümüzde yeniden 1 bit olarak encode edilerek 1 bit dac lara uyumlu hale getirilmek suretiyle analog conversion yapılmaktadır. Daha sonradan çıkan dsd formatında ise direkt olarak 1 bit formatı kullanılmıştır. Şekil 13 R-2R Resistor Network R-2R dac entegresi örneği olarak pek çok hiend cihazda kullanılan TI BB PCM1704 ü, 1 Bit dac örneği olarak da yine TI BB den DSD1700 ü verebiliriz. Bunların yanında yine Delta Sigma Modulasyonu prensibiyle çalışan (1 bit mantığıyla) multi bit dsd özellikli Analog Devices dan AD1853 ve Wolfson dan WM8740 entegreleri de yaygın olarak kullanılmaktadır. Multibit dsd veya 1 bit çalışan dac entegrelerinin pek çoğu yukarıda daha önce de bahsettiğim gibi input olarak veya 24 bit olarak datayı kabul eder, kendi içinde dsd kodlamasını yapar ve sayısal sinyali bundan sonra analog a dönüştürür. Şekil 12 - Düşük Frekanslı 1 Bit Kodlama R-2R dac larla 1 Bit dac ları karşılaştırdığımızda birisi diğerine göre daha üstündür diyemeyiz her iki dac türünden de çok iyi örnekler vardır ama 1 bit dac larda analog a çevirim çok daha D. Conversion & Analog Filtering Sinyal sayısal dan analog a dönüştürülme esnasında elemanlar birbirini etkilemesin, gürültü oluşmasın diye elektriksel seviye genellikle çok düşük tutulur ve akım 16

17 prensibiyle çalışılır. Bu sinyalin çıkışa verilmesi olanaksızdır, yükseltilmesi gerekir ancak bunun istisnaları da vardır. Örneğin BB PCM56 dac entegresinin içine yerleştirilmiş olan opamp ı sayesinde bu entegre direkt olarak dışarı çıkış verebilir. olarak analog kayıt dünyasının standard larını yakalamak olmuştur. Analog a dönüşümden hemen sonra analog değer yükseltilirken ilk aşamada pek çok üretici opampları tercih eder, çünkü opampların giriş empedansları çok yüksektir ve dolayısıyla giriş işaretine olan etkisi minimal olur, orijinalliği bozulmaz. Bu işlem aslında bir akım gerilim dönüşümüdür, o yüzden I/V conversion ( I (akım) V (Gerilim)) olarak adlandırılır. Yine bu aşamada analoga dönüşüm sırasında faz değişmişse faz düzeltme işlemi de yapılır. Yükseltilme işlemi yapılırken aynı zamanda analog filtreleme de yaygınlıkla yapılan bir işlemdir. Bu filtre çok keskin tercih edilmez zira üstlerin kırpılma riski vardır. Yükseltme ve analog filtreleme opamp larla yapıldığı gibi discrete transistorlarla da yapılabilir. Sonuçta zaten opamplar da transistorlardan meydana gelmektedir. O yüzden çıkışın transistorlu ve opamplı olması benzer sonucu doğurur. Bütün bunlardan farklı olarak dac çıkışında lamba katı kullanımı da bir tercih sebebidir. Bu şekil kullanıma tube buffer adı verilmektedir. Aslında tube buffer dac içinde olabileceği gibi dışarıdan external bir kutuyla da yapılabilir. Dışarıdan tube buffer kullanırken DAC kutusu içindeki yükseltme bölümündeki katların çok fazla sayıda olmaması ve tube buffer ın da çok fazla kattan yapılmış olmaması uygun olacaktır. Diğer türlü analog audio sinyali gereksizce çok fazla elemandan geçerek anfiye ulaşır bu da sese negatif etki edecektir. Sonuç olarak bir taraftan sürekli gelişen dac teknolojilerinin yanında hala çok eski dac entegreleriyle oldukça başarılı dac kutuları yapılabilmektedir. En nihayetinde duyduğumuz ses önemli olduğuna göre kesin olarak bu dac teknolojisi şu dac teknolojisinden daha iyi diyemiyoruz. Bununla birlikte dac teknolojilerinin amacı sürekli 17

18 D.A.C. Devreleri 2. Ağırlık Dirençli Tip DAC 1. R-2R Merdiven Tip DAC Bu devrede dirençlerin değerlerinin R-2R olarak sıralanması ve çıkış dalga şeklinin merdiven basamağı şeklinde artması sebebiyle bu tip çeviriciler R-2R merdiven tipi D/A çevirici adını alır. Şekil 14 te verilen R-2R merdiven tip DAC devresinde X ile gösterilmiş düğüme A,B,C ve D ile gösterilmiş dijital girişlerin etkileri farklıdır. Önünde çok direnç değeri olan dijital giriş X noktasına daha az akım ulaştıracaktır ve bunun sonucu olarak da çıkıştaki etkisi daha az olacaktır. D en değerliksiz bit (LSB) olup devrenin çözünürlüğünü belirler. Referans geriliminin 16 da 1 i kadar çıkışı etkiler. Her bir basamak değeri D nin etkilediği değer kadar artar. A ise en değerlikli bit (MSB) olup çıkışa tam skala değerinin yarısı olarak etki eder. Şekil 15 - Ağırlık dirençli tip DAC Bu devrede dirençlerin değerlerinin ağırlık dirençli olarak sıralanması dijital girişlerin önüne koyulan dirençlerin, dijital girişin çıkışa yansıtılma oranını ile ters orantılı bir şekilde belirlenmesinden kaynaklanır. Dirençler arasındaki oran belirlenirken 2 nin katları şeklinde gidilmesi gereklidir. Şekil 15'te verilen ağırlık dirençli tip DAC X ile gösterilmiş düğüme A,B,C ve D ile gösterilmiş dijital girişlerin etkileri farklıdır. Önünde yüksek direnç değeri olan dijital giriş X noktasına daha az akım ulaştıracaktır ve bunun sonucu olarak da çıkıştaki etkisi daha az olacaktır. D en değerliksiz bit (LSB) olup devrenin çözünürlüğünü belirler. Referans geriliminin 16 da 1 i kadar çıkışı etkiler. Her bir basamak değeri D nin etkilediği değer kadar artar. A ise en değerlikli bit (MSB) olup çıkışa tam skala değerinin yarısı olarak etki eder. Şekil 14 - R-2R merdiven tip DAC 18

19 3. DAC Entegreleri 3.1. DAC 0800 DAC0800 entegresi yüksek hızda çalışan 8 bit dijital veriyi analog veriye çevren bir entegre devredir. Simetrik bir güç kaynağı ile beslenmelidir. Referans geriliminin 40 da 1 i kadar çıkışı etkiler MC1408 Çok popüler ve ucuz bir entegre devre D-A çevirici MC1408 veya eş değeri olan DAC0808 dir. MC1408 standart 16 bacaklı DIP paket olarak gelir ve +5V luk Vcc ile minimum -5V, maximum -15V luk VEE gerilimi gerektirir. MC1408 de, bir R/2R merdiven tipi D/A çevirici, akım yükseltecinden gelen referans akımını, 8 ikilik ağırlıklı akıma böler. Bipolar transistör anahtarlar (A1-A8), girişlerindeki ikilik bilgiye göre ikilik ağırlıklı akımları çıkış hattına bağlar. Şekil 16 - DAC 0800 entegresini yapısı ve devresi En yüksek değerlikli biti taşıyan girişin A1, en düşük değerlikli taşıyan girişin A8 ile gösterilmiştir. MSB ve LSB etiketlendirilmeleri normal etiketlendirilmenin tersinedir. Bu nedenle kullanılacak bir entegrenin veri sayfası dikkatle incelenmelidir. Şekil 17 MC1408 in blok diyagramını, bacak bağlantısını ve tipik uygulamasını göstermektedir. MC1408 in bir işlemsel yükselteç (op-amp) ve bir dirençle gerilime çevrilebilen akım çıkış vardır. 19

20 Şekil 17 - MC1408 entegresini yapısı ve devresi ZN425E ZN 425E entegresi hem analog dijital hem de dijital analog çevrim için kullanılabilen bir entegredir. Entegre 8 nu lı ayağından uygulanan 5V gerilimle çalışır.8 bit dijital girişe sahiptir.kendi ürettiği 2.5V referans gerilimine sahiptir.dijital analog çevrimi sırasında clock palsine gerek duymaz.analog dijital çevirici olarak çalıştığında 4 nu lu ayağından clock palsi verilir ve içindeki 8 bit lik sayıcı devreye girer.sayıcı 3 nu lu bacaktan resetlenebilir.2 nu lı bacak ise entegrenin çalışma modunu ayarlamak için kullanılır. 20

6. DİJİTAL / ANALOG VE ANALOG /DİJİTAL ÇEVİRİCİLER 1

6. DİJİTAL / ANALOG VE ANALOG /DİJİTAL ÇEVİRİCİLER 1 6. DİJİTAL / ANALOG VE ANALOG /DİJİTAL ÇEVİRİCİLER 1 Günümüzde kullanılan elektronik kontrol üniteleri analog ve dijital elektronik düzenlerinin birleşimi ile gerçekleşir. Gerilim, akım, direnç, frekans,

Detaylı

ANOLOG-DİJİTAL DÖNÜŞTÜRÜCÜLER

ANOLOG-DİJİTAL DÖNÜŞTÜRÜCÜLER ADC ve DAC 1 BM-201 2 ANOLOG-DİJİTAL DÖNÜŞTÜRÜCÜLER Maksimum ve minimum sınırları arasında farklı değerler alarak değişken elektriksel büyüklüklere analog bilgi ya da analog değer denir. Akım ve gerilim

Detaylı

SAYISAL-ANALOG (DAC) ANALOG-SAYISAL(ADC) DÖNÜŞTÜRÜCÜLER

SAYISAL-ANALOG (DAC) ANALOG-SAYISAL(ADC) DÖNÜŞTÜRÜCÜLER SAYISAL-ANALOG (DAC) ANALOG-SAYISAL(ADC) DÖNÜŞTÜRÜCÜLER Fiziksel sistemlerdeki ısı, sıcaklık, basınç, ağırlık, nem oranı, ışık şiddeti, ses şiddeti gibi büyüklükler analog olarak değişirler. Dış ortamdaki

Detaylı

MİKROİŞLEMCİ İLE A/D DÖNÜŞÜMÜ

MİKROİŞLEMCİ İLE A/D DÖNÜŞÜMÜ KARADENİZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR ORGANİZASYONU LABORATUVARI MİKROİŞLEMCİ İLE A/D DÖNÜŞÜMÜ 1. GİRİŞ Analog işaretleri sayısal işaretlere dönüştüren elektronik devrelere

Detaylı

Şekil 3-1 Ses ve PWM işaretleri arasındaki ilişki

Şekil 3-1 Ses ve PWM işaretleri arasındaki ilişki DARBE GENİŞLİK MÖDÜLATÖRLERİ (PWM) (3.DENEY) DENEY NO : 3 DENEY ADI : Darbe Genişlik Modülatörleri (PWM) DENEYİN AMACI : µa741 kullanarak bir darbe genişlik modülatörünün gerçekleştirilmesi.lm555 in karakteristiklerinin

Detaylı

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ SAYISAL TASARIM LABORATUVARI DENEY 6 ANALOG/DİGİTAL DÖNÜŞTÜRÜCÜ. Grup Numara Ad Soyad RAPORU HAZIRLAYAN:

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ SAYISAL TASARIM LABORATUVARI DENEY 6 ANALOG/DİGİTAL DÖNÜŞTÜRÜCÜ. Grup Numara Ad Soyad RAPORU HAZIRLAYAN: ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ SAYISAL TASARIM LABORATUVARI DENEY 6 ANALOG/DİGİTAL DÖNÜŞTÜRÜCÜ DENEYİ YAPANLAR Grup Numara Ad Soyad RAPORU HAZIRLAYAN: Deneyin Yapılış Tarihi Raporun Geleceği Tarih Raporun

Detaylı

Deney 10: Analog - Dijital Dönüştürücüler (Analog to Digital Converters - ADC) Giriş

Deney 10: Analog - Dijital Dönüştürücüler (Analog to Digital Converters - ADC) Giriş Deney 10: Analog - Dijital Dönüştürücüler (Analog to Digital Converters - ADC) Analog - Dijital Dönüştürücülerin ADC0804 entegre devresi ile incelenmesi Giriş Sensör ve transdüser çıkışlarında genellikle

Detaylı

ELM019 - Ölçme ve Enstrümantasyon 3

ELM019 - Ölçme ve Enstrümantasyon 3 DAQ - Converters Veri Toplayıcılar Data Acquisition Bir Veri Toplama Sisteminin (DAS) Bileşenleri Bazı tıbbi cihazlar bir hastadan gelen fizyolojik işaretlerin takibini ve analizini yapabilir. Şekildeki

Detaylı

SAYISAL TASARIM. Ege Üniversitesi Ege MYO Mekatronik Programı

SAYISAL TASARIM. Ege Üniversitesi Ege MYO Mekatronik Programı SAYISAL TASARIM Ege Üniversitesi Ege MYO Mekatronik Programı BÖLÜM 5 ADC, Analog Sayısal Dönüştürücüler Analog İşaretler Elektronik devrelerin giriş işaretlerinin büyük çoğunluğu analogtur. Günlük yaşantımızda

Detaylı

DENEY 6a- Dijital/Analog Çevirici (DAC) Devreleri

DENEY 6a- Dijital/Analog Çevirici (DAC) Devreleri DENEY 6a- Dijital/Analog Çevirici (DAC) Devreleri DENEYİN AMACI 1. Dijitalden Analog a çevrimin temel kavramlarının ve teorilerinin anlaşılması GENEL BİLGİLER Şekil-1 Şekil-1 de bir direnç ağıyla gerçekleştirilmiş

Detaylı

DENEY NO : 2 DENEY ADI : Sayısal Sinyallerin Analog Sinyallere Dönüştürülmesi

DENEY NO : 2 DENEY ADI : Sayısal Sinyallerin Analog Sinyallere Dönüştürülmesi DENEY NO : 2 DENEY ADI : Sayısal Sinyallerin Analog Sinyallere Dönüştürülmesi DENEYİN AMACI :Bir sayısal-analog dönüştürücü işlemini anlama. DAC0800'ün çalışmasını anlama. DAC0800'ı kullanarak unipolar

Detaylı

DENEY 6- Dijital/Analog Çevirici (DAC) Devreleri

DENEY 6- Dijital/Analog Çevirici (DAC) Devreleri DENEY 6- Dijital/Analog Çevirici (DAC) Devreleri DENEYİN AMACI 1. Dijitalden Analog a çevrimin temel kavramlarının ve teorilerinin anlaşılması GENEL BİLGİLER Şekil-1 Şekil-1 de bir direnç ağıyla gerçekleştirilmiş

Detaylı

DENEY 21 IC Zamanlayıcı Devre

DENEY 21 IC Zamanlayıcı Devre DENEY 21 IC Zamanlayıcı Devre DENEYİN AMACI 1. IC zamanlayıcı NE555 in çalışmasını öğrenmek. 2. 555 multivibratörlerinin çalışma ve yapılarını öğrenmek. 3. IC zamanlayıcı anahtar devresi yapmak. GİRİŞ

Detaylı

ADC Devrelerinde Pratik Düşünceler

ADC Devrelerinde Pratik Düşünceler ADC Devrelerinde Pratik Düşünceler ADC nin belki de en önemli örneği çözünürlüğüdür. Çözünürlük dönüştürücü tarafından elde edilen ikili bitlerin sayısıdır. Çünkü ADC devreleri birçok kesikli adımdan birinin

Detaylı

SAYISAL TASARIM. Ege Üniversitesi Ege MYO Mekatronik Programı

SAYISAL TASARIM. Ege Üniversitesi Ege MYO Mekatronik Programı SAYISAL TASARIM Ege Üniversitesi Ege MYO Mekatronik Programı BÖLÜM 6 DAC, Sayısal Analog Dönüştürücüler DAC Sayısal Analog Dönüştürücüler Analog sayısal dönüşümün tersini gerçekleyen elemanlara sayısal

Detaylı

Bölüm 9 A/D Çeviriciler

Bölüm 9 A/D Çeviriciler Bölüm 9 A/D Çeviriciler 9.1 AMAÇ 1. Bir Analog-Dijital Çeviricinin çalışma yönteminin anlaşılması. 2. ADC0804 ve ADC0809 entegrelerinin karakteristiklerinin anlaşılması. 3. ADC0804 ve ADC0809 entegrelerinin

Detaylı

Algılayıcılar (Sensors)

Algılayıcılar (Sensors) Algılayıcılar (Sensors) Sayısal işlem ve ölçmeler sadece elektriksel büyüklüklerle yapılmaktadır. Genelde teknik ve fiziksel büyüklükler (sıcaklık, ağırlık kuvveti ve basınç gibi) elektrik dalından olmayan

Detaylı

Bölüm 10 D/A Çeviriciler

Bölüm 10 D/A Çeviriciler Bölüm 10 /A Çeviriciler 10.1 AMAÇ 1. Bir dijital analog çeviricinin çalışma prensibinin anlaşılması.. AC0800 ün çalışma prensibinin anlaşılması.. AC0800 kullanarak tek kutuplu yada çift kutuplu çıkışların

Detaylı

Bölüm 16 CVSD Sistemi

Bölüm 16 CVSD Sistemi Bölüm 16 CVSD Sistemi 16.1 AMAÇ 1. DM sisteminin çalışma prensibinin incelenmesi. 2. CVSD sisteminin çalışma prensibinin incelenmesi. 3. CVSD modülatör ve demodülatör yapılarının gerçeklenmesi. 16.2 TEMEL

Detaylı

BÖLÜM 11 SAYISAL-ANALOG (DAC) ANALOG-SAYISAL(ADC) DÖNÜŞTÜRÜCÜLER SAYISAL TASARIM. Bu bölümde aşağıdaki konular anlatılacaktır.

BÖLÜM 11 SAYISAL-ANALOG (DAC) ANALOG-SAYISAL(ADC) DÖNÜŞTÜRÜCÜLER SAYISAL TASARIM. Bu bölümde aşağıdaki konular anlatılacaktır. SYISL TSIM BÖLÜM SYISLNLOG (DC NLOGSYISL(DC DÖNÜŞTÜÜCÜLE Bu bölümde aşağıdaki konular anlatılacaktır. Sayısal ve nalog sinyaller İşlemsel yükselteçler (Operatinal mplifieropmp Sayısalnalog Çeviriciler

Detaylı

KIRIKKALE ÜNİVERSİTESİ

KIRIKKALE ÜNİVERSİTESİ KIRIKKALE ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL ELEKTRONİK LAB. DENEY FÖYÜ DENEY 4 OSİLATÖRLER SCHMİT TRİGGER ve MULTİVİBRATÖR DEVRELERİ ÖN BİLGİ: Elektronik iletişim sistemlerinde

Detaylı

Analog Sayısal Dönüşüm

Analog Sayısal Dönüşüm Analog Sayısal Dönüşüm Gerilim sinyali formundaki analog bir veriyi, iki tabanındaki sayısal bir veriye dönüştürmek için, az önce anlatılan merdiven devresiyle, bir sayıcı (counter) ve bir karşılaştırıcı

Detaylı

1. LİNEER PCM KODLAMA

1. LİNEER PCM KODLAMA 1. LİNEER PCM KODLAMA 1.1 Amaçlar 4/12 bitlik lineer PCM kodlayıcısı ve kod çözücüsünü incelemek. Kuantalama hatasını incelemek. Kodlama kullanarak ses iletimini gerçekleştirmek. 1.2 Ön Hazırlık 1. Kuantalama

Detaylı

Mikroişlemci ile Analog-Sayısal Dönüştürücü (ADC)

Mikroişlemci ile Analog-Sayısal Dönüştürücü (ADC) KARADENİZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ MİKROİŞLEMCİ LABORATUARI Mikroişlemci ile Analog-Sayısal Dönüştürücü (ADC) 1. Giriş Analog işaretler analog donanım kullanılarak işlenebilir.

Detaylı

BİLGİSAYARLI KONTROL OPERASYONAL AMFLİKATÖRLER VE ÇEVİRİCİLER

BİLGİSAYARLI KONTROL OPERASYONAL AMFLİKATÖRLER VE ÇEVİRİCİLER BÖLÜM 4 OPERASYONAL AMFLİKATÖRLER VE ÇEVİRİCİLER 4.1 OPERASYONEL AMPLİFİKATÖRLER (OPAMP LAR) Operasyonel amplifikatörler (Operational Amplifiers) veya işlemsel kuvvetlendiriciler, karmaşık sistemlerin

Detaylı

ANALOGDAN-SAYISALA ÇEVİRİCİ (ADC)

ANALOGDAN-SAYISALA ÇEVİRİCİ (ADC) Sayısal Tasarım 3 ANALOGDAN-SAYISALA ÇEVİRİİ (AD) Analog-sayısal çevirici (AD yada A/S), ölçülen yada elde edilen analog büyüklüklerin ikilik kodlar biçiminde sayısal sistemlere aktarılarak işlenmesi ve

Detaylı

Deney 3: Opamp. Opamp ın (işlemsel yükselteç) çalışma mantığının ve kullanım alanlarının öğrenilmesi, uygulamalarla pratik bilginin pekiştirilmesi.

Deney 3: Opamp. Opamp ın (işlemsel yükselteç) çalışma mantığının ve kullanım alanlarının öğrenilmesi, uygulamalarla pratik bilginin pekiştirilmesi. Deneyin Amacı: Deney 3: Opamp Opamp ın (işlemsel yükselteç) çalışma mantığının ve kullanım alanlarının öğrenilmesi, uygulamalarla pratik bilginin pekiştirilmesi. A.ÖNBİLGİ İdeal bir opamp (operational-amplifier)

Detaylı

Multivibratörler. Monastable (Tek Kararlı) Multivibratör

Multivibratörler. Monastable (Tek Kararlı) Multivibratör Multivibratörler Kare dalga veya dikdörtgen dalga meydana getiren devrelere MULTİVİBRATÖR adı verilir. Bu devreler temel olarak pozitif geri beslemeli iki yükselteç devresinden oluşur. Genelde çalışma

Detaylı

Bu ders boyunca, ilk önce sayısal kontrol sistemlerinin temellerini tanıtıp, daha sonra birkaç temel pratik uygulamasından bahsedeceğiz.

Bu ders boyunca, ilk önce sayısal kontrol sistemlerinin temellerini tanıtıp, daha sonra birkaç temel pratik uygulamasından bahsedeceğiz. Özellikle 2000 li yıllarda dijital teknolojideki gelişmeler, dijital (sayısal) kontrol sistemlerini analog kontrol sistemleriyle rekabet açısından 90 lı yıllara göre daha üst seviyelere taşımıştır. Düşük

Detaylı

Deney 4: 555 Entegresi Uygulamaları

Deney 4: 555 Entegresi Uygulamaları Deneyin Amacı: Deney 4: 555 Entegresi Uygulamaları 555 entegresi kullanım alanlarının öğrenilmesi. Uygulama yapılarak pratik kazanılması. A.ÖNBİLGİ LM 555 entegresi; osilasyon, zaman gecikmesi ve darbe

Detaylı

ÖN SÖZ... İİİ İÇİNDEKİLER... V BÖLÜM 1: DİJİTAL ÖLÇME TEKNİKLERİ... 1

ÖN SÖZ... İİİ İÇİNDEKİLER... V BÖLÜM 1: DİJİTAL ÖLÇME TEKNİKLERİ... 1 İÇİNDEKİLER ÖN SÖZ... İİİ İÇİNDEKİLER... V BÖLÜM 1: DİJİTAL ÖLÇME TEKNİKLERİ... 1 GENEL AÇIKLAMALAR TEMEL KARAKTERİSTİKLER... 1 1. GİRİŞ... 1 2. DİJİTAL ÖLÇME CİHAZLARINI FARKLANDIRAN TEMEL BELİRTİLER...

Detaylı

DENEY NO : 4 DENEY ADI : Darbe Genişlik Demodülatörleri

DENEY NO : 4 DENEY ADI : Darbe Genişlik Demodülatörleri DENEY NO : 4 DENEY ADI : Darbe Genişlik Demodülatörleri DENEYİN AMACI :Darbe Genişlik Demodülatörünün çalışma prensibinin anlaşılması. Çarpım detektörü kullanarak bir darbe genişlik demodülatörünün gerçekleştirilmesi.

Detaylı

MĐKROĐŞLEMCĐLĐ FONKSĐYON ÜRETECĐ

MĐKROĐŞLEMCĐLĐ FONKSĐYON ÜRETECĐ K TÜ Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Mikroişlemciler Laboratuarı MĐKROĐŞLEMCĐLĐ FONKSĐYON ÜRETECĐ Mikrobilgisayarların kullanım alanlarından biri de değişik biçimli periyodik işaretlerin

Detaylı

BÖLÜM 2 8051 Mikrodenetleyicisine Giriş

BÖLÜM 2 8051 Mikrodenetleyicisine Giriş C ile 8051 Mikrodenetleyici Uygulamaları BÖLÜM 2 8051 Mikrodenetleyicisine Giriş Amaçlar 8051 mikrodenetleyicisinin tarihi gelişimini açıklamak 8051 mikrodenetleyicisinin mimari yapısını kavramak 8051

Detaylı

SAYI VE KODLAMA SİSTEMLERİ. Teknoloji Fakültesi/Bilgisayar Mühendisliği

SAYI VE KODLAMA SİSTEMLERİ. Teknoloji Fakültesi/Bilgisayar Mühendisliği SAYI VE KODLAMA SİSTEMLERİ Teknoloji Fakültesi/Bilgisayar Mühendisliği Neler Var? Sayısal Kodlar BCD Kodu (Binary Coded Decimal Code) - 8421 Kodu Gray Kodu Artı 3 (Excess 3) Kodu 5 de 2 Kodu Eşitlik (Parity)

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1 T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1 DENEY SORUMLUSU Arş. Gör. Memduh SUVEREN MART 2015 KAYSERİ OPAMP DEVRELERİ

Detaylı

İşlemsel Kuvvetlendiriciler (Operational Amplifiers: OPAMPs)

İşlemsel Kuvvetlendiriciler (Operational Amplifiers: OPAMPs) BLM224 ELEKTERONİK DEVRELER Hafta 12 İşlemsel Kuvvetlendiriciler (Operational Amplifiers: OPAMPs) Opamp Sembolü ve Terminalleri Standart bir opamp; iki adet giriş terminali, bir adet çıkış terminaline

Detaylı

Bölüm 14 FSK Demodülatörleri

Bölüm 14 FSK Demodülatörleri Bölüm 14 FSK Demodülatörleri 14.1 AMAÇ 1. Faz kilitlemeli çevrim(pll) kullanarak frekans kaydırmalı anahtarlama detektörünün gerçekleştirilmesi.. OP AMP kullanarak bir gerilim karşılaştırıcının nasıl tasarlanacağının

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2 T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2 DENEY SORUMLUSU Arş. Gör. Memduh SUVEREN MART 2015 KAYSERİ OPAMP DEVRELERİ

Detaylı

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ Amaç: Bu deneyde terslemeyen kuvvetlendirici, toplayıcı kuvvetlendirici ve karşılaştırıcı

Detaylı

3.3. İki Tabanlı Sayı Sisteminde Dört İşlem

3.3. İki Tabanlı Sayı Sisteminde Dört İşlem 3.3. İki Tabanlı Sayı Sisteminde Dört İşlem A + B = 2 0 2 1 (Elde) A * B = Sonuç A B = 2 0 2 1 (Borç) A / B = Sonuç 0 + 0 = 0 0 0 * 0 = 0 0 0 = 0 0 0 / 0 = 0 0 + 1 = 1 0 0 * 1 = 0 0 1 = 1 1 0 / 1 = 0 1

Detaylı

Sabit Gerilim Regülatörü Kullanarak Ayarlanabilir Güç Kaynağı

Sabit Gerilim Regülatörü Kullanarak Ayarlanabilir Güç Kaynağı Sabit Gerilim Regülatörü Kullanarak Ayarlanabilir Güç Kaynağı Sabit değerli pozitif gerilim regülatörleri basit bir şekilde iki adet direnç ilavesiyle ayarlanabilir gerilim kaynaklarına dönüştürülebilir.

Detaylı

DENEY NO : 1 DENEY ADI : Analog Sinyallerin Sayısal Sinyallere Dönüştürülmesi

DENEY NO : 1 DENEY ADI : Analog Sinyallerin Sayısal Sinyallere Dönüştürülmesi DENEY NO : 1 DENEY ADI : Analog Sinyallerin Sayısal Sinyallere Dönüştürülmesi DENEYİN AMACI : Analogdan sayısala çevrimde çeviricinin işleyişini anlama. ADC0804 ve ADC0809'un özelliklerini anlama. ADC0804

Detaylı

ANALOG VE SAYISAL KAVRAMLARI

ANALOG VE SAYISAL KAVRAMLARI ANALOG VE SAYISAL KAVRAMLARI Giriş Günlük hayatımızda fiziksel varlıkların büyüklükleri ile ilgilenilmektedir. Bu büyüklüklerin; ölçülebilme, görüntülenebilme, kaydedilebilme, aritmetik olarak hesaplanabilme

Detaylı

1. Sayıcıların çalışma prensiplerini ve JK flip-floplarla nasıl gerçekleştirileceğini anlamak. 2. Asenkron ve senkron sayıcıları incelemek.

1. Sayıcıların çalışma prensiplerini ve JK flip-floplarla nasıl gerçekleştirileceğini anlamak. 2. Asenkron ve senkron sayıcıları incelemek. DENEY 7-2 Sayıcılar DENEYİN AMACI 1. Sayıcıların çalışma prensiplerini ve JK flip-floplarla nasıl gerçekleştirileceğini anlamak. 2. Asenkron ve senkron sayıcıları incelemek. GENEL BİLGİLER Sayıcılar, flip-floplar

Detaylı

Teorik Bilgi DENEY 7: ASENKRON VE SENKRON SAYICILAR

Teorik Bilgi DENEY 7: ASENKRON VE SENKRON SAYICILAR DENEY 7: ASENKRON VE SENKRON SAYICILAR Deneyin Amaçları Asenkron ve senkron sayıcı devre yapılarının öğrenilmesi ve deneysel olarak yapılması Deney Malzemeleri 74LS08 Ve Kapı Entegresi (1 Adet) 74LS76

Detaylı

Bölüm 13 FSK Modülatörleri.

Bölüm 13 FSK Modülatörleri. Bölüm 13 FSK Modülatörleri. 13.1 AMAÇ 1. Frekans Kaydırmalı Anahtarlama (FSK) modülasyonunun çalışma prensibinin anlaşılması.. FSK işaretlerinin ölçülmesi. 3. LM5 kullanarak bir FSK modülatörünün gerçekleştirilmesi.

Detaylı

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü HAZIRLIK ÇALIŞMALARI İŞLEMSEL YÜKSELTEÇLER VE UYGULAMALARI 1. 741 İşlemsel yükselteçlerin özellikleri ve yapısı hakkında bilgi veriniz. 2. İşlemsel yükselteçlerle gerçekleştirilen eviren yükselteç, türev

Detaylı

Bölüm 7 Ardışıl Lojik Devreler

Bölüm 7 Ardışıl Lojik Devreler Bölüm 7 Ardışıl Lojik Devreler DENEY 7- Flip-Floplar DENEYİN AMACI. Kombinasyonel ve ardışıl lojik devreler arasındaki farkları ve çeşitli bellek birimi uygulamalarını anlamak. 2. Çeşitli flip-flop türlerinin

Detaylı

4. 8 adet breadboard kablosu, 6 adet timsah kablo

4. 8 adet breadboard kablosu, 6 adet timsah kablo ALINACAK MALZEMELER 1. 0.25(1/4) Wattlık Direnç: 1k ohm (3 adet), 100 ohm(4 adet), 10 ohm (3 tane), 1 ohm (3 tane), 560 ohm (4 adet) 33k ohm (1 adet) 15kohm (1 adet) 10kohm (2 adet) 4.7 kohm (2 adet) 2.

Detaylı

Elektrik Devre Lab

Elektrik Devre Lab 2010-2011 Elektrik Devre Lab. 2 09.03.2011 Elektronik sistemlerde işlenecek sinyallerin hemen hepsi düşük genlikli, yani zayıf sinyallerdir. Elektronik sistemlerin pek çoğunda da yeterli derecede yükseltilmiş

Detaylı

KAYNAK KİTAP: 1-DIGITAL DESIGN PRINCIPLES & PRACTICES PRINCIPLES & PRACTICES PRINCIPLES & PRACTICES. PRENTICE HALL. Yazar: JOHN F.

KAYNAK KİTAP: 1-DIGITAL DESIGN PRINCIPLES & PRACTICES PRINCIPLES & PRACTICES PRINCIPLES & PRACTICES. PRENTICE HALL. Yazar: JOHN F. KAYNAK KİTAP: 1-DIGITAL DESIGN PRINCIPLES & PRACTICES PRINCIPLES & PRACTICES PRINCIPLES & PRACTICES. PRENTICE HALL. Yazar: JOHN F. WAKERLY DERSIN TANIMI Dersin Adı: SAYISAL TASARIM-I/BM-205 Dersin Kredisi:

Detaylı

SAYISAL ANALOG DÖNÜŞTÜRÜCÜ DENEYİ

SAYISAL ANALOG DÖNÜŞTÜRÜCÜ DENEYİ Deneyin Amacı: SAYISAL ANALOG DÖNÜŞTÜRÜCÜ DENEYİ Sayısal Analog Dönüştürücüleri (Digital to Analog Converter, DAC) tanımak ve kullanmaktır. Giriş: Sayısal Analog Dönüştürücüler (DAC) için kullanılan devrelerin

Detaylı

DENEY 5: GENLİK KAYDIRMALI ANAHTARLAMA (ASK) TEMELLERİNİN İNCELENMESİ

DENEY 5: GENLİK KAYDIRMALI ANAHTARLAMA (ASK) TEMELLERİNİN İNCELENMESİ DENEY 5: GENLİK KAYDIRMALI ANAHTARLAMA (ASK) TEMELLERİNİN İNCELENMESİ Deneyin Amacı: Bilgisayar ortamında Genlik Kaydırmalı Anahtarlama modülasyonu ve demodülasyonu için ilgili kodların incelenmesi ve

Detaylı

OP-AMP UYGULAMA ÖRNEKLERİ

OP-AMP UYGULAMA ÖRNEKLERİ OP-AMP UYGULAMA ÖRNEKLERİ TOPLAR OP-AMP ÖRNEĞİ GERİLİM İZLEYİCİ Eşdeğer devresinden görüldüğü gibi Vo = Vi 'dir. Emiter izleyici devreye çok benzer. Bu devrenin giriş empedansı yüksek, çıkış empedansı

Detaylı

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ Yrd. Doç. Dr. Mustafa Hikmet Bilgehan UÇAR 1 MANTIK DEVRELERİ Yrd. Doç. Dr. Mustafa Hikmet Bilgehan UÇAR Digital Electronics

Detaylı

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I LAB SINAVI DARBE GENLİK MODÜLASYONU (PWM)

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I LAB SINAVI DARBE GENLİK MODÜLASYONU (PWM) Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I LAB SINAVI DARBE GENLİK MODÜLASYONU (PWM) 9.1 Amaçlar 1. µa741 ile PWM modülatör kurulması. 2. LM555 in çalışma prensiplerinin

Detaylı

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme BÖLÜM X OSİLATÖRLER 0. OSİLATÖRE GİRİŞ Kendi kendine sinyal üreten devrelere osilatör denir. Böyle devrelere dışarıdan herhangi bir sinyal uygulanmaz. Çıkışlarında sinüsoidal, kare, dikdörtgen ve testere

Detaylı

6. Osiloskop. Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır.

6. Osiloskop. Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır. 6. Osiloskop Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır. Osiloskoplar üç gruba ayrılabilir; 1. Analog osiloskoplar 2. Dijital osiloskoplar

Detaylı

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME Amaç Elektronikte geniş uygulama alanı bulan geribesleme, sistemin çıkış büyüklüğünden elde edilen ve giriş büyüklüğü ile aynı nitelikte bir işaretin girişe gelmesi

Detaylı

Op-Amp Uygulama Devreleri

Op-Amp Uygulama Devreleri Op-Amp Uygulama Devreleri Tipik Op-amp devre yapıları şunları içerir: Birim Kazanç Arabelleği (Gerilim İzleyici) Evirici Yükselteç Evirmeyen Yükselteç Toplayan Yükselteç İntegral Alıcı Türev Alıcı Karşılaştırıcı

Detaylı

Bölüm 4 Ardışıl Lojik Devre Deneyleri

Bölüm 4 Ardışıl Lojik Devre Deneyleri Bölüm 4 Ardışıl Lojik Devre Deneyleri DENEY 4-1 Flip-Floplar DENEYİN AMACI 1. Kombinasyonel ve ardışıl lojik devreler arasındaki farkları ve çeşitli bellek birimi uygulamalarını anlamak. 2. Çeşitli flip-flop

Detaylı

DENEY FÖYÜ 7: İşlemsel Yükselteçlerin Doğrusal Uygulamaları

DENEY FÖYÜ 7: İşlemsel Yükselteçlerin Doğrusal Uygulamaları DENEY FÖYÜ 7: İşlemsel Yükselteçlerin Doğrusal Uygulamaları Deneyin Amacı: Bu deneyin amacı; İşlemsel yükselteçlerle (OP-AMP) yapılabilecek doğrusal uygulamaları laboratuvar ortamında gerçekleştirmek ve

Detaylı

Bilgisayar Mimarisi. Veri (DATA) Veri nedir? Veri bazı fiziksel niceliklerin ham ifadesidir. Bilgi verinin belli bir yapıdaki şeklidir.

Bilgisayar Mimarisi. Veri (DATA) Veri nedir? Veri bazı fiziksel niceliklerin ham ifadesidir. Bilgi verinin belli bir yapıdaki şeklidir. Bilgisayar Mimarisi Sayısallaştırma ve Sayı Sistemleri Yrd.Doç.Dr. Celal Murat KANDEMİR ESOGÜ Eğitim Fakültesi - BÖTE twitter.com/cmkandemir Veri nedir? Veri bazı fiziksel niceliklerin ham ifadesidir.

Detaylı

Deney 6: Ring (Halka) ve Johnson Sayıcılar

Deney 6: Ring (Halka) ve Johnson Sayıcılar Deney 6: Ring (Halka) ve Johnson Sayıcılar Kullanılan Elemanlar xlm Entegresi, x0 kohm direnç, x00 kohm direnç, x0 µf elektrolitik kondansatör, x00 nf kondansatör, x 7HC7 (D flip-flop), x 0 ohm, x Led

Detaylı

İşlemsel Yükselteçler

İşlemsel Yükselteçler İşlemsel Yükselteçler Bölüm 5. 5.1. Giriş İşlemsel yükselteçler aktif devre elemanlarıdır. Devrede gerilin kontrollü gerilim kaynağı gibi çalışırlar. İşlemsel yükselteçler sinyalleri toplama, çıkarma,

Detaylı

Proje Teslimi: 2013-2014 güz yarıyılı ikinci ders haftasında teslim edilecektir.

Proje Teslimi: 2013-2014 güz yarıyılı ikinci ders haftasında teslim edilecektir. ELEKTRONĐK YAZ PROJESĐ-2 (v1.1) Yıldız Teknik Üniversitesi Elektronik ve Haberleşme Mühendisliği Bölümünde okuyan 1. ve 2. sınıf öğrencilerine; mesleği sevdirerek öğretmek amacıyla, isteğe bağlı olarak

Detaylı

ANALOG SAYISAL DÖNÜŞTÜRÜCÜ DENEYİ TÜMLEŞİK (ENTEGRE) ADC DEVRESİ İLE

ANALOG SAYISAL DÖNÜŞTÜRÜCÜ DENEYİ TÜMLEŞİK (ENTEGRE) ADC DEVRESİ İLE 1 Deneyin Amacı: ANALOG SAYISAL DÖNÜŞTÜRÜCÜ DENEYİ TÜMLEŞİK (ENTEGRE) ADC DEVRESİ İLE Analog Sayısal Dönüştürücüleri (Analog to Digital Converter, ADC) tanımak ve kullanmaktır. Sayısal elektronik devrelerinin

Detaylı

MikroiĢlemci ile Analog-Sayısal DönüĢtürücü (ADC)

MikroiĢlemci ile Analog-Sayısal DönüĢtürücü (ADC) KARADENĠZ TEKNĠK ÜNĠVERSĠTESĠ BĠLGĠSAYAR MÜHENDĠSLĠĞĠ BÖLÜMÜ MĠKROĠġLEMCĠ LABORATUARI MikroiĢlemci ile Analog-Sayısal DönüĢtürücü (ADC) 1. GiriĢ Analog işaretler analog donanım kullanılarak işlenebilir.

Detaylı

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ Amaç: Bu deney, tersleyen kuvvetlendirici, terslemeyen kuvvetlendirici ve toplayıcı

Detaylı

SAYISAL ELEKTRONİK DERS NOTLARI:

SAYISAL ELEKTRONİK DERS NOTLARI: SAYISAL ELEKTRONİK DERS NOTLARI: SAYISAL (DİJİTAL) ELEKTRONİK Günümüz Elektroniği Analog ve Sayısal olmak üzere iki temel türde incelenebilir. Analog büyüklükler sonsuz sayıda değeri içermesine rağmen

Detaylı

BESLEME KARTI RF ALICI KARTI

BESLEME KARTI RF ALICI KARTI BESLEME KARTI Araç üzerinde bulunan ve tüm kartları besleyen ünitedir.doğrudan Lipo batarya ile beslendikten sonra motor kartına 11.1 V diğer kartlara 5 V dağıtır. Özellikleri; Ters gerilim korumalı Isınmaya

Detaylı

Deney 3: Asenkron Sayıcılar

Deney 3: Asenkron Sayıcılar Deney 3: Asenkron Sayıcılar Sayıcılar hakkında genel bilgi sahibi olunması, asenkron sayıcıların kurulması ve incelenmesi Kullanılan Elemanlar 1xLM555 Entegresi, 1x10 kohm direnç, 1x100 kohm direnç, 1x10

Detaylı

ĐŞARET ĐŞLEME (SIGNAL PROCESSING)

ĐŞARET ĐŞLEME (SIGNAL PROCESSING) ĐŞARET ĐŞLEME (SIGNAL PROCESSING) Modern ölçme sistemlerinde Đşaret Đşleme bloğunun yerini çoğunlukla bir PC almıştır. Söz konusu bloğun en önemli fonksiyonu, ölçülen fiziksel büyüklük elektriksel işarete

Detaylı

BM 403 Veri İletişimi

BM 403 Veri İletişimi BM 403 Veri İletişimi (Data Communications) Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Ders konuları Analog sayısal çevirme İletişim modları 2/36 1 Bilginin iki nokta arasında

Detaylı

Bölüm 13 FSK Modülatörleri.

Bölüm 13 FSK Modülatörleri. Bölüm 13 FSK Modülatörleri. 13.1 AMAÇ 1. Frekans Kaydırmalı Anahtarlama (FSK) modülasyonunun çalışma prensibinin anlaşılması.. FSK işaretlerinin ölçülmesi. 3. LM5 kullanarak bir FSK modülatörünün gerçekleştirilmesi.

Detaylı

9- ANALOG DEVRE ELEMANLARI

9- ANALOG DEVRE ELEMANLARI 9- ANALOG DEVRE ELEMANLARI *ANALOG VE DİJİTAL KAVRAMLARI *Herhangi bir fiziksel olayı ifade eden büyüklüklere işaret denmektedir. *Zaman içerisinde kesintisiz olarak devam eden işaretlere Analog işaret

Detaylı

DENEY: 1.1 EVİREN YÜKSELTECİN DC DA ÇALIŞMASININ İNCELENMESİ

DENEY: 1.1 EVİREN YÜKSELTECİN DC DA ÇALIŞMASININ İNCELENMESİ DENEY: 1.1 EVİREN YÜKSELTECİN DC DA ÇALIŞMASININ İNCELENMESİ HAZIRLIK BİLGİLERİ: Şekil 1.1 de işlemsel yükseltecin eviren yükselteç olarak çalışması görülmektedir. İşlemsel yükselteçler iyi bir DC yükseltecidir.

Detaylı

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/ Eşzamanlı (Senkron) Ardışıl Devrelerin Tasarlanması (Design) Bir ardışıl devrenin tasarlanması, çözülecek olan problemin sözle anlatımıyla (senaryo) başlar. Bundan sonra aşağıda açıklanan aşamalardan geçilerek

Detaylı

Şekil1. Geri besleme eleman türleri

Şekil1. Geri besleme eleman türleri HIZ / KONUM GERİBESLEME ELEMANLARI Geribesleme elemanları bir servo sistemin, hızını, motor milinin bulunduğu konumu ve yükün bulunduğu konumu ölçmek ve belirlemek için kullanılır. Uygulamalarda kullanılan

Detaylı

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI DENEYİ YAPTIRAN: DENEYİN ADI: DENEY NO: DENEYİ YAPANIN ADI ve SOYADI:

Detaylı

Bölüm 12 İşlemsel Yükselteç Uygulamaları

Bölüm 12 İşlemsel Yükselteç Uygulamaları Bölüm 12 İşlemsel Yükselteç Uygulamaları DENEY 12-1 Aktif Yüksek Geçiren Filtre DENEYİN AMACI 1. Aktif yüksek geçiren filtrenin çalışma prensibini anlamak. 2. Aktif yüksek geçiren filtrenin frekans tepkesini

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Sayısal Elektronik

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Sayısal Elektronik Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Sayısal Elektronik Günümüz Elektroniği Analog ve Sayısal olmak üzere iki temel türde incelenebilir. Analog büyüklükler sonsuz sayıda değeri içermesine

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;

Detaylı

GÖRSEL EKRAN TASARIMI (VISUALIZATIONS)

GÖRSEL EKRAN TASARIMI (VISUALIZATIONS) GÖRSEL EKRAN TASARIMI (VISUALIZATIONS) Visualizations sekmesi, PLC programlarına görsel arayüz tasarlamak için kullanılır. Ancak dokunmatik (touch) panellerin çoğu bu görsel arayüzü desteklememektedirler.

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ 1 DENEYİ. Amaç:

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ 1 DENEYİ. Amaç: KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ 1 DENEYİ Amaç: Bu laboratuvarda, yüksek giriş direnci, düşük çıkış direnci ve yüksek kazanç özellikleriyle

Detaylı

GİRİŞ 1.1 NİÇİN A/D ÇEVİRİCİ

GİRİŞ 1.1 NİÇİN A/D ÇEVİRİCİ 1 1. GİRİŞ 1.1 NİÇİN A/D ÇEVİRİCİ Dünyada, pek çok büyüklük analog olarak ortaya çıkar. Örneğin ısı, basınç, ağırlık gibi büyüklükler hep analog olarak değişirler. Bunlarda sadece 0 ve 1 gibi iki değer

Detaylı

BÖLÜM 1 TEMEL KAVRAMLAR

BÖLÜM 1 TEMEL KAVRAMLAR BÖLÜM 1 TEMEL KAVRAMLAR Bölümün Amacı Öğrenci, Analog haberleşmeye kıyasla sayısal iletişimin temel ilkelerini ve sayısal haberleşmede geçen temel kavramları öğrenecek ve örnekleme teoremini anlayabilecektir.

Detaylı

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. Işığı Takip Eden Kafa 2 Nolu Proje

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. Işığı Takip Eden Kafa 2 Nolu Proje YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ Işığı Takip Eden Kafa 2 Nolu Proje Proje Raporu Hakan Altuntaş 11066137 16.01.2013 İstanbul

Detaylı

Açık Çevrim Kontrol Açık Çevrim Kontrol

Açık Çevrim Kontrol Açık Çevrim Kontrol Açık Çevrim Kontrol Açık Çevrim Kontrol Açık çevrim kontrol ileri kontrol prosesi olarak da ifade edilebilir. Yandaki şekilde açık çevrim oda sıcaklık kontrolü yapılmaktadır. Burada referans olarak dışarı

Detaylı

İletişim Ağları Communication Networks

İletişim Ağları Communication Networks İletişim Ağları Communication Networks Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, Behrouz A. Forouzan, Data Communications and Networking 4/E, McGraw-Hill,

Detaylı

LOJİK DEVRELER-I III. HAFTA DENEY FÖYÜ

LOJİK DEVRELER-I III. HAFTA DENEY FÖYÜ LOJİK DEVRELER-I III. HAFTA DENEY FÖYÜ 3 Bitlik Bir Sayının mod(5)'ini Bulan Ve Sonucu Segment Display'de Gösteren Devrenin Tasarlanması Deneyin Amacı: 3 bitlik bir sayının mod(5)'e göre sonucunu bulan

Detaylı

ELEKTRİK MOTORLARI VE SÜRÜCÜLER ELEKTRİK MOTORLARINDA DENETİM PRENSİPLERİ

ELEKTRİK MOTORLARI VE SÜRÜCÜLER ELEKTRİK MOTORLARINDA DENETİM PRENSİPLERİ BÖLÜM 2 ELEKTRİK MOTORLARINDA DENETİM PRENSİPLERİ 2.1.OTOMATİK KONTROL SİSTEMLERİNE GİRİŞ Otomatik kontrol sistemleri, günün teknolojik gelişmesine paralel olarak üzerinde en çok çalışılan bir konu olmuştur.

Detaylı

ASCII KODLARI. Bilgisayarda Metin (Text) Türü Bilgilerin Saklanması:

ASCII KODLARI. Bilgisayarda Metin (Text) Türü Bilgilerin Saklanması: ASCII KODLARI Bilgisayarda Metin (Text) Türü Bilgilerin Saklanması: B ir metin bilgisini bilgisayar hafızasında temsil edebilmek için, bilgisayar sistemi, her harf yada sembol için bir sayısal değer atar.

Detaylı

Data Communications. Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü. 4. Sayısal veri iletimi

Data Communications. Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü. 4. Sayısal veri iletimi Veri İletişimi Data Communications Suat ÖZDEMİR Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü 4. Sayısal veri iletimi Sayısal sayısal çevirme Bilginin iki nokta arasında iletilmesi için analog veya

Detaylı

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU İŞLEMSEL KUVVETLENDİRİCİLER ADI SOYADI: ÖĞRENCİ NO: GRUBU: Deneyin

Detaylı

BÖLÜM 9 (COUNTERS) SAYICILAR SAYISAL ELEKTRONİK. Bu bölümde aşağıdaki konular anlatılacaktır

BÖLÜM 9 (COUNTERS) SAYICILAR SAYISAL ELEKTRONİK. Bu bölümde aşağıdaki konular anlatılacaktır SYISL ELETRONİ ÖLÜM 9 (OUNTERS) SYIILR u bölümde aşağıdaki konular anlatılacaktır Sayıcılarda Mod kavramı senkron sayıcılar senkron yukarı sayıcı (Up counter) senkron aşağı sayıcı (Down counter) senkron

Detaylı

DENEY NO 3. Alçak Frekans Osilatörleri

DENEY NO 3. Alçak Frekans Osilatörleri DENEY NO 3 Alçak Frekans Osilatörleri Osilatörler ürettikleri dalga şekillerine göre sınıflandırılırlar. Bunlardan sinüs biçiminde işaret üretenlerine Sinüs Osilatörleri adı verilir. Pek çok yapıda ve

Detaylı

AREL ÜNİVERSİTESİ DEVRE ANALİZİ

AREL ÜNİVERSİTESİ DEVRE ANALİZİ AREL ÜNİVERSİTESİ DEVRE ANALİZİ İŞLEMSEL KUVVETLENDİRİCİLER DR. GÖRKEM SERBES İŞLEMSEL KUVVETLENDİRİCİ İşlemsel kuvvetlendirici (Op-Amp); farksal girişi ve tek uçlu çıkışı olan DC kuplajlı, yüksek kazançlı

Detaylı