Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Doğrultu ve düzlem Kristal Yapılar

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Doğrultu ve düzlem Kristal Yapılar"

Transkript

1 Mlzeme Bilgisi Prof. Dr. Akgün ALSARAN Doğrultu ve düzlem Kristl Ypılr

2 İçerik Kristl ypı Koordinsyon syısı Atom syısı ve tomik dolgu fktörü Miller indisleri, düzlemler ve düzlemsel yoğunluk Doğrultu ve doğrusl yoğunluk X-ışını difrksiyonu

3 Kristl ypı Kristl ypı, tomlrın üç boyutt belirli bir geometrik düzene göre yerleştiği ypılrdır. Kristl Ypılr Amorf ypılı Kristl ypılı Amorf ypı, düzensiz ktılşmış mikroypılrdır, bütün doğl (kzein selüloz, kuçuk, v.b.) ve ypy (plstikler) orgnik bileşimler, bzı norgnik mddeler (cm gibi) morf ypıddır. Kristl ypı, tomlrın belirli bir düzene göre dizilerek bir hcim merkezi oluşturmsıdır. Birim hücre Atomlr uzyd öyle dizililer ki, mddenin birim hcmindeki enerjisi minimum olsun. 3

4 Kristl ypı Doğd yedi değişik kfes sistemi bulunur. Bunlr; 1. Kübik: Bsit, hcim merkezli, yüzey merkezli (=b=c; α=β=γ=90 ) Bsit Yüzey merkezli Hcim merkezli Kristl ypılı mlzemelerin hcim kfesi oluşturn bsit geometrik şekillere birim hücre, tom vey tom gruplrının bulunduğu yere de kfes noktsı denir. 4

5 Kristl ypı. Tetrgonl: Bsit, hcim merkezli 3. Ortorombik: Bsit, yüzey, merkezli, hcim merkezli, tbn merkezli 5

6 Kristl ypı 4. Hekzgonl: Bsit 5. Rombohedrl: Bsit, (=b c; α=β=γ 90 ) 6

7 Kristl ypı 6. Monoklinik: Bsit, tbn merkezli 7. Triklinik: Bsit 7

8 Koordinsyon syısı Bir tom tems eden vey en ykın konumd bulunn komşu tomlrın syıdır. Bu syı tomlrın ne kdr sıkı pketlendiklerini vey hngi yoğunlukt dizildiklerini gösterir. En sıkı diziliş yüzey merkezli kübik ypıddır. Metllerde metlik bğ ypısı yöne bğlı olmdığı için bir tomun en ykın komşuluğund bulunn tomlrın syısı ve konumu üzerindeki kısıtlr minimumdur. Bu nedenle metlik kristl ypılrd en ykın komşu tom syısı ve tomsl istiflenme nispeten yüksektir. Kristl ypılr konusund tomlrın (vey iyonlrın) belirli çplr ship ktı kütleye ship olduklrı ve ktı-küre tom modelinde tomlrı temsil eden kürelerin tems hlinde olduklrı düşünülmüştür. 8

9 Atom syısı Birim hücredeki tom syısının belirlenmesi için şğıdki formül kullnılır; N İ, birim hücre içerisindeki tom syısı N F, birim hücre yüzeyindeki tom syısı N K, birim hücre köşesindeki tom syısı N N İ N F N 8 K Hcim merkezli kübik (HMK) ypı: 0 8 N 1 8 9

10 Atom syısı Yüzey merkezli kübik (YMK) ypı: N Hekzgonl (SPH) ypı: N N İ N T N F N 6 K 0 1 N

11 Atomik dolgu fktörü Atomsl dolgu fktörü (ADF), kristl kfes ypısındki doluluk ornını gösterir. Birim hücredeki tomlrın toplm hcminin birim hücreye ornıdır. Bu fktör, kristl ypılı mlzemelerin hcim kfesindeki tomlrın ne kdr sıkı dizildiğini belirlemek için kullnılır. Örnek: Yüzey merkezli kübik (YMK) ypı için ADF yi hesplyınız? YMK için kfes prmetresi ile tom yrıçpı rsındki ilişki ( 4R) R 4 Vt 4 R 3 V 4 3 (1 tomun hcmi) tom xv(kfesteki t tomlrın hcmi) V t 3 4x4 3 4x4x4 6 3 V K 3 (Kfes hcmi) ADF Ödev: HMK ve Hekzgonl ypı için ADF yi hesplyınız? 11

12 Yoğunluk Kristl ypı bilgilerine dynrk metllerin yoğunluklrı şğıdki gibi hesplnır. ρ = na V BH N A n= Birim hücredeki tom syısı; A=Atom ğırlığı; V BH =Birim hücre hcmi; N A =Avgdro syısı (6,03x103 tom/mol) Örnek: Bkırın tom çpı 0,18 nm, kristl ypısı YMK ve tom ğırlığı 63.5 gr/mol olduğun göre, bkırın teorik yoğunluğunu hesplyınız? ρ = na 4x(63,5) = V BH N A 16 (1,8x10 8 )(6,03x10 3 = 8,89 gr cm 3 1

13 Miller indisleri ve düzlemler A. Kübik Sistemler Kfes sistemlerinde birim hücrelerin çeşitli yüzeylerinin ve yönlerinin nltımı için Miller İndisleri denen koordinsyon syılrı kullnılır. Miller indisleri tm syılrl ifde edilir. Birim hücrenin bir köşesi koordint sisteminin orijin yd bşlngıç noktsı olrk lınır ve herhngi bir düzlem vey düzlem tkımı bunlrın eksenlerle kesiştiği noktlr it koordintlrının tersi lınrk belirlenir. Bir koordint sisteminin birim uzunluğu olrk kristl ypının kfes prmetresi lınır. Bir eksene prlel oln düzlem o ekseni sonsuzd keser. Düzlemler prntez işreti ile gösterilir. Z (111) x y z Eksenlerle kesişme noktsı Koordintlrın tersi 1/1 1/1 1/1 Miller indisleri Y X Kfeste her kfes düzlemi ve yönü tomlrl ynı sıklıkt dontılmmıştır. Bu nedenle meknik özelliklerde yönlere ve düzlemlere göre değişir. 13

14 Miller indisleri ve düzlemler Eksenlerle kesişme noktsı x y z 1 Z (100) (010) Koordintlrın tersi 1/1 1/ 1/ Miller indisleri Y Z (110) X x y z Y Eksenlerle kesişme noktsı 1 1 Koordintlrın tersi 1/1 1/1 1/ Miller indisleri X 14

15 Miller indisleri ve düzlemler Z ( 010) x y z Eksenlerle kesişme noktsı 1-1 Y Koordintlrın tersi 1/ -1/1 1/ Miller indisleri X O O 1 (01) Z O Z Y x y z Y Eksenlerle kesişme noktsı -1-1/ Koordintlrın tersi 1/ -1/1 1/(-1/) Miller indisleri 1 1 X O O 1 X 15

16 Miller indisleri ve düzlemler Z (11) Y Eksenlerle kesişme noktsı x y z 1 1 1/ Koordintlrın tersi 1/1 1/1 1/(1/) Miller indisleri 1 1 X Ödev: (131),(001),(),(1),(0),(03),(11),(010),() miller indisler ile belirtilen düzlemlerin xyz eksenlerini kestiği noktlrı bulrk, birim küp üzerinde gösteriniz? Miller indisleri ile düzlem gösterilirken bütün düzlemler birim küp içerisinde gösterilir. 16

17 Miller indisleri ve düzlemler d (0001) Hekzgonl sistem 4 lü eksen tkımıyl gösterilir. Bu eksenlerde, b ve c birbiri ile 10 lik çı ypr ve xy eksen tkımınd yer lır. Miller indisleri h, k, i ve l ile gösterilir. 0 ( 101 ) Frklı oln i indisi; i = - (h+k) bğıntısı ile belirlenir. Kübik sistemde geçerli oln bütün işlemler burd d geçerlidir. b c d c Eksenlerle kesişme noktsı 1 Pyd eşitleme 1/ 1/ 1/ 1/1 b Doğrultulr O b c d Eksenlerle kesişme noktsı 1-1 Pyd eşitleme 1/1 1/ 1/(-1) 1/ Doğrultulr

18 Miller indisleri ve düzlemler 18

19 Düzlemsel tom yoğunluğu Düzlemsel tom yoğunluğu, belirlenen düzlemdeki tom syısının o düzlemin lnın ornıdır ve şğıdki bğıntıyl belirlenir. Düzlemsel tom yoğunluğu = Düzlemdeki tom syısı Düzlem yüzey lnı Yüzey merkezli bir ypıd tom syısı (110) düzlemi için; Z (110) Y 1 1 N x 4x tom Düzlemsel yoğoğunl [ tom / A ] X 19

20 Düzlemsel tom yoğunluğu Hcim merkezli kübik ypıd (110) düzlemi için; Z (110) Y X 1 N 1 4x tom 4 Düzlemsel yoğunluk [ tom / A ] Ödev: (131),(001),(),(1),(0),(03),(11),(010),() düzlemlerinin düzlemsel tom yoğunluğunu bulunuz? 0

21 Miller indisleri ile doğrultu Doğrultulr koordint sisteminin orijin noktsındn geçen vektörler ile gösterilir. Doğrultuyu belirlemek için orijinden çizilen vektörün eksenler üzerindeki bileşenleri yni uç noktsının koordintlrı bulunur. Koordintlrın kesirli olmsı durumund ise bunlr en küçük pyd ile çrpılrk orntılı en küçük syılr çevrilir. Doğrultu, [uvw] şeklinde gösterilir. Z Z [111] [001] [ 111] O 3 Y [010] Y [100] X X Doğrultu gösterilirken 1 den büyük syılr için yeni birim küpler eklenir. 1

22 Düzlemsel tom yoğunluğu [11] doğrultusunun gösterimi; Z Vey Z [11] Y [11] Y X X Uyrı: Burd x, y, ve z ekseni sırsı ile ½, 1, ½ de kesildiğine dikkt edin. Eksenlerle kesişme noktsı x y z 1/ 1 1/ Koordintlrın tersi *1/ *1 /1/ Miller indisleri 1 1

23 Miller indisleri ile doğrultu Hekzgonl sistemde doğrultu, kübik sistemde olduğu gibi bşlngıç noktsı eksen tkımının orijin noktsı olrk lınn vektörlerle gösterilir. Bunun için önce doğrultuy it vektörün eksenler üzerindeki bileşenleri bulunur ve gerekiyors bunlr sonrdn orntılı en küçük tm syılr çevrilir. Bşk bir deyişle, eksen tkımının orijin noktsındn çizilen vektörün uç noktsının, b ve d eksenleri üzerindeki izdüşümleri d vey koordintlrı belirlenir. İlk önce üçlü eksen tkımının [uvw] olrk belirtilen doğrultu, hekzgonl sistemde Miller-Brvis indisleri ile gösterilir. Bunun için doğrultuy it u, v ve w bulunduktn sonr; h=u-v k=v-u i=-(u+v) l=3w bğıntılrı kullnılır. c h=*1-0= k=*0-1=-1 i=-(1+0)=-1 l=3*0 =0 [ 110] [ 110 ]vey [100] O b 3

24 Miller indisleri ile doğrultu [ 111] d [31] d [ 111] [31] c c O b O 1/3 b /3 Bşlngıçt en büyük ortk ktsyıy bölünür 4

25 Doğrusl tom yoğunluğu Doğrusl tom yoğunluğu, belirli bir doğrultu üzerindeki birim uzunluğ düşen tom syısı olrk tnımlnır ve tom syısı/birim uzunluk bğıntısı ile hesplnır. Z 3 [111] Y X Doğrusl yoğunluk 1 1 x 3 3 ( tom / A) Ödev: [111] doğrultusun it doğrusl tom yoğunluğunu YMK ypı için hesplyınız? Plstik şekil değiştirme meknizmlrının en yygın olnı kym, tom yoğunluğunun en yüksek olduğu düzlem ve doğrultud meydn gelir. 5

26 X-ışını difrksiyonu Kfes ypısının bilinmesinde iki önemli büyüklük oln kfes prmetresi ve tom düzlemleri rsındki mesfe X-ışını vsıtsıyl belirlenir. Isıtıln bir filmentten ısı thriki ile yyıln elektronlr elektromnyetik bir ln içerisinde hızlndırılırlr. Hızlndırılrk yüksek enerji kzndırıln bu elektron demeti bir nod çrptığınd, elektronlr not mlzemesinin kbuklrın girerler. Yüksek enerjili elektron demeti çekirdeğe ykın oln K kbuğundki bir elektron çrprk onu yerinden çıkrtırs, bir elektronunu kybeden tom oldukç krsız bir durum geçer. K kbuğund boş kln elektronun yeri enerji seviyesi yüksek oln bir kbuktki, örneğin L kbuğundki bir elektron ile doldurulur. Yni L kbuğundki bir elektron K kbuğund boş oln yere tlr. Elektronun iki konumu (K ve L kbuklrı) rsındki enerji frkı bir elektromnyetik dlg vey X-ışını fotonu olrk yyınırlr. L kbuğundki elektronun K kbuğun geçmesi vey tlmsı durumund, Kα olrk bilinen krkteristik X ışını yyınır. K kbuğundn çıkrıln elektron Çekirdek K L M N Gelen hızlı elektron 6

27 X-ışını difrksiyonu X-ışını difrksiyonu, kristl ypılı bir mlzeme üzerine gönderilen X-ışınlrının kristlin tomlrın çrprk yyınmsı olyıdır. Diffrksiyon her zmn oluşmz. Bunun için; difrksiyon vey kırınım uğryn yni tom düzleminden ynsıyn X-ışınlrının ynı fzd olmsı gerekir. Çünkü difrksiyon esnsınd X-ışınlrı ile tomlr rsınd meydn gelen yeni bir etkileşim değil, bir sçılm olyıdır. Sçıln X-ışınlrı ynı fz içerisinde değillerse birbirini iptl ederler ve sonuçt difrksiyon olyı gerçekleşmez. Brgg Knunu X-ışını demetinin tom düzlemlerine Brgg çısı (θ) olrk bilinen belirli bir çı ile çrpmsı durumund ise ynsıyn ışınlr trfındn lınn yol, dld boyunun (λ) tm ktlrın eşit olcğındn ışınlr ynı fz ship olurlr. Difrksiyon elde edebilmek için X-ışınlrının tom düzlemlerine çrpm çısı (θ), düzlemler rsındki uzklık (d) ve gelen X- ışınlrının dlg boyu rsınd belirli bir bğıntının bulunmsı gerekir. Ödev: Brgg Knunu bğıntısını çıkrınız? 7

28 X-ışını difrksiyonu Kristl düzlemlerden gelen XRD ynsımsı. Ynsım tek bir fzd olmlıdır. Fzldn kt edilen mesfe q q l d Adpted from Fig. 3.19, Cllister 7e. Düzlemler rsı mesfe Düzlemler rsı mesfe X-ışını yoğunluğu d n l sin q c d hkl = h + k + l A: Kfes prmetresi q c q 8

29 Yoğunluk X-ışını difrksiyonu z z z c c c x b y (110) x b y x (11) b y (00) Difrksiyon çısıq Çok kristlli -demir (HMK) de X-ışını ynsımsı 9

Kristal yapı, atomların üç boyutta belirli bir geometrik düzene göre yerleştiği yapılardır. Kristal Yapılar

Kristal yapı, atomların üç boyutta belirli bir geometrik düzene göre yerleştiği yapılardır. Kristal Yapılar Kristl Ypılr Kristl ypı Kristl ypı, tomlrın üç boyutt belirli bir geometrik düzene göre yerleştiği ypılrdır. Kristl Ypılr Amorf ypılı Kristl ypılı Amorf ypı, düzensiz ktılşmış mikroypılrdır, bütün doğl

Detaylı

Işığın Yansıması ve Düzlem Ayna Çözümleri

Işığın Yansıması ve Düzlem Ayna Çözümleri 2 şığın Ynsımsı ve Düzlem Ayn Çözümleri 1 Test 1 1. 38 38 52 52 Ynsıyn ışının yüzeyin normli ile yptığı çıy ynsım çısı denir. Bu durumd ynsım çısı şekilde gösterildiği gibi 38 dir. 4. şıklı cisminin ve

Detaylı

TEST 16-1 KONU DÜZLEM AYNA. Çözümlerİ ÇÖZÜMLERİ

TEST 16-1 KONU DÜZLEM AYNA. Çözümlerİ ÇÖZÜMLERİ OU 6 Ü Çözümler. TST 6-,7 ÇÖÜR,6 5. Bir cismin görüntüsünün nerede görüneceğini bkn kişinin bulunduğu yer belirlemez. nin görüntüsü nolu noktd olduğu için her iki gözlemci ynı yerde görür. V 3,5 6. 7 kez

Detaylı

2.Hafta: Kristal Yapı

2.Hafta: Kristal Yapı MALZEME BİLİMİ MAL0.Hft: Kristl Ypı Mlzemeler tmlrın bir ry gelmesi ile luşur. Bu ypı içerisinde tmlrı bir rd tutn kuvvete tmlr rsı bğ denir. Ypı içerisinde birrd bulunn tmlr frklı düzenlerde bulunbilir.

Detaylı

BÖLÜM 2. Kristal Yapılar ve Kusurlar

BÖLÜM 2. Kristal Yapılar ve Kusurlar BÖLÜM 2 Kristal Yapılar ve Kusurlar 1- ATOMİK VE İYONİK DÜZENLER Kısa Mesafeli Düzenler-Uzun Mesafeli Düzenler Kısa Mesafeli Düzenler (SRO): Kısa mesafede atomların tahmin edilebilir düzenlilikleridir.

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik)

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik) ÜÇGN LN Üçgende ln Şekilde verilen üçgeninde,, üçgenin köşeleri, [], [], [] üçgenin kenrlrıdır. c b üçgeninin kenrlrı dlndırılırken, her kenr krşısınd bulunn köşenin hrfi ile isimlendirilir. üçgeninin

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır. LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden

Detaylı

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr:

Detaylı

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR Vektörler zr rd.doç.dr.nevin MAHİR ÜNİTE 3 Amçlr Bu üniteyi çlıştıktn sonr; Düzlemde vektör kvrmını öğrenecek, İki vektörün eşitliği, toplmı, doğrusl bğımlılığı ile bir vektörün bir gerçel syı ile çrpımı,

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

MALZEME BİLGİSİ. Kristal Yapılar ve Kristal Geometrisi

MALZEME BİLGİSİ. Kristal Yapılar ve Kristal Geometrisi MALZEME BİLGİSİ Dr.- Ing. Rahmi ÜNAL Konu: Kristal Yapılar ve Kristal Geometrisi 1 KRİSTAL YAPILAR Malzemelerin iç yapısı atomların diziliş biçimine bağlıdır. Kristal yapı Kristal yapılarda atomlar düzenli

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

FİZ4001 KATIHAL FİZİĞİ-I

FİZ4001 KATIHAL FİZİĞİ-I FİZ400 KATIHAL FİZİĞİ-I Dr. Aytç Gürhn GÖKÇE Ktıhl Fiziği - I Dr. Aytç Gürhn GÖKÇE Tnıtım Derslik - A59 Ders stleri Slı 3.5 Perşembe 0.30 Kitp(lr) Elementry Solid Stte Physis, M.Ali OMAR Ktıhl Fiziğine

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

TEST 17-1 KONU KÜRESEL AYNALAR. Çözümlerİ ÇÖZÜMLERİ 6. K Çukur aynada cisim merkezin dışında ise görüntü

TEST 17-1 KONU KÜRESEL AYNALAR. Çözümlerİ ÇÖZÜMLERİ 6. K Çukur aynada cisim merkezin dışında ise görüntü OU 17 ÜRS R - - - - Çözümler S 17-1 ÇÖÜR 5. α 1. - - - - ve ynlış çizilmiş olup doğru çizimleri yukrıd verilmiştir.. sü ise doğru çizilmiştir. Cevp: Odk nin sğınddır. den çizilen doğru normldir. Bundn

Detaylı

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur?

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur? 986 ÖSS. (0,78+0,8).(0,3+0,7) Yukrıdki işlemin sonucu nedir? B) C) 0, D) 0, E) 0,0. doğl syısı 4 ile bölünebildiğine göre şğıdkilerden hngisi tek syı olbilir? Yukrıdki çrpm işleminde her nokt bir rkmın

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

İntegralin Uygulamaları

İntegralin Uygulamaları Bölüm İntegrlin Uygulmlrı. Aln f ve g, [, b] rlığındki her x için f(x) g(x) eşitsizliğini sğlyn sürekli fonksiyonlr olmk üzere y = f(x), y = g(x) eğrileri, x = ve x = b düşey doğrulrı rsındki S bölgesini

Detaylı

bir atomun/iyonun bulunduğu kafes içindeki en yakın komşu atomlarının/iyonlarının sayısıdır.

bir atomun/iyonun bulunduğu kafes içindeki en yakın komşu atomlarının/iyonlarının sayısıdır. Koordinasyon sayısı; bir atomun/iyonun bulunduğu kafes içindeki en yakın komşu atomlarının/iyonlarının sayısıdır. Arayer boşlukları Kristal yapılarda kafes noktalarında bulunan atomlar arasındaki boşluklara

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI OKULLAR ARASI 9. MATEMATİK YARIŞMASI. 700 doğl syısı için şğıdkilerden kç tnesi doğrudur? I. Asl çrpnı tnedir. II. Asl çrpnlrının çrpımı 0 dir. III. Tmsyı bölenlerinin toplmı 0 dır. IV. Asl çrpnlrının

Detaylı

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q Elektrosttik(Özet) Coulomb Yssı Noktsl bir q yükünün kendisinden r kdr uzktki bir Q yüküne uyguldığı kuvvet, şğıdki Coulomb yssı ile ifde edilir: F = 1 qq ˆr (1) r2 burd boşluğun elektriksel geçirgenlik

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında ORAN ORANTI syısının 0 dn frklı oln b syısın ornı :b vey olrk gösterilir. b İki vey dh fzl ornın eşitlenmesiyle oluşn ifdeye orntı denir. b =c d ifdesine ikili orntı denir. Bir orntı orntı sbitine eşitlenerek

Detaylı

1. Giriş 2. Kristal Yapılar 3. Kristal Kafes Noktaları 4. Kristal Kafes Doğrultuları ve Düzlemler MALZEME BILGISI B3

1. Giriş 2. Kristal Yapılar 3. Kristal Kafes Noktaları 4. Kristal Kafes Doğrultuları ve Düzlemler MALZEME BILGISI B3 1. Giriş 2. Kristal Yapılar 3. Kristal Kafes Noktaları 4. Kristal Kafes Doğrultuları ve Düzlemler Katı malzemeler, atomların veya iyonların oluşturdukları düzene göre sınıflandırılabilir. Bir kristal

Detaylı

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi Andolu Üniversitesi Mühendislik Fkültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Plnlmsı 2015-2016 Güz Dönemi 2 Tesis (fcility) Tesis : Belli bir iş için kurulmuş ypı Tesis etmek :

Detaylı

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160 8 ÖSS. Bir çiftlikte 800 koun 00 inek ve 600 mnd vrdır. Bu hvnlrın tümü bir dire grfikle gösterilirse ineklerle ilgili dilimin merkez çısı kç derece olur? A) 60 B) 0 C) 0 D) 0 E) 60 6. 0 - =p olduğun göre

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :, b, R ve 0 olmk üzere denklem denir. b = 0 denklemine, ikini dereeden bir bilinmeyenli Bu denklemde, b, gerçel syılrın

Detaylı

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır?

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır? 987 ÖSS. Yukrıdki çıkrm işlemine göre, K+L+M toplmı şğıdkilerden hngisine dim eşittir? A) M B) L C) K M K 5. 4 işleminin sonucu kçtır? A) 0 B) C) 5 4 5. Aşğıdki toplm işleminde her hrf sıfırın dışınd fklı

Detaylı

KRİSTAL YAPISI VE KRİSTAL SİSTEMLERİ

KRİSTAL YAPISI VE KRİSTAL SİSTEMLERİ KRİSTAL YAPISI VE KRİSTAL SİSTEMLERİ Kristal Yapı: Atomların, üç boyutlu uzayda düzenli (kendini tekrar eden) bir şekilde dizilmesiyle oluşan yapıya kristal yapı denir. Bir kristal yapı birim hücresiyle

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI ., ÖZEL EGE LİSESİ OKULLR RSI 8. MTEMTİK YRIŞMSI 8. SINI TEST SORULRI 5. 0,0008.0 b 0,0000.0 ise; b.0 kç bsmklı bir sıdır? olduğun göre, ifdesinin değeri şğıdkilerden hngisine eşittir? ) 80 ) 8 ) 8 ) 8

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ ÜZGÜN ŞGN ( ÜZGÜN ŞGN TNII, ÖZİRİ ĞRNİRR ) ÜZGÜN ŞGN ÖZİ 3 TNI V ÖZİRİ enr syısı 5 oln düzgün çokgene öşe düzgün beşgen denir. üzgün beşgenin; köşeleri,,, ve dir, kenrlrı [], [], β θ [], [] ve [] dır,

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK MTEMTİK KPSS ÇEVİR KONU - ÇEVİR SORU MTEMTİK EDİTÖR Turgut MEŞE YZR İdris DOĞN ütün hklrı Editör Yyınlrın ittir. Yyınevinin izni olmksızın, kitbın tümünün vey bir kısmının bsımı, çoğltılmsı ve dğıtımı

Detaylı

MADDESEL NOKTALARIN DİNAMİĞİ

MADDESEL NOKTALARIN DİNAMİĞİ MÜHENDİSLİK MEKNİĞİ DİNMİK MDDESEL NOKTLRIN DİNMİĞİ DİNMİK MDDESEL NOKTLRIN DİNMİĞİ İÇİNDEKİLER 1. GİRİŞ - Konum, Hız e İme - Newton Knunlrı 2. MDDESEL NOKTLRIN KİNEMTİĞİ - Doğrusl Hreket - Düzlemde Eğrisel

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma DERS NOTU 01 Son Hli Değildir, tslktır: Ekleme ve Düzenlemeler Ypılck BİR SOSYAL BİLİM OLARAK İKTİSAT VE TEMEL KAVRAMLAR 1 Bugünki dersin işleniş plnı: 1. Değişkenler ve Eğriler: Mtemtiksel Htırltm...

Detaylı

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır?

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır? 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000 6. Bir lstik çekilip uztıldığınd

Detaylı

FRENLER 25.02.2012 FRENLERİN SINIFLANDIRILMASI

FRENLER 25.02.2012 FRENLERİN SINIFLANDIRILMASI RENLER RENLER renler çlışmlrı itiriyle kvrmlr enzerler. Kvrmlr ir hreketin vey momentin diğer trf iletilmesini sğlrlr ve kıs ir süre içinde iki trftki hızlr iririne eşit olur. renler ise ir trftki hreketi

Detaylı

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır?

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır? RAKAM Syılrı ifde etmek için kullndığımız 0,,2,3,4,5,6,7,8,9 sembollerine rkm denir. Örnek... :, b ve c birbirlerinden frklı birer rkmdır..b+9.b c en çok kçtır? DOĞAL SAYILAR N={0,,2,3...,n,...} kümesine

Detaylı

KATILARIN ATOMİK DÜZENİ KRİSTAL YAPILAR

KATILARIN ATOMİK DÜZENİ KRİSTAL YAPILAR KATILARIN ATOMİK DÜZENİ KRİSTAL YAPILAR KRİSTAL YAPILAR Mühendislik açısından önemli olan katı malzemelerin fiziksel özelikleri; katı malzemeleri meydana getiren atom, iyon veya moleküllerin dizilişine

Detaylı

2011 RASYONEL SAYILAR

2011 RASYONEL SAYILAR 011 RASYONEL SAYILAR AKDENİZ ÜNİVERSİTESİ 06.01.011 A.Tnım 3 B.Kesir 3 C.Kesir çeşitleri 3 1.Bsit kesirler 3.Birleşik kesirler 3 3. Tm syılr 3 D.Rsyonel syılrı sırlm 4 E.Rsyonel syılrd işlemler 5 1.Rsyonel

Detaylı

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x MC www.mtemtikclub.com, 006 Cebir Notlrı Çrpnlr Ayırm Gökhn DEMĐR, gdemir3@yhoo.com.tr Đki ifdenin çrpımı ypılırken, sonuc çbuk ulşmk için, bzı özel çrpımlrın eşitini klımızd tutr ve bundn yrrlnırız. Bu

Detaylı

MALTA HAÇI MEKANİZMASININ KİNEMATİĞİ ÜZERİNE

MALTA HAÇI MEKANİZMASININ KİNEMATİĞİ ÜZERİNE MALTA HAÇI MEKANİZMASININ KİNEMATİĞİ ÜZERİNE Yrdımcı Doçent Doktor Yılmz YÜKSEL 1. GİRİŞ Tekstil Mklnlrmd hmmddeyi mmul mdde hline getirirken çoğu kere bir çok teknik iş belirli bir sıry göre rdrd ypılmktdır.

Detaylı

Kristallografik düzlemler;

Kristallografik düzlemler; Kristallografik düzlemler; Atomların dizildikleri tabaka veya düzlemlerdir Miller indisleri ile gösterilirler (hkl) Birim hücrenin bir köşesi koordinat sisteminin orijin ya da başlangıç noktası olarak

Detaylı

Vektör - Kuvvet. Test 1 in Çözümleri 5. A) B) C) I. grubun oyunu kazanabilmesi için F 1. kuvvetinin F 2

Vektör - Kuvvet. Test 1 in Çözümleri 5. A) B) C) I. grubun oyunu kazanabilmesi için F 1. kuvvetinin F 2 7 Vektör - uvvet 1 Test 1 in Çözümleri 5. A) B) C) 1. 1 2 I. grubun oyunu kznbilmesi için 1 kuvvetinin 2 den büyük olmsı gerekir. A seçeneğinde her iki grubun uyguldığı kuvvetler eşittir. + + + D) E) 2.

Detaylı

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90 G O M T R İ. ÖLÜM Üçgende çılr. ÜÇGN oğrusl olmyn üç noktyı birleştiren doğru prçlrının birleşim kümesine üçgen denir. ış çı ış çı ış çı. ÇILRIN GÖR ÜÇG N ÇŞİTLR İ r çılı Üçgen Üç çının ölçüsü de 90 den

Detaylı

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000. Bir stıcı, elindeki mlın önce

Detaylı

UZAYDA VEKTÖRLER / TEST-1

UZAYDA VEKTÖRLER / TEST-1 UZAYDA VEKTÖRLER / TEST-. A(,, ) ve B(,, ) noktlrı rsındki uklık kç birimdir? 6. A e e e B e e e AB vektörü ile nı doğrultud ıt öndeki birim vektör şğıdkilerden ( e e e ). A(, b, ) B(,, ) noktlrı ve U

Detaylı

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin 4 () ve (bb) iki bsmklı syılr, () ve 1 x=15! +1 y=15!+16 olmk üzere, (bbb) üç bsmklı syılrdır x ile y rsınd kç tne sl syı vrdır? A)0 B)1 C) D) 3 E) 4 b + bb + bbb = 6 olduğun göre, b çrpımı en çok kçtır?

Detaylı

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI 2011 Şut KIVIRMA İŞEMİNİN ŞEKİ ve BOYUTARI Hzırlyn: Adnn YIMAZ AÇINIM DEĞERERİ 50-21 DİKKAT: İyi niyet, ütün dikkt ve çm krşın ynlışlr olilir. Bu nedenle onucu orumluluk verecek ynlışlıklr için, hiçir

Detaylı

ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM

ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM Burk Uzkent Osmn Prlktun Elektrik-Elektronik Mühendisliği Bölümü Eskişehir Osmngzi Üniversitesi, Eskişehir uzkent.burk@gmil.com oprlk@ogu.edu.tr

Detaylı

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu OĞRU ÇILR Temel Kvrmlr ve oğrud çılr Nokt: Nokt geometrinin en temel terimidir. ni, boyu vey yüksekliği yoktur. İnce uçlu bir klemin kğıt üzerinde bırktığı iz olrk düşünebilirsiniz. oğru: üz, klınlığı

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir?

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir? MTEMTİK TESTİ 1 1 1 1 1. + 4 4 1 ) 0 ) 4 işleminin sonucu kçtır? ) 1 ) 1., irer gerçek syı ve + < 3tür. u syılrın syı doğrusund gösterilişi şğıdkilerden hngisindeki gii olilir? ) -3 - -1 0 1 3 ) -3 - -1

Detaylı

KRİSTAL KAFES SİSTEMLERİ

KRİSTAL KAFES SİSTEMLERİ KRİSTAL KAFES SİSTEMLERİ Doç. Dr. Ramazan YILMAZ Sakarya Üniversitesi, Teknoloji Fakültesi, Metalurji ve Malzeme Mühendisliği Bölümü Esentepe Kampüsü, 54187, SAKARYA 1 Giriş 2 Kristal Yapısı ve Birim Hücreler

Detaylı

Bölüm 3 - Kristal Yapılar

Bölüm 3 - Kristal Yapılar Bölüm 3 - Kristal Yapılar Katı malzemeler, atomların veya iyonların oluşturdukları düzene göre sınıflandırılır. Kristal malzemede uzun-aralıkta atomsal ölçekte tekrarlayan bir düzen mevcuttur. Katılaşma

Detaylı

MALZEME BİLGİSİ DERS 6 DR. FATİH AY.

MALZEME BİLGİSİ DERS 6 DR. FATİH AY. MALZEME BİLGİSİ DERS 6 DR. FATİH AY www.fatihay.net fatihay@fatihay.net GEÇEN HAFTA TEMEL KAVRAMLAR BİRİM HÜCRE METALLERDE KRİSTAL YAPILAR YOĞUNLUK HESAPLAMA BÖLÜM III KATILARDA KRİSTAL YAPILAR KRİSTAL

Detaylı

B - GERĐLĐM TRAFOLARI:

B - GERĐLĐM TRAFOLARI: ve Seg.Korum_Hldun üyükdor onrım süresinin dh uzun olmsı yrıc rnın izole edilmesini gerektirmesi; rızlnmsı hlinde r tdiltını d gerektireilmesi, v. nedenlerle, özel durumlr dışınd tercih edilmezler. - GERĐLĐM

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı

2002 ORTA ÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVI MATEMATİK TESTİ 10. 10 10. aşağıdakilerden hangisidir? A) 0,01 B) 0,1 C) 10 D) 100

2002 ORTA ÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVI MATEMATİK TESTİ 10. 10 10. aşağıdakilerden hangisidir? A) 0,01 B) 0,1 C) 10 D) 100 22 ORTA ÖĞRETİ URUARI ÖĞRECİ EÇE VE YEREŞTİRE IAVI ATEATİ TETİ 1. 3 2 1 1. 1 1. 1 : işleminin sonucu 7 1. 1 1 şğıdkilerden hngisidir? A),1 B),1 C) 1 D) 1 2. O P R T U V Yukrıdki syı doğrusund birbirine

Detaylı

Dayanıklılık, Yüzey Gerilimi ve Kılcal Olaylar Test Çözümleri

Dayanıklılık, Yüzey Gerilimi ve Kılcal Olaylar Test Çözümleri Dynıklılık, Yüzey Gerilimi ve ılcl Olylr Test Çözümleri Test 'in Çözümleri.. /2 Aynı mddeden ypılmış düzgün geometrik biçimli cisimlerin dynıklılığı bğıntısıyl esplnır. üp ve silindirin leri eşit olduğun

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinnd P. Beer E. Russell Johnston, Jr. Ders Notu: Hri ACAR İstnbul Teknik Üniveristesi Tel: 85 1 46 / 116 E-mil: crh@itu.edu.tr Web: http://tls.cc.itu.edu.tr/~crh

Detaylı

Mobil Test Sonuç Sistemi. Nasıl Kullanılır?

Mobil Test Sonuç Sistemi. Nasıl Kullanılır? Mobil Test Sonuç Sistemi Nsıl ullnılır? Tkdim Sevgili Öğrenciler ve eğerli Öğretmenler, ğitimin temeli okullrd tılır. İyi bir okul eğitiminden geçmemiş birinin hytt bşrılı olmsı beklenemez. Hedefe ulşmks

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Haziran Matematik I Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 17 Haziran Matematik I Soruları ve Çözümleri Öğrenci Seçme Sınvı (Öss) / 7 Hzirn 007 Mtemtik I Sorulrı ve Çözümleri.. 7 işleminin sonucu kçtır? A) B) 9 C) D) E) Çözüm. 7..9.. + işleminin sonucu kçtır? 4 8 A) 8 B) 8 C) 8 D) 4 E) 4 Çözüm + 4 8 8 4+

Detaylı

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM YILLAR 00 003 004 00 006 007 008 009 00 0 ÖSS-YGS - - - - - - - ASAL SAYILAR ve kendisinden bşk pozitif böleni olmyn den büyük tmsyılr sl syı denir Negtif ve ondlıklı syılr sl olmz Asl syılrı veren bir

Detaylı

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra;

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra; MATEMATİK Üslü Syılr Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK 5.Hft Hedefler Bu üniteyi çlıştıktn sonr; Gerçel syılrd üslü işlemler ypbilecek, Üslü denklem ve üslü eşitsizlikleri çözebileceksiniz.

Detaylı

ASİT-BAZ TEORİSİ. (TİTRASYON) Prof. Dr. Mustafa DEMİR. M.DEMİR(ADU) ASİT-BAZ TEORİSİ (titrasyon) 1

ASİT-BAZ TEORİSİ. (TİTRASYON) Prof. Dr. Mustafa DEMİR. M.DEMİR(ADU) ASİT-BAZ TEORİSİ (titrasyon) 1 ASİT-BAZ TEORİSİ (TİTRASYON) Prof. Dr. Mustf DEMİR M.DEMİR(ADU) 009-05-ASİT-BAZ TEORİSİ (titrsyon) 1 Arhenius (su teorisi) 1990 Asit: Sud iyonlştığınd iyonu veren, bz ise O - iyonu veren mddelerdir. Cl,NO,

Detaylı

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 PROBLEMLER İÇİNDEKİLER Syf No Test No ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 SAYI PROBLEMLERİ... 299-314... 01-08 YAŞ PROBLEMLERİ...

Detaylı

FAZ (DENGE) DİYAGRAMLARI

FAZ (DENGE) DİYAGRAMLARI FAZ (DENGE) DİYAGRAMLARI 1 FAZ (DENGE) DİYAGRAMLARI Fz tnımı: Kristl ypılı mlzemelerin iç ypılrınd homojen ve belirli özellikler gösteren bölgelere verilen ddır. Kimysl bileşim, sıcklık ve bsınc bğlı olrk

Detaylı

ORAN ve ORANTI-1 ORAN-ORANTI KAVRAMI. 1. = olduğuna göre, aşağıdaki ifadelerin. + c c sisteminin çözümüne. 3. olduğuna göre, nin değeri

ORAN ve ORANTI-1 ORAN-ORANTI KAVRAMI. 1. = olduğuna göre, aşağıdaki ifadelerin. + c c sisteminin çözümüne. 3. olduğuna göre, nin değeri ORAN ve ORANTI- ORAN-ORANTI KAVRAMI A) B) 9 C) 7 D) 5 E). olduğun göre, şğıdki ifdelerin hngisi d doğrudur? + d A) d + 4 + d C) 4 d E) 5 + 5 5 5 + d d + d B) n + m n + md D) d x y z. 4 5 sisteminin çözümüne

Detaylı

1.Hafta. Statik ve temel prensipler. Kuvvet. Moment. Statik-Mukavemet MEKANİK

1.Hafta. Statik ve temel prensipler. Kuvvet. Moment. Statik-Mukavemet MEKANİK Ders Notlrı 1.hft 1.Hft Sttik ve temel prensipler Kuvvet Moment MEKNİK Kuvvetlerin etkisi ltınd kln cisimlerin denge ve hreket şrtlrını nltn ve inceleyen bilim dlıdır. Meknikte incelenen cisimler Rijit

Detaylı

KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2

KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2 Sf No.........................................................8-7 Prol....................................................................... 9 - Etkinlikler.....................................................................

Detaylı

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK G O M T R İ www.kdemivizyon.com.tr. ÖÜM Prlelkenr ve şkenr örtgen. PRNR rşılıklı kenrlrı prlel oln dörtgenlere prlelkenr denir. [] // [] [] // [] = =. PRNRIN ÖZ İRİ. rşılıklı çılr eş ve rdışık çılr ütünlerdir.

Detaylı

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı,

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı, Rsyonel Syılr. Sınıf Mtemtik Soru Bnksı TEST. Aşğıdki bilgilerden hngisi ynlıştır? A) Rsyonel syılr Q sembolü ile gösterilir. B) Her tm syı bir rsyonel syıdır. şeklinde yzıln bütün syılr rsyoneldir. b

Detaylı

KATILARIN ATOMIK DÜZENI Kristal Düzlemleri, Dogrulari ve Yönleri

KATILARIN ATOMIK DÜZENI Kristal Düzlemleri, Dogrulari ve Yönleri Kristal Düzlemleri, Dogrulari ve Yönleri Bölüm İçeriği Kristal malzemelerin Özeliklerinin Belirlenmesi. Kristal Geometri! Kristal Yapı Doğruları! Doğrusal atom Yoğunluğu! Kristal Düzlemler! Kristal Düzlemlerin

Detaylı

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları... İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel

Detaylı

Harita Dik Koordinat Sistemi

Harita Dik Koordinat Sistemi Hrit Dik Koordint Sistemi Noktlrın ir düzlem içinde irirlerine göre konumlrını elirlemek için, iririni dik çı ltınd kesen iki doğru kullnılır. Bun dik koordint sistemi denir. + X (sis) Açı üyütme Yönü

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır.

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır. LİNEER CEBİR MTRİSLER: i,,,...,m ve j,,,..., n için ij sılrının. m m...... n n mn şeklindeki tblosun mn tipinde bir mtris denir. [ ij ] mn şeklinde gösterilir. m stır, n sütun sısıdır. 5 mtrisi için ;

Detaylı

Metalurji Mühendisliğine Giriş

Metalurji Mühendisliğine Giriş Metalurji Mühendisliğine Giriş Temel Malzeme Grupları Yrd. Doç. Dr. Rıdvan YAMANOĞLU Demir esaslı metaller Günümüzde kullanılan metal ve alaşımların % 85 i demir esaslıdır. Bunun nedenleri: Yerkabuğunda

Detaylı

η= 1 kn c noktasında iken A mesnedinin mesnet tepkisi (VA)

η= 1 kn c noktasında iken A mesnedinin mesnet tepkisi (VA) ölüm Đzosttik-Hipersttik-Elstik Şekil Değiştirme TESİR ÇİZGİSİ ÖRNEKLERİ Ypı sistemlerinin mruz kldığı temel yükler sit ve hreketli yüklerdir. Sit yükler için çözümler önceki konulrd ypılmıştır. Hreketli

Detaylı

TG 10 ÖABT KİMYA. KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ KİMYA ÖĞRETMENLİĞİ 29 Haziran 2014 Pazar

TG 10 ÖABT KİMYA. KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ KİMYA ÖĞRETMENLİĞİ 29 Haziran 2014 Pazar KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ KİMYA ÖĞRETMENLİĞİ 9 Hzirn 4 Pzr TG ÖABT KİMYA Bu testlerin her hkkı sklıdır. Hngi mçl olurs olsun, testlerin tmmının vey bir kısmının İhtiyç Yyıncılık

Detaylı

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ A. DENEYĠN AMACI : Direnç devrelerinde eşdeğer direnç ölçümü ypmk. Multimetre ile voltj ve kım ölçümü ypmk. Ohm knununu sit ve prtik devrelerde nlmy çlışmk. B. KULLANILACAK AAÇ VE MALZEMELE : 1. DC güç

Detaylı

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS LİMİT VE SÜREKLİLİK KONU ÖETLİ ÇÖÜMLÜ SORU BANKASI ANKARA İÇİNDEKİLER Limit Kvrmı ve Grfik Sorulrı... Limitle İlgili Bzı Özellikler...7 Genişletilmiş Reel Sılrd Limit... Bileşke Fonksionun Limiti...

Detaylı

Malzeme Bilimi Dersi

Malzeme Bilimi Dersi Malzeme Bilimi Dersi Kristal Yapıları ve Kristal Geometrisi Kaynaklar 1) Malzeme Bilimi ve Mühendisliği William F. Smith Çeviren: Nihat G. Kınıkoğlu 2) Malzeme Biliminin Temelleri Hüseyin Uzun, Fehim Fındık,

Detaylı

sayısından en az kaç çıkarmalıyız ki kalan sayı 6,9,12 ve 15 ile kalansız bölünebilsin? ()

sayısından en az kaç çıkarmalıyız ki kalan sayı 6,9,12 ve 15 ile kalansız bölünebilsin? () 1. x,y,z,t rdışık çift syılrdır. Bun göre (xy)-(zt)=. İki smklı () syısının değeri, rkmlrı toplmının 7 ktıdır. Üç smklı () syısının ile ölümünden elde edilen ölüm kçtır. En z dört smklı ir doğl syının

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. SINIF TEST SORULARI. + işleminin sonucu kçtır? 5 5 A) 0 B) 0 C) 0 7 D) 0 9 E). y = x x + prbolünün y = x doğrusun en ykın noktsının koordintlrı toplmı

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı Ankr Üniversitesi Mühendislik Fkültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Srı 2. Bölüm: Dirençli Devreler İçerik Temel Yslrın Doğrudn Uygulnışı Kynk Gösterimi ve Dönüşümü

Detaylı

Bir kristal malzemede uzun-aralıkta düzen mevcu4ur.

Bir kristal malzemede uzun-aralıkta düzen mevcu4ur. Bir kristal malzemede uzun-aralıkta düzen mevcu4ur. Kristal ka8ların bazı özellikleri, malzemelerin kristal yapılarına, yani atomların, iyonların ya da moleküllerin üç boyutlu olarak meydana ge@rdikleri

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) 009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..

Detaylı

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03 ELEĐ MOOLA ve SÜÜCÜLEĐ DES 03 Özer ŞENYU Mrt 0 ELEĐ MOOLA ve SÜÜCÜLEĐ DA MOOLANN ELEĐ DEE MODELLEĐ E AAEĐSĐLEĐ ENDÜĐ DEESĐ MODELĐ Endüviye uygulnn gerilim (), zıt emk (E), endüvi srgı direni () ile temsil

Detaylı

Ünite Planı Şablonu. Öğretmenin. Fatma BAĞATARHAN Yunus Emre Anadolu Lisesi. Ġnönü Mahallesi. Bingöl. Adı, Soyadı. Okulunun Adı

Ünite Planı Şablonu. Öğretmenin. Fatma BAĞATARHAN Yunus Emre Anadolu Lisesi. Ġnönü Mahallesi. Bingöl. Adı, Soyadı. Okulunun Adı Intel Öğretmen Progrmı Ünite Plnı Şlonu Öğretmenin Adı, Soydı Okulunun Adı Okulunun Bulunduğu Mhlle Okulun Bulunduğu Ġl Ftm BAĞATARHAN Yunus Emre Andolu Lisesi Ġnönü Mhllesi Bingöl Ünit Bilgisi Ünite Bşlığı

Detaylı

Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A.

Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A. eneme - / Mt MTEMTİK ENEMESİ. c - m. c - m -.., bulunur. y. 7, + 7 y + + 00 y + + + y + +, y lınr ı.. ^ - h. ^ + h. ^ + h ^ - h. ^ + h - & & bulunur.. ΩΩΩΩΔφφφ ΩΩφφ ΩΩΔφ 0 evp. ise ^ h ^h 7 ise ^ 7h b

Detaylı