LİSE 1 MANTIK KONU ANLATIM FASİKÜLÜ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "LİSE 1 MANTIK KONU ANLATIM FASİKÜLÜ"

Transkript

1 LİSE 1 MANTIK KONU ANLATIM FASİKÜLÜ 1

2 ÖNERMELER Kesin olarak doğru ya da yanlış hüküm bildiren ifadelere önerme denir. Önermeler p ve q gibi harflerle ifade edilirler.bir önerme doğru ise, doğruluk değeri 1 ; yanlış ise, doğruluk değeri 0 dır. Örnekler: Bir haftada yedi gün vardır. Önermesi doğru bir önermedir. Doğruluk değeri 1 dir. 4 sayısı tek sayıdır. Önermesi yanlış bir önermedir. Doğruluk değeri 0 dır. p ve q iki önerme olsun. Bu önermelerin doğruluk değerleri 4 farklı şekilde olur. 1 ) İki önerme de doğru olabilir. 2 ) p doğru, q ise yanlış olabilir. 3 ) p yanlış, q ise doğru olabilir. 4 ) İki önerme de yanlış olabilir. Bu sonuçları tablo şeklinde gösterirsek ; p q Olur. n tane önermenin 2 n tane farklı sonucu olur. ( 5 önermenin tane farklı sonucu ortaya çıkar.) 2

3 DENK ( EŞDEĞER ) ÖNERMELER Doğruluk değerleri aynı olan 2 önermeye denk ( eşdeğer ) önerme denir.örneğin ; p ve q önermeleri olsun.bu iki önerme denk ise, p=q ile gösterilir. p ve q iki önerme olsun. p : 2 sayısı en küçük asal sayıdır. q : Pazartesi haftanın ilk günüdür. p ve q önermelerinin doğruluk değerleri 1 dir.p ve q önermesi birbirine denktir. p = q olarak ifade edilir. BİR ÖNERMENİN OLUMSUZU ( DEĞİLİ ) Bir önermenin hükmünün değiştirilmesiyle oluşan yeni önermeye, o önermenin değili denir. p önermesinin değili, p veya p olarak ifade edilir. p p' 1 0 p : 5 asal sayıdır. P : 5 asal sayı değildir. 3

4 BİLEŞİK ÖNERME 2 veya daha fazla önerme ve, veya, ise, ancak ve ancak ve ancak bağlaçlarının bir tanesiyle bağlanmasına bileşik önerme denir. Bağlaç Adı Ve Veya İse Ancak ve ancak Bağlaç Sembolü p : 2 çift sayıdır. q : 2 asal sayıdır. İfade p q p q p q p q Açıklaması 2 çift sayıdır ve 2 asal sayıdır. 2 çift sayıdır veya 2 asal sayıdır. 2 çift sayı ise 2 asal sayıdır. 2 çift sayı ancak ve ancak 2 asal sayıdır. Örneği bileşik bir önermedir. 4

5 VEYA ( ) Bağlacı Bir p ve q bileşik önermesi olsun.bu bileşik önermelerden en az biri doğruysa sonuç doğru, her ikisi de yanlış ise sonuç yanlıştır. p q p q Tabloda da görüldüğü gibi doğru bir ifadenin sonucu 1, yanlış bir ifadenin sonucu 0 dır. VE ( ) Bağlacı Bir p ve q bileşik önermesi olsun. Bu bileşik önermelerden en az biri doğru ya da her ikisi de yanlış ise sonuç yanlış ( 0 ), sadece her ikisi de doğru ise sonuç doğru ( 1 ) olur. p q p q

6 VEYA ve VE Bağlaçları İle Kurulan Bileşik Önermelerin Özellikleri 1) Tek kuvvet özelliği : 2) Değişme özelliği : 3) Birleşme özelliği : p p p p p p p q q p p q q p ( p q) r p ( q r) ( p q) r p ( q r) 4) nin üzerine dağılma özelliği : p ( q r) ( p q) ( p r) 5) nin üzerine dağılma özelliği : p ( q r) ( p q) ( p r) 6) De Morgan Kuralı : 7) Her p önermesi için : ( p q)' q ' r ' ( p q)' q ' r ' p 1 p p 1 p p 0 0 p 0 p p p' 1 p p' 0 6

7 Çözüm : p' q 0 iken p q' önermesinin doğruluk değeri kaç olur? Verilen ifadeye göre : p =0 ve q=0 olmak zorundadır. p =0 ise p=1 dir ve q=0 ise q =1 dir. p q' ifadenin sonucu da => 1 1 1yani doğruluk değeri 1 dir. [ p ( q p')]' ( p q)' ifadesinin doğruluğunu ispatlayınız. Çözüm : [ p ( q p ')]' ( p q)' [ p ' ( q p ')'] [ p ' ( q ' p)] [( p ' q ') ( p ' p)] [( p ' q ') 1] ( p ' q ') ( p q)' olur. 7

8 İSE ( ) Bağlacı p q biçimindeki bileşik önermelere koşullu önermeler denir. p ise q biçiminde okunur.bu önerme p doğru, q yanlış iken yanlış ; diğer tüm durumlarda doğrudur. p q p q p : 3 > 8 q : En büyük negatif tamsayı -1 dir. p q : 3 > 8 ise en büyük negatif tamsayı -1 dir. Önermeleri verilsin. p = 0 ve q = 1 ise p q 1 olur. p q önermesi doğrudur. Not : p q koşullu önermesinin doğruluk değeri 1 ise, bu koşullu önermeye gerektirme denir. 8

9 KOŞULLU ÖNERME ÇEŞİTLERİ 1. Koşullu önermenin karşıtı : p q önermesinin karşıtı q p olur. 2. Koşullu önermenin tersi : p q önermesinin tersi p' q' olur. 3. Koşullu önermenin karşıt tersi : p q önermesinin karşıt tersi q' p' olur. İSE BAĞLACININ ÖZELLİKLERİ 1. p q q' p' p q p q 2. ' 3. ( p q)' p q' 4. ( p q) ( q r) p r p q 1( totoloji) p p ' p ' p ' p p p 1 1( totoloji) 1 p p p 0 p' 0 p 1( totoloji) 9

10 ANCAK VE ANCAK ( ) BAĞLACI : ( p q) ( q p) bileşik bağlacına iki yönlü koşullu önerme denir.bu koşullu önerme ( p q) bağlacına denktir. Yani, ( p q) ( q p) ( p q) dur. Ancak ve ancak bağlacının sonucu p ve q önermelerinin birbirine olan ilişkisine bağlıdır.örneğin bir p ve q önermesi olsun.her iki önerme doğru ise ya da her ikisi de yanlış ise ( p q) nin değeri doğrudur.diğer durumlarda ( p q) önermesi yanlış olur. p : 18, 2 ile bölünür. q : 3-1<7-2 Yukarıdaki p ve q önermelerinin doğruluk değerleri 1 dir.yani p ile q önermesi birbirine denktir. Bu durumda ; p p p 1, q 1 q q 1 olur. 10

11 İKİ YÖNLÜ KOŞULLU ÖNERMENİN ÖZELLİKLERİ 1. ( p q) ( p' q') 2. ( p p) 1 3. ( p p') 0 4. ( p 1) 5. ( p 0) p p ( p q) q ( p q) olduğunu gösteriniz. Çözüm : ( p q) q [( p q) q] [ q ( p q)] [( p q)' q] [ q ' ( p q)] [( p ' q ') q] [( q' q) p] [( p' q) ( q ' q)] ( 1 p) [( p ' q) 1] 1 ( p ' q) ( p q) olur. 11

12 TOTOLOJİ VE ÇELİŞKİ Bir bileşik önerme, tüm doğruluk değerleri için her zaman doğru oluyorsa totoloji, tüm doğruluk değerleri için her zaman yanlış oluyorsa çelişki olarak adlandırılır. p p' önermesinin totoloji olduğunu doğruluk tablosu ile gösterelim. Çözüm : p p p p' Tototloji p p' önermesinin totoloji olduğunu doğruluk tablosu ile gösterelim. Çözüm : p p p p' Çelişki 12

13 ( p' q)' q önermesinin çelişki olduğunu gösterelim. Çözüm : ( p' q)' q ( p q') q p ( q' q) p 0 0 olduğu için bu bir çelişkidir. [( p' q) ( p q')]' önermesinin totoloji olduğunu gösterelim. Çözüm : [( p' q) ( p q')]' [( p' q)' ( p q')'] [( p' q)' ( p q')'] [( p q') ( p q')'] olduğu için bu önerme totolojidir. 13

14 BİLEŞİK ÖNERMELERİN ELEKTRİK DEVRELERİNE UYARLANMASI Seri Bağlı Anahtarlar : Şeklinde olursa p q biçiminde gösterilir. 14

15 Paralel Bağlı Anahtarlar : Şeklinde olursa p q biçiminde gösterilir. 15

16 Devresine karşılık gelen önermeyi yazalım ve lambanın yanıp yanmadığını bulalım. Çözüm : Devreye karşılık gelen önerme, p [( q r) s] olur. Bu önermenin doğruluk değerini bulalım. ( Kapalı anahtarın doğruluk değeri 1, açık anahtarın ise 0 dır. ) p [( q r) s] 1 [(1 1) 0] 1 (1 0) olduğuna göre devreden akım geçer ve lamba da yanar. 16

Örnek...2 : Örnek...3 : Örnek...1 : MANTIK 1. p: Bir yıl 265 gün 6 saattir. w w w. m a t b a z. c o m ÖNERMELER- BİLEŞİK ÖNERMELER

Örnek...2 : Örnek...3 : Örnek...1 : MANTIK 1. p: Bir yıl 265 gün 6 saattir. w w w. m a t b a z. c o m ÖNERMELER- BİLEŞİK ÖNERMELER Terim: Bir bilim dalı içerisinde konuşma dilinden farklı anlamı olan sözcüklerden her birine o bilim dalının bir terimi denir. Önermeler belirtilirler. p,q,r,s gibi harflerle Örneğin açı bir geometri terimi,

Detaylı

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48 İÇİNDEKİLER Önsöz...2 Önermeler ve İspat Yöntemleri...3 Küme Teorisi...16 Bağıntı...26 Fonksiyon...38 İşlem...48 Sayılabilir - Sonlu ve Sonsuz Kümeler...56 Genel Tarama Sınavı...58 Önermeler ve İspat Yöntemleri

Detaylı

Sunum ve Sistematik 1. BÖLÜM: ÖNERMELER

Sunum ve Sistematik 1. BÖLÜM: ÖNERMELER Sunum ve Sistematik. ÜNİTE: MANTIK KONU ÖZETİ Bu başlık altında, ünitenin en can alıcı bilgileri, kazanım sırasına göre en alt başlıklara ayrılarak hap bilgi niteliğinde konu özeti olarak sunulmuştur..

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 1.KONU Sembolik Mantık; Önermeler, Niceyiciler, Olumsuzluk, İspat yöntemleri KAYNAKLAR 1. Akkaş, S., Hacısalihoğlu, H.H., Özel, Z., Sabuncuoğlu, A.,

Detaylı

Saygın KIRILMAZ, Tolga TANIŞ, Simay AYDIN

Saygın KIRILMAZ, Tolga TANIŞ, Simay AYDIN YAYIN KURULU Hazırlayanlar Saygın KIRILMAZ, Tolga TANIŞ, Simay AYDIN YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni Saime YILDIRIM Kurumsal Yayınlar Birimi Dizgi & Grafik Mustafa Burak SANK &

Detaylı

1. ÜNİTE: MANTIK. Bölüm 1.1. Önermeler ve Bileşik Önermeler

1. ÜNİTE: MANTIK. Bölüm 1.1. Önermeler ve Bileşik Önermeler . ÜNİTE: MANTIK . ÜNİTE: MANTIK... Önerme Tanım (Önerme) BÖLÜM.. - Doğru ya da yanlış kesin bir hüküm bildiren ifadelere önerme adı veriler. Örneğin Bir hafta 7 gündür. (Doğru) Eskişehir Türkiye'nin başkentidir.

Detaylı

MANTIK. 3. p 0, q 1 ve r 1 iken aşağıdaki önermelerin doğruluk değerlerini bulunuz. p q q. q b. ( ) ' c. ( p q) r

MANTIK. 3. p 0, q 1 ve r 1 iken aşağıdaki önermelerin doğruluk değerlerini bulunuz. p q q. q b. ( ) ' c. ( p q) r MANTIK 1. p : Ali esmerdir., q : Ali bir avukattır. Önermeleri verildiğine göre, sembolik olarak gösterilen aşağıdaki ifadeleri yazıya çeviriniz. a. p b. p q c. p q d. p q e. p q. p 1 ve q iken aşağıdaki

Detaylı

1 MATEMATİKSEL MANTIK

1 MATEMATİKSEL MANTIK 1 MATEMATİKSEL MANTIK Bu bölümde ilk olarak önerne tanımıverilip ispatlarda kullanılan düşünce biçimi incelenecektir. Tanım 1 Bir hüküm bildiren ve hakkında doğru veya yanlış denilmesi anlamlı olan ifadelere

Detaylı

Örnek...6 : Örnek...1 : Örnek...7 : Örnek...2 : Örnek...3 : Örnek...4 : Örnek...8 : Örnek...5 : MANTIK 2 MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER

Örnek...6 : Örnek...1 : Örnek...7 : Örnek...2 : Örnek...3 : Örnek...4 : Örnek...8 : Örnek...5 : MANTIK 2 MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER MANTIK MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER İçerisinde değişken olan ve değişkenin değerlerine göre doğru ya da yanlış olabilen önermelere açık önerme denir. Açık önermeler değişkenine göre P( x), Q( a)

Detaylı

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır.

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır. Sevgili Öğrenciler, Matematik ilköğretimden üniversiteye kadar çoğu öğrencinin korkulu rüyası olmuştur. Buna karşılık, istediğiniz üniversitede okuyabilmeniz büyük ölçüde YGS ve LYS sınavlarında matematik

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 206 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 1 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 2 Önermeler Yük. Müh. Köksal GÜNDOĞDU 3 Önermeler Önermeler Mantığı, basit ifadelerden mantıksal bağlaçları

Detaylı

Önermeler mantığındaki biçimsel kanıtlar

Önermeler mantığındaki biçimsel kanıtlar Önermeler mantığındaki biçimsel kanıtlar David Pierce 26 Aralık 2011, saat 11:48 Bu yazının ana kaynakları, Burris in [1] ve Nesin in [4] kitapları ve Foundations of Mathematical Practice (Eylül 2010)

Detaylı

A.Adnan Saygun Caddesi 10/1 Sıhhiye/ANKARA Tel: 312 433 37 57 433 25 49 Faks: 433 52 72 e-mail: nitelikyayincilik@gmail.com

A.Adnan Saygun Caddesi 10/1 Sıhhiye/ANKARA Tel: 312 433 37 57 433 25 49 Faks: 433 52 72 e-mail: nitelikyayincilik@gmail.com I Bu set 5846 sayılı yasanın hükümlerine göre kısmen ya da tamamen basılamaz, dolaylı dahi olsa kullanılamaz; teksir, fotokoi ya da başka bir teknikle çoğaltılamaz. Her hakkı saklıdır, NİTELİK YAYINCILIK

Detaylı

YZM 3217 YAPAY ZEKA DERS#6: MANTIK

YZM 3217 YAPAY ZEKA DERS#6: MANTIK YZM 3217 YAPAY ZEKA DERS#6: MANTIK Önermeler Doğru veya yanlış değer alabilen ifadelerdir Bir önerme hem doğru hem de yanlış olamaz Bir önerme kısmen doğru yada kısmen yanlış olamaz Örnekler: Dünya yuvarlaktır.

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR

KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR Kümeler Koşullu ve Mantıksal Denklik Kümeler Kümeler Ayrık Kümeler De-Morgan Kuralı Z (Zahlen; alm.) tamsayılar kümesi Z negatif tamsayılar kümesi, Z nonneg

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 2.KONU Sembolik Mantığın uygulamaları Önermeler ve Elektrik devreleri Odanızdakı elektrik anahtalarını birkaç kere açıp kapatınız. Anahta her bastığınızda

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

Örnek...2 : Örnek...3 : Örnek...1 : MANTIK 1. p: Bir yıl 265 gün 6 saattir. tan ım lam ak denir. ya nlış ye rine 0 sim gesi kullan ılır.

Örnek...2 : Örnek...3 : Örnek...1 : MANTIK 1. p: Bir yıl 265 gün 6 saattir. tan ım lam ak denir. ya nlış ye rine 0 sim gesi kullan ılır. Terim: Bir bilim dalı içerisinde konuşma dilinden farklı anlam ı olan sözcüklerden her birine o bilim dalının bir terimi denir. Önermeler belirtilirler.,,r,s gibi harflerle Örneğin açı bir geometri terimi,

Detaylı

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler ORGANİZASYON ŞEMASI 1. BÖLÜM Mantık... 7. BÖLÜM Sayılar... 13 3. BÖLÜM Rasyonel Sayılar... 93 4. BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler... 103 5. BÖLÜM Mutlak Değer... 113 6. BÖLÜM Çarpanlara Ayırma...

Detaylı

Mantıksal Operatörlerin Semantiği (Anlambilimi)

Mantıksal Operatörlerin Semantiği (Anlambilimi) Mantıksal Operatörlerin Semantiği (Anlambilimi) Şimdi bu beş mantıksal operatörün nasıl yorumlanması gerektiğine (semantiğine) ilişkin kesin ve net kuralları belirleyeceğiz. Bir deyimin semantiği (anlambilimi),

Detaylı

Önermeler. Önermeler

Önermeler. Önermeler Önermeler ers 1 1-1 Önermeler 1-2 1 Önerme Mantığı ve İspatlar Mantık önermelerin doğruluğunu kanıtlamak için kullanılır. Önermenin ne olduğu ile ilgilenmek yerine bazı kurallar koyar ve böylece önermenin

Detaylı

B. ÇOK DEĞERLİ MANTIK

B. ÇOK DEĞERLİ MANTIK B. ÇOK DEĞERLİ MANTIK İki değerli mantıkta önermeler, doğru ve yanlış olmak üzere iki değer alabilir. Çünkü özdeşlik, çelişmezlik ve üçüncü hâlin olanaksızlığı ilkelerine göre, önermeler başka bir değer

Detaylı

MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı

MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13 TANIM Z tam sayılar kümesinde tanımlı ={(x,y): x ile y nin farkı n ile tam bölünür} = {(x,y): n x-y, n N + } bağıntısı bir denklik bağıntısıdır. (x,y) ise x y (mod

Detaylı

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 206 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 1 Kümeler Yük. Müh. Köksal GÜNDOĞDU 2 Kümeler Kümeler Ayrık Matematiğin en temel konularından biridir Sayma problemleri için önemli Programlama dillerinin

Detaylı

BÖLÜM IV. olsa r s(mod p) bulunur ki, bu mümkün değildir. Ayrıca bu sayı takımındaki hiçbir sayı p tarafından bölünmez.

BÖLÜM IV. olsa r s(mod p) bulunur ki, bu mümkün değildir. Ayrıca bu sayı takımındaki hiçbir sayı p tarafından bölünmez. BÖLÜM IV (KÜÇÜK FERMAT VE WİLSON TEOREMLERİ Teorem 4. (Fermat Teoremi F a olan bir asal sayı olsun. Bu durumda a (mod İsat: a sayısının a a a K ( a gibi ilk ( katından oluşan sayı takımını gözönüne alalım.

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

MATEMATİK BİLİM GRUBU III KURS PROGRAMI

MATEMATİK BİLİM GRUBU III KURS PROGRAMI MATEMATİK BİLİM GRUBU III KURS PROGRAMI 1.Kurumun Adı 2.Kurumun adresi 3.Kurucunun Adı 4.Programın Adı : OĞUZHAN ÖZKAYA ÖZEL ÖĞRETİM KURSU : Onur Mahallesi Leylak Sok.No:9 Balçova-İzmir : Oğuzhan Özkaya

Detaylı

BM202 AYRIK İŞLEMSEL YAPILAR. Yrd. Doç. Dr. Mehmet ŞİMŞEK

BM202 AYRIK İŞLEMSEL YAPILAR. Yrd. Doç. Dr. Mehmet ŞİMŞEK BM202 AYRIK İŞLEMSEL YAPILAR Yrd. Doç. Dr. Mehmet ŞİMŞEK Önermelerin Eşdeğerlikleri Section 1.3 Totoloji, Çelişkiler, ve Tesadüf Bir totoloji her zaman doğru olan bir önermedir. Örnek: p p Bir çelişki

Detaylı

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif tamsayılar

Detaylı

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ 1 SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

MODÜLER ARİTMETİK. Örnek:

MODÜLER ARİTMETİK. Örnek: MODÜLER ARİTMETİK Bir doğal sayının ile bölünmesinden elde edilen kalanlar kümesi { 0,, } dir. ile bölünmesinden elde edilen kalanlar kümesi { 0,,, } tür. Tam sayılar kümesi üzerinde tanımlanan {( x, y)

Detaylı

Örnek...4 : A = { a, b, c, d, {a}, {b,c}} kümesi veriliyor. Aşağıdakilerin doğru mu yanlış mı olduğunu yazınız.

Örnek...4 : A = { a, b, c, d, {a}, {b,c}} kümesi veriliyor. Aşağıdakilerin doğru mu yanlış mı olduğunu yazınız. KÜME KAVRAMI Küme matematiğin tanımsız bir kavramıdır. Ancak kümeyi, iyi tanımlanmış kavram veya nesneler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle gösterilir. Bir kümeyi

Detaylı

YZM 3217 YAPAY ZEKA DERS#6: MANTIK

YZM 3217 YAPAY ZEKA DERS#6: MANTIK YZM 3217 YAPAY ZEKA DERS#6: MANTIK Önermeler Doğru veya yanlış değer alabilen ifadelerdir Bir önerme hem doğru hem de yanlış olamaz Bir önerme kısmen doğru yada kısmen yanlış olamaz Örnekler: Dünya yuvarlaktır.

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI 1.KURUMUN ADI 2.KURUMUN ADRESİ 3.KURUCUNUN ADI :Tercih Özel Öğretim Kursu : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA : ARTI ÖZEL EĞİTİM ÖĞRETİM

Detaylı

MATEMATİK I Ders Notları

MATEMATİK I Ders Notları MATEMATİK I Ders Notları Gazi Üniversitesi Gazi Eğitim Fakültesi Bilgisayar ve Öğretim Teknolojileri Eğitimi Bölümü, ANKARA 2009 2010 1. ÖNBİLGİLER 1 İÇİNDEKİLER 1.1. ÖNERMELER MANTIĞI... 2 1.2. KÜMELER...

Detaylı

MODÜLER ARİTMETİK LİSE KONU ANLATIMI

MODÜLER ARİTMETİK LİSE KONU ANLATIMI MODÜLER ARĐTMETĐK Z={..,-,-,0,, } kümesinde tanımlanan β ={(x,y): mi(x-y), m Z + {}} bağıntısı denklik bağıntısıdır. β denklik bağıntısı olduğuna göre, ( x, y) β için x y (mod m) ÖRNEK: Z de β ={(x,y)

Detaylı

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 1. ve y aralarında asal iki doğal sayıdır. 7 y 11 olduğuna göre, y farkı 5. 364 sayısının en büyük asal böleni A) 3 B) 7 C) 11 D) 13 E) 17 A) B) 3 C) 4

Detaylı

ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK 3 BİLİM GRUBU ÇERÇEVE PROGRAMI

ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK 3 BİLİM GRUBU ÇERÇEVE PROGRAMI ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK 3 BİLİM GRUBU ÇERÇEVE PROGRAMI 1.KURUM ADI: Özel Çorum Ada Özel Öğretim Kursu 2. KURUMUN ADRESİ: Yavruturna Mah. Kavukçu Sok. No:46/A ÇORUM/MERKEZ 3. KURUCUNUN

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

İÇİNDEKİLER ÖNERMELER BİLEŞİK ÖNERMELER AÇIK ÖNERMELER İSPAT YÖNTEMLERİ

İÇİNDEKİLER ÖNERMELER BİLEŞİK ÖNERMELER AÇIK ÖNERMELER İSPAT YÖNTEMLERİ - MANTIK İÇİNDEKİLER Safa No Test No ÖNERMELER...-... - BİLEŞİK ÖNERMELER...-... -6 AÇIK ÖNERMELER...-6... 7-8 İSPAT YÖNTEMLERİ...7-8... 9-9 - KÜMELER KÜMELERDE TEMEL KAVRAMLAR...9-4... - KÜMELERDE İŞLEMLER...5-6...

Detaylı

Rakam : Sayıları yazmaya yarayan sembollere rakam denir.

Rakam : Sayıları yazmaya yarayan sembollere rakam denir. A. SAYILAR Rakam : Sayıları yazmaya yarayan sembollere rakam denir. Sayı : Rakamların çokluk belirten ifadesine sayı denir.abc sayısı a, b, c rakamlarından oluşmuştur.! Her rakam bir sayıdır. Fakat bazı

Detaylı

TEMEL KAVRAMLAR A: SAYI Sayıları ifade etmeye yarayan sembollere rakam denir. Ör: 0,1,2,3,4,5,6 Rakamların çokluk belirtecek şekilde bir araya getirilmesiyle oluşturulan ifadeler ifadesine sayı denir.

Detaylı

Microsoft Excel Uygulaması 2

Microsoft Excel Uygulaması 2 Microsoft Excel Uygulaması 2 Dört Temel İşlem: MS Excel hücrelerinde doğrudan değerlere ya da hücre başvurularına bağlı olarak hesaplamalar yapmak mümkündür. Temel aritmetik işlemlerin gerçekleştirilmesi

Detaylı

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30 İçindekiler 1. ÜNİTE Bölüm 1 : Üslü Sayılar... 8 Bölüm 2 : Doğal Sayılar... 18 Bölüm 3 : Doğal Sayı Problemleri... 30 Bölüm 4 :- Çarpanlar ve Katlar, Bölünebilme... 40 Bölüm 5 : Asal Sayılar, Ortak Bölenler,

Detaylı

ÇARPANLAR VE KATLAR ÖĞRENİYORUM

ÇARPANLAR VE KATLAR ÖĞRENİYORUM ÖĞRENİYORUM Bir pozitif tam sayıyı birden fazla pozitif tam sayının çarpımı şeklinde yazarken kullandığımız her bir sayıya o sayının çarpanı denir. Örnek: nin çarpanları,, 3, 4, 6 ve dir. UYGULUYORUM Verilmeyen

Detaylı

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR 2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR KONULAR 1. RASYONEL SAYILAR 2. Kesir Çeşitleri 3. Kesirlerin Sadeleştirilmesi 4. Rasyonel Sayılarda Sıralama 5. Rasyonel Sayılarda İşlemler 6. ÜSLÜ İFADE 7. Üssün

Detaylı

İÇİNDEKİLER. Mantık Kurallarının Elektrik Devrelerine Uygulanması... 14

İÇİNDEKİLER. Mantık Kurallarının Elektrik Devrelerine Uygulanması... 14 İÇİNDEKİLER 1. BÖLÜM MANTIK Giriş... 1 Genel Olarak Mantık... 1 Mantığın Tarihçesi ve Modern Mantığın Doğuşu... 1 Mantık Öğretimin Önemi ve Amacı... 2 Önerme... 3 VE İşlemi (Birlikte Evetleme, Mantıksal

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

3. işleminin birim elemanı vardır, yani her x A için x e = e x = x olacak şekilde e A vardır.

3. işleminin birim elemanı vardır, yani her x A için x e = e x = x olacak şekilde e A vardır. 0.1 GRUPLAR Tanım 1 A kümesi boştan farklıolmak üzere işlemine göre aşağıdaki koşulları gerçekliyorsa (A, ) ikilisine bir Grup denir. 1. kapalılık özelliğine sahiptir, yani her x, y A için x y A olur.

Detaylı

ORTAÖĞRETİM MATEMATİK DERS KİTABI

ORTAÖĞRETİM MATEMATİK DERS KİTABI ORTAÖĞRETİM MATEMATİK 9. SINIF DERS KİTABI Bu kitap, Millî Eğitim Bakanlığı, Talim ve Terbiye Kurulu Başkanlığı nın 08..0 tarih ve sayılı kurul kararıyla 0-0 öğretim yılından itibaren (beş) yıl süreyle

Detaylı

TEMEL SAYMA. Bill Gates

TEMEL SAYMA. Bill Gates Bölüm 1 TEMEL SAYMA YÖNTEMLERİ Firmamızın sahip olduğu tek şey insan düş gücüdür. Bill Gates Bu bölümde fazla kuramsal bilgi gerektirmeyen sayma problemleri üzerinde duracağız. Bu tür problemlerde sayma;

Detaylı

Örnek...1 : Örnek...2 : A = { a, {a}, b, c, {b, d}, d }, B = { {a}, {c, d}, c, d, x, Δ } k ümeleri için s( AUB) kaçtır?

Örnek...1 : Örnek...2 : A = { a, {a}, b, c, {b, d}, d }, B = { {a}, {c, d}, c, d, x, Δ } k ümeleri için s( AUB) kaçtır? KÜMELER 2 İKİ KÜMENİN BİRLEŞİMİ A ve B gibi iki kümeden, A' ya veya B' ye ait olan elemanlardan oluşan yeni kümeye A ile B' nin birleşimi denir ve AUB ile gösterilir. Bu gösterim A birleşim B di ye okunur.

Detaylı

Bu kitabın tüm basım ve yayın hakları Ömer ALSAN a. aittir. Kısmen de olsa alıntı yapılamaz. Metin ve sorular,

Bu kitabın tüm basım ve yayın hakları Ömer ALSAN a. aittir. Kısmen de olsa alıntı yapılamaz. Metin ve sorular, Bu kitabın tüm basım ve aın hakları Ömer ALSAN a aittir. Kısmen de olsa alıntı apılamaz. Metin ve sorular, Ömer ALSAN ın önceden izni olmaksızı n elektronik, mekanik, fotokopi a da herhangi bir kaıt sistemile

Detaylı

Bölüm 3. Klasik Mantık ve Bulanık Mantık. Serhat YILMAZ 1

Bölüm 3. Klasik Mantık ve Bulanık Mantık. Serhat YILMAZ 1 Bölüm 3. Klasik Mantık ve Bulanık Mantık Serhat YILMAZ serhaty@kocaeli.edu.tr 1 Klasik Mantık ve Bulanık Mantık Bulanık kümeler, bulanık mantığa bulanıklık kazandırır. Bulanık kümelerde yürütme işini işleçler

Detaylı

TEOG. Kümeler KÜME VE ELEMAN KAVRAMI ÖRNEK KÜMELERİN GÖSTERİMİ ÖRNEK ÖRNEK KÜMENİN ELEMAN SAYISI ÖRNEK 3. ORTAK ÖZELLİK YÖNTEMİ 1.

TEOG. Kümeler KÜME VE ELEMAN KAVRAMI ÖRNEK KÜMELERİN GÖSTERİMİ ÖRNEK ÖRNEK KÜMENİN ELEMAN SAYISI ÖRNEK 3. ORTAK ÖZELLİK YÖNTEMİ 1. TEOG ümeler ÜE VE EEN VRI Elemanları belirlenebilen, belirli bir anlam taşıyan canlı ya da cansız varlıkların veya kavramların oluşturduğu topluluğa küme denir. ümeyi oluşturan varlıkların, kavramların

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

DOĞRULUK TABLOSU / ÇİZELGESİ İLE DENETLEME

DOĞRULUK TABLOSU / ÇİZELGESİ İLE DENETLEME DOĞRULUK TABLOSU / ÇİZELGESİ İLE DENETLEME (, q...) gibi basit bir önerme doğru veya yanlış yorumlanabileceğinden, (D) veya (Y) değerine sahi olabilir. Buna karşılık herhangi bir önerme eklemiyle kurulan

Detaylı

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84 N 0,1,,... Sayı kümesine doğal sayı kümesi denir...., 3,, 1,0,1,,3,... sayı kümesine tamsayılar kümesi denir. 1,,3,... saı kümesine sayma sayıları denir.pozitif tamsayılar kümesidir. 15 y z x 3 5 Eşitliğinde

Detaylı

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE ÖZEL EGE LİSESİ GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE HAZIRLAYAN ÖĞRENCİ: Berk KORKUT DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI 3.33 2. GİRİŞ... 3 3. YÖNTEM 3 4.

Detaylı

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu 016-017 Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları 1) 3. [15 3(8: )] 9 =? a) 16 b) 14 c) 0 d) 14 e) 16 6)

Detaylı

+ + + + + + + + + + + + Tam Sayılarla Toplama ve Çıkarma işlemleri Yapalım. Etkinlik: Tam Sayılarla Toplama işlemi

+ + + + + + + + + + + + Tam Sayılarla Toplama ve Çıkarma işlemleri Yapalım. Etkinlik: Tam Sayılarla Toplama işlemi Tam Sayılarla Toplama ve Çıkarma işlemleri Yapalım Doğal sayılarla; Toplama işlemi Çıkarma işlemi Bankaların müşterilerine verdiği hesap cüzdanlarını incelediniz mi? Bu cüzdanlarda yazan sayıların ve bu

Detaylı

3 7 üs(kuvvet) 5 2 ( 4 3 ( 7 5 (

3 7 üs(kuvvet) 5 2 ( 4 3 ( 7 5 ( Bu konuda üslü sayılarla ilgili kazanımları maddeler halide işleyeceğiz Normalde 8 sınıf matematik kazanımları üslü sayılar konusunda negatif üs kavramı ile başlamasına rağmen bu çalışma kağıdında 6sınıf

Detaylı

TAM SAYILARI TANIYALIM

TAM SAYILARI TANIYALIM O.S 6.SINIF MATEMATİK 6 TAM SAYILARI TANIYALIM Kazanım: Tam sayıları yorumlar ve sayı doğrusunda gösterir ÇALIŞMA KAĞIDI Günlük yaşantımızda karşılaştığımız olayları ifade etmek için, doğal sayılar yetersiz

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

ÇARPANLAR ve KATLAR. Uygulama-1. Asal Sayılar. Pozitif Bir Tam Sayının Çarpanlarını Bulma. Aşağıdaki sayıların çarpanlarını (bölenlerini) bulunuz.

ÇARPANLAR ve KATLAR. Uygulama-1. Asal Sayılar. Pozitif Bir Tam Sayının Çarpanlarını Bulma. Aşağıdaki sayıların çarpanlarını (bölenlerini) bulunuz. Asal Sayılar Sadece kendisine ve sayısına bölünebilen 'den büyük tam sayılara asal sayı denir. En küçük asal sayı 2'dir ÇARPANLAR ve KATLAR Uygulama- Aşağıdaki sayıların çarpanlarını (bölenlerini) 36=

Detaylı

SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız.

SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız. MAT3 AYRIK MATEMATİK DERSİ DÖNEM SONU SINAVI 4.0.0 Numarası :..................................... Adı Soyadı :..................................... SORULAR. Prüfer kodu ( 3 3 ) olan ağacı çiziniz.. Noktaları

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

9. SINIF MATEMATİK KONU ÖZETİ

9. SINIF MATEMATİK KONU ÖZETİ 2012 9. SINIF MATEMATİK KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni 1. ÜNİTE: MANTIK İnsan diğer canlılardan ayıran en önemli özelliklerden biri düşünebilme yeteneğidir. Bireyler karşılaştıkları günlük

Detaylı

Cebir Notları. Kümeler. Gökhan DEMĐR, KÜME KAVRAMI

Cebir Notları. Kümeler. Gökhan DEMĐR, KÜME KAVRAMI , 2006 MC Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Kümeler KÜME KVRMI Kümenin tanım yoktur. undan dolayı kümeyi tanıtmaya çalışalım. Küme kavramında bir topluluk, bir kolleksiyon ifadesi vardır.

Detaylı

11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI

11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI 11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI Programın öğrencilerde geliştirmeyi hedeflediği becerilerle 11. sınıf matematik öğretim programı ilişkisi Modelleme/Problem çözme Matematiksel Süreç

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

Bir önermenin anlamlı olması onun belli bir doğruluk değeri taşıması demektir. Doğru bir önerme de yanlış bir önerme de anlamlıdır.

Bir önermenin anlamlı olması onun belli bir doğruluk değeri taşıması demektir. Doğru bir önerme de yanlış bir önerme de anlamlıdır. 1 FEL 201: KLAİK MANTIK DER NOTLARI-2 KONU: ÖNERME ÖNERMENİN DOĞAI Önerme, yargı bildiren/belirten cümledir. Yargı bildirmeyen/belirtmeyen cümle örnekleri: oru cümleleri, emir cümleleri, ünlem cümleleri

Detaylı

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c 0. Küme Cebri Bu bölümde verilen keyfikümeler üzerinde birleşim, kesişim, fark, tümleyen,...gibi özellikleri sağlayan eşitliklerle ilgilenceğiz. İlk olarak De Morgan kurallarıdiye bilinen bir Teoremi ifade

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz.

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz. MATEMATİK ASAL ÇARPANLARA AYIRMA A S A L Ç A R P A N L A R A A Y I R M A T a n ı m : Bir tam sayıyı, asal sayıların çarpımı olarak yazmaya, asal çarpanlarına ayırma denir. 0 sayısını asal çarpanlarına

Detaylı

Örnek...1 : Yandaki bölme işlemin de bölüm ile kalanın toplamı kaçtır?

Örnek...1 : Yandaki bölme işlemin de bölüm ile kalanın toplamı kaçtır? BÖLME İŞLEMİ VE ÖZELLİKLERİ A, B, C, K doğal sayılar ve B 0 olmak üzere, BÖLÜNEN A B C BÖLEN BÖLÜM Örnek...4 : x sayısının y ile bölümündeki bölüm 2 ve kalan 5 tir. y sayısının z ile bölümündeki bölüm

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

BÖLME ve BÖLÜNEBİLME

BÖLME ve BÖLÜNEBİLME BÖLME ve BÖLÜNEBİLME A. BÖLME A, B, C, K birer doğal sayı ve B 0 olmak üzere, bölme işleminde, A ya bölünen, B ye bölen, C ye bölüm, K ya kalan denir. A = B. C + K dır. Kalan, bölenden küçüktür. (K < B)

Detaylı

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir.

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir. SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon Tanım 2: Bir grubun kendi üzerine izomorfizmine otomorfizm, grubun kendi üzerine homomorfizmine endomorfizm Sadece birebir olan

Detaylı

Ayrık matematikte İleri Konular Ders içeriği

Ayrık matematikte İleri Konular Ders içeriği Ayrık matematikte İleri Konular Ders içeriği 1. Küme teorisi, mantık, fonksiyonlar ve temel kavramlar a. Mantıksal önermeler b. İspat yöntemleri c. Küme teorisi d. Bağıntılar ve Fonksiyonlar e. Boole cebri

Detaylı

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun.

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun. 11. Cauchy Teoremi ve p-gruplar Bu bölümde Lagrange teoreminin tersinin doğru olduğu bir özel durumu inceleyeceğiz. Bu teorem Cauchy tarafından ispatlanmıştır. İlk olarak bu teoremi sonlu değişmeli gruplar

Detaylı

1 BAĞINTILAR VE FONKSİYONLAR

1 BAĞINTILAR VE FONKSİYONLAR 1 BAĞINTILAR VE FONKSİYONLAR Bu bölümde ilk olarak Matematikte çok önemli bir yere sahip olan Bağıntı kavramnı verip daha sonra ise Fonksiyon tanımı verip genel özelliklerini inceleyeceğiz. Tanım 1 A B

Detaylı

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur? 07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

SINIFLARA GÖRE ALGILARININ KARŞILAŞTIRILMASI

SINIFLARA GÖRE ALGILARININ KARŞILAŞTIRILMASI ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI 2014-DP-002- ORTA ÖĞRETİMDE CEBİRSEL SOYUT KAVRAMLARIN GELİŞİMİ VE ÖĞRENCİLER TARAFINDAN SINIFLARA GÖRE ALGILARININ KARŞILAŞTIRILMASI

Detaylı

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5 1 14 ve 1 sayılarına tam bölünebilen üç basamaklı kaç farklı doğal sayı vardır? x = 14.a = 1b x= ekok(14, 1 ).k, (k pozitif tamsayı) x = 4.k x in üç basamaklı değerleri istendiğinden k =, 4, 5, 6, 7,,

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

BM202 AYRIK İŞLEMSEL YAPILAR. Yrd. Doç. Dr. Mehmet ŞİMŞEK

BM202 AYRIK İŞLEMSEL YAPILAR. Yrd. Doç. Dr. Mehmet ŞİMŞEK BM202 AYRIK İŞLEMSEL YAPILAR Yrd. Doç. Dr. Mehmet ŞİMŞEK Derse Genel Bakış Dersin Web Sayfası http://www.mehmetsimsek.net/bm202.htm Ders kaynakları Ödevler, duyurular, notlandırma İletişim bilgileri Akademik

Detaylı

KÜMELER. a. Doğal sayılar b. Elimdeki parmaklar c. Yaşayan dahi insanlar d. Üç ayaklı hayvanlar e.

KÜMELER. a. Doğal sayılar b. Elimdeki parmaklar c. Yaşayan dahi insanlar d. Üç ayaklı hayvanlar e. 1 KÜMELER KÜME KVRMI Modern matematiğin en önemli ve temel öğelerinden biri küme kavramıdır. Kümeler teorisinin dili ve teknikleri matematiğe ve bilimin diğer birçok branşına temel teşkil eder. Kümenin,

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı