DERS 3 ÖLÇÜ HATALARI Kaynak: İ.ASRİ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DERS 3 ÖLÇÜ HATALARI Kaynak: İ.ASRİ"

Transkript

1 Ölçme Bilgisi DERS 3 ÖLÇÜ HATALARI Kaynak: İ.ASRİ

2 Çizim Hassasiyeti Haritaların çiziminde veya haritadan bilgi almada ne kadar itina gösterilirse gösterilsin kaçınılmayacak bir hata vardır. Buna çizim hassasiyeti denmektedir. Normal insan gözünün ayırma hassasiyeti 0.2 mm (milimetrenin 5 te biri) dir. Topoğrafyada çizim hassasiyeti 0.2 mm olarak kabul edilmektedir.

3

4 Örnek: 1/ ölçekli bir haritanın çizim hassasiyeti kaç metredir? (Cevap: 5 m)

5 Ölçü Hataları Yeryüzünde ister bir kenar, ister bir açı birkaç kez ölçüldüğünde her ölçü değeri arasında az çok farkların olduğu görülür. Aynı büyüklüğe ait yapılan her geometrik veya fiziksel ölçünün sonucunu aynı bulmak neredeyse imkânsızdır. Geometrik ya da fiziksel büyüklüklerin ölçülmesi sonucunda elde edilen değerler hata ile yüklüdür. Söz konusu hatalar; - Ölçme işini yapan kişiden (kişinin duyu organlarının yetersizliğinden) - Ölçü aletlerinden (Aletler hatalı olabilir, yeterli ölçme inceliğine sahip değildir) - Fiziksel çevre koşullarından (Sıcak-soğuk, nem, rüzgâr vs.) kaynaklanabilir.

6 Hatasız ölçü olmaz Hatalar oluşma nedenlerine göre genelde üçe ayrılır. 1. Kaba hata 2. Düzenli (sistematik) hata 3. Düzensiz (rastlantı, tesadüfî) hata

7 1-Kaba Hatalar: Kaba hatalar genellikle dikkatsizlikten kaynaklanan hatalardır. Uzunluk ölçmelerinde bir şerit boyunun unutulması, açı ölçmelerinde 65g yerine 95g okunması ve yazılması gibi. Kaba hatalar ölçü tekrarı ile giderilebilirler

8 2-Düzenli (sistematik) hatalar: Bu tür hatalar ölçüyü aynı yönde ve aynı miktarda etkileyen küçük hatalardır. Ölçü tekrarı ile giderilemezler. Yirmi metrelik bir çelik şerit metrenin uzunluğunun gerçek değerden 1 mm eksik olması, nivelmanda mira ölçek hatası, teodolitlerde daire bölme hataları gibi düzenli hatalar çoğunlukla tanınamaz. Ölçü aletleri ayarlanarak ve en uygun ölçme yöntemleri uygulanarak etkileri azaltılabilir. Belirlenebildikleri durumlarda ölçü sonucuna düzeltme getirilerek etkileri giderilebilir.

9 3-Düzensiz (rastlantı, tesadüfî) hatalar: Küçük miktardaki hatalardır. Ölçüleri bazen (+) bazen de (-) yönde etkilerler. Bu hatalar insan yeteneklerinin sınırlı olması, aletlerin ayarlarının tam yapılamaması, sıcaklık, rüzgâr gibi dış etkenlerin değişken olması gibi nedenlerden ortaya çıkar. Kaba hatalarda olduğu gibi ölçülerin tekrarı ile ya da düzenli hatalarda olduğu gibi ölçü sonucuna düzeltme getirilerek giderilemezler.

10 Hata, Gerçek Hata, Görünen Hata Hata = Ölçü Değeri ( L ) Olması Gereken Değer ( X ) olarak tanımlanır. Ölçünün gerçek değeri ( Y ) önceden biliniyorsa ( çoğu zaman bilinmez) bulunan hataya gerçek hata ( ε) denir. ε= L Y

11 Gerçek hata: Ölçülerin gerçek değerlerinin bilindiği durumlarda söz konusudurlar. Bir düzlem üçgenin iç açılarının toplamının gerçek değeri 200g dır. İç açıların ölçülen değerlerinin toplamından 200g çıkarılırsa gerçek hata bulunur. Gerçek değerinin bilindiği durumlar çok azdır.örneğin bir üçgenin iç açıları ölçülmüş ve iç açılar toplamı 200g bulunmuş ise burada 60cc lik hata gerçek hatadır( ε). Çünkü burada gerçek değer belli ve 200g dır

12 Gerçek değer çoğunlukla bilinmez ve hata hesabında buna en yakın olan kesin değer ( X ) kullanılır. Bu büyüklüğe ait ölçülerin aritmetik ortalaması kesin değeri vermektedir. Kesin değer kullanılarak hesaplanan hataya görünen hata ( V ) adı verilir. V = L X Bir ölçü dizisindeki V hatalarının toplamı sıfır olmaktadır. [ V ] = 0

13 Örneğin, Bir uzunluk 4 kez ölçülmüş ve aşağıdaki ölçü değerleri elde edilmiştir

14 Düzeltme, Tolerans Hata ile düzeltme ters işaretlidir. Bir üçgenin iç açıları toplamı grad olarak ölçülmüş ise üçgen açıları 60cc lik hata ile ölçülmüştür. Düzeltme -60cc olacaktır.yani açılar toplamının 200g olması için üçgen açılarının 20cc çıkarmak gerekecektir. Bu işleme Hatanın dağıtılması ya da Ölçülerin Dengelenmesi denir. Ölçmelerde yapılan hataların dağıtılabilmesi için hatanın belirli bir değeri aşmaması gerekir. Bu sınır değere Tolerans adı verilir. Tolerans değeri, ölçmede aranan hassasiyete ve ölçmenin büyüklüğüne göre değişir.

15 Ölçü Dizilerinin Doğruluk Derecesi Ölçütleri Bir uzunluğun iki ayrı ölçü ekibi tarafından beşer kez ölçüldüğünü ve her bir ölçü ekibi tarafından belirlenen kesin değerlere ( X1, X2 ) göre V hatalarının ayrı ayrı hesaplandığını düşünelim. Hangi ekibin daha doğru veya hassas çalıştığını V değerlerine göre bulmak ve iki ölçü dizisini karşılaştırmak oldukça güçtür. Bu güçlük nedeniyle karşılaştırmada ölçülere ait hataların fonksiyonları kullanılır. Bu fonksiyonlardan en çok kullanılanları; a) Mutlak Hatalar Ortalaması b) Karesel Ortalama Hata c) Muhtemel Hata d) Rölatif Hata olarak sayılabilir.

16 Mutlak Hatalar Ortalaması (t) Aynı şartlar altında yapılmış n sayıdaki ölçülerin gerçek hataları ε1,ε2,.εn ise mutlak hatalar ortalaması t= ± [ ε] / n

17 Karesel Ortalama Hata ( m ) Gauss tarafından tanımlanan karesel ortalama hataya çoğu zaman sadece Ortalama Hata da denir. Ölçülerin doğruluk derecesi hakkında en isabetli fikri verir. Görünen hatalar cinsinden karesel ortalama hata; m=± ( [ vv ] / ( n-1 ) ) şeklinde ifade edilir. Doğruluk derecesi ölçütleri içinde en çok kullanılanı karesel ortalama hatadır. Çünkü hataların kareleri alındığı için büyük hataların etkisi daha fazladır ve küçük hatalarla büyük hatalar aynı derecede ele alınmamaktadır.

18 Karesel Ortalama Hata ( m ) Gauss tarafından tanımlanan karesel ortalama hataya çoğu zaman sadece Ortalama Hata da denir. Ölçülerin doğruluk derecesi hakkında en isabetli fikri verir. Görünen hatalar cinsinden karesel ortalama hata; m=± ( [ V² ] / ( n-1 ) ) şeklinde ifade edilir. Doğruluk derecesi ölçütleri içinde en çok kullanılanı karesel ortalama hatadır. Çünkü hataların kareleri alındığı için büyük hataların etkisi daha fazladır ve küçük hatalarla büyük hatalar aynı derecede ele alınmamaktadır.

19 Karesel Ortalama Hata ( m ) Ör: Bir açı 6 defa ölçülerek aşağıdaki değerler bulunmuştur. Verilen bu değerlere göre ortalama değeri, bir ölçünün ortalama hatasını ve ortalama değerin ortalama hatasını hesaplayın. V V² ,5 0, ,5 156, ,5 110, ,5 6, ,5 30, ,5 30,25 V²=333,50 X = (L1+L2+.Ln)/n = ( )/6 X = 26,5

20 Karesel Ortalama Hata ( m ) m = ± V² / (n-1) M= ± V² / n(n-1) m = Ortalama hata V² = Düzeltme miktarı n = Ölçme günü/sayısı M = Ortalama değerin ortalama hatası m = 333,50 / (6-1) = ±8,16 M= 333,50 / 6(6-1) = ±3,34

21 Ör: Bir açı 1. gün 4, 2. gün 2, 3. gün 1 ve 4. gün 2 defa ölçülerek aşağıdaki değerler bulunmuştur. Verilen bu değerlere göre ortalama değeri, bir ölçünün ortalama hatasını ve ortalama değerin ortalama hatasını hesaplayın. P V V² P. V² ,8 3,24 12, ,9 219,02 438, ,2 492,84 492, ,2 51,84 103,68 P.V²=1047,56

22 x= (P1.L1+P2.L2+ Pn.Ln) / (P1+P2+..Pn) = PL/P x= ( ) / 9 = 42,8 m = ± P.V² / (n-1) M= ± P.V² / n(n-1) m = Ortalama hata P.V² = Düzeltme miktarı n = Ölçme günü/sayısı M = Ortalama değerin ortalama hatası m = 1047,56 / (4-1) = ±18,68 M= 1047,56 / 9(4-1) = ±6,23

23 Muhtemel Hata ( r ) Muhtemel hatanın hesaplanabilmesi için hatalar, mutlak değerlerine göre sıralanır. Hata sayısı tek ise ortadaki değer, çift ise orta durumda olan iki değerin ortalaması muhtemel hata olarak kabul edilir.

24 Rölatif (Bağıl) Hata Karesel ortalama hatanın kesin değere oranı rölatif hata olarak isimlendirilir ve paydaki değer 1 olacak şekilde oran oluşturulur. Örneğin 2 km lik bir uzunluk ± 2 cm incelikle ölçülmüş ise bunun bağıl hatası, 2cm = cm olarak hesaplanır.

25 Bir uzunluk 10 kez ölçülmüş ve aşağıdaki ölçü değerleri elde edilmiştir. Duyarlık ölçütlerini hesaplayınız.

26 Bir uzunluk 10 kez ölçülmüş ve aşağıdaki ölçü değerleri elde edilmiştir. Duyarlık ölçütlerini hesaplayınız.

27

28 Örnek: Uzunluğu m olan bir ayar bazı, iki ayrı ölçme ekibince mm birimine kadar ölçü yapılarak çelik şeritle on kez ölçülmüştür. Hangi ölçme ekibi daha duyarlıklı sonuç elde etmiştir?

29

30 Sonuç: 1 numaralı ölçme ekibi için duyarlık ölçütleri daha küçük çıktığından bu ekibin ölçme doğruluğu diğer ekipten daha yüksektir.

DENGELEME HESABI-I DERS NOTLARI

DENGELEME HESABI-I DERS NOTLARI DENGELEME HESABI-I DERS NOTLARI Giriş, Hata ve Düzeltme Prof. Dr. Mualla YALÇINKAYA Yrd. Doç. Dr. Emine TANIR KAYIKÇI Karadeniz Teknik Üniversitesi, Harita Mühendisliği Bölümü Trabzon, 2016 HAFTALIK DERS

Detaylı

Ölçü Hataları Hatasız ölçü olmaz

Ölçü Hataları Hatasız ölçü olmaz Ölçü Hataları Yeryüzünde ister bir kenar, ister bir açı birkaç kez ölçüldüğünde her ölçü değeri arasında az çok farkların olduğu görülür. Aynı büyüklüğe ait yapılan her geometrik veya fiziksel ölçünün

Detaylı

DENGELEME HESABI-I DERS NOTLARI

DENGELEME HESABI-I DERS NOTLARI DENGELEME HESABI-I DERS NOTLARI Ağırlık ve Ters Ağırlık (Kofaktör) Prof. Dr. Mualla YALÇINKAYA Yrd. Doç. Dr. Emine TANIR KAYIKÇI Karadeniz Teknik Üniversitesi, Harita Mühendisliği Bölümü Trabzon, 016 AĞIRLIK

Detaylı

Mühendisler İçin Ölçme Bilgisi

Mühendisler İçin Ölçme Bilgisi Mühendisler İçin Ölçme Bilgisi KAYNAKLAR. Topografya (Ölçme Bilgisi), Cevat İNAL, Ali ERDİ, Ferruh YILDIZ Şubat 996 Atlas Kitapevi, KONYA 2. Ölçme Bilgisi, Erdoğan ÖZBENLİ, Türkay TÜDEŞ, Karadeniz Teknik

Detaylı

Yıldız Teknik Üniversitesi İnşaat Fakültesi Harita Mühendisliği Bölümü TOPOGRAFYA (HRT3351) Yrd. Doç. Dr. Ercenk ATA

Yıldız Teknik Üniversitesi İnşaat Fakültesi Harita Mühendisliği Bölümü TOPOGRAFYA (HRT3351) Yrd. Doç. Dr. Ercenk ATA Yıldız Teknik Üniversitesi İnşaat Fakültesi Harita Mühendisliği Bölümü Ölçek Haritadaki uzunluğun, gerçek uzunluğa oranıdır. 1. Sayısal Ölçek: 1/2000-1: 2000 2. Çizgisel Ölçek: TOPOGRAFYA DERSİNE GİRİŞ

Detaylı

DENGELEME HESABI-I DERS NOTLARI

DENGELEME HESABI-I DERS NOTLARI DENGELEME HESABI-I DERS NOTLARI Dengeleme Hesabı Adımları, En Küçük Kareler İlkesine Giriş, Korelasyon Prof. Dr. Mualla YALÇINKAYA Yrd. Doç. Dr. Emine TANIR KAYIKÇI Karadeniz Teknik Üniversitesi, Harita

Detaylı

TOPOĞRAFYA. Ölçme Bilgisinin Konusu

TOPOĞRAFYA. Ölçme Bilgisinin Konusu TOPOĞRAFYA Topoğrafya, bir arazi yüzeyinin tabii veya suni ayrıntılarının meydana getirdiği şekil. Bu şeklin kâğıt üzerinde harita ve tablo şeklinde gösterilmesiyle ilgili ölçme, hesap ve çizim işlerinin

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

2 Hata Hesabı. Hata Nedir? Mutlak Hata. Bağıl Hata

2 Hata Hesabı. Hata Nedir? Mutlak Hata. Bağıl Hata Hata Hesabı Hata Nedir? Herhangi bir fiziksel büyüklüğün ölçülen değeri ile gerçek değeri arasındaki farka hata denir. Ölçülen bir fiziksel büyüklüğün sayısal değeri, yapılan deneysel hatalardan dolayı

Detaylı

ÖLÇME BİLGİSİ ALANLARIN ÖLÇÜLMESİ

ÖLÇME BİLGİSİ ALANLARIN ÖLÇÜLMESİ ÖLÇME BİLGİSİ ALANLARIN ÖLÇÜLMESİ Doç. Dr. Alper Serdar ANLI 5.Hafta ALANLARIN ÖLÇÜLMESİ Genel bir deyişle herhangi bir arazi parçasının şeklini ve büyüklüğünü belirtecek planın çıkarılabilmesi için gereken

Detaylı

MÜHENDİSLİK ÖLÇMELERİ UYGULAMASI (HRT4362) 8. Yarıyıl

MÜHENDİSLİK ÖLÇMELERİ UYGULAMASI (HRT4362) 8. Yarıyıl İnşaat Fakültesi Harita Mühendisliği Bölümü Ölçme Tekniği Anabilim Dalı MÜHENDİSLİK ÖLÇMELERİ UYGULAMASI (HRT4362) 8. Yarıyıl D U L K Kredi 2 0 2 3 ECTS 2 0 2 3 UYGULAMA-1 ELEKTRONİK ALETLERİN KALİBRASYONU

Detaylı

ÖLÇME BİLGİSİ UZUNLUKLARIN ÖLÇÜLMESİ DİK İNME VE ÇIKMA İŞLEMLERİ VE ARAÇLARI

ÖLÇME BİLGİSİ UZUNLUKLARIN ÖLÇÜLMESİ DİK İNME VE ÇIKMA İŞLEMLERİ VE ARAÇLARI ÖLÇME BİLGİSİ UZUNLUKLARIN ÖLÇÜLMESİ DİK İNME VE ÇIKMA İŞLEMLERİ VE ARAÇLARI Doç. Dr. Alper Serdar ANLI 3.Hafta UZUNLUK ÖLÇME ARAÇLARI VE UZUNLUKLARIN ÖLÇÜLMESİ Ölçme Mesafe Açı Yatay (Uzunluk) Düşey (Yükseklik)

Detaylı

ARAZİ ÇALIŞMASI -1 DERSİ ELEKTRONİK ALETLERİN KONTROL VE KALİBRASYONU UYGULAMALARI

ARAZİ ÇALIŞMASI -1 DERSİ ELEKTRONİK ALETLERİN KONTROL VE KALİBRASYONU UYGULAMALARI ARAZİ ÇALIŞMASI -1 DERSİ ELEKTRONİK ALETLERİN KONTROL VE KALİBRASYONU UYGULAMALARI HARİTA MÜHENDİSLİĞİ BÖLÜMÜ ÖLÇME TEKNİĞİ ANABİLİM DALI JEODEZİK METROLOJİ LABORATUVARI İstanbul, 016 1.ELEKTRONİK TAKEOMETRELERİN

Detaylı

02.04.2012. Düşey mesafelerin (Yüksekliklerin) Ölçülmesi. Düşey Mesafelerin (Yüksekliklerin) Ölçülmesi. Düşey Mesafelerin (Yüksekliklerin) Ölçülmesi

02.04.2012. Düşey mesafelerin (Yüksekliklerin) Ölçülmesi. Düşey Mesafelerin (Yüksekliklerin) Ölçülmesi. Düşey Mesafelerin (Yüksekliklerin) Ölçülmesi Düşey mesafelerin (Yüksekliklerin) Ölçülmesi Noktalar arasındaki düşey mesafelerin ölçülmesine yükseklik ölçmesi ya da nivelman denir. Yükseklik: Ölçülmek istenen nokta ile sıfır yüzeyi olarak kabul edilen

Detaylı

ARAZİ ÖLÇMELERİ. Temel Ödev I: Koordinatları belirli iki nokta arasında ki yatay mesafenin

ARAZİ ÖLÇMELERİ. Temel Ödev I: Koordinatları belirli iki nokta arasında ki yatay mesafenin Temel ödevler Temel ödevler, konum değerlerinin bulunması ve aplikasyon işlemlerine dair matematiksel ve geometrik hesaplamaları içeren yöntemlerdir. öntemlerin isimleri genelde temel ödev olarak isimlendirilir.

Detaylı

Ölçme Bilgisi Jeofizik Mühendisliği Bölümü

Ölçme Bilgisi Jeofizik Mühendisliği Bölümü Ölçme Bilgisi Jeofizik Mühendisliği Bölümü Yrd. Doç. Dr. H. Ebru ÇOLAK ecolak@ktu.edu.tr Karadeniz Teknik Üniversitesi, GISLab Trabzon www.gislab.ktu.edu.tr/kadro/ecolak DÜŞEY MESAFELERİN YÜKSEKLİKLERİN

Detaylı

TOPOĞRAFYA Temel Ödevler / Poligonasyon

TOPOĞRAFYA Temel Ödevler / Poligonasyon TOPOĞRAFYA Temel Ödevler / Poligonasyon Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz/marangoz.htm

Detaylı

Çözüm: Çözüm: Çözüm: Elektrik Ölçme Ders Notları-Ş.Kuşdoğan&E.Kandemir Beşer 16

Çözüm: Çözüm: Çözüm: Elektrik Ölçme Ders Notları-Ş.Kuşdoğan&E.Kandemir Beşer 16 Soru: Elimizde 0.5 sınıfından 500V luk bir voltmetre ile 1.5 sınıfından 120V luk bir voltmetre bulunmaktadır. Değeri 1V olan bir gerilimi hangi ölçü aleti ile ölçmek daha doğru olur? Neden? Soru: Bir direncin

Detaylı

Ölçme Bilgisi Ders Notları

Ölçme Bilgisi Ders Notları 1. ÖLÇÜ BİRİMLERİ Ölçme Bilgisi: Sınırlı büyüklükteki yeryüzü parçalarının ölçülmesi, haritasının yapılması ve projelerdeki bilgilerin araziye uygulanması yöntemleri ile bu amaçlarla kullanılacak araç

Detaylı

Yıldız Teknik Üniversitesi İnşaat Fakültesi Harita Mühendisliği Bölümü TOPOGRAFYA (HRT3351) Yrd. Doç. Dr. Ercenk ATA

Yıldız Teknik Üniversitesi İnşaat Fakültesi Harita Mühendisliği Bölümü TOPOGRAFYA (HRT3351) Yrd. Doç. Dr. Ercenk ATA Yıldız Teknik Üniversitesi İnşaat Fakültesi Harita Mühendisliği Bölümü 4. HAFTA KOORDİNAT SİSTEMLERİ VE HARİTA PROJEKSİYONLARI Coğrafi Koordinat Sistemi Yeryüzü üzerindeki bir noktanın konumunun enlem

Detaylı

YÜKSEKLİK ÖLÇÜMÜ. Ölçme Bilgisi Ders Notları

YÜKSEKLİK ÖLÇÜMÜ. Ölçme Bilgisi Ders Notları YÜKSEKLİK ÖLÇÜMÜ Yeryüzündeki herhangi bir noktanın sakin deniz yüzeyi üzerinde (geoitten itibaren) çekül doğrultusundaki en kısa mesafesine yükseklik denir. Yükseklik ölçümü; belirli noktalar arasındaki

Detaylı

Fiz 1011 Ders 1. Fizik ve Ölçme. Ölçme Temel Kavramlar. Uzunluk Kütle Zaman. Birim Sistemleri. Boyut Analizi.

Fiz 1011 Ders 1. Fizik ve Ölçme. Ölçme Temel Kavramlar. Uzunluk Kütle Zaman. Birim Sistemleri. Boyut Analizi. Fiz 1011 Ders 1 Fizik ve Ölçme Ölçme Temel Kavramlar Uzunluk Kütle Zaman Birim Sistemleri Boyut Analizi http://kisi.deu.edu.tr/mehmet.tarakci/ Ölçme Nedir? Fiziksel bir büyüklüğü ölçmek, birim olarak seçilen

Detaylı

TOPOĞRAFYA Kesitlerin Çıkarılması, Alan Hesapları, Hacim Hesapları

TOPOĞRAFYA Kesitlerin Çıkarılması, Alan Hesapları, Hacim Hesapları TOPOĞRAFYA Kesitlerin Çıkarılması, Alan Hesapları, Hacim Hesapları Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz/marangoz.htm

Detaylı

Alan Hesapları. Şekil 14. Üç kenarı belli üçgen alanı

Alan Hesapları. Şekil 14. Üç kenarı belli üçgen alanı lan Hesapları lan hesabının doğruluğu alım şekline ve istenile hassasiyet derecesine göre değişir. lan hesapları üç kısma ayrılmıştır. Ölçü değerlerine göre alan hesabı Ölçü ve plan değerlerine göre alan

Detaylı

Topografya (Ölçme Bilgisi) Prof.Dr.Mustafa KARAŞAHİN

Topografya (Ölçme Bilgisi) Prof.Dr.Mustafa KARAŞAHİN Topografya (Ölçme Bilgisi) Prof.Dr.Mustafa KARAŞAHİN Topografya (Surveying) Nedir? Topografya geleneksel olarak, Dünya yüzeyinin üzerindeki, üstündeki veya altındaki noktalarının rölatif konumlarını belirleyen

Detaylı

TOPOĞRAFYA Ölçü Birimleri, Ölçek Kavramı, Ölçme Kavramı, Hata kaynakları ve Türleri, Arazi Ölçmelerine Giriş

TOPOĞRAFYA Ölçü Birimleri, Ölçek Kavramı, Ölçme Kavramı, Hata kaynakları ve Türleri, Arazi Ölçmelerine Giriş TOPOĞRAFYA Ölçü Birimleri, Ölçek Kavramı, Ölçme Kavramı, Hata kaynakları ve Türleri, Arazi Ölçmelerine Giriş Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI

Detaylı

ARAZİ ÖLÇMELERİ. a=10 m. ve b=20m. olarak verildiğini düşünelim a ile b nin oranı = 20 = 1 2

ARAZİ ÖLÇMELERİ. a=10 m. ve b=20m. olarak verildiğini düşünelim a ile b nin oranı = 20 = 1 2 ÖLÇEK Ölçek, yerküredeki coğrafik objelerin haritaya aktarılmasında ki küçültme oranı katsayısıdır. Oran katsayısı Matematikte bahsi geçen bir konu olup açıklama getirirsek: oran aynı tür iki niceliğin

Detaylı

TOPOĞRAFYA Yüksekliklerin Ölçülmesi Nivelman Yöntemleri

TOPOĞRAFYA Yüksekliklerin Ölçülmesi Nivelman Yöntemleri TOPOĞRAFYA Yüksekliklerin Ölçülmesi Nivelman Yöntemleri Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz/marangoz.htm

Detaylı

TOPOĞRAFYA Yüksekliklerin Ölçülmesi Nivelman Yöntemleri

TOPOĞRAFYA Yüksekliklerin Ölçülmesi Nivelman Yöntemleri TOPOĞRAFYA Yüksekliklerin Ölçülmesi Nivelman Yöntemleri Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz/marangoz.htm

Detaylı

KİMYASAL ANALİZ KALİTATİF ANALİZ (NİTEL) (NİCEL) KANTİTATİF ANALİZ

KİMYASAL ANALİZ KALİTATİF ANALİZ (NİTEL) (NİCEL) KANTİTATİF ANALİZ KİMYASAL ANALİZ KALİTATİF ANALİZ (NİTEL) KANTİTATİF ANALİZ (NİCEL) KANTİTATİF ANALİZ Bir numunedeki element veya bileşiğin bağıl miktarını belirlemek için yapılan analizlere denir. 1 ANALİTİK ANALİTİK

Detaylı

TOPOĞRAFYA Ölçü Birimleri, Ölçek Kavramı, Ölçme Kavramı, Hata kaynakları ve Türleri, Arazi Ölçmelerine Giriş

TOPOĞRAFYA Ölçü Birimleri, Ölçek Kavramı, Ölçme Kavramı, Hata kaynakları ve Türleri, Arazi Ölçmelerine Giriş TOPOĞRAFYA Ölçü Birimleri, Ölçek Kavramı, Ölçme Kavramı, Hata kaynakları ve Türleri, Arazi Ölçmelerine Giriş Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI

Detaylı

ÖLÇME BİLGİSİ. Sunu 1- Yatay Ölçme. Yrd. Doç. Dr. Muhittin İNAN & Arş. Gör. Hüseyin YURTSEVEN

ÖLÇME BİLGİSİ. Sunu 1- Yatay Ölçme. Yrd. Doç. Dr. Muhittin İNAN & Arş. Gör. Hüseyin YURTSEVEN ÖÇME BİGİİ unu - atay Ölçme rd. Doç. Dr. Muhittin İNAN & Arş. Gör. Hüseyin URTEVEN COĞRAFİ BİGİ İTEMİNİ OUŞTURABİMEK İÇİN BİGİ TOPAMA ÖNTEMERİ ATA ÖÇMEER (,) ATA AÇIAR VE MEAFEERİN ÖÇÜMEİ ERE ÖÇMEER DÜŞE

Detaylı

KESİTLERİN ÇIKARILMASI

KESİTLERİN ÇIKARILMASI KESİTLERİN ÇIKARILMASI Karayolu, demiryolu, kanal, yüksek gerilim hattı gibi inşaat işlerinde projelerin hazırlanması, toprak hacminin bulunması amacı ile boyuna ve enine kesitlere ihtiyaç vardır. Boyuna

Detaylı

koşullar nelerdir? sağlamaktadır? 2. Harita ile kroki arasındaki fark nedir?

koşullar nelerdir? sağlamaktadır? 2. Harita ile kroki arasındaki fark nedir? 1. Bir çizimin harita özelliği taşıması için gerekli koşullar nelerdir? 2. Harita ile kroki arasındaki fark nedir? 3. Haritalar günlük hayatımızda ne gibi kolaylıklar sağlamaktadır? 4. Haritalar hangi

Detaylı

Görev çubuğu. Ana ölçek. Şekil 1.1: Verniyeli kumpas

Görev çubuğu. Ana ölçek. Şekil 1.1: Verniyeli kumpas Deney No : M0 Deney Adı : ÖLÇME VE HATA HESABI Deneyin Amacı : Bazı uzunluk ölçü aletlerini tanımak ve ölçme hataları hakkında ön bilgiler elde etmektir. Teorik Bilgi : VERNİYELİ KUMPAS Uzunluk ölçümü

Detaylı

ÖLÇME BİLGİSİ DÜŞEY MESAFELERİN (YÜKSEKLİKLERİN) ÖLÇÜLMESİ NİVELMAN ALETLERİ. Doç. Dr. Alper Serdar ANLI. 8. Hafta

ÖLÇME BİLGİSİ DÜŞEY MESAFELERİN (YÜKSEKLİKLERİN) ÖLÇÜLMESİ NİVELMAN ALETLERİ. Doç. Dr. Alper Serdar ANLI. 8. Hafta ÖLÇME BİLGİSİ DÜŞEY MESAFELERİN (YÜKSEKLİKLERİN) ÖLÇÜLMESİ NİVELMAN ALETLERİ Doç. Dr. Alper Serdar ANLI 8. Hafta DÜŞEY MESAFELERİN (YÜKSEKLİKLERİN) ÖLÇÜLMESİ Noktaların yükseklikleri düşey ölçmelerle belirlenir.

Detaylı

elektromagnetik uzunluk ölçerlerin Iaboratu ar koşullarında kaiibrasyonu

elektromagnetik uzunluk ölçerlerin Iaboratu ar koşullarında kaiibrasyonu elektromagnetik uzunluk ölçerlerin Iaboratu ar koşullarında kaiibrasyonu ÖZET Yük. Müh. Uğur DOĞAN -Yük. Müh Özgür GÖR Müh. Aysel ÖZÇEKER Bu çalışmada Yıldız Teknik Üniversitesi İnşaat Fakültesi Jeodezi

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ

KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ Yasemin ŞİŞMAN, Ülkü KIRICI Sunum Akış Şeması 1. GİRİŞ 2. MATERYAL VE METHOD 3. AFİN KOORDİNAT DÖNÜŞÜMÜ 4. KALİTE KONTROL 5. İRDELEME

Detaylı

HARİTA BİLGİSİ. Produced by M. EKER 1

HARİTA BİLGİSİ. Produced by M. EKER 1 HARİTA BİLGİSİ Produced by M. EKER 1 ÖLÇÜ BİRİMLERİ Uzunluk, Alan ve AçıA Ölçü Birimleri Herhangi bir objenin ölçülmesinden, aynı nitelikteki objeden birim olarak belirlenen bir büyüklükle kle kıyaslanmask

Detaylı

Geometrik nivelmanda önemli hata kaynakları Nivelmanda oluşabilecek model hataları iki bölümde incelenebilir. Bunlar: Aletsel (Nivo ve Mira) Hatalar Çevresel Koşullardan Kaynaklanan Hatalar 1. Aletsel

Detaylı

Öğretim Üyesi. Topoğrafya İnşaat Mühendisliği

Öğretim Üyesi. Topoğrafya İnşaat Mühendisliği Öğretim Üyesi Mehmet Zeki COŞKUN Y. Doç. Dr. İşaat Fak., Jeodezi ve Fotogrametri Müh. Ölçme Tekiği Aabilim Dalı (1) 85-6573 coskumeh@itu.edu.tr http://atlas.cc.itu.edu.tr/~cosku Adres Öğreci görüşme saatleri:

Detaylı

Uzunluk Ölçümü (Şenaj) Prof.Dr.Mustafa KARAŞAHİN

Uzunluk Ölçümü (Şenaj) Prof.Dr.Mustafa KARAŞAHİN Uzunluk Ölçümü (Şenaj) Prof.Dr.Mustafa KARAŞAHİN Uzunlukların Ölçülmesi (Şenaj) Arazide uzunlukların doğru ve hassas bir şekilde ölçülmesi, projelerin doğru hazırlanmasında ve projelerin araziye uygulaması

Detaylı

Ölçme Teknikleri Temel Kavramlar:

Ölçme Teknikleri Temel Kavramlar: Deney yapmak bir bakıma ölçüm yapmaktır. Ölçme bilimine metroloji denir. Ölçmek yani bir büyüklüğü sayısal olarak belirlemek büyüklüğün değerini standarlaştırılmış aynı cinsten bir başka büyüklükle karşılaştırmak

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

Ölçme Hataları, Hata Hesapları. Ölçme Hataları, Hata Hesapları 2/22/2010. Ölçme... Ölçme... Yrd. Doç. Dr. Elif SERTEL sertele@itu.edu.

Ölçme Hataları, Hata Hesapları. Ölçme Hataları, Hata Hesapları 2/22/2010. Ölçme... Ölçme... Yrd. Doç. Dr. Elif SERTEL sertele@itu.edu. //00 Ölçme Hataları, Hata Hesapları Ölçme Hataları, Hata Hesapları Yrd. Doç. Dr. Elif SERTEL sertele@itu.edu.tr Suu, Doç. Dr. Hade Demirel i ders otlarıda ve Ölçme Bilgisi kitabıda düzelemiştir. Ölçme...

Detaylı

***Yapılan bir çizimin harita özelliğini gösterebilmesi için çizimin belirli bir ölçek dahilinde yapılması gerekir.

***Yapılan bir çizimin harita özelliğini gösterebilmesi için çizimin belirli bir ölçek dahilinde yapılması gerekir. HARİTA BİLGİSİ Harita Kuşbakışı görünümün Ölçekli Düzleme aktarılmasıdır. ***Yapılan bir çizimin harita özelliğini gösterebilmesi için çizimin belirli bir ölçek dahilinde yapılması gerekir. Kroki Kuşbakışı

Detaylı

DENGELEME HESABI-I DERS NOTLARI

DENGELEME HESABI-I DERS NOTLARI DENGELEME HESABI-I DERS NOTLARI Ağırlıkları Eşit Dolaysız (Direkt) Ölçüler Dengelemesi Prof. Dr. Mualla YALÇINKAYA Yrd. Doç. Dr. Emine TANIR KAYIKÇI Karadeniz Teknik Üniversitesi, Harita Mühendisliği Bölümü

Detaylı

Ölçme Bilgisi DERS 7-8. Yatay Kontrol Noktaları Ve Yükseklik ölçmeleri. Kaynak: İ.ASRİ (Gümüşhane Ü) T. FİKRET HORZUM( AÜ )

Ölçme Bilgisi DERS 7-8. Yatay Kontrol Noktaları Ve Yükseklik ölçmeleri. Kaynak: İ.ASRİ (Gümüşhane Ü) T. FİKRET HORZUM( AÜ ) Ölçme Bilgisi DERS 7-8 Yatay Kontrol Noktaları Ve Yükseklik ölçmeleri Kaynak: İ.ASRİ (Gümüşhane Ü) T. FİKRET HORZUM( AÜ ) Bir alanın üzerindeki detaylarla birlikte harita veya planının yapılabilmesi için

Detaylı

Merkezi Yığılma ve Dağılım Ölçüleri

Merkezi Yığılma ve Dağılım Ölçüleri 1.11.013 Merkezi Yığılma ve Dağılım Ölçüleri 4.-5. hafta Merkezi eğilim ölçüleri, belli bir özelliğe ya da değişkene ilişkin ölçme sonuçlarının, hangi değer etrafında toplandığını gösteren ve veri grubunu

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

MÜHENDİSLİK ÖLÇMELERİ UYGULAMASI (HRT4362) 8. Yarıyıl

MÜHENDİSLİK ÖLÇMELERİ UYGULAMASI (HRT4362) 8. Yarıyıl İnşaat Fakültesi Harita Mühendisliği Bölümü Ölçme Tekniği Anabilim alı MÜHENİSLİK ÖLÇMELERİ UYGULAMASI (HRT436) 8. Yarıyıl U L K Kredi 3 ECTS 3 UYGULAMA-5 ELEKTRONİK ALETLERİN KALİBRASYONU Prof.r.Engin

Detaylı

Ölçme Bilgisi. Dr. Hasan ÖZ. SDÜ Ziraat Fakültesi Tarımsal Yapılar ve Sulama Bölümü www.hasanoz.com.tr

Ölçme Bilgisi. Dr. Hasan ÖZ. SDÜ Ziraat Fakültesi Tarımsal Yapılar ve Sulama Bölümü www.hasanoz.com.tr Ölçme Bilgisi Dr. Hasan ÖZ SDÜ Ziraat Fakültesi Tarımsal Yapılar ve Sulama Bölümü www.hasanoz.com.tr 1 Ölçme Bilgisi; yeryüzünün küçük ya da büyük parçalarının şekil ve büyüklüklerinin ölçülmesi ve elde

Detaylı

PDF created with FinePrint pdffactory trial version Düşey mesafelerin (Yüksekliklerin) Ölçülmesi

PDF created with FinePrint pdffactory trial version  Düşey mesafelerin (Yüksekliklerin) Ölçülmesi Düşey mesafelerin (Yüksekliklerin) Noktalar arasındaki düşey mesafelerin ölçülmesine yükseklik ölçmesi ya da nivelman denir. Yükseklik: Ölçülmek istenen nokta ile sıfır yüzeyi olarak kabul edilen deniz

Detaylı

Ölçme Bilgisi. Jeofizik Mühendisliği Bölümü. Yrd. Doç. Dr. H. Ebru ÇOLAK ecolak@ktu.edu.tr

Ölçme Bilgisi. Jeofizik Mühendisliği Bölümü. Yrd. Doç. Dr. H. Ebru ÇOLAK ecolak@ktu.edu.tr Ölçme Bilgisi Jeofizik Mühendisliği Bölümü Yrd. Doç. Dr. H. Ebru ÇOLAK ecolak@ktu.edu.tr Karadeniz Teknik Üniversitesi, Harita Mühendisliği, GISLab Trabzon www.gislab.ktu.edu.tr ÖLÇÜ HATALARI 4. HAFTA

Detaylı

ÖLÇME VE KONTROL Ölçme ve Kontrolün Tanımı ve Önemi

ÖLÇME VE KONTROL Ölçme ve Kontrolün Tanımı ve Önemi Hazırlayan: Arş.Gör.Ali Kaya GÜR e-mail:alikayagur@gmail.com Fırat Üniversitesi Teknik Eğitim Fakültesi Metal Eğitimi Bölümü ELAZIĞ ÖLÇME VE KONTROL Ölçme ve Kontrolün Tanımı ve Önemi Bilinen bir değer

Detaylı

KIRCHHOFF YASALARI VE WHEATSTONE(KELVİN) KÖPRÜSÜ

KIRCHHOFF YASALARI VE WHEATSTONE(KELVİN) KÖPRÜSÜ KIRCHHOFF YASALARI VE WHEATSTONE(KELVİN) KÖPRÜSÜ Deneyin Amacı Bu deneyin amacı, seri, paralel ve seri-paralel bağlı dirençleri tanımak, Kirchhoff Yasalarının uygulamasını yapmak, eşdeğer direnç hesaplamasını

Detaylı

TOPOĞRAFİK HARİTALAR VE KESİTLER

TOPOĞRAFİK HARİTALAR VE KESİTLER TOPOĞRAFİK HARİTALAR VE KESİTLER Prof.Dr. Murat UTKUCU Yrd.Doç.Dr. ŞefikRAMAZANOĞLU TOPOĞRAFİK HARİTALAR VE Haritalar KESİTLER Yeryüzü şekillerini belirli bir yöntem ve ölçek dahilinde plan konumunda gösteren

Detaylı

Ölçme Bilgisi ve Kadastro Anabilim Dalı

Ölçme Bilgisi ve Kadastro Anabilim Dalı ÖLÇME BİLGİSİ Ölçme Bilgisi ve Kadastro Anabilim Dalı Ders Kodu:264 Yrd.Doç.Dr. Muhittin İNAN Anabilim Dalımız "İstanbul Yüksek Orman Mektebi" nin 1934 yılında Ankara Yüksek Ziraat Enstitüsüne bir fakülte

Detaylı

8. SINIF YARIYIL ÇALIŞMA TESTİ TEST 1 ( ) TEKRAR EDEN YANSIYAN ve DÖNEN ŞEKİLLER HİSTOGRAM STANDART SAPMA

8. SINIF YARIYIL ÇALIŞMA TESTİ TEST 1 ( ) TEKRAR EDEN YANSIYAN ve DÖNEN ŞEKİLLER HİSTOGRAM STANDART SAPMA 8. SINIF YARIYIL ÇALIŞMA TESTİ TEKRAR EDEN YANSIYAN ve DÖNEN ŞEKİLLER HİSTOGRAM STANDART SAPMA TEST 1 (11-1) 1. I. Geometrik fraktal kendini giderek küçülen veya büyüyen boyutta yineler. II. Fraktalın

Detaylı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı DENEY 0 Bölüm 1 - Ölçme ve Hata Hesabı Amaç: Ölçüm metodu ve cihazına bağlı hata ve belirsizlikleri anlamak, fiziksel bir niceliği ölçüp hata ve belirsizlikleri tespit etmek, nedenlerini açıklamak. Genel

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

TOPOĞRAFYA Takeometri

TOPOĞRAFYA Takeometri TOPOĞRAFYA Takeometri Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz/marangoz.htm

Detaylı

HARİTA. Harita,yeryüzünün bütününü yada bir parçasını tam tepeden görünüşe göre ve belli oranlarda küçültülmüş olarak gösteren çizimlerdir.

HARİTA. Harita,yeryüzünün bütününü yada bir parçasını tam tepeden görünüşe göre ve belli oranlarda küçültülmüş olarak gösteren çizimlerdir. HARİTA BİLGİSİ HARİTA Harita,yeryüzünün bütününü yada bir parçasını tam tepeden görünüşe göre ve belli oranlarda küçültülmüş olarak gösteren çizimlerdir. ÇEŞİTLİ ÖLÇEKLİ HARİTALARIN NUMARALANMA SİSTEMİ

Detaylı

GPS ağlarının dengelenmesinden önce ağın iç güvenirliğini artırmak ve hataları elimine etmek için aşağıda sıralanan analizler yapılır.

GPS ağlarının dengelenmesinden önce ağın iç güvenirliğini artırmak ve hataları elimine etmek için aşağıda sıralanan analizler yapılır. 13. GPS AĞLARININ DENGELENMESİ 13.1 GPS ÖLÇMELERİ GPS ( Global Positioning System ) alıcıları kullanılarak yer istasyonu ile uydu arasındaki uzunluklar ölçülür ve noktaların konumları belirlenir. GPS ile

Detaylı

KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT

KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT.. KENDİNE BENZERLİK VE AFİNİTE Fraktal özelliklerinden bir diğeri de kendine benzerlikdir. Geometrik açıdan, aynı şekle sahip olan geometrik şekiller birbirine

Detaylı

KÜRESEL VE ELİPSOİDAL KOORDİNATLARIN KARŞİLAŞTİRİLMASİ

KÜRESEL VE ELİPSOİDAL KOORDİNATLARIN KARŞİLAŞTİRİLMASİ KÜRESEL VE ELİPSOİDAL KOORDİNATLARIN KARŞİLAŞTİRİLMASİ Doç. Dr. İsmail Hakkı GÜNEŞ İstanbul Teknik Üniversitesi ÖZET Küresel ve Elipsoidal koordinatların.karşılaştırılması amacı ile bir noktasında astronomik

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

1. BÖLÜM BİLİMSEL YÖNTEM VE TUTUM

1. BÖLÜM BİLİMSEL YÖNTEM VE TUTUM 1. BÖLÜM BİLİMSEL YÖNTEM VE TUTUM Bir problem veya soru belirle. Bilimsel bir tahmin ile cevabına yönelik bir kestirimde bulun hipotez yaz,veri topla. Hipotezin sonuçları ile ilgili kestirimde bulun. Kestirimi

Detaylı

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFER LABORATUVARI ISIL IŞINIM ÜNİTESİ

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFER LABORATUVARI ISIL IŞINIM ÜNİTESİ T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFER LABORATUVARI ISIL IŞINIM ÜNİTESİ DENEY 1: ISI IÇIN TERS KARE KANUNU 1. DENEYİN AMACI: Bir yüzeydeki ışınım şiddetinin, yüzeyin

Detaylı

KOORDİNATLANDÎRILMIŞ FOTOGRAMETRİK MODELDEN HACİM HESABI

KOORDİNATLANDÎRILMIŞ FOTOGRAMETRİK MODELDEN HACİM HESABI KOORDİNATLANDÎRILMIŞ FOTOGRAMETRİK MODELDEN HACİM HESABI Dr. Yıhnoz ERKANLI Batı Almanya 1. Genel Yöntem Koordinatlandırılmış fotograrnetrik model kavramı arazi şeklînfn koordinatlarla belirlenmesinde

Detaylı

Jeodezi

Jeodezi 1 Jeodezi 5 2 Jeodezik Eğri Elipsoid Üstünde Düşey Kesitler Elipsoid yüzünde P 1 noktasındaki normalle P 2 noktasından geçen düşey düzlem, P 2 deki yüzey normalini içermez ve aynı şekilde P 2 de yüzey

Detaylı

ELEKTRİK-ELEKTRONİK ÖLÇME TESİSAT GRUBU TEMRİN-1-Mikrometre ve Kumpas Kullanarak Kesit ve Çap Ölçmek

ELEKTRİK-ELEKTRONİK ÖLÇME TESİSAT GRUBU TEMRİN-1-Mikrometre ve Kumpas Kullanarak Kesit ve Çap Ölçmek ELEKTRİK-ELEKTRONİK ÖLÇME TESİSAT GRUBU TEMRİN-1-Mikrometre ve Kumpas Kullanarak Kesit ve Çap Ölçmek Amaç: Mikrometre ve kumpas kullanarak kesit ve çap ölçümünü yapabilir. Kullanılacak Malzemeler: 1. Yankeski

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

3-1 Koordinat Sistemleri Bir cismin konumunu tanımlamak için bir yönteme gereksinim duyarız. Bu konum tanımlaması koordinat kullanımı ile sağlanır.

3-1 Koordinat Sistemleri Bir cismin konumunu tanımlamak için bir yönteme gereksinim duyarız. Bu konum tanımlaması koordinat kullanımı ile sağlanır. Bölüm 3 VEKTÖRLER Bölüm 3: Vektörler Konu İçeriği Sunuş 3-1 Koordinat Sistemleri 3-2 Vektör ve Skaler nicelikler 3-3 Vektörlerin Bazı Özellikleri 3-4 Bir Vektörün Bileşenleri ve Birim Vektörler Sunuş Fizikte

Detaylı

JEODEZİK ÖLÇME UYGULAMASI I UYGULAMA YÖNERGESİ

JEODEZİK ÖLÇME UYGULAMASI I UYGULAMA YÖNERGESİ ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JEODEZİK ÖLÇME UYGULAMASI I UYGULAMA YÖNERGESİ HAZIRLAYANLAR Yrd. Doç. Dr. R. Cüneyt ERENOĞLU Yrd. Doç. Dr. Özgün

Detaylı

DEVRE ANALİZİ LABORATUARI. DENEY 1 ve 2 İSTATİSTİK ÖRNEKLEME VE ÖLÇME HATALARI

DEVRE ANALİZİ LABORATUARI. DENEY 1 ve 2 İSTATİSTİK ÖRNEKLEME VE ÖLÇME HATALARI DEVRE ANALİZİ LABORATUARI DENEY 1 ve 2 İSTATİSTİK ÖRNEKLEME VE ÖLÇME HATALARI DENEY 1: İSTATİSTİK ÖRNEKLEME 1- Açıklama Bu deneyin amacı; örnekleme tekniği ile istatistik analizinin nasıl yapıldığını açıklamaktır.

Detaylı

ÖLÇME BİLGİSİ TANIM KAPSAM ÖLÇME ÇEŞİTLERİ BASİT ÖLÇME ALETLERİ

ÖLÇME BİLGİSİ TANIM KAPSAM ÖLÇME ÇEŞİTLERİ BASİT ÖLÇME ALETLERİ ÖLÇME BİLGİSİ TANIM KAPSAM ÖLÇME ÇEŞİTLERİ BASİT ÖLÇME ALETLERİ Doç. Dr. Alper Serdar ANLI 1.Hafta Ölçme Bilgisi Dersi 2013 Bahar Dönemi Ders Programı HAFTA KONU 1.Hafta 2.Hafta 3.Hafta 4.Hafta 5.Hafta

Detaylı

Yrd. Doç. Dr. Kurtuluş Sedar GÖRMÜŞ

Yrd. Doç. Dr. Kurtuluş Sedar GÖRMÜŞ Yrd. Doç. Dr. Kurtuluş Sedar GÖRMÜŞ Giriş ve Amaç Hata Teorisi, Hata Türleri Ölçü ve Hata Hata Türleri Doğruluk Ölçütleri Kovaryans ve Korelasyon Hata Yayılma Kuralı Ölçülerin Dengelenmesi Dolaysız Ölçüler

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

Ölçme Bilgisi DERS 4. Basit Ölçme Aletleri ve Arazi Ölçmesi. Kaynak: İ.ASRİ

Ölçme Bilgisi DERS 4. Basit Ölçme Aletleri ve Arazi Ölçmesi. Kaynak: İ.ASRİ Ölçme Bilgisi DERS 4 Basit Ölçme Aletleri ve Arazi Ölçmesi Kaynak: İ.ASRİ HATA SINIRI EŞİTLİĞİ d s = 0.005 S+0.00015xS+0.015 düzensiz hata düzenli hata kaba hata d 1 = A B d 2 = B A S = (d 1 +d 2 )/2 d

Detaylı

MALZEME ANA BİLİM DALI Malzeme Laboratuvarı Deney Föyü. Deneyin Adı: Malzemelerde Sertlik Deneyi. Deneyin Tarihi:

MALZEME ANA BİLİM DALI Malzeme Laboratuvarı Deney Föyü. Deneyin Adı: Malzemelerde Sertlik Deneyi. Deneyin Tarihi: Deneyin Adı: Malzemelerde Sertlik Deneyi Deneyin Tarihi:13.03.2014 Deneyin Amacı: Malzemelerin sertliğinin ölçülmesi ve mukavemetleri hakkında bilgi edinilmesi. Teorik Bilgi Sertlik, malzemelerin plastik

Detaylı

TEMEL İŞLEMLER VE UYGULAMALARI Prof.Dr. Salim ASLANLAR

TEMEL İŞLEMLER VE UYGULAMALARI Prof.Dr. Salim ASLANLAR 1. ÖLÇME TEKNİĞİ Bilinen bir değer ile bilinmeyen bir değerin karşılaştırılmasına ölçme denir. Makine parçalarının veya yapılan herhangi işin görevini yapabilmesi için istenen ölçülerde olması gerekir.

Detaylı

1. HARİTA BİLGİSİ ve TOPOĞRAFİK HARİTALAR

1. HARİTA BİLGİSİ ve TOPOĞRAFİK HARİTALAR 1 1. HARİTA BİLGİSİ ve TOPOĞRAFİK HARİTALAR Harita nedir? Yeryüzünün veya bir parçasının belli bir rana göre küçültülerek ve belirli işaretler kullanılarak yatay düzlem üzerinde gösterilmesine harita adı

Detaylı

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Elektrik devrelerinde ölçülebilen büyüklükler olan; 5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Akım Gerilim Devrede bulunan kaynakların tiplerine göre değişik şekillerde olabilir. Zamana bağlı

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

Hatalar Bilgisi veistatistik Dersi Çalışma Soruları Arasınav(Harita Müh. Bölümü-2015)

Hatalar Bilgisi veistatistik Dersi Çalışma Soruları Arasınav(Harita Müh. Bölümü-2015) Hatalar Bilgisi veistatistik Dersi Çalışma Soruları Arasınav(Harita Müh. Bölümü-2015) S-1) Ölçmelerdeki hata kaynakları S-2) Hata türlerini belirtiniz ve kısaca açıklayınız. S-3) Bir doğrultu 9 kez ölçülmüş,

Detaylı

Yükseklik Ölçme (Nivelman) Prof.Dr.Mustafa KARAŞAHİN

Yükseklik Ölçme (Nivelman) Prof.Dr.Mustafa KARAŞAHİN Yükseklik Ölçme (Nivelman) Prof.Dr.Mustafa KARAŞAHİN Yükseklik Ölçümü Arazide, yerleri belli olan noktaların deviz seviyesine göre yüksekliklerinin belirlenmesi işlemidir. Noktalar arasındaki yükseklik

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 3 Malzemelerin esnekliği Gerilme Bir cisme uygulanan kuvvetin, kesit alanına bölümüdür. Kuvvetin yüzeye dik olması halindeki gerilme "normal gerilme" adını alır ve şeklinde

Detaylı

FAKTÖRİYEL. TANIM Pozitif ilk n tam sayının çarpımı n = n! biçiminde gösterilir. n Faktöriyel okunur.

FAKTÖRİYEL. TANIM Pozitif ilk n tam sayının çarpımı n = n! biçiminde gösterilir. n Faktöriyel okunur. FAKTÖRİYEL TANIM Pozitif ilk n tam sayının çarpımı 1.2.3 n = n! biçiminde gösterilir. n Faktöriyel okunur. 1!=1 2!=1.2=2 3!=1.2.3=6 4!=1.2.3.4=24 5!=1.2.3.4.5=120 gibi. Özel olarak; 0! = 1 olarak tanımlanmıştır.

Detaylı

TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi

TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi Merkezleri aynı, aralarında dielektrik madde bulunan iki küreden oluşur. Elektrik Alanı ve Potansiyel Yarıçapları ve ve elektrotlarına uygulanan

Detaylı

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces TANIM n bir doğal sayı ve a 0, a 1, a 2,..., a n 1, a n birer gerçel sayı olmak üzere, P(x) = a 0 + a 1 x + a 2 x 2 +... + a n 1 x n 1 +a n x n biçimindeki ifadelere x değişkenine bağlı, gerçel (reel)

Detaylı

AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası

AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası SORU 1 525 + 2834 + 379 toplama işlemini alt alta yazarak yapınız. 525 2834 +379 3738 SORU 2 Manavdan kilogramı 4 TL olan armut

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

YÜKSEKLİK ÖLÇMELERİ DERSİ GEOMETRİK NİVELMAN

YÜKSEKLİK ÖLÇMELERİ DERSİ GEOMETRİK NİVELMAN YÜKSEKLİK ÖLÇMELERİ DERSİ GEOMETRİK NİVELMAN Yrd. Doç. Dr. Ayhan CEYLAN Yrd. Doç. Dr. İsmail ŞANLIOĞLU 9.3. Nivelman Ağları ve Nivelman Röper Noktası Haritası yapılacak olan arazi üzerinde veya projenin

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

Değişken Doğru Akım Zaman göre yönü değişmeyen ancak değeri değişen akımlara değişken doğru akım denir.

Değişken Doğru Akım Zaman göre yönü değişmeyen ancak değeri değişen akımlara değişken doğru akım denir. DC AKIM ÖLÇMELERİ Doğru Akım Doğru akım, zamana bağlı olarak yönü değişmeyen akıma denir. Kısa gösterimi DA (Doğru Akım) ya da İngilizce haliyle DC (Direct Current) şeklindedir. Doğru akımın yönü değişmese

Detaylı