Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı fkarsli@ktu.edu.tr"

Transkript

1 Uasal Görüntü İileştirme/Filtreleme Doç. Dr. Fevi Karslı

2 İileştirme Herhangi bir ugulama için, görüntüü orijinalden daha ugun hale getirmek Ugunluğu her bir ugulama için sağlamak. Bir görüntü için ugun olan iileştirme metodu bir başka görüntü için ugun olmaabilir.

3 İki Alan domains) Uasal Alan Spatial Domain ) görüntü dülemi): Ugulanan teknikler direk olarak görüntüdeki piksel değerlerinin değişimini içerir. Frekans Alanı Frequenc Domain): Ugulanan teknikler görüntünün Fourier dönüşümündeki değişimleri içerir. Her iki alanı içeren kombine baı tekniklerde mevcuttur. 3

4 Uasal Alan Spatial Domain) Prosedür direk olarak piksellerle apılır. g,) = T[,)] burada,): giriş görüntüsü g,): işlenmiş görüntü T : tanımlanan operatör 4

5 Maske/Filtre,) Bir, ) noktasının komşuluğu, anı merkeli kare, dikdörtgen vea dairesel bir alt görüntü ile tanımlanır. Alt görüntünün maske/iltre) merkei tepeden başlaarak piksel piksel kadırılır. 5

6 Nokta İşleme Komşuluk = 11 piksel g sadece onksionunun, ) noktasındaki değeridir. T = gri düe transormason onksionu s = Tr) Burada r =,) in gri değeri s = g,) in gri değeri 6

7 Kontrast Germe Contrast Stretching) Orijinalden daha üksek kontrast elde etmek için, Orijinal görüntüde pikseller belli bir değer m) altına itilerek, karartma Belli bir değer m) üerine itilerek parlatma apılır. 7

8 Eşikleme Thresholding) İki düeli görüntü üretme binar) 8

9 Maske İşleme/Filtreleme Komşuluk 11 pikselden daha büüktür.,) değerlerini g,) e dönüştürmek için, tanımlanan bir onksion kullanılır. Kullanılan teknikler Görüntü keskinleştirme Image Sharpening) Görüntü umuşatma Image Smoothing) 9

10 3 temel gri-düe dönüşüm onksionu Negati Log Birim n. kök n. kuvvet Ters Log Giriş gri düe, r Lineer onksion Negati ve birim transormason Logaritmik onksion Log ve ters-log transormason Kuvvet onksionu n. Kuvvet ve n. Kök transormasonları 10

11 Negati Görüntü s = L-1-r L=56 Küçük bir doku boulmasını gösteren orijinal mammogram Negati Görüntü: daha ii analii sağlar. 11

12 Logaritmik Görüntü s = c log 1r) Fourier Spektrum Log transormason ugulanmış görüntü 1

13 Kontrast Germe Contrast Stretching) c) b) d) Görüntüdeki dinamik aralığı ükseltme b) düşük kontrastlı görüntü c) kontrast sonucu üretilen görüntü r 1,s 1 ) = r min,0) ve r,s ) = r ma,l- 1) d) eşiklenmiş görüntü 13

14 Gri-düe dilimleme Görüntü üerindeki spesiik aralıktaki gri değerlerin değiştirilmesi 14

15 Histogram İşleme Gri düe aralığı [0,L-1] olan bir görüntünün histogram onksionu Burada hr k ) = n k r k : k. Gri değer n k : ilgili r k ) gri değere sahip olan piksel saısı hr k ) : görüntü histogramı 15

16 Histogram İşleme Temel uasal alan işleme tekniğidir. Eekti olarak görüntü iileştirme için kullanılır. Histogram bilgileri kullanılarak görüntü sıkıştırma ve segmentasonda apılabilir. 16

17 hr k ) Örnek r k Kou görüntü Parlak görüntü 17

18 Örnek Düşük kontrastlı görüntü Histogram dar Yüksek kontrastlı görüntü Histogram geniş 18

19 Histogram Eşitleme önce sonra Histogram eşitleme 19

20 Örnek önce sonra Histogram eşitleme Görüntü kalitesi değişmemektedir, çünkü orijinal görüntüde histogram geniş bir aralıktadır. 0

21 Örnek Piksel saısı görüntü Gri düe = [0,9] histogram Gri düe 1

22 Gri Değ. j) s Piksel saısı j= 0 = k k n j j= 0 n j n s / / / / / / / / 16

23 Örnek Çıkış görüntü Gri düe = [0,9] Piksel saısı Gri düe Histogram eşitleme 3

24 Aritmetik/Mantıksal Operasonlarla İileştirme Aritmetik/Mantıksal operasonlar iki vea daha ala görüntü üerindeki pikselleri kullanarak iileştirme apar. Sadece DEĞİL NOT) operasonu tek görüntü üerinde çalışır. 4

25 Mantıksal Operasonlar Mantıksal operason sadece gri düeli görüntülere ugulanır, piksel değerleri ikili saılardır. 1 bea ve 0 siahdır. DEĞİL NOT) operasonu, negati transormasondur. 5

26 Örnek: VE AND) Operasonu orijinal görüntü VE görüntü maskesi VE operason sonucu 6

27 Örnek: VEYA OR) Operasonu orijinal görüntü VEYA görüntü maskesi VEYA operason sonucu 7

28 Uasal Filtreleme iltre maske/kernel/template vea pencere) Filtre alt görüntüdeki değerleri katsaı olarak kullanılır. Genelde tek rakamla iade edilirler, örneğin 33, 55, 8

29 Uasal Filtre İşlemi Görüntü üerinde maskenin noktadan noktaa hareket ettirilmesi. Her bir, ) noktada iltre değerinin hesaplanması. R = w w... = 1 mn i= i 1 w i i w mn mn 9

30 Yumuşatma Uasal Filtreleri Bulanıklaştırma blurring) ve gürültü aaltmada kullanılır. Bulanıklaştırma görüntüden küçük detaların giderilmesi ve çigi ada eğirler arasındaki boşlukları gidermek için kullanılır. Gürültü aaltma lineer ve lineer olmaan iltrelerle apılır. 30

31 Yumuşatma Lineer Filtreler Ortalama iltre gibi sonuçlar verir. Ortalama iltre vea alçak geçişli iltre olarak isimlendirilirler. 31

32 33 Yumuşatma Lineer Filtreleri Kutu iltre Ağırlıklı ortalama Merke piksel daha önemli olup arklı ağırlıkta dikkate alınır. 3

33 Örnek a c e b d a). orijinal görüntü piksel b). - ). 3, 5, 9, 15 ve 35 iltre boutu kullanılarak değişik ortalama iltresi ile elde edilmiş sonuç görüntüler. 33

34 Örnek orijinal görüntü Yumuşatma ortalama maskesi 1515) sonucu Eşikleme sonucu Burada görüntü üerinde umuşatma işleminden sonra eşikleme ile küçük boutlu objelerin ok edildiğini görmektei. 34

35 Lineer Olmaan Nonlinear) Filtreler Sonuç, görüntü üerindeki piksellerin iltre kuralına göre sıralanması temeline daanır. örnek median iltre : R = median{ k k = 1,,,n n} ma iltre : R = ma{ k k = 1,,,n n} min iltre : R = min{ k k = 1,,,n n} n n: iltre boutu 35

36 Median Filtreler Orijinal pikselin değerini komşu piksellerin orta değeri ile değiştirir. Oldukça popüler iltredir, çünkü anı bouttaki lineer iltrelere oranla rastgele gürültüleri tu ve biber gürültüsü) daha güçlü bir şekilde aaltır. 36

37 Örnek: Median Filtreler 37

38 Keskinleştirme Uasal Filtreleri Görüntüdeki detaları daha da belirginleştirirler. Vea bulanık ve görüntü alım sisteminde kanaklı hata ve detaları iileştirirler 38

39 Bulanıklaştırma Blurring) X Keskinleştirme Sharpening) Bulanıklaştırma komşu piksellerin ortalaması alınarak apılır. Keskinleştirme uasal dieransielle arkla) spatial dierentiation) gerçekleştirilir. 39

40 Türev Operetörü Türev operatorünün gücü, operatörün ugulandığı görüntü noktasındaki süreksiliğin derecesi ile doğru orantılıdır. Görüntü dieransieli Kenarları belirginleştirir ve gürültüleri giderir Gri düe değişimini a olduğu alanları ortaa çıkarır. 40

41 1. derece türev First-order derivative) Tek boutlu bir ) onksionun 1. derece türevi ark alma işlemidir. = 1) ) 41

42 . derece türev Secondorder derivative) Bener şekilde tek boutlu bir ) onksionunun. derece türevi ine ark işlemi ile tanımlanır. = 1) 1) ) 4

43 43, ) in 1. ve. derece türevi Görüntü üerinde iki değişkenli bir, ) onksionu düşünüldüğünde, iki önde kısmi türevlerin alınması gerekir. = = ), ), ), ), ), = lineer operatör) Laplacian operatörü Eğim Gradient) operatörü

44 44 Laplacian Arık Formu ), ) 1, ) 1, = ), 1), 1), = den elde edilir. )], 4 1), 1), ) 1, ) 1, [ =

45 Laplacian maske sonucu 45

46 Köşegen komşulara genişletilmiş Laplacian maske 46

47 Diğer Laplacian maskeleri Bu iltrelerde anı sonuçları verir, ancak birinde toplama işlemi apılırken diğerinde çıkarma işlemi gerçekleştirilir. 47

48 Örnek a). A kue kutbu görüntüsü b). Laplacian-iltreli görüntü c). Laplacian ölçeklenmiş görüntü d). Orijinal görüntü ile toplanmış iltreli görüntü sonucu 48

49 49 Laplacian maske orijinal görüntü eni bir maske) 1)], 1), ) 1, ) 1, [ ), 5 )], 4 1), 1), ) 1, ) 1, [ ), ), = = g

50 Örnek 50

51 51 Eğim Gradient) Operatörü 1. türevler eğim büüklüğü magnitude o the gradient) ile gerçekleştirilir. = = G G 1 1 ] [ ) = = = G G mag Büüklük lineer değildir. G G aklaşık olarak

52 5 Eğim Maskesi Basit aklaşıklıkla, and ) ) G G = = ] ) ) [ ] [ G G = =

53 53 Eğim Maskesi Roberts çapra-eğim operatörleri, ) and ) G G = = ] ) ) [ ] [ G G = =

54 54 Eğim Maskesi Sobel operatörleri, ) ) ) ) G G = = G G

55 Örnek 55

56 Örnek: Uasal İileştirme Metotlarının Birlikte Kullanımı çöüm: 1. Laplacian detaları iileştirir. Eğim operatörü belirgin kenarları iileştirir 3. Gri-düe dönüşümü gri değerlerin dinamik aralığı artırır. 56

57 57

58 58

Hafta 5 Uzamsal Filtreleme

Hafta 5 Uzamsal Filtreleme BLM429 Görüntü İşlemeye Giriş Hafta 5 Uzamsal Filtreleme Yrd. Doç. Dr. Caner ÖZCAN If the facts don't fit the theory, change the facts. ~Einstein İçerik 3. Yeğinlik Dönüşümleri ve Uzamsal Filtreleme Temel

Detaylı

DERS 5. Çok Değişkenli Fonksiyonlar, Kısmi Türevler

DERS 5. Çok Değişkenli Fonksiyonlar, Kısmi Türevler DERS 5 Çok Değişkenli Fonksionlar Kısmi Türevler 5.1. Çok Değişkenli Fonksionlar. Reel saılar kümesi R ile gösterilmek üere ve her n için olarak tanımlanır. R R 3 {( ): R} = {( ) : R} = {( L ): L R} n

Detaylı

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 Görüntü İşleme K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 İçerik Görüntü İşleme Nedir? Görüntü Tanımlamaları Görüntü Operasyonları Görüntü İşleme

Detaylı

Bilgisayar ne elde eder (görüntüden)? Dijital Görüntü İşleme Fevzi Karslı, KTÜ. 08 Ekim 2013 Salı 51

Bilgisayar ne elde eder (görüntüden)? Dijital Görüntü İşleme Fevzi Karslı, KTÜ. 08 Ekim 2013 Salı 51 Bilgisayar ne elde eder (görüntüden)? 08 Ekim 2013 Salı 51 Zorluk 1: bakış açısı 2012, Selim Aksoy 08 Ekim 2013 Salı 52 Zorluk 2: aydınlatma 08 Ekim 2013 Salı 53 Zorluk 3: oklüzyon (ölü bölge oluşumu)

Detaylı

Dijital Görüntü İşleme Teknikleri

Dijital Görüntü İşleme Teknikleri Teknikleri Ders Notları, 2013 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 08 Ekim 2013 Salı 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar, kaynaklar.

Detaylı

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur.

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur. Görüntü İşleme Görüntü işleme, dijital bir resim haline getirilmiş olan gerçek yaşamdaki görüntülerin bir girdi resim olarak işlenerek, o resmin özelliklerinin ve görüntüsünün değiştirilmesidir. Resimler

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Ana bileşenler dönüşümü 2 Yöntem, minimum korelasyonlu bilgileri sıkıştırarak veri grubu hakkında maksimum

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 25 Ekim

Detaylı

Chapter 3 Image Enhancement in the Spatial Domain. 2002 R. C. Gonzalez & R. E. Woods

Chapter 3 Image Enhancement in the Spatial Domain. 2002 R. C. Gonzalez & R. E. Woods Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods Chapter 3 Image Enhancement in the

Detaylı

NEIGHBOURHOOD PROCESSING (KOMŞULUK İLİŞKİLİ İŞLEMLERİ- BÖLGESEL İŞLEMLER-UZAYSAL FİLTRELEME) BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr.

NEIGHBOURHOOD PROCESSING (KOMŞULUK İLİŞKİLİ İŞLEMLERİ- BÖLGESEL İŞLEMLER-UZAYSAL FİLTRELEME) BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. NEIGHBOURHOOD PROCESSING (KOMŞULUK İLİŞKİLİ İŞLEMLERİ- BÖLGESEL İŞLEMLER-UZAYSAL FİLTRELEME) BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN 1 KOMŞULUK İLİŞKİLİ İŞLEMLER (UZAYSAL FİLİTRELER) Noktasal

Detaylı

İkili (Binary) Görüntü Analizi

İkili (Binary) Görüntü Analizi İkili (Binary) Görüntü Analizi İkili görüntü analizine giriş Eşikleme (Thresholding) Matematiksel morfoloji Piksel ve komşulukları (neighborhoods) Bağlantılı bileşenler analizi (Connected components analysis)

Detaylı

İLERİ GÖRÜNTÜ İŞLEME Ders-1

İLERİ GÖRÜNTÜ İŞLEME Ders-1 İLERİ GÖRÜNTÜ İŞLEME Ders- Elektromanyetik Spektrum Görünür Bölge 7 nm 4 nm Temel Kavramlar (Prof. Dr. Sarp ERTÜRK) 9/24/24 2 Hazırlayan: M. Kemal GÜLLÜ Sayısal İmge Gösterimi f x, y imgesi örneklendiğinde

Detaylı

DERS 6. Çok Değişkenli Fonksiyonlarda Maksimum Minimum

DERS 6. Çok Değişkenli Fonksiyonlarda Maksimum Minimum DERS Çok Değişkenli onksionlarda Maksimum Minimum.. Yerel Maksimum Yerel Minimum. z denklemi ile tanımlanan iki değişkenli bir onksionu ve bu onksionun tanım kümesi içinde ab R verilmiş olsun. Tanım. Eğer

Detaylı

Gri Seviye Dönüşümleri ve Uzaysal Filtreleme. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN

Gri Seviye Dönüşümleri ve Uzaysal Filtreleme. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN Gri Seviye Dönüşümleri ve Uzaysal Filtreleme BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN GRİ SEVİYE DÖNÜŞÜMLERİ Herhangi bir görüntü işleme operasyonu, görüntüdeki pikselin gri seviye değerlerini

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 06 Kasım

Detaylı

İkili (Binary) Görüntü Analizi

İkili (Binary) Görüntü Analizi İkili (Binary) Görüntü Analizi İkili görüntü analizine giriş Eşikleme (Thresholding) Matematiksel morfoloji Piksel ve komşulukları (neighborhoods) Bağlantılı bileşenler analizi (Connected components analysis)

Detaylı

İkili (Binary) Görüntü Analizi

İkili (Binary) Görüntü Analizi İkili (Binary) Görüntü Analizi İkili görüntü analizine giriş Eşikleme (Thresholding) Matematiksel morfoloji Piksel ve komşulukları (neighborhoods) Bağlantılı bileşenler analizi (Connected components analysis)

Detaylı

İMGE İŞLEME Ders-2. İmge Dosya Tipleri ve Temel İşlemler. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm

İMGE İŞLEME Ders-2. İmge Dosya Tipleri ve Temel İşlemler. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm İMGE İŞLEME Ders-2 İmge Dosya Tipleri ve Temel İşlemler (Yrd. Doç. Dr. M. Kemal GÜLLÜ) Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm Hazırlayan: M. Kemal GÜLLÜ MATLAB temel bilgiler

Detaylı

Güzide Miray PERİHANOĞLU 1, Ufuk ÖZERMAN 2, Dursun Zafer ŞEKER 3

Güzide Miray PERİHANOĞLU 1, Ufuk ÖZERMAN 2, Dursun Zafer ŞEKER 3 1013 [936] DİJİTAL GÖRÜNTÜ İŞLEME TEKNİKLERİ KULLANILARAK GÖRÜNTÜLERDEN DETAY ÇIKARIMI Güzide Miray PERİHANOĞLU 1, Ufuk ÖZERMAN 2, Dursun Zafer ŞEKER 3 1 Öğr. Gör., Yüzüncü Yıl Üniversitesi, Mülkiyet Koruma

Detaylı

Dijital Görüntü İşleme Teknikleri

Dijital Görüntü İşleme Teknikleri Teknikleri Ders Notları, 2015 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 19 Ekim 2015 Pazartesi 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar,

Detaylı

İmage segmentasyon (Görüntü Bölütleme)

İmage segmentasyon (Görüntü Bölütleme) İmage segmentasyon (Görüntü Bölütleme) Segmantasyon (Bölütleme) Segmentasyon genellikle görüntü analizinin ilk aşamasıdır. Görüntü bölütleme, bir görüntüyü her biri içerisinde farklı özelliklerin tutulduğu

Detaylı

DERS 1. Doğrusal Denklem Sistemleri ve Matrisler

DERS 1. Doğrusal Denklem Sistemleri ve Matrisler DERS Doğrusal Denklem Sistemleri ve Matrisler Sosal ve Beşeri Bilimlerde Matematik I kitabımıda doğrusal denklemleri tanımlamıştık (safa 85). Arıca, matematiksel modeli doğrusal denklemler içeren problem

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

4UZAYDA SÜSLEMELER, DÖNME

4UZAYDA SÜSLEMELER, DÖNME 4UZYD SÜSLEMELER, DÖNME VE PERSPEKTİF ÇİZİMLER Safa No 1. KTI CİSİMLERLE, TEK VE ÇOK YÜZEYLİLERLE YPILR OLUŞTURM........................201 2. ÇOK YÜZLÜLERLE OLUŞTURULMUŞ UZYSL KPLMLR...............................201

Detaylı

T E M E L L E R. q zemin q zemin emniyet q zemin 1.50 q zemin emniyet

T E M E L L E R. q zemin q zemin emniyet q zemin 1.50 q zemin emniyet T E E L L E R 1 Temeller taşııcı sistemin üklerini zemine aktaran apı elemanlarıdır. Üst apı üklerinin ugun şekilde zemine aktarılması sırasında, taşııcı sistemde ek etkiler oluşabilecek çökmelerin ve

Detaylı

DERS 2. Fonksiyonlar

DERS 2. Fonksiyonlar DERS Fonksionlar.1. Fonksion Kavramı. Her bilim dalının önemli bir işlevi, çeşitli nesneler vea büüklükler arasında eşlemeler kurmaktır. Böle bir eşleme kurulması tahmin ürütme olanağı verir. Örneğin,

Detaylı

Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri

Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Eklemeli renk teorisi Çıkarmalı renk teorisi 1 RGB (Red Green - Blue) Kavramı Red Green - Blue RGB-Mixer

Detaylı

2. KUVVETLERİN VEKTÖREL TOPLANMASI. Hazırlayan Arş. Grv. A. E. IRMAK

2. KUVVETLERİN VEKTÖREL TOPLANMASI. Hazırlayan Arş. Grv. A. E. IRMAK 2. KUVVETLERİN VEKTÖREL TOPLANMASI AMAÇ Hazırlaan Arş. Grv. A. E. IRMAK Eş zamanlı kuvvetler etkisinde dengede bulunan bir cismin incelenmesi, analitik ve vektörel metotları kullanarak denge problemlerinin

Detaylı

Hafta 4 Yoğunluk Dönüşümleri ve Histogram İşleme

Hafta 4 Yoğunluk Dönüşümleri ve Histogram İşleme BLM429 Görüntü İşlemeye Giriş Hafta 4 Yoğunluk Dönüşümleri ve Histogram İşleme Yrd. Doç. Dr. Caner ÖZCAN It makes all the difference whether one sees darkness through the light or brightness through the

Detaylı

AMAÇ Araçlardaki Kamera Sistemleri

AMAÇ Araçlardaki Kamera Sistemleri SUNU PLANI AMAÇ OPEN CV GÖRÜNTÜ EŞİKLEME KENAR BULMA ŞEKİL BULMA GÖRÜNTÜ GENİŞLETME VE BOZMA GÖRÜNTÜ DOLDURMA AFFİNE DÖNÜŞÜMÜ PERSPEKTİF DÖNÜŞÜM KUŞ BAKIŞI GÖRÜNTÜ DÖNÜŞÜMÜ AMAÇ Araçlardaki Kamera Sistemleri

Detaylı

1977 ÜSS. 2 y ifadesi aşağıdakilerden hangisine eşittir? 1 x. 2 y. 1 y. 1 y. 1 x. 2 x. 2 x. 1 x. 1 y. 1 x. 1 y. 1 x. 1 y 2 C) 4 E)

1977 ÜSS. 2 y ifadesi aşağıdakilerden hangisine eşittir? 1 x. 2 y. 1 y. 1 y. 1 x. 2 x. 2 x. 1 x. 1 y. 1 x. 1 y. 1 x. 1 y 2 C) 4 E) 77 ÜSS. ifadesi aşağıdakilerden hangisine eşittir?. C) 4 E). Şekilde a+b+c+d açılarının toplamı kaç dik açıdır? (açılar pozitif önlüdür.) 4 C) 6 7 E) 8 Verilen şekilde açıların ölçüleri verilmiştir. En

Detaylı

Görüntü Segmentasyonu (Bölütleme)

Görüntü Segmentasyonu (Bölütleme) Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 20 Aralık 2014 Cumartesi 1 Görüntü Segmentasyonu 20 Aralık 2014 Cumartesi 2 Gestalt kanunları Görüntü

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz.

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz. BTMIŞ YÜZEYLERE ELEN HİDROSTTİK KUVVETLER DÜZLEM YÜZEYLER Yata Yüeler Sıvı üei Yata bir dülem üee gelen idrostatik kuvvetin büüklüğünü ve etkime noktasını bulmak istioru. d d Kuvvetin Büüklüğü :Şekil deki

Detaylı

2009 Kasım. www.guven-kutay.ch MUKAVEMET DEĞERLERİ GENEL BİLGİLER. 05-0c. M. Güven KUTAY. 05-0-genbil.doc

2009 Kasım. www.guven-kutay.ch MUKAVEMET DEĞERLERİ GENEL BİLGİLER. 05-0c. M. Güven KUTAY. 05-0-genbil.doc 009 Kasım www.guven-kuta.ch UKAVEET DEĞERLERİ GENEL BİLGİLER 05-0c. Güven KUTAY 05-0-genbil.doc İ Ç İ N D E K İ L E R 0. GENEL BİLGİLER...0.3 0.1. ukavemet hesapları...0.4 0.1.1. İlk vea eniden boutlama...0.4

Detaylı

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU VEKTÖRLER KT YRD.DOÇ.DR. KMİLE TOSUN ELEKOĞLU 1 Mekanik olaları ölçmekte a da değerlendirmekte kullanılan matematiksel büüklükler: Skaler büüklük: sadece bir saısal değeri tanımlamakta kullanılır, pozitif

Detaylı

y Konuşma sesleriyle ilgili nesnel değerler ortaya koyar. 1. seçenek: 2. seçenek: y Fonetik çözümleme, fonetik laboratuvarında ve

y Konuşma sesleriyle ilgili nesnel değerler ortaya koyar. 1. seçenek: 2. seçenek: y Fonetik çözümleme, fonetik laboratuvarında ve Fonetik Çözümleme: Niçin? Konuşma seslerile ilgili nesnel değerler ortaa koar. İnsan kulağıla aırt edilemeen pek çok özellik fonetik incelemele ortaa çıkarılabilir. Tekrarlaan ölçümlerde elde edilen değerler

Detaylı

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır.

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır. -A Adı Soadı kulu Sınıfı LYS- MATEMATİK TESTİ Bu Testte; Toplam Adet soru bulunmaktadır. Cevaplama Süresi 7 dakikadır. Süre bitiminde Matematik Testi sınav kitapçığınızı gözetmeninize verip Geometri Testi

Detaylı

ISSN : 1308-7231 mbaykara@firat.edu.tr 2010 www.newwsa.com Elazig-Turkey

ISSN : 1308-7231 mbaykara@firat.edu.tr 2010 www.newwsa.com Elazig-Turkey ISSN:1306-3111 e-journal of New World Sciences Academy 011, Volume: 6, Number:, Article Number: 1A0173 ENGINEERING SCIENCES Burhan Ergen Received: November 010 Muhammet Baykara Accepted: February 011 Firat

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2015-2016 Öğretim Yılı Bahar Dönemi 1 Ön İşleme-Radyometrik Düzeltme Atmosferik Düzeltme Atmosferik etkilerin giderilmesinde kullanılan radyometrik

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çöümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

Görüntü Segmentasyonu (Bölütleme) Dijital Görüntü İşleme Fevzi Karslı, KTÜ Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır.

Görüntü Segmentasyonu (Bölütleme) Dijital Görüntü İşleme Fevzi Karslı, KTÜ Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 16 Ocak 2014 Perşembe 1 Görüntü Segmentasyonu 16 Ocak 2014 Perşembe 2 Görüntüden Objelere Bir objeyi

Detaylı

Bilginin Görselleştirilmesi

Bilginin Görselleştirilmesi Bilginin Görselleştirilmesi Bundan önceki konularımızda serbest halde azılmış metinlerde gerek duduğumuz bilginin varlığının işlenmee, karşılaştırmaa ve değerlendirmee atkın olmadığını, bu nedenle bilginin

Detaylı

Hızlı Düzey Küme Yöntemine Bağlı Retinal Damar Bölütlemesi. Bekir DİZDAROĞLU. KTÜ Bilgisayar Mühendisliği Bölümü

Hızlı Düzey Küme Yöntemine Bağlı Retinal Damar Bölütlemesi. Bekir DİZDAROĞLU. KTÜ Bilgisayar Mühendisliği Bölümü Bekir DİZDAROĞLU KTÜ Bilgisayar Mühendisliği Bölümü bekir@ktu.edu.tr 1/29 Tıbbi imge bölütleme klasik yaklaşımları a) Piksek tabanlı b) Kenar tabanlı c) Bölge tabanlı d) Watershed (sınır) tabanlı e) Kenar

Detaylı

GÖRÜNTÜ İŞLEME UYGULAMALARI. Arş. Gör. Dr. Nergis TURAL POLAT

GÖRÜNTÜ İŞLEME UYGULAMALARI. Arş. Gör. Dr. Nergis TURAL POLAT GÖRÜNTÜ İŞLEME UYGULAMALARI Arş. Gör. Dr. Nergis TURAL POLAT İçerik Görüntü işleme nedir, amacı nedir, kullanım alanları nelerdir? Temel kavramlar Uzaysal frekanslar Örnekleme (Sampling) Aynalama (Aliasing)

Detaylı

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER SUNU PLANI Analog sayısal çevirici FIR Filtreler IIR Filtreler Adaptif Filtreler Pan-Tompkins Algoritması Araş. Gör. Berat Doğan 08/04/2015

Detaylı

Görüntü Restorasyonu. BMÜ-357 Sayısal Görüntü İşeme Yrd. Doç. Dr. İlhan AYDIN

Görüntü Restorasyonu. BMÜ-357 Sayısal Görüntü İşeme Yrd. Doç. Dr. İlhan AYDIN Görüntü Restorasyonu BMÜ-357 Sayısal Görüntü İşeme Yrd. Doç. Dr. İlhan AYDIN Görüntü İyileştirme (İmage restoration) Görüntü restorasyonu konusu, bir görüntünün oluşumu esnasında oluşabilen veri kayıplarını

Detaylı

Dinamik Sistemlerin Yapay Sinir Ağları ile Düz ve Ters Modellenmesi

Dinamik Sistemlerin Yapay Sinir Ağları ile Düz ve Ters Modellenmesi KSÜ Fen ve Mühendislik Dergisi 6(1) 2003 26 KSU J. Science and Engineering 6(1) 2003 Dinamik Sistemlerin Yaa Sinir Ağları ile Düz ve Ters Modellenmesi Hasan Rıza ÖZÇALIK Ahmet KÜÇÜKTÜFEKÇİ KSÜ. Müh.-Mim.

Detaylı

YILDIZ TEKNİK ÜNİVERSİTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ MEKANİK ANABİLİM DALI STATİK 042 13 12 DERSİ NOTLARI ŞUBAT 2008. Prof. Dr.

YILDIZ TEKNİK ÜNİVERSİTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ MEKANİK ANABİLİM DALI STATİK 042 13 12 DERSİ NOTLARI ŞUBAT 2008. Prof. Dr. YILDIZ TEKNİK ÜNİVERSİTESİ İNŞT MÜHENDİSLİĞİ ÖLÜMÜ MEKNİK NİLİM DLI STTİK 04 3 DERSİ NTLRI ŞUT 008 Prof. Dr. Turgut KCTÜRK . Giriş ve ana ilkeler. Vektörler ve kuvvetler, maddesel noktaların statiği Tanımlar

Detaylı

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir.

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir. Matrisler Satır ve sütunlar halinde düzenlenmiş tabloya matris denir. m satırı, n ise sütunu gösterir. a!! a!" a!! a!" a!! a!! a!! a!! a!" m=n şeklindeki matrislere kare matris adı verilir. [2 3 1] şeklinde,

Detaylı

15. Ders Optoelektronik Devre Elemanları-I. n p

15. Ders Optoelektronik Devre Elemanları-I. n p 15. Ders Optoelektronik Devre Elemanları-I V n p 1 Bu bölümü bitirdiğinizde, Işık üreten optoelektronik devre elemanlar, Işık aan diot (LED), Lazer, Yarıiletken dalga kılavuzlar, Optik fiber konularında

Detaylı

Kuadratik Yüzeyler Uzayda İkinci Dereceden Yüzeyler

Kuadratik Yüzeyler Uzayda İkinci Dereceden Yüzeyler İÇİNDEKİLER Kuadratik Yüeler Uada İkinci Dereceden Yüeler 1 0.1. Elipsoid 2 0.2. Hiperboloid 4 0.2.1. Tek Kanatlı Hiperboloid 4 0.2.2. Çift Kanatlı Hiperboloid 4 0.3. Paraboloid 5 0.3.1. Eliptik Paraboloid

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Vize. İris Segmentation. Selçuk BAŞAK 08501008

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Vize. İris Segmentation. Selçuk BAŞAK 08501008 Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Bilgisayarla Görme Vize İris Segmentation Selçuk BAŞAK 08501008 Not: Ödevi hazırlamak için geliştirdiğim program ve kaynak

Detaylı

Radyolojik Görüntüleme Sistemlerinde Görüntü Kalitesinin Sayısal Olarak Değerlendirilmesi. Yard. Doç. Dr. Özlem Birgül 23 Kasım 2013, Antalya

Radyolojik Görüntüleme Sistemlerinde Görüntü Kalitesinin Sayısal Olarak Değerlendirilmesi. Yard. Doç. Dr. Özlem Birgül 23 Kasım 2013, Antalya Radyolojik Görüntüleme Sistemlerinde Görüntü Kalitesinin Sayısal Olarak Değerlendirilmesi Yard. Doç. Dr. Özlem Birgül 23 Kasım 2013, Antalya Amaç - Gelişen dedektör teknolojisi ile farklı dedektörlerin

Detaylı

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1...

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1... İÇİNDEKİLER TÜREVİN GEOMETRİK YORUMU Teğet ve Normal Doğruların Eğimi... Teğet Doğrusunun Eğim Açısı... Teğet ve Normal Denklemleri... Eğrinin Teğetine Paralel ve Dik Doğrular... Grafikte Teğet I... 5

Detaylı

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumunda, bir Q noktasını üç boutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni gösterilebilir: σ, σ, σ z, τ, τ z, τ z.

Detaylı

DEMİRYOLU YOLCU VE YÜK VAGONLARINDA STATİK-DİNAMİK DENEYSEL GERİLME ANALİZİ

DEMİRYOLU YOLCU VE YÜK VAGONLARINDA STATİK-DİNAMİK DENEYSEL GERİLME ANALİZİ International Iron & Steel Smposium, 0-04 April 0, Karabük, Türkie DEMİRYOLU YOLCU VE YÜK VAGONLARINDA STATİK-DİNAMİK DENEYSEL GERİLME ANALİZİ E. Bozdag a,b, E. Sunbuloglu a, C. Bakasoglu a, T. Toprak

Detaylı

Frekans domain inde İşlemler. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN

Frekans domain inde İşlemler. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN Frekans domain inde İşlemler BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN Domain Dönüşümü Dönüşüm, bir sinyalin, başka parametrelerle ifade edilmesi şeklinde düşünülebilir. Ters dönüşüm ise,

Detaylı

MAMOGRAMLAR ÜZERİNDE UYGULANAN GÖRÜNTÜ İŞLEME TEKNİKLERİNİN İNCELENMESİ

MAMOGRAMLAR ÜZERİNDE UYGULANAN GÖRÜNTÜ İŞLEME TEKNİKLERİNİN İNCELENMESİ MAMORAMLAR ÜZERİNDE UYULANAN ÖRÜNTÜ İŞLEME TEKNİKLERİNİN İNCELENMESİ Özgür ÖZŞEN Bilgisaar Mühendisliği Bölümü Mühendislik Mimarlık Fakültesi, İki Elül Kampüsü Anadolu Üniversitesi, 26470, Eskişehir e-posta:

Detaylı

FARKLI NETLİKTEKİ RESİMLERİN BİRLEŞTİRİLMESİ İÇİN BÖLGE BAZLI YENİ BİR METOD

FARKLI NETLİKTEKİ RESİMLERİN BİRLEŞTİRİLMESİ İÇİN BÖLGE BAZLI YENİ BİR METOD FARKLI NETLİKTEKİ RESİMLERİN İRLEŞTİRİLMESİ İÇİN ÖLGE AZLI YENİ İR METOD Veysel ASLANTAŞ Ayder ULATOV, ilgisayar Mühendisliği ölümü, Erciyes Üniversites Kayseri e-posta: aslantas@erciyes.edu.tr e-posta:

Detaylı

Kan Damarı Genişliği Değişiminin Ölçülmesinde Medikal Görüntü İşlemenin Uygulanması

Kan Damarı Genişliği Değişiminin Ölçülmesinde Medikal Görüntü İşlemenin Uygulanması Kan Damarı Genişliği Değişiminin Ölçülmesinde Medikal Görüntü İşlemenin Uygulanması Öğr. Gör. İsmail KAHRAMAN, Uzm. Vildan BAYRAM, Prof.Dr. Ertuğrul Ercan, Doç.Dr. Bahadır Kırılmaz Çanakkale 18 Mart Üniversitesi

Detaylı

T.C. ÇEVRE VE ORMAN BAKANLIĞI Çevre Yönetimi Genel Müdürlüğü A. GENEL BİLGİLER

T.C. ÇEVRE VE ORMAN BAKANLIĞI Çevre Yönetimi Genel Müdürlüğü A. GENEL BİLGİLER Rapor No: Rapor Hazırlama Tarihi: Tarihi: Firma/İşletme Adı: de kullanılan ilgili standart veya metot: I. İşletmenin Genel Tanıtımına İlişkin Bilgiler 1) İşletmenin ticari unvanı, 2) İşletmenin adresi,

Detaylı

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir?

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir? MC www.matematikclub.com, 006 Cebir Notları Gökhan DEMĐR, gdemir3@ahoo.com.tr. Dereceden Denklem ve Eşitsizlikler- TEST I A) 1 B) C) 3 D) 4 E) 5 1. 1/ = 0 denkleminin köklerinin toplamı aşağıdakilerden

Detaylı

VİNÇTE ÇELİK KONSTRÜKSİYON

VİNÇTE ÇELİK KONSTRÜKSİYON 0 Hairan www.guven-kuta.ch VİNÇTE ÇELİ ONTRÜİYON ÇİT İRİŞ _0 M. Güven UTY emboller ve anaklar için "_00_CelikonstruksionaGiris.doc" a bakını. oordinat eksenleri "GENEL GİRİŞ" de belirtildiği gibi DIN 8800

Detaylı

1/1000 ÖLÇEKLİ KADASTRO PAFTALARININ KARTOGRAFİK YÖNTEMLERLE SAYISAL HALE DÖNÜŞTÜRÜLMESİ VE DOĞRULUK ANALİZİ

1/1000 ÖLÇEKLİ KADASTRO PAFTALARININ KARTOGRAFİK YÖNTEMLERLE SAYISAL HALE DÖNÜŞTÜRÜLMESİ VE DOĞRULUK ANALİZİ 1/1000 ÖLÇEKLİ KADASTRO PAFTALARININ KARTOGRAFİK YÖNTEMLERLE SAYISAL HALE DÖNÜŞTÜRÜLMESİ VE DOĞRULUK ANALİZİ ÖZET A. Celan 1, Ö. Mutluoğlu 2, R. Günaslan 3 1 S. Ü. Müh. Mim. Fak., Jeodezi ve Fot. Müh.

Detaylı

30. Uzay çerçeve örnek çözümleri

30. Uzay çerçeve örnek çözümleri . Ua çerçeve örnek çöümleri. Ua çerçeve örnek çöümleri Ua çerçeve eleman sonlu elemanlar metodunun en karmaşık elemanıdır. Bunun nedenleri: ) Her eleman için erel eksen takımı seçilmesi gerekir. Elemanın

Detaylı

Çalışma platformları, bir yükü kaldırmak, ulaşılamayan

Çalışma platformları, bir yükü kaldırmak, ulaşılamayan MKLE Yasin ksungur, Mehmet li Güler İR MKSLI ÇLIŞM PLTORMUNUN TSRIMI VE NLİZİ Yasin ksungur * TO Ekonomi ve Teknoloji Üniversitesi, Makine Mühendisliği ölümü, nkara asinaksungur@ande.com Mehmet li Güler

Detaylı

Dijital Kameralar (Airborne Digital Cameras)

Dijital Kameralar (Airborne Digital Cameras) Dijital Kameralar (Airborne Digital Cameras) Klasik fotogrametrik görüntü alımındaki değişim, dijital kameraların gelişimi ile sağlanmaktadır. Dijital görüntü, analog görüntü ile kıyaslandığında önemli

Detaylı

MATRİS METODU İLE KÖPRÜ KABLOLARINA DÜZENLİ GERGİ UYGULAMASI

MATRİS METODU İLE KÖPRÜ KABLOLARINA DÜZENLİ GERGİ UYGULAMASI MATRİS METODU İLE KÖPRÜ KABLOLARINA DÜENLİ GERGİ UGULAMASI Ahmet TÜRER*, Mustafa Can ÜCEL*, Çetin ILMA* *Orta Doğu Teknik Üniv., İnşaat Müh. Böl., Ankara ÖET Çelik halatlı köprülerde kablolara gelecek

Detaylı

Floroskopik Sistemlerde Görüntü Kalitesinin Matematiksel Olarak Değerlendirilmesi. Mathematical Evaluation of Image Quality in Fluoroscopic Units

Floroskopik Sistemlerde Görüntü Kalitesinin Matematiksel Olarak Değerlendirilmesi. Mathematical Evaluation of Image Quality in Fluoroscopic Units Süleman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, -3 (007),0-07 Floroskopik Sistemlerde Görüntü Kalitesinin Matematiksel Olarak Değerlendirilmesi Turan OLĞAR Ankara Üniversitesi, Mühendislik

Detaylı

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012 Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi e Ku ru lu Baş kan lı ğı nın.8. ta rih ve sa ı lı ka ra rı ile ka bul edi len ve - Öğ re tim Yı lın dan iti ba ren u gu lana cak olan prog ra ma gö re ha zır

Detaylı

ÖZNİTELİK TABANLI OTOMATİK PARMAKİZİ TANIMA

ÖZNİTELİK TABANLI OTOMATİK PARMAKİZİ TANIMA ÖZNİTELİK TABANLI OTOMATİK PARMAKİZİ TANIMA Kürşat AYAN Yunus Emre DEMİR 2 Bilgisaar Mühendisliği Bölümü Mühendislik Fakültesi Sakara Üniversitesi, 54040, Esentepe Kampüsü, Sakara 2 Bilgisaar ve Bilişim

Detaylı

Dikdörtgen Temel Altında Gerilme ve Taşıma Gücü Analizi

Dikdörtgen Temel Altında Gerilme ve Taşıma Gücü Analizi Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 30(2), 1-11 ss., Aralık 2015 Çukurova Universit Journal of the Facult of Engineering and Architecture, 30(2), pp. 1-11, December 2015 Dikdörtgen

Detaylı

3.1 ZEMĐN BETONUNA ETKĐ EDEN YÜKLER VE YÜKLEME ŞEKĐLLERĐ

3.1 ZEMĐN BETONUNA ETKĐ EDEN YÜKLER VE YÜKLEME ŞEKĐLLERĐ 3. ZEMĐN BETONUNA ETKĐ EDEN YÜKLER VE YÜKLEME ŞEKĐLLERĐ Zemin plağı üzerine etki eden dış ükler, plakta momentlerin oluşmasına sebep olurlar. Kolon ve taban plakası vasıtasıla plağa etkien tekil ükler

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

GRAFİK SİSTEMLERİ İÇİN FPGA CİHAZLARINDA ÇALIŞMAK ÜZERE TASARLANMIŞ MATRİS ÇARPIM MOTORU

GRAFİK SİSTEMLERİ İÇİN FPGA CİHAZLARINDA ÇALIŞMAK ÜZERE TASARLANMIŞ MATRİS ÇARPIM MOTORU s. 61-68, 28 Üere Tasarlanmış Matris Çarpım Motoru GRAFİK SİSTEMLERİ İÇİN FPGA CİHAZLARINDA ÇALIŞMAK ÜZERE TASARLANMIŞ MATRİS ÇARPIM MOTORU İbrahim ŞAHİN 1 ve İsmail KOYUNCU 2 1 D.Ü. Teknik Eğitim Fakültesi,

Detaylı

Görme Destekli Kartezyen Robot İçin Kenar Resmi Vektorizasyon Uygulaması

Görme Destekli Kartezyen Robot İçin Kenar Resmi Vektorizasyon Uygulaması Görme Destekli Kartezyen Robot İçin Kenar Resmi Vektorizasyon Uygulaması Cengiz Balta 1 Sıtkı Öztürk 2 Cüneyt Oysu 3 1,2 Elektronik ve Haberleşme Mühendisliği Bölümü, Kocaeli Üniversitesi 3 Mekatronik

Detaylı

τ s =0.76 ρghj o τ cs = τ cb { 1 Sin

τ s =0.76 ρghj o τ cs = τ cb { 1 Sin : Taban eğimi J o =0.000 olan trapez kesitli bir sulama kanalı ince çakıl bir zemine sahip olup, bu malzeme için kritik kama gerilmesi τ cb =3.9 N/m dir. Bu kanaldan 35 m 3 /s lik debi iletilmesi halinde

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

2005 ÖSS Soruları. 5. a, b, c gerçel sayıları için 2 a = 3 3 b = 4 4 c = 8 olduğuna göre, a.b.c çarpımı kaçtır?

2005 ÖSS Soruları. 5. a, b, c gerçel sayıları için 2 a = 3 3 b = 4 4 c = 8 olduğuna göre, a.b.c çarpımı kaçtır? . + c m 9 + c9 m 9 9 20 ) ) 9 ) 27 ) ) 82 9 5. a, b, c gerçel saıları için 2 a = b = c = 8 olduğuna göre, a.b.c çarpımı kaçtır? ) ) 2 ) ) ) 5 6. a, b, c gerçel saıları için, a.c = 0 a.b 2 > 0 2. 2 2 +

Detaylı

AÇIK UÇLU SORULAR. h( 3) = 3 ise, f(1) değeri kaçtır? II. g(x) = 2x + 3. 5. f: R R, f nin grafiği y eksenine göre simetriktir.

AÇIK UÇLU SORULAR. h( 3) = 3 ise, f(1) değeri kaçtır? II. g(x) = 2x + 3. 5. f: R R, f nin grafiği y eksenine göre simetriktir. ÜNİTE FONKSİYONLARLA İŞLEMLER VE UYGULAMALAR Bölüm TEK FONKSİYON, ÇİFT FONKSİYON AÇIK UÇLU SORULAR. R den R e I. () = +. : R R, nin graiği orijine göre simetriktir. h() = ( + ) ( + ) + onksionu tanımlanıor.

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 4 İkili Görüntüler, Topoloji ve Morfoloji Alp Ertürk alp.erturk@kocaeli.edu.tr İkili (binary) görüntüler Gri skala veya renkli bir görüntünün eşiklenmesi ile elde edilirler.

Detaylı

1. ÜNİTE: MODERN ATOM TEORİSİ

1. ÜNİTE: MODERN ATOM TEORİSİ . ÜNİTE: MODERN ATOM TEORİSİ Etkinlik: Atomun Kuantum Modeline Yönlendiren Bulgularla İlgili Öğrendiklerimizi Kontrol Edelim Aşağıda verilen bilgilerle bunları ileri süren bilim insanlarını eşleştiriniz.

Detaylı

1) BU TESTTE TEMEL MATEMATİK VE GEOMETRİ OLMAK ÜZERE, TOPLAM 40 ADET SORU VARDIR. 2) BU TESTİN CEVAPLANMASI İÇİN TAVSİYE EDİLEN SÜRE 40 DAKİKADIR.

1) BU TESTTE TEMEL MATEMATİK VE GEOMETRİ OLMAK ÜZERE, TOPLAM 40 ADET SORU VARDIR. 2) BU TESTİN CEVAPLANMASI İÇİN TAVSİYE EDİLEN SÜRE 40 DAKİKADIR. YGS DENEESİ 2 1) U ESE EEL AEAİK VE GEOERİ OLAK ÜERE, OPLA ADE SORU VARDIR. 2) U ESİN CEVAPLANASI İÇİN AVSİYE EDİLEN SÜRE DAKİKADIR. 1) 2,.(!+1!+2!) =?, 1 A) ) 1 C) 2 D) ) +8 ( 2 + 1) ( 2 2+ 2 ) hangisidir?

Detaylı

Hafta 1 Sayısal Görüntü İşlemeye Giriş ve Temel Adımlar

Hafta 1 Sayısal Görüntü İşlemeye Giriş ve Temel Adımlar BLM429 Görüntü İşlemeye Giriş Hafta 1 Sayısal Görüntü İşlemeye Giriş ve Temel Adımlar Yrd. Doç. Dr. Caner ÖZCAN Fall in love with the process, and the results will come. ~ Eric Thomas Derse Giriş Ders

Detaylı

Üstel ve Logaritmik Fonksiyonlar 61. y = 2 in grafiğinin büzülmesiyle de elde

Üstel ve Logaritmik Fonksiyonlar 61. y = 2 in grafiğinin büzülmesiyle de elde DERS 4 Üstel ve Logaritmik Fonksionlar, Bileşik Faiz 4.. Üstel Fonksionlar. > 0, olmak üzere fonksiona taanında üstel fonksion denir. f = ( ) denklemi ile tanımlanan gösterimi ile ilgili olarak, okuucunun

Detaylı

BÖLÜM 3: İLETİM HAT TEORİSİ

BÖLÜM 3: İLETİM HAT TEORİSİ BÖLÜM 3: İLETİM HAT TEORİSİ 1 İLETİM HATLARI İletim hatlarının tarihsel gelişimi iki iletkenli basit hatlarla(ilk telefon hatlarında olduğu gibi) başlamıştır. Mikrodalga enerjisinin iletimini gerçekleştirmek

Detaylı

Dijital Mamografi Görüntülerinin Kontrast Sınırlı Adaptif Histogram Eşitleme ile İyileştirilmesi

Dijital Mamografi Görüntülerinin Kontrast Sınırlı Adaptif Histogram Eşitleme ile İyileştirilmesi TURKMIA 10 Proceedings 67 VII. Ulusal Tıp Bilişimi Kongresi Bildirileri Dijital Mamografi Görüntülerinin Kontrast Sınırlı Adaptif Histogram Eşitleme ile İyileştirilmesi a b Burçin KURT, Vasif V. NABİYEV

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS MTEMTİK TESTİ. Bu testte soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. d + n - d + n d - + n- d + + n işleminin sonucu kaçtır?., R olmak üzere, + +

Detaylı

BÖLÜM 2 AKIŞKANLARIN STATİĞİ (HİDROSTATİK)

BÖLÜM 2 AKIŞKANLARIN STATİĞİ (HİDROSTATİK) BÖLÜM AKIŞKANLARIN STATİĞİ (HİDROSTATİK) Hidrostatik duran akışkanlar ile üniform olarak hareket eden ( akışkanın hızının her erde anı olduğu ) akışkanların durumunu inceler. 1 BİR NOKTADAKİ BASINÇ Hidrostatik

Detaylı

Eyüp Ersan SÜLÜN Photoshop CS4 Kullanım Kursu ADOBE PHOTOSHOP KATMAN HARMANLAMA (KARIŞTIRMA) MODLARI

Eyüp Ersan SÜLÜN Photoshop CS4 Kullanım Kursu ADOBE PHOTOSHOP KATMAN HARMANLAMA (KARIŞTIRMA) MODLARI Eyüp Ersan SÜLÜN Photoshop CS4 Kullanım Kursu ADOBE PHOTOSHOP KATMAN HARMANLAMA (KARIŞTIRMA) MODLARI Photoshop ile çalışırken, katmanlar üzerinde kullanılan nesneleri ve renkleri bir biri ile karıştırarak

Detaylı

Eleco 2014 Elektrik Elektronik Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu, 27 29 Kasım 2014, Bursa

Eleco 2014 Elektrik Elektronik Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu, 27 29 Kasım 2014, Bursa Grunwald-Letnikov Kesir Mertebeli Diferansiyel Maskesi Kullanarak Düşük Çözünürlüklü Avuçiçi Görüntülerinin İyileştirilmesi Enhancement of Low Resolution Palmprint Images Using Grunwald-Letnikov Fractional

Detaylı

Horn ve Schunck Optik Akış yöntemi ile hareket vektörlerinin gerçek zamanlı veya videolar üzerinden gerçeklenmesi.(matlab)

Horn ve Schunck Optik Akış yöntemi ile hareket vektörlerinin gerçek zamanlı veya videolar üzerinden gerçeklenmesi.(matlab) Horn ve Schunck Optik Akış yöntemi ile hareket vektörlerinin gerçek zamanlı veya videolar üzerinden gerçeklenmesi.(matlab) Dersin Adı: Say.İşaret İşleme Tas.&Uyg. Sınıf Eğitmeni: Bilge Günsel Kalyoncu

Detaylı

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI YILLAR 966 967 968 969 97 97 97 975 976 977 978 980 98 98 98 98 985 986 987 988 989 990 99 99 99 99 995 996 997 998 006 007 ÖSS / ÖSS-I ÖYS / ÖSS-II 5 6 6 5

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

İMGE İŞLEME Ders-7. Morfolojik İmge İşleme. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm. (Yrd. Doç. Dr. M.

İMGE İŞLEME Ders-7. Morfolojik İmge İşleme. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm. (Yrd. Doç. Dr. M. İMGE İŞLEME Ders-7 Morfolojik İmge İşleme (Yrd. Doç. Dr. M. Kemal GÜLLÜ) Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm Hazırlayan: M. Kemal GÜLLÜ Morfoloji Biyolojinin canlıların

Detaylı

TÜRKÜLER ÖZGÜMÜŞ YÜKSEK LİSANS TEZİ MAKİNE MÜHENDİSLİĞİ

TÜRKÜLER ÖZGÜMÜŞ YÜKSEK LİSANS TEZİ MAKİNE MÜHENDİSLİĞİ AKUSTİK TİTREŞİMLER İLE OLUŞTURULAN İKİNCİ MERTEBE GİRDAPLARIN KAPALI BİR ORTAM İÇERİSİNDEKİ ISI AKTARIMINA ETKİLERİNİN SAYISAL OLARAK İNCELENMESİ TÜRKÜLER ÖZGÜMÜŞ YÜKSEK LİSANS TEZİ MAKİNE MÜHENDİSLİĞİ

Detaylı

ELASTİK DALGA TEORİSİ

ELASTİK DALGA TEORİSİ ELASTİK DALGA TEORİSİ ( - 5. ders ) Doç.Dr. Eşref YALÇINKAYA Geçtiğiiz hafta; Dalga hareketi ve türleri Yaılan dalga Yaılan dalga enerjisi ve sönülene Bu derste; Süperpozison prensibi Fourier analizi Dalgaların

Detaylı

YARI-KÜRESEL ENGEL KONULAN BİR KANAL İÇERİSİNDE ISI GEÇİŞİ VE AKIŞIN SAYISAL İNCELENMESİ

YARI-KÜRESEL ENGEL KONULAN BİR KANAL İÇERİSİNDE ISI GEÇİŞİ VE AKIŞIN SAYISAL İNCELENMESİ Eskişehir Osmangazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi Cilt:XXII, Saı:3, 2009 Journal of Engineering and Architecture Facult of Eskişehir Osmangazi Universit, Vol: XXII, No:3, 2009 Makalenin

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı