A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir.
|
|
- Canan Avni
- 1 yıl önce
- İzleme sayısı:
Transkript
1 . nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. Buna göre, n C r + n C r toplamı aşağıdakilerden hangisine eşittir? A) n + C r B) C C) n r n + C r + A İSTATİSTİK KPSS-AB-PÖ / 8 4. madenî paradan ikisinin her iki yüzü de yazıdır. Bu paradan bir tanesi rastgele seçiliyor. Seçilen para üç kez atılıyor ve üç atışın da yazı geldiği görülüyor. Seçilen paranın, iki yüzü de yazı olan para olması olasılığı kaçtır? A) 6 B) 7 C) 8 n C r C + n r 9. E örneklem uzayında A, B ve C olayları için A B C = E A B = A C = B C = eşitlikleri veriliyor. P(A) =, P(B) = olduğuna göre, 4 P(C)kaçtır? 5. Bir kavşakta birim zamanda meydana gelen trafik kazası sayısının ortalaması 5, varyansı ise 9 dur. Bu kavşakta birim zamanda en az 9, en çok trafik kazası meydana gelmesi olasılığıyla ilgili olarak aşağıdakilerden hangisi doğrudur? A) En az 5 tir. B) En az 4 tür. A) B) C) 4 C) En çok 5 tir. En çok 4 tür. 4 4 e eşittir.. t X N( μ, σ ) ve F(t) = f(x)dx = P(x t) olduğuna göre, aşağıdakilerden hangisi doğrudur? A) F(t) = F( t) B) F( μ+ t) = F( μ t) C) F( μ t) = F( μ t) F( μ t) = F( μ+ t) F( μ t) = F(t) 6. Ortalaması,5 olan bir Poisson dağılımında P(x ) olasılığının değeri kaçtır? λ x e λ ( f(x) = : Poisson olasılık fonksiyonu) x! A) B) e C) e e
2 7. En büyükleme (maksimizasyon) tipinde, amaç fonksiyonuna sahip bir doğrusal programlama problemi verilmiş olsun. Bu problemin bir uygun çözümü için aşağıdakilerden hangisi doğrudur? A) Uygun çözüm bölgesinin bir köşe noktası olmalıdır. B) Amaç fonksiyonuna, alabileceği en büyük değeri vermelidir. C) Amaç fonksiyonuna, problemin bütün kısıtlarını aynı anda sağlamak koşuluyla, en büyük değeri vermelidir. Problemin bütün kısıtlarını aynı anda sağlamalıdır. Problemin bütün kısıtlarını aynı anda sağlaması gerekmez, en az bir kısıtı sağlamalıdır. A 9. Enb Z = X + X X + 4X 8 X + 6X 7 X, X KPSS-AB-PÖ / 8 doğrusal programlama problemi için kısıtlayıcılara karşı gelen dual (ikil) değişkenler sırasıyla V,V dir. Bu probleme ait dual modelin W olarak adlandırılan amaç fonksiyonu aşağıdakilerden hangisidir? (Enb: En büyükleme ve Enk: En küçükleme) A) Enb W = 8V+ 7V B) Enb W = X+ X C) Enk W = 8V+ 7V Enk W = 7X+ 8X Enk W = 4X+ 6X 8. Bir doğrusal programlama probleminin çoklu en iyi çözümleri varsa aşağıdakilerden hangisi doğrudur? A) Bu çözümlerin doğrusal konveks bileşimi de en iyi çözümdür. B) Bu çözümlerin toplamı da en iyi çözümdür. C) Bu çözümler konveks ve doğrusal bağımsızdır. Bu çözümler konveks ve doğrusal bağımlıdır.. İki kişilik sıfır toplamlı bir oyunun, A oyuncusuna göre ödeme değerleri aşağıda verilmiştir. B B B B4 A 7 9 A A Bu oyunun değeri B oyuncusu için kaçtır? A) 5 B) C) 5 Bu çözümlerin doğrusal konveks bileşimi en iyi çözüm olamaz.
3 . μ ortalama vektörü, V varyans kovaryans matrisi ve T, T matrisinin transpozu olmak üzere, VTp T μ+ Texbağıntısı ile verilen fonksiyona ne isim verilir? A) Çok değişkenli normal dağılımın yoğunluk fonksiyonu B) Çok terimli dağılımın yoğunluk fonksiyonu KPSS-AB-PÖ / 8. 4 denekten X, X, X ve X4 değişkenlerine ilişkin toplanan verilerden oluşturulan korelasyon matrisinin ilk üç özdeğeri (,8), (,) ve (,9) olarak elde edilmiştir. Yapılacak temel bileşenler analizinde önemli temel bileşenlerin sayısı aşağıdakilerden hangisidir? A) B) C) 4 C) Çok değişkenli normal dağılımın moment türeten fonksiyonu T Hotelling in dağılım fonksiyonu Çok değişkenli diskriminant fonksiyonu 4. Rastgele seçilen birimden elde edilen Y ve Z değişkenlerini içeren veri matrisinden kovaryans matrisi S, özdeğerler ( λ, λ ) ve özvektörlerin transpozu (v, v ) aşağıdaki gibidir:. x 6 X = N ; x yxx,yxx= + = 8 S = 5 λ = 4, λ = 9 v = (,447,894) v = (,894,447) Buna göre, T ve T temel bileşenlerini elde etmek için gerekli olan eşitlikler aşağıdakilerin hangisinde verilmiştir? y olduğuna göre, Y = nin yoğunluk fonksiyonu aşağıdakilerden y hangisidir? A) T =, 447Y,894Z T =,894Y, 447Z A) N ; 4 C) N ; B) N ; 4 N ; B) T =,447Y,894Z T =,894Y,447Z C) T =,447Y +,894Z N ; T =,894Y +,447Z T =, 447Y +,894Z T =,894Y, 447Z T =,447Y,894Z T =,894Y +,447Z
4 KPSS-AB-PÖ / 8 5. İki tür ilacın kandaki belli bir özellik üzerindeki etkisinin araştırıldığı bir çalışmada birinci ilaç, ikinci ilaç ise deneğe uygulanmıştır. Birinci ilaç için elde edilen ölçümler (,) ve (7,5), ikinci ilaç için elde edilen ölçümler ise (8,5), (,) ve (,5) tir. Buna göre, Wilcoxon sıra sayıları toplamı testinin birinci ilaç üzerinden hesaplanacak test istatistiğinin değeri kaçtır? 7. 4 kimyacı ve 5 biyolog arasından si kimyacı ve ü biyolog olmak üzere 5 kişi seçilecektir. Bu 5 kişi hiçbir kısıtlama olmaksızın kaç farklı şekilde seçilebilir? A) B) 8 C) 4 6 A) 6 B) 7 C) 7,5 8 8,5 8. Normal dağılıma sahip bir kitlede, merkezî eğilim ölçüleri arasındaki ilişki aşağıdakilerin hangisinde verilmiştir? A) Mod < Medyan < Aritmetik ortalama B) Medyan < Mod < Aritmetik ortalama C) Aritmetik ortalama < Medyan < Mod 6. Dört öğrencinin aynı dersin ara sınavından (X) ve dönem sonu sınavından (Y)aldıkları notlar aşağıdaki gibidir: Mod < Aritmetik ortalama < Medyan Aritmetik ortalama = Medyan = Mod X Y Buna göre, X ve Y değişkenleri arasındaki Kendall ın τ (tau) ilişki kat sayısı kaçtır? A) B) C) 9. Ortalaması 5 ve standart sapması 5 olan bir kitleden 5 birimlik bir örneklem çekiliyor. Örneklem dağılımının ortalamasının beklenen değeri ve standart hatası sırasıyla aşağıdakilerin hangisinde verilmiştir? A) 5 ve B) 5 ve 5 C) 5 ve ve 5 ve 5 4
5 . Bir tür plastiğin kırılma geriliminin araştırıldığı bir çalışmada alınan 56 birimlik örneklemin aritmetik ortalaması 5,4 birim, ortancası 8, birim ve tepe değeri, birim, standart hatası ise,4 birim olarak elde edilmiştir. Kırılma gerilimine ilişkin dağılım için aşağıdakilerden hangisi doğrudur? A) Çarpıklık kat sayısı,5 tir, sağa doğru çarpıktır. B) Çarpıklık kat sayısı 8 dir, sağa doğru çarpıktır. KPSS-AB-PÖ / 8. 4 gözlemli, periyodu 4 olan mevsimsel zaman serisinin, çarpımsal ayrıştırma yöntemi ile hesaplanan mevsimsel endeksleri ve trent denklemi aşağıda verilmiştir: Mevsimsel endeksler:,7,9,, [ Trent denklemi: T = 5+ t Bu serinin bir dönemlik öngörü değeri kaçtır? A) 5 B) 6 C) C) Çarpıklık kat sayısı 8 dir, sola doğru çarpıktır. Çarpıklık kat sayısı,5 tir, sola doğru çarpıktır. Çarpıklık kat sayısı,9686 dır, sağa doğru çarpıktır.. Bir işe giriş sınavına 5 kişi başvurmuştur. Sınavdan alınan notlar 54 ortalama ve 64 varyans ile normal dağılıma uygun dağılmaktadır. Sınavı kazanma puanı 8 olduğuna göre, sınavı kazananların sayısı kaçtır? ( Φ(,4 ) =,659, Φ(,5 ) =,9994 ) A) B) 6 C) Deterministik trent ve deterministik mevsimsel bileşenleri toplamsal olarak yapısında bulunduran bir sürece uyum gösteren x t zaman serisinin modeli [ π t xt = + t + cos, t =,,..., 6 olarak tahmin edilmiştir. Bu modelden t = için öngörü değeri aşağıdakilerden hangisinde doğru olarak verilmiştir? A) 48 B) 49 C) Normal dağılımlı bir kitleden çekilen 5 büyüklüğündeki bir örneklemden yararlanılarak kitle ortalaması μ için % 95 güven aralığı (,7;,9 ) olarak elde edilmiştir. H : μ= hipotezinin, H A : μ hipotezine karşı testi için aşağıdakilerden hangisi doğrudur? A),5 önem düzeyinde H reddedilir. B),5 güvenilirlikle H reddedilir. C),5 güvenilirlikle H reddedilemez. 5. Varyans analizinin kullanılabilmesi için aşağıdakilerden hangisi gerekli bir varsayım değildir? A) Örneklemler bağımsız ve rastgele seçimli olmalı B) Kitleler normal dağılmalı C) Kitlelerin varyansları aynı olmalı Kitleler ki-kare dağılmalı Kitlelerin ortalamaları aynı olmalı,5 önem düzeyinde H reddedilemez. Test istatistiğinin değeri bilinmediği için bir şey söylenemez. 5
6 6. Aynı toprak yapısına sahip bir tarla üç kısma ayrılıp her birine A, B ve C gübrelerinden biri uygulanıyor ve buğday ekiliyor. Her gübrenin verildiği kısım dört parçaya bölünüyor. Her parçadan elde edilen buğday verimi aşağıdaki tabloda verilmiştir: A B 4 C Buna göre, gübre grupları arası kareler toplamı kaçtır? KPSS-AB-PÖ / 8 9. Bir bölgede 88 meteoroloji istasyonu bulunmaktadır. Bu bölgede belli bir aydaki ortalama yağış miktarı tahmin edilmek istenmektedir. Bu amaçla 8 istasyon atlamalı sistematik örnekleme ile seçilmiş ve örneklem varyansı olarak elde edilmiştir. Bu aydaki ortalama yağış miktarının tahmin edicisinin tahmini varyansı kaçtır? A),88 B),7 C),5,5,44 A) 8 B) 9 C) 4 7. Küme örneklemesi için aşağıdaki ifadelerden hangisi yanlıştır? A) Kitleyi oluşturan kümelerden rastgele olarak kümeler seçilir. B) Küme içi birimlerin heterojen olması tercih edilir. C) Sadece örneğe çıkan kümelerin çerçevesine ihtiyaç duyulur.. Büyük bir şirketin toplam gider miktarını tahmin etmek için 4 farklı gider kaleminden tanesi basit rastgele örnekleme ile seçilmiştir. Örneklemden elde edilen toplam gider 8 YTL dir. Bu şirketin toplam giderinin tahmini aşağıdakilerden hangisidir? A) 4 B) 56 C) Kitleyi oluşturan kümeler ayrık olmalıdır. Küme içi korelasyon kat sayısının e yakın değer alması tercih edilir. 8. Birinci tabakada ve ikinci tabakada birim içeren iki tabakalı bir kitleden, büyüklüğü 6 olan bir örnek orantılı paylaştırma yöntemine göre seçilecektir. Buna göre, birinci ve ikinci tabakadan sırasıyla kaç birim alınmalıdır? A) ve 5 B) ve 4 C) ve 4 ve 5 ve., x < g(x) =, x =, x > Yukarıda tanımlanan g(x) fonksiyonuna ne ad verilir? A) Mutlak değer fonksiyonu B) Türev fonksiyonu C) Ağırlık fonksiyonu Hata fonksiyonu İşaret fonksiyonu 6
7 . f(x) doğrusal olmayan fonksiyonunun [, 5] ara- lığında var olan bir köküne en çok 6 büyüklüğünde bir hata ile yaklaşılmak istenmektedir. Köke yaklaşım için ikiye bölme yöntemi kullanılacağına göre, en az kaç iterasyon yaparak köke istenilen ölçüde yaklaşılır? A) B) 5 C) KPSS-AB-PÖ / 8 T:R R dönüşümü doğrusal bir dönüşüm olmak üzere, T(, ) = (,, ) ve T(, ) = (,, ) olduğuna göre, T(, ) aşağıdakilerden hangisine eşittir? A) (,, ) B) (,,) C) (,,) (,, ) (, 4, ). matrisinin özdeğerleri aşağıdakilerden hangisidir? A) λ = λ = B) λ = λ = C) λ =, λ = λ =, λ = λ = λ = 6. 5 A = matrisinin determinant değeri kaçtır? A) 75 B) C) A = 4 B = matrisleri için, (A+ B) matrisi aşağıdakilerden hangisidir? A) B) C)
8 7. y balık kalite ölçümünü, x balık yakalandıktan sonra paketleninceye kadar geçen süreyi (saat olarak) göstermek üzere, y ve x arasındaki doğrusal ilişki [ y = 8,5,5x biçiminde elde edilmiştir. Verilen bilgilere göre, aşağıdakilerden hangisi söylenebilir? A) Balık yakalandıktan sonra paketlemenin bir saat gecikmesi balığın kalitesini,5 birim azaltmaktadır. KPSS-AB-PÖ / 8 9. Gözlem sayısı, bağımsız değişken sayısı ve bağımlı değişken sayısı olan bir regresyon çalışmasında regresyon kareler toplamı 4, hata kareler toplamı olarak bulunuyor. Ayarlanmış çoklu belirtme kat sayısının (Adjusted R ) değeri kaçtır? A), B),4 C),6,76,8 B) Balık yakalandıktan sonra paketlemenin bir saat gecikmesi balığın kalitesini,5 birim artırmaktadır. C) Balık yakalandıktan sonra paketlemenin,5 saat gecikmesinin balığın kalitesini değiştirmediği söylenebilir. Balık kalitesinde bir birim artış olmuşsa balığın paketlemesinin bir saat geciktiği söylenebilir. Balık kalitesinde bir birim artış olmuşsa balığın paketlemesinin,5 saat geciktiği söylenebilir. 4. Yirmi sekiz gözlem kullanılarak yapılan bir regresyon çalışmasından, [ [ yi = b + bx i+ bx i + bx i + bx 4 i4 + ei denklemi elde ediliyor. Bu regresyon analizine ilişkin varyans analizi tablosunda sırasıyla regresyon serbestlik derecesi, hata serbestlik derecesi ve toplam serbestlik derecesi kaç olur? A) 5,, 8 8. Yaşları 8 ay ve 9 ay aralığında olan çocuklar için boy (y: cm) ve yaş (x: ay) arasındaki doğrusal ilişki [ y = 64,9 +,6x biçiminde elde edilmiştir. B) 4, 4, 8 C) 4,, 7 5,, 7, 4, 7 Buna göre,,5 aylık ve 8 cm uzunluğundaki çocuğun artık değeri aşağıdakilerden hangisidir? A),9 B),9 C) 56,6 64,9 79, İSTATİSTİK TESTİ BİTTİ. CEVAPLARINIZI KONTROL EDİNİZ. 8
ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI
SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,
İçindekiler. Ön Söz... xiii
İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1
İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37
İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar
009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL
3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI
ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6
İÇİNDEKİLER ÖN SÖZ...
İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN
rasgele değişkeninin olasılık yoğunluk fonksiyonu,
3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının
MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.
MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu
10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08
1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel
İstatistik ve Olasılık
İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel
Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5
Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın
SÜREKLİ OLASILIK DAĞILIŞLARI
SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla
Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri
Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini
RİSK ANALİZİ VE AKTÜERYAL MODELLEME
SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla
KESİKLİ DÜZGÜN DAĞILIM
KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda
8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,
İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2
1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...
1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar
ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık
ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Olasılık Dersin Konusu. Bir kutudaki 7 farklı boncuğun içinden iki tanesi seçiliyor. Buna göre, örneklem uzayının eleman sayısı A) 7 B)! 7. madeni
Hipotez Testlerine Giriş. Hipotez Testlerine Giriş
Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel
2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım
2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı
Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları
Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.
Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014
Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?
İstatistiksel Yorumlama
İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız
GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE
GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI Prof. Dr. Nezir KÖSE 30.12.2013 S-1) Ankara ilinde satın alınan televizyonların %40 ı A-firması tarafından üretilmektedir.
BÖLÜM 12 STUDENT T DAĞILIMI
1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir
χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ
SORU : Ortalaması, varyansı olan bir raslantı değişkeninin, k ile k arasında değer alması olasılığının en az 0,96 olmasını sağlayacak en küçük k değeri aşağıdakilerden hangisidir? A),5 B) C) 3,75 D) 5
istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi
2010 S 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek t ablolar ve f ormüller bu kitapçığın sonunda verilmiştir. 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi yanlıstır? ) Maddesel
İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma...
İçindekiler İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii BÖLÜM 1 Ölçme, İstatistik ve Araştırma...1 Ölçme Nedir?... 3 Ölçme Süreci... 3 Değişkenler
Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.
Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri
KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005
KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:
istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A
2Q 10 BS 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek tablolar ve f ormüller bu kita p ç ığın sonunda ver-ilmiştir. 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre cevaplandırılacaktır
Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı
ARAŞTIRMA MODELLİLERİNDE KULLANILACAK İSTATİSTİKLERİ BELİRLEME ÖLÇÜTLERİ Parametrik mi Parametrik Olmayan mı? Kullanılacak İstatistikleri Belirleme Ölçütleri Değişken Sayısı Tek değişkenli (X) İki değişkenli
MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.
4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans
Sürekli Rastsal Değişkenler
Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım
SÜREKLİ RASSAL DEĞİŞKENLER
SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.
Hipotez Testleri. Mühendislikte İstatistik Yöntemler
Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ
Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.
3.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Merkezi Eğilim Ölçüleri, belli bir özelliğe ya da değişkene
Zeki Optimizasyon Teknikleri
Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:
ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER
ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER DOÇ. DR. NİHAL ERGİNEL 2015 X beklenen değeri B[X] ile gösterilir. B[X] = BEKLENEN DEĞER Belli bir malzeme taşınan kolilerin ağırlıkları
Matris Cebiriyle Çoklu Regresyon Modeli
Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β
İSTATİSTİK VE OLASILIK SORULARI
İSTATİSTİK VE OLASILIK SORULARI SORU 1 Meryem, 7 arkadaşı ile bir voleybol maçına katılmayı planlamaktadır. Davet ettiği arkadaşlarından herhangi bir tanesinin EVET deme olasılığı 0,8 ise, en az 3 arkadaşının
ÜSTEL DÜZLEŞTİRME YÖNTEMİ
ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik
Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN
Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,
Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü
Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu
1: DENEYLERİN TASARIMI VE ANALİZİ...
İÇİNDEKİLER Bölüm 1: DENEYLERİN TASARIMI VE ANALİZİ... 1 1.1. Deneyin Stratejisi... 1 1.2. Deneysel Tasarımın Bazı Tipik Örnekleri... 11 1.3. Temel Kurallar... 16 1.4. Deneyleri Tasarlama Prensipleri...
WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ
ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ SÜREKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 WEIBULL DAĞILIMI Weibull dağılımı, pek çok farklı sistemlerin bozulana kadar geçen süreleri ile ilgilenir. Dağılımın
1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol
ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.
Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler
Rastgele Değişkenlerin Dağılımları Mühendislikte İstatistik Yöntemler Ayrık Rastgele Değişkenler ve Olasılık Dağılımları Yapılan çalışmalarda elde edilen verilerin dağılışı ve dağılış fonksiyonu her seferinde
DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ
DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ 1. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için
3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1
3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki
Tesadüfi Değişken. w ( )
1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere
İçindekiler. Pazarlama Araştırmalarının Önemi
İçindekiler Birinci Bölüm Pazarlama Araştırmalarının Önemi 1.1. PAZARLAMA ARAŞTIRMALARININ TANIMI VE ÖNEMİ... 1 1.2. PAZARLAMA ARAŞTIRMASI İŞLEVİNİN İŞLETME ORGANİZASYONU İÇİNDEKİ YERİ... 5 1.3. PAZARLAMA
Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,
14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.
1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500
984 ÖYS. + + a a + a + a işleminin sonucu nedir? a A) +a B) a C) +a D) a E) +a a b ab. ifadesinin kısaltılmış biçimi a b + a b + ab a + b A) a b a b D) a b B) a b a + b E) ab(a-b) C) a b a + b A) 87 B)
İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014)
İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) S-1) Bir otoyol üzerinde radarla hız kontrolü yapan, polis ekipler tarafından tespit edilen tane aracın hızları aşağıdaki tabloda
İLERİ ARAŞTIRMA SORU HAVUZU
1 ) Bir ölçümde bağımlı değişkenlerdeki farklılıkların bağımsız değişkenlerdeki farklılıkları nasıl etkilediğini aşağıdakilerden hangisi ölçer? A) Bağımlı Değişken B) Bağımsız Değişken C) Boş Değişken
Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble.
1 Rastgele Süreçler Olasılık taması Rastgele Deney Çıktı Örnek Uzay, S (s) Zamanın Fonksiy onu (t, s) Olayları Tanımla Rastgele süreç konsepti (Ensemble) deney (t,s 1 ) 1 t Örnek Fonksiyonlar (t,s ) t
altında ilerde ele alınacaktır.
YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini
YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2
Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi Cilt 5, Sayı:2, 2003 YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI Sibel SELİM 1 Efe SARIBAY
BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ
BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ İŞTİRME Araştırma rma SüreciS 1.Gözlem Genel araştırma alanı 3.Sorunun Belirlenmesi Sorun taslağının hazırlanması 4.Kuramsal Çatı Değişkenlerin açıkça saptanması
Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER
Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Gözden Geçirilmiş ve Genişletilmiş 8. Baskı Frekans Dağılımları Varyans Analizi Merkezsel
Başarı olasılığı olan bir Bernoulli denemesinin aynı şartlar altında (bağımsız olarak) n kez tekrarlanması ile oluşan deneye binom deneyi denir.
3.5. Bazı Kesikli Dağılımlar 3.5.1. Bernoulli Dağılımı Bir deneyde başarı ve başarısızlık diye nitelendirilen iki sonuçla ilgilenildiğinde bu deneye (iki sonuçlu) Bernoulli deneyi ya da Bernoulli denemesi
SÜREKLĠ OLASILIK DAĞILIMLARI
SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde
İstatistik ve Olasılık
İstatistik ve Olasılık - I Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kes1rim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmak7r. ü Bu anlamda, anakütleden çekilen
RISK ANALIZI SINAVI WEB EKİM Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir:
RISK ANALIZI SINAVI WEB EKİM 2017 SORU 1: Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir: 115 240 325 570 750 Hasarların α = 1 ve λ parametreli Gamma(α, λ) dağılıma
LYS MATEMATİK DENEME - 1
LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte
Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi
Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi Parametrik Olmayan Testler İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Rank Korelasyon Parametrik
İÇİNDEKİLER 1. GİRİŞ...
İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel
OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler
1 SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge
2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?
017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin
İstatistik ve Olasılık
İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde
ĐŞLE 544 ĐSTATĐSTĐK ARA SINAV 11 Mayıs 2006
ĐŞLE 5 ĐSTATĐSTĐK ARA SINAV Mayıs 00 Adı Soyadı: No: [0 puan] -Bir Üniversitede okutulan derslerin öğrenciler tarafından değerlendirilmesi amacı ile hazırlanan bir anket formundaki sorulardan biri: Aldığınız
2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK
Soru 1 X rassal değişkeninin olasılık yoğunluk fonksiyonu x x, x> f ( x) = 0, dy. 1 werilmiş ve Y = rassal değişkeni tanımlamış ise, Y değişkenin 0< 1 X 1 y için olasılık yoğunluk fonksiyonu aşağıdaki
Dr. Mehmet AKSARAYLI
Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli
3/6/2013. Ders 6: Kesikli Olasılık Dağılımları
Ders 6: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı
BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3
KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8
ZAMAN SERİLERİNDE REGRESYON ANALİZİ
ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip
12. Hafta Ders Notları GENEL TEKRAR
12. Hafta Ders Notları GENEL TEKRAR A Veri Türleri Anakütle bir bütünü temsil ederken; örneklem, bir bütünün sadece bir kısmını temsil etmektedir. Anakütledeki gözlem sayısı N ile temsil edilirken; örneklemdeki
Test İstatistikleri AHMET SALİH ŞİMŞEK
Test İstatistikleri AHMET SALİH ŞİMŞEK İçindekiler Test İstatistikleri Merkezi Eğilim Tepe Değer (Mod) Ortanca (Medyan) Aritmetik Ortalama Merkezi Dağılım Dizi Genişliği (Ranj) Standart Sapma Varyans Çarpıklık
2017 MÜKEMMEL YGS MATEMATİK
2017 MÜKEMMEL YGS MATEMATİK 1. 2,31 0,33 0,65 0,13 + 3,6 0,6 işleminin sonucu kaçtır? A)0,5 B) 0,8 C)0,9 D)5 E)8 4. Üç basamaklı ABB doğal sayısı 4 e ve 9 a kalansız bölünmektedir. Buna göre, A+B toplamının
İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET
İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET Bu çalışmada, Celal Bayar Üniversitesi İnşaat Mühendisliği Bölümü öğrencilerinin
İSTATİSTİĞE GİRİŞ FINAL
İSTATİSTİĞE GİRİŞ İSTATİSTİĞE GİRİŞ FINAL İSTATİSTİĞE GİRİŞ A İSTATİSTİĞE GİRİŞ DİKKAT! Bu testte 25 soru bulunmaktadır. Cevaplarınızı, cevap kâğıdınızın İstatistiğe Giriş testi için ayrılan kısmına işaretleyiniz.
Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır.
Hipotez testleri-oran testi Oran Testi Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır Örnek: Yüz defa atılan bir para 34 defa yazı gelmiştir Paranın yazı gelme olasılığının
Bir Normal Dağılım Ortalaması İçin Testler
Bir Normal Dağılım Ortalaması İçin Testler İÇERİK o Giriş ovaryansı Bilinen Bir Normal Dağılım Ortalaması İçin Hipotez Testler P-değerleri: II. Çeşit hata ve Örnekleme Büyüklüğü Seçimi Örnekleme Büyüklüğü
χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ
SORU : Ortalaması, varyansı olan bir raslantı değişkeninin, k ile k arasında değer alması olasılığının en az 0,96 olmasını sağlayacak en küçük k değeri aşağıdakilerden hangisidir? A),5 B) C) 3,75 D) 5
MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1
MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1 şeklinde tanımlanan dağılımın a) Ortalama ve varyans değerlerini bulunuz b) Moment yaratma fonksiyonunu bularak a-şıkkını tekrar çözünüz. Bir tezgahta üretilen
İSTATİSTİKSEL VERİ ANALİZİ
İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı
OLASILIK ve İSTATİSTİĞE GİRİŞ. Yrd. Doç. Dr. Hüsey n Dem r
OLASILIK ve İSTATİSTİĞE GİRİŞ Yrd. Doç. Dr. Hüsey n Dem r Yrd. Doç. Dr. Hüseyin Demir OLASILIK VE İSTATİSTİĞE GİRİŞ ISBN 978-605-318-470-6 DOI 10.14527/9786053184706 Kitap içeriğinin tüm sorumluluğu yazarlarına
RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN
RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi
Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir
Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma
Merkezi Limit Teoremi
Örnekleme Dağılımı Merkezi Limit Teoremi Şimdiye kadar normal dağılıma uygun olan veriler ile ilgili örnekler incelendi. Çarpıklık gösteren veriler söz konusu olduğunda ne yapılması gerekir? Hala normal
MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI
Öğrenci Bilgileri Ad Soyad: İmza: MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI 26 Mayıs, 2014 Numara: Grup: Soru Bölüm 1 10 11 12 TOPLAM Numarası (1-9) Ağırlık 45 15 30 20 110 Alınan Puan Yönerge 1. Bu sınavda
Ders 4: Rastgele Değişkenler ve Dağılımları
Ders 4: Rastgele Değişkenler ve Dağılımları Rastgele değişken kavramı Kesikli ve sürekli rastgele değişkenler İki boyutlu rastgele değişkenler Beklenen değer Varyans Örnek uzaydaki her elemanı bir sayıyla
Korelasyon, Korelasyon Türleri ve Regresyon
Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.
ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM
ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ KESİKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 GEOMETRİK DAĞILIM Bir Bernoulli deneyi ilk olumlu sonuç elde edilmesine kadar tekrarlansın. X: ilk olumlu sonucun
Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN
Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,
EME 3105 SİSTEM SİMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9
EME 3105 1 Girdi Analizi Prosedürü SİSTEM SİMÜLASYONU Modellenecek sistemi (prosesi) dokümante et Veri toplamak için bir plan geliştir Veri topla Verilerin grafiksel ve istatistiksel analizini yap Girdi
Merkezi Eğilim ve Dağılım Ölçüleri
Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki
ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL
ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli