DENKLEM KURMA PROBLEMLERİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DENKLEM KURMA PROBLEMLERİ"

Transkript

1 DENKLEM KURM İ SYI KESİR İ Örnek... : H a n g i s a yın ın d ö r t t e b i r i n i n 4 e k s i ğ i n i n 2 k a t ı 5 6 d ır? i r p r o b l e m i ç ö ze r k e n, s o r u d a ye r a l a n v e r i l e r i, m a t em a t ik d i l i n e d ö n ü ş t ü rm e k g e r e k i r. u r a d ak i i ş l em e d e n k l e m k ur m a d e n i r. D e nk l em k u r a rk e n, b i r b i r i n d e n f ar k l ı h e r b i l i nm e ye n i ç i n, f ar k l ı s e m b o l l e r k ul l a n ı l ı r. i l i nm e ye n s a yı s ı n e k ad a r a z o l u r s a, ç ö zü m d a h a k ol a y o l a c a ğ ı n d a n, m üm k ü n o l d u ğ u n c a a z d e g i ş k e n s e ç i l i r. Örnek...2 : İR PROLEMİ ÇÖZME ŞMLRI (LGORİTM): To p l a m l a r ı 8 8 o l a n ü ç s a yı d a n, b i r i n c i s i i k i n c i d e n 4 f a zl a, ü ç ü n c ü s ü i s e i l k i k i s a yı n ın t o p l a m ın a e ş i t t i r. u s a yıl a r ı n e n k üç ü k o l a n ı k aç t ır? ) i l i n m e ye n l e r x, y, z, g i b i d e ğ i ş k e n l e r i l e i f a d e e d i l i r. 2 ) P r o b l e m i n if a d e s i n e u yg u n b i r m at e m a t ik s e l if a d e ya z ı l ı r. i r s a yı : i r s a yı n ı n 3 k a t ı : i r s a yı n ı n ya r ı s ı n ı n f a zl a s ı : i r s a yı n ı n 3 k a t ı n ı n f a zl a s ı n ı n ya r ı s ı : i r s a yı n ı n k a r e s i n i n ya r ı s ı n ı n 4 e k s i ğ i : 3 ) O I u ş t u r u l a n d e nk l e m ç ö zü l ü r v e s o n u ç e l d e e d i l i r. Örnek...3 : i r k iş i 3 e r 3 e r ç ık t ığ ı m e r d i v e n l e r i, 5 e r 5 e r i n e rk e n 2 a d ım d a h a a z a tm ış t ır. M e r d i v e n d e k i b a s am a k s a yı s ı k aç t ır? i r s a yı n ı n % 2 0 s i : i r s a yı n ı n % 2 0 s i i l e % 0 u n u n a r i t m e t i k ortası : İ k i s a yı n ı n t o p l am ı n ı n ya r ı s ı : İ k i s a yı d a n b i r i n c i n i n ü ç k at ı i l e i k i n c i n i n ç a r p m a ya g ö r e t e r s i n i n f ar k ı : Örnek...4 : i r s ın ıf t a ö ğ r e n c i l e r s ır a l a r a 4 e r l i o t u r u r s a 3 s ır a b o ş k a l ı yo r. 3 e r l i o t u r u r l a r s a 5 ö ğ r e n c i a yak t a k a l ı yo r. S ın ıf m e v c u d u, s ır a s a yı s ı n d a n k a ç f a zl a d ı r? /4

2 Örnek...5 : Örnek...9 : 4 ya n l ı ş ı n b i r d o ğ r u yu g ö t ü r d ü ğ ü 2 0 s o r u n u n s o r u l d u ğ u b i r s ı n a v d a t üm s o r u l a r ı ya n ı t l a ya n v e 9 0 n e t i o l a n b i r ö ğ r e n c i k a ç s o r u ya n l ı ş c e v a p l am ı ş t ı r? P o zi t if p a y v e p a yd a s ı o l a n b i r k es r i n d e ğ e r i 3 t ü r. u k e s r i n p a yı n a ek l e n i r v e 4 p a yd a s ın d a n 7 ç ık a r ıl ı r a d e ğ e r i o l u yo r s a p a y v e p a yd a n ın t o p l a m ı e n a z k a ç t ır? Örnek...0 : i r b a r d a k t a b i r m ik t a r s u v a r d ı r v e b u h a l d e b a r d a ğ ın a ğ ır l ığ ı x k g d ır. a r d a k t a k i s u yu n ya r ı s ı b o ş a l t ıl ır s a b a r d a ğ ı n a ğ ır l ı ğ ı y k g o l u yo r. o ş b a r d a ğ ı n a ğ ır l ı ğ ı k aç x v e y cinsinden nedir? Örnek...6 : Örnek...7 : i r b i l e t k u yr u ğ u n d a M e l i s b a ş t a n 3. E l a s o n d a n 2 4. v e a r a l a r ı n d a 6 k iş i v a r s a k u yr uk e n a z v e e n ç o k k aç k iş i o l a b i l i r? Örnek... : ir tel bir ucundan 5 a r a s ı n d ak i f ar k ı 5 o l a n s a yı n ı n 0 e k s i ğ i n i n u 0 k aç t ı r? i k ad a r k e s i l d ik t e n ü 4 k ad a r k e s i l i yo r. K a l a n t e l i n o r t a n o k t a s ı i lk t e l i n b o yu n u n k a ç t a k aç ı k ad a r k a ym ış t ır? s o n r a k a l a n k ısm ın ın d a d i ğ e r u ç t a n Örnek...2 : Örnek...8 : ü ile sı 4 6 H a cm i l i t r e o l a n b i r d e p o 8 l t v e 0 l t i k i k o v a i l e t o p l a m 3 9 s e f e r d e b o ş a l t ı lm ı ş t ı r. 8 l t l ik k o v a k a ç s e f e r k ul l a n ı lm ı ş t ı r? i r k iş i b o r c u n u n ö n c e 2 7 sini sonra 3 i n i ö d ü yo r. S o n o l a r ak d a T l 5 d a h a ö d e yi n c e g e r i ye 6 0 T l d a h a b o r c u k al ı yo r s a b o r c u n i lk ö d e d i ğ i k ıs m ı n e k ad a r d ır? k al a n ın 2/4

3 Örnek...5 : YŞ İ h m e t M e h m e t ' t e n 7 ya ş b ü yük F a r u k ' d a n i s e 2 ya ş k ü ç ük t ü r. 5 yı l s o n r a b u ü ç k iş i n i n ya ş l a r ı t o p l a m ı hm e t ' i n ş i m d i k i ya ş ı n ı n 2 k at ın d a n 2 0 f a zl a o l a c a k t ır. u n a g ö r e F a r uk ş i m d i k aç ya ş ın d a d ır? ) K i ş i e r a r a sm d a k i ya ş f ar k l d e g i ş m e z. 2 ) a ya ş ı n d a k i b i r k i ş i n i n ; t y ı l ö n c e k i ya ş ı a t, t y ı l s o n r a k i ya ş ı a + t d i r. 3 ) Ya ş l a r ı t o p l a m ı o l a n n k i ş i n i n ; t y ı l ö n c e k i ya ş l a r ı t o p l am ı n. t t y ı l s o n r a k i ya ş l a r ı t o p l am ı + n. t d i r. Örnek... : u g ü nk ü ya ş l a r ı t o p l a m ı 2 o l a n d ö r t k iş i n i n 6 yı l s o n r a ya ş l a r ı t o p l a m ı k a ç o l u r? Örnek...6 : i r b a b a n ın ya ş ı ç o c u ğ u n u n ya ş ın ın 7 k at ıd ı r. Ç o c u k b a b a n ı n ya ş ı n a g e l d i ğ i n d e i k i s i n i n ya ş l a r ı t o p l am ı 8 0 o l a c a k s a b a b a ç o c u ğ u d o ğ d u ğ u n d a k a ç ya ş ın d a d ır? 3 o l a n i k i k iş i n i n ya ş l a r ı 4 t o p l am ı 5 0 d e n b ü yü k s e ya ş l a r ı f a r k ı e n a z kaçtır? Ya ş l a r ı o r a n ı Örnek...3 : y ı l ı n d a d o ğ a n H a l uk ' a ya ş ı s o r u l d u ğ u n d a ya ş ı m d o ğ d u ğ um y ı l ı n r ak am l a r ı t o p l a m ı d e m i ş s e k o n u şm a h a n g i yı l d a ya p ı lm ı ş t ı r? Örnek...4 : M e hm e t S i b e l d e n 7 ya ş b ü yü k t ü r. 4 s e n e ö n c e S i b e l i n ya ş ı n ı n 3 k a t ı M e hm e t i n ya ş ı n ı n i k i k at ı yd ı. u n a g ö r e ya ş l a r ı t o p l am ı b u g ü n k aç t ı r? Örnek...2 : Örnek...7 : i r b a b a n ın ya ş ı ü ç ç o c u ğ u n u n ya ş l a r ı t o p l a m ın ın ü ç k a t ın a e ş i t t i r. 3 y ıl s o n r a b a b a n ın ya ş ı ç o c uk l a r ın ya ş l a r ı t o p l a m ın ın 2 k at ın d a n 4 f a zl a o l a c ak s a b a b a v e ç o c u k l a r ın b u g ü nk ü ya ş l a r ı t o p l a m ı k a ç t ır? Örnek...8 : M e r v e i l e E r d em i n ya ş l a r ı t o p l am ı 4 5 d i r. E r d e m M e r v e n i n ya ş ın a g e l d i ğ i n d e ya ş l a r ı t o p l a m ı 5 9 o l a c ak s a M e r v e k aç ya ş ı n d a d ır? 3/4

4 İŞÇİ HVUZ İ Örnek...5 : ) i ş i b i r i ş i a s a a t t e ya p a r s a b i r s a a t t e işin s ı n ı ya p a r a M e l t e m b i r i ş i 3 x g ü n d e r zu i s e 4 x g ü n d e b i t i r i yo r. e r a b e r b u i ş i 2 g ü n d e b i t i r d i k l e r i n e g ö r e M e l t em i ş i k aç g ü n d e bitirir? 2) işi bir işi a saatte, işi bir işi b s a a t t e ya p a r s a s a a t t e b e r a b e r i ş i n + s i n i ya p a r ; t o p l am d a b e r a b e r t a b s a a t ç a l ı ş ı l ı p i ş b i t m i ş s e ( + ). t= a b 3 ) K a p a s i t e v e h ı z if a d e l e r i o r a n ı k ul l a n ı l a r a k s ü r e ye d ö n ü ş t ü r ü l e b i l i r Örnek...6 : ir işi li 6 satte, Melis 24 saatte b i t i r i yo r. İ ş i n ya r ıs ı b i t i n c e M e l i s i ş t e n a yr ı l ı yo r. u n a g ö r e l i b u i ş t e k aç d a k i k a ç a l ışm ış t ı r? Örnek... : Örnek...2 : i r i ş i H ak a n 2 g ü n d e, O n u r 2 4 g ü n d e b i t i r i yo r. u n a g ö r e b e r a b e r 3 g ü n d e b u i ş i n ne kadarını bitirebilirler? yn ı k ap a s i t e d e k i 4 i ş ç i b i r i ş i 2 0 s a a t t e b i t i r i yo r s a b i r i ş ç i k aç s a a t t e b i t i r i r? Örnek...7 : i r i ş i ya p a r k e n D u yg u n u n h ız ı n ı n 3 k a t ı Z e h r a n ın h ı z ın ın 2 k at ın a e ş i t t i r. e r a b e r b u i ş i 6 0 s a a t t e ya p a b i l d ik l e r i n e g ö r e D u yg u t ek b a ş ın a i ş i k a ç s a a t t e t am a m l a r? Örnek...3 : i r i ş i H ak a n 2 g ü n d e, O n u r 2 4 g ü n d e b i t i r i yo r. u n a g ö r e b e r a b e r b u i ş i k aç g ü n d e bitirirler? Örnek...8 : Örnek...4 : i r i ş i b i r i n c i i ş ç i 4 8 g ü n d e, ik i n c i i ş ç i 6 v e üçüncü işçi ise işin i n i 6 g ü n d e b i t i r i yo r. 4 u n a g ö r e b e r a b e r b u i ş i n ya r ı s ı n ı k aç g ü n d e bitirirler? Ö zg e b i r i ş i 4 8 s a a t t e ya p a b i l i yo r. İ ş i n ya r ıs ı b i t i n c e h ı z ın ı ik i k a t a r t t ır ır s a i ş t o p l am k aç saatte biter? 4/4

5 Örnek...9 : Örnek...2 : yn ı k ap a s i t e d e k i 4 i ş ç i b i r i ş e b a ş l ı yo r. e r a b e r ç a l ı ş ı l a n 4. g u n d e n b a ş l am a k u ze r e h e r g ü n yi n e b u i ş ç i l e r l e a yn ı k a p a s i t e d e k i i k i i ş ç i d a h a i ş e k at ı l ı yo r v e i ş t o p l a m b i r h af t a d a b i t i r i l i yo r. i r i ş ç i b u i ş i k a ç g ü n d e bitirebilir? i r h a v u zu b i r i n c i m u s l uk 8 i k i n c i m us l u k i s e 2 s a a t t e d o l d u r u yo r. H a v u zu n d i b i n d ek i b i r m us l u k h a v u zu 2 4 s a a t t e b o ş a l t ı yo r s a m us l u k l a r b e r a b e r a ç ı l d ık t a n k aç s a a t s o n r a havuz dolar? Örnek...3 : irinin doldurma kapasitesi diğerinin d o l d u r m a k a p a s i t e s i n i n 6 k at ı o l a n ik i m us l u k b i r h a v u zu 2 0 s a a t t e d o l d u r u yo r. K a p a s i t e s i f a zl a o l a n m us l u k k ap a s i t e s i n i ya r ı ya d ü ş ü r ü r d i ğ e r m us l u k 2 k at a r t t ır ı r s a s o n d u r u m d a h a v u z k aç s a a t t e d o l a r? Örneğin bir havuzu dolduran üç m us l u k t a n m u s l u ğ u b i r h a v u zu a s a a t t e, m u s l u ğ u a yn ı h a v u zu b s a a t t e d o l d u r u yo r o l s u n. H a v u zu n d i b i n d e k i C m us l u ğ u d a h a v u z u c s a a t t e b o ş a l t ı yo r s a, + b i r s a a t t e b e r a b e r h a v u zu n sini a b c d o l d u r u r l a r. UYRI Havuz problemleri de işçi havuz gibi d ü ş ü n ü l ü r s a d e c e b o ş a l t a n m u s l uk l a r i ç i n e k s i l m e h e s a b a k a t ı l ı r. Örnek...4 : i r h a v u zu d o l d u r a n b i r m us l u k h e r s a a t k ap a s i t e s i n i ik i k a t a r t t ır a r ak b i r h a v u zu 3 s a a t t e d o l d u rm u ş s a i l k k ap a s i t e s i yl e k a ç saatte doldurur? S ü r e l e r i n h a v u zu n t a m a m ı i ç i n o l m a s ı n a d i k k a t e d i n i z. k s i h a l d e k es i r l e r a yn ı b ü t ü n ü n p a r ç a l a r ı n ı i f a d e e t m e zl e r. Örnek...0 : D ak ik a d a 8 m 3 ak ı t a n b i r m us l u ğ u i l e d ak ik a d a 2 m 3 s u d o l d u r a n b i r m u s l u ğ u b i r h a v u z u 4 5 d a k i k a d a d o l d u r u yo r. H a v u zu n t am am ı d o l d u ğ u n d a b i r ik e n s u k aç m 3 d ü r? Örnek... : i r h a v u z u b i r i n c i m us l u k 4 5 d ak ik a d a i k i n c i m u s l uk i s e 3 0 d a k i k a d a d o l d u r u yo r. M u s l u k l a r beraber açıldıktan kaç saat sonra havuz dolar? Örnek...5 : i r h a v u zu b i r i n c i m u s l uk 8 i k i n c i m us l u k i s e 2 s a a t t e d o l d u r u yo r. H a v u zu n o r t a s ın d a k i ü ç ü n c ü b i r m u s l uk d o l u h a v u zu k e n d i s e v i ye s i n e k a d a r 2 s a a t t e b o ş a l t ı yo r s a m us l u k l a r b e r a b e r a ç ı l d ık t a n k aç s a a t s o n r a b a ş l a n g ıç t a b o ş o l a n h a v u z d o l a r? 5/4

6

7 UYRI i r b i r i n e d o ğ r u a yn ı a n d a h a r ek e t e g e ç e n araçlar: i r b i r i n e d o ğ r u a yn ı a n d a h a r ek e t e g e ç e n a r a ç l a r ı n d u r u m u yl a ç em b e r ü ze r i n d e b i r b i r i n e d o ğ r u z ı t yö n l ü h a r ek e t e t m e d u r um u b e n ze r b i r m a n t ık l a d ü ş ü n ü l e b i l i r. V2.t V.t V C V V2 t kar= V2 Çember çevresi Ç = hızlar toplamı V +V2 Karşılaşma C de olsun. t karşılaşma= toplam yol = hızlar toplamı V +V 2 Örnek...6 : Ç e v r e s i m o l a n b i r p i s t t e a yn ı n o k t a d a n z ı t yö n d e 8 m / dk i l e 6 m /d k h ız l a h a r e k e t e d e n ik i h a r ek e t l i k a ç d k s o n r a k ar ş ıl a ş ır? Örnek...4 : 34 km/s 55 km/s ş ek i l d ek i h ı z l a r l a b i r b i r i n e d o ğ r u h a r ek e t e g e ç e n a r a ç l a r k e n t i n d e n k a ç k m u z ak t a karşılaşır? 356 km yn ı yö n e d o ğ r u a n d a h a r ek e t e g e ç e n araçlar: ( V> V2 ) V2 V V2.t C V.t Örnek...5 : ralarında 480 km olan ve birbirlerine doğru ( z ı t yö n d e ) h a r e k e t e d e n ik i a r a ç t a n b i r i n i n h ı z ı d i ğ e r i n i n h ı z ı n ı n 3 k a t ı d ı r. K a r ş ı l a ş a n a k a d a r h ı z l ı o l a n a r a ç d i ğ e r i n d e n k aç k m d a h a f a zl a yo l a l ı r? t yakalama = toplam yol = hızlar farkı V V 2 Örnek...7 : 384 km 49 km/s 37 km/s ş e k i l d e k i h ı zl a r l a a yn ı d o ğ r u h a r e k e t e g e ç e n araçlardan geriden gelen diğerini kaç saat s o n r a ya k a l a r? 7/4

8 Örnek...8 : Örnek... : 480 km 20 km/s 90 km/s Ş ek i l d e m O=90o, b e l i r t i l e n yö n d e h a r e k e t e geçen araçlardan n ok t a s ı n d a n h a r e k e t e b a ş l a ya n a r a c ın h ı z ı O d ak ik a d a 6 0 m et r e v e d e n h a r e k e t e b a ş l a ya n a r a c ı n h ız ı d a k i k a d a 2 0 m e t r e d i r. Ç e m b e r s e l p i s t i n ç e v r e s i m i s e 5. k a r ş ıl a şm a k aç d a k i k a s o n r a o l u r? C =480 km d i r. yn ı a n d a h a r e k e t e g e ç e n ş ek i l d ek i i k i h a r e k e t l i d e n h ı zl ı o l a n ya v a ş o l a n ı C k en t i n d e ya k a l ı yo r. u n a g ö r e C yo l u k a ç k m d i r? Örnek...9 : i r b i r i n e k m m es a f e d e b u l u n a n a r a ç l a r a yn ı a n d a b i r b i r l e r i n e d o ğ r u h a r e k e t e g e ç e r s e 8, a yn ı yö n e h a r ek e t e d e r l e r s e 4 s a a t s o n r a k ar ş ı l a ş ı yo r l a r. H ı zl a r ı o r a n ı kaçtır? yn ı yö n e d o ğ r u a n d a h a r ek e t e g e ç e n a r a ç l a r ı n d u r um u yl a ç e m b e r ü ze r i n d e b i r b i r i yl e a yn ı yö n l ü h a r ek e t e t m e d u r u m u b e n ze r b i r m a n t ı k l a d ü ş ü n ü l e b i l i r. toplam yol toplam zaman Örnek...2 : i r a r a ç 2 v i l e g i t t i ğ i yo l u 4 v h ız l a d ö n m ü ş s e h a r e k e t b o yu n c a o r t a l a m a h ız ı k a ç v d i r? Örnek...3 : V2 V tyak = UYRI O r t a l a m a h ı z= V ort = Ç çevre = hızlar farkı V V 2 Örnek...0 : Ş e k i l d e h a r ek e t l i s i n i n h ı z ı dakikada 8 metre, h a r e k e t l i s i n i n h ı z ı d ak i k a d a 2 m e t r e d i r. a r a c ı a r a c ı n a h e r 2 0 d ak i k a d a b i r t u r b i n d i r i yo r s a ç em b e r i n çevresi kaç metredir? i r a r a c ın 9 0 k m / s i l e g i t t i ğ i yo l d a d ö n e r k e n h ız ı 2 0 k m / s i s e yo l b o yu n c a o r t a l a m a h ı z ı k aç k m /s d i r? Örnek...4 : O i r a r a c ın 4 0 k m / s i l e g i t t i ğ i yo l d a d ö n e r k e n h ız ı n e o lm a l ıd ır k i yo l b o yu n c a o r t a l a m a h ı z ı 5 5 k m /s o l s u n? 8/4

9

10 Örnek...5 : 4 ) K a r v e ya z a r a r = s a t ış f i ya t ı m a l i ye t f i ya t ı i r h a v u z u n % 2 0 s i d o l u d u r. H a v u z a L t s u k o n u l u n c a h a v u zu n % 2 5 i b o ş k al ı yo r s a b u h a v u z t o p l a m k aç l t s u a l ı r? UYRI. K a r za r a r h e s a p l a r ın d a yü zd e b u l m a k i ç i n b i r im m a l i ye t ü ze r i n d e n e l d e e d i l e n k a r v e ya z a r a r o r a n ı i ç i n o r a n t ı kullanabiliriz. Orantı şu şekildedir u kadar maliyette 00 de Örnek...6 : i r s ı n a v d a b a ş a r ı s ı r a s ı n a g ö r e yü zd e 5 ' l i k d i l im e i lk g i r e n k iş i s ı n a v d a k i ş i ys e s ı n a v a k aç k iş i g i r m i ş t i r? X kar (zarar) 2. K a r v e z a r a r h e s a p l a r ın d a yü zd e o r a n l a r ı d ış ı n d a s a yı l a r l a u ğ r a şm ı yo r s ak b a ş l a n g ı ç m ik t a r ın ı yü z a l a r a k i ş l em l e r i k o l a yl a ş t ı r a b i l i r i z. Örnek...7 : i r k e n a r ı x o l a n b i r k ar e n i n k e n a r ı % 2 0 a r t t ı r ı l ı n c a ç e v r e s i 4 0 c m a r t ı yo r s a i lk k a r e n i n a l a n ı n ı b u l u n u z. u kadar kar (zarar) Örnek...9 : t l l ik b i r m a l t l ye s a t ıl d ı ğ ı n d a k a r % k aç o l u r? Örnek...0 : TL ye a l ın a n b i r m a l % 3 0 k ar i l e + 2 T L ye s a t ılm ış i s e k a ç t ır? Örnek... : Örnek...8 : Ya ş ü züm k ur u t u l d u ğ u n d a a ğ ı r l ı ğ ı n ı n % 2 0 s i n i f i r e v e r i yo r. E l i n d e 6 0 k g k u r u ü zü m b u l u n a n k iş i k aç k g ya ş ü zü m a lm ı ş t ı r? M a l i ye t i ü ze r i n d e n % 4 0 k ar l ı f i ya t ı t l o l a n b i r m al i ye t i ü ze r i n d e n % 2 0 i n d i r i m l i s a t ış f i ya t ı k aç t l o l u r? 0/ 0/4

11 Örnek...2 : Örnek...6 : % 2 0 k a r l a s a t ı l a n b i r m a l a % 2 5 i n d i r im ya p ı l d ı ğ ı n d a s a t ı ş f i ya t ı T L o l u yo r s a ya p ı l a n i n d i r i m k aç T L d i r? i l e t l e r i s a t a r k e n % 4 0 k a r ya p a n b i r ş i r k e t ö ğ r e n c i l e r e s a t ış f i ya t ı ü z e r i n d e n % 2 0 i n d i r im ya p ı yo r s a ö ğ r e n c i l e r d e n yü z d e k a ç k a r e l d e eder? Örnek...7 : Örnek...3 : i r m al ın ya r ıs ı % 2 0 za r a r l a k a l a n ın ya r ı s ı % 3 0 k a r l a s a t ıl ı yo r. S o n k a l a n k ıs ım d a % 0 k ar l a s a t ıl ır s a t üm m a l ın s a t ış ı s o n u n d a durum ne olur? Örnek...4 : M a l i ye t l e r i a yn ı o l a n i k i m a l d a n b i r i n c i x T L ye s a t ı l ı r s a % 6 0 k ar, i k i n c i y T L ye s a t ıl ır s a x % 4 0 za r a r e d i l i yo r. u n a g ö r e kaçtır? y Örnek...5 : rk a a rk a ya i k i d e f a % 3 0 za m g e l e n e l ek t r i k f i ya t ı n d ak i a r t ı ş t o p l a m yü z d e k a ç o l u r? i r m a l ı n f i ya t ı % 2 0 d ü ş ü r ü l d ü ğ ü n d e o m al ın s a t ı ş ı yü zd e k aç a r t m a l ı d ı r k i k a s a ya g i r e n para değişmesi? Örnek...8 : I k ır ıl a n b a r d a k l a r i ç i n 5 m al i ye t yü z d e k a ç o r a n d a a r t m ış t ı r? Ta ş ım a s ır a s ın d a Örnek...9 : K i l o s u T L m a l i ye t l e e l d e e d i l e n ç a y k ur u t u l u n c a a ğ ır l ığ ı n ı n % 2 5 i n i k a yb e d i yo r. K u r u t u l d u k t a n s o n r a s a t ış t a n % 2 5 k a r e l d e e d i l m e s i i ç i n s a t ış f i ya t ı n e o lm a l ıd ı r? / /4

12 Örnek...4 : KRIŞIM İ l k o l o r a n ı % 3 0 o l a n 5 0 l t a l k o l - s u k a r ış ım ın a k aç l t s u e k l e n i r s e s o n k a r ış ım ın a l k o l o r a n ı %25 olur? g r a m % a l ı k t u zl u s u i l e g r am % b l i k t u zl u s u b i r k a b a d ök ü l ü r s e s o n k a r ı ş ı m ın t u z yü z d e s i (. ( a b +. ) ).00 o l u r. ( +) K ı s a c a yü z d e o r a n ı = (saf madde).00 (toplam) UYRI Örnek...5 : yn ı h a v u z u k lo r o r a n ı % 2 0 o l a n m u s l u ğ u 2 s a a t t e k l o r o r a n ı % 6 o l a n m us l u ğ u 6 s a a t t e d o l d u r u yo r. H a v u z d o l d u ğ u n d a h a v u zu n k l o r yü zd e s i n e d i r? u h a r l a ş m a k ı sm ı n d a s u yu n b u h a r l a ş t ığ ı h e s a b a k a t ı l m a l ı d ı r. Örnek... : Örnek...2 : Tu z o r a n ı % 2 0 o l a n 4 0 l t t u zl u s u i l e t u z o r a n ı % 4 0 o l a n 8 0 l t o l a n t u zl u s u k a r ı ş t ı r ı l ı r s a s o n k ar ı ş ı m ı n t u z yü z d e s i n e olur? x k g ş ek e r e y k g s u v e z k g t u z ek l e n i yo r. S o n k a r ı ş ı m d a s u yü z d e k a ç t ı r? Örnek...6 : ü 5 d ö k ü l ü yo r v e d ök ü l e n m ik t a r k ad a r s u e k l e n i yo r s o n k a r ış ım d a t u z yü z d e k aç o l u r? Tu z o r a n ı % 2 0 o l a n t u zl u s u yu n Örnek...7 : Örnek...3 : Tu z o r a n ı % 3 0 o l a n 4 0 l t t u zl u s u i l e t u z o r a n ı % 4 0 o l a n t u zl u s u k a r ı ş t ı r ı l ı r s a s o n k a r ış ım ın t u z yü zd e s i 3 6 o l u yo r s a ik i n c i k a r ı ş ı m d a n k aç l t k o nm u ş t u r? S u o r a n ı % 7 5 o l a n k g t u zl u s u k a r ış ım ın a a ğ ır l ık ç a yü zd e k a ç ı b u h a r l a ş t ı r ı l s ı n k i s o n tuz oranı %40 olur? 2/ 2/4

13 Örnek...4 : FİZ İ yl ık f a i z o r a n ı n % 8 o l d u ğ u b i r b a nk a ya T l ye y ıl p a r a ya t ır a n b i r k iş i b a n k a d a n t o p l a m k a ç T L g e r i a l ır T L n i n yı l d a % n f a i zl e T yı l d a g e t i r e c e ğ i f ai z f i s e.n.t f= 00 ankadan paranın toplamı alındığında alınan +f olur i r i m l e r y ı l d e ğ i l s e yı l a ç e v r i l i r. t t ( t = ay ) ( t = gün ) Örnek... : 20 YTL nin %30 dan a ) 3 yı l d a b ) 8 a yd a c ) g ü n d e g e t i r d i ğ i b a s i t f a i z n e k ad a r d ır? Örnek...2 : T L n i n 5 a yd a g e t i r d i ğ i b a s i t f ai z 9 0 T L i s e b a s i t f ai z o r a n ı y ı l l ı k yü z d e k a ç t ı r? Örnek...5 : i r m ik t a r p a r a a yl ık % 5 d e n y ıl b a s i t f ai ze ya t ı r ı l ı yo r v e d ö n em s o n u n d a b a n k a d a n T l o l a r a k p a r a n ın t am a m ı ç e k i l i yo r s a ya t ı r ı l a n ana para kaç TL dir? Örnek...6 : T L yü zd e 5 b i l e ş ik f ai ze ya t ı r ı l ı r s a 2 y ıl d a k a ç T L f a i z g e l i r i e l d e e d i l i r? Örnek...3 : T L % 2 5 d e n 2 yı l f a i ze ya t ı r ı l ı yo r. S ü r e s o n u n d a b a n k a d a n ç ek i l e n t o p l a m p a r a n e kadardır? 3/ 3/4

14 Örnek...3 : GRFİK İ Örnek... : G r af ik b i r b i t k i n i n b o yu n u n z am a n a göre değişimini v e rm ek t e d i r b u n a g ö r e b i t k i n i n b o yu k a ç yı l s o n r a 4 5 c m olur? Şekilde ve ülkelerinde n ü f u s u n za m a n b a ğ l ı d e ğ i ş im i verilmiştir buna g ö r e b u ik i ü lk e n ü f u s u a r a s ın d ak i f ar k 9 0 m i l yo n olur? oy (cm) 5 2 Zaman (yıl) yn ı a n d a h a r ek e t e b a ş l a ya n i k i a r a ç arası mesafe 3 50 s a a t s o n r a k aç km olur? 20 2 Yol (km) Zaman (saat) Örnek...2 : Nüfus (milyon) Zaman (yıl) Örnek...4 : Ş e k i l d e k i O m e rk e zl i 0. d a i r e s e l g r af ik t e b i r sınıf o k u l d a ok u ya n. ö ğ r e n c i l e r i n s ın ıf l a r a g ö r e 9. sınıf d a ğ ıl ım ın ı g ö s t e rm ek t e d i r. sınıf O u o k u l d a 9. s ın ıf a g i d e n 2. ö ğ r e n c i l e r t üm sınıf ö ğ r e n c i l e r i n % 4 0 ı d ı r. 0 v e. s ın ıf a d e v a m e d e n ö ğ r e n c i s a yıs ı e ş i t v e 2. s ın ıf a d e v a m e d e n ö ğ r e n c i s a yıs ın ın ya r ıs ı k a d a r s a. s ın ı f l a r ı g ö s t e r e n d i l im i n m e rk e z a ç ıs ı k aç d e r e c e d i r? 4/ 4/4

1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER

1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER 1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER Örnek...3 : 3 x+ y= 5 2x 3 =2 y s i s t e m i n i s a ğ l a ya n y d e ğ e r i k aç t ır? a, b, c R, a 0, b 0, x v e y d e ğ i şk e n o l m a k ü ze r e, a x+ b

Detaylı

B T A n a l o g T r a n s m i t t e r. T e k n i k K ı l a v u z u. R e v 1. 2

B T A n a l o g T r a n s m i t t e r. T e k n i k K ı l a v u z u. R e v 1. 2 B T - 111 A n a l o g T r a n s m i t t e r T e k n i k K ı l a v u z u R e v 1. 2 1. Ö N G Ö R Ü N Ü M, Ü S T Ü N L Ü K L E R İ VE Ö Z E L L İ K L E R İ M i k r o k o n t r o l ö r t a b a n l ı BT- 111

Detaylı

SAYI KÜMELERİ. Örnek...1 :

SAYI KÜMELERİ. Örnek...1 : SAYILAR SAYI KÜMELERİ RAKAM S yı l r ı i f d e e t m ek i ç i n k u l l n d ı ğ ı m ız 0,,,,,,6,7,8,9 semollerine rkm denir. DOĞAL SAYILAR N={0,,,...,n,...} k üm e s i n e d o ğ l s yı l r k üm e s i d

Detaylı

Üç Şiir. Yaşamaya Dair, Ceviz Ağacı, Masalların Masalı

Üç Şiir. Yaşamaya Dair, Ceviz Ağacı, Masalların Masalı Üç Şiir Yaşamaya Dair, Ceviz Ağacı, Masalların Masalı N â z ı m H i k m e t (Se la nik, 14 Ocak 1902 Mos ko va, 3 Ha zi ran 1963) Bah ri ye M e kt eb i n i b it i rd i (1919 ), H am id iy e K r uvaz ör

Detaylı

Örnek...17 : 1) EKSENLERİ KESTİĞİ NOKTALAR BİLİNEN DOĞRUNUN DENKLEMİ

Örnek...17 : 1) EKSENLERİ KESTİĞİ NOKTALAR BİLİNEN DOĞRUNUN DENKLEMİ C) ÖZEL DOĞRU DENKLEMLERİ Örnek...17 : A ( 3, 6 ) n ok t a s ı n a n v e o r i j i n e n g e ç e n o ğ r u n u n e n k l em i n e i r? 1) EKSENLERİ KESTİĞİ NOKTALAR BİLİNEN DOĞRUNUN DENKLEMİ eksenini A(a,0)

Detaylı

M G - M A T E M A T İ K D E R S N O T L A R I Sayfa 1

M G - M A T E M A T İ K D E R S N O T L A R I Sayfa 1 NKLM KURM PROLMLRİ YGS MTMTİK. SYI PROLMLRİ ÇÖZM STRTJİSİ ir problemi çözmek için verilen zamanın yarısından fazlasını soruyu anlamaya, kalan zamanı da soruyu çözmeye ayırmalısınız. una göre, soruları

Detaylı

(ÖSS ) ÇÖZÜM 2:

(ÖSS ) ÇÖZÜM 2: MTEMT K PROLEMLER - II ÖRNEK : ve kentlerinden saatteki h zlar s ras yla V ve V olan (V > V ) iki araç, birbirlerine do ru 2 2 ayn anda hareket ederlerse saat sonra karfl lafl yorlar. u araçlar ayn kentlerden

Detaylı

U MK E K A MP Ç IL IK E Ğ T İ M İ İ 2008

U MK E K A MP Ç IL IK E Ğ T İ M İ İ 2008 U MK E K A MP Ç I L I K E ĞİT İMİ 2008 K A MP Y E R İ S E Ç İMİ V E Ö ZE L L İK L E R İ (Y A Z OP E R A S Y ON L A R I ) U L A Ş I M İÇ İN A R A Ç V E Y A Y A Y A Y OL U N A Y A K I N OL MA L I D I R.

Detaylı

ı ı ı ıı ıı ıı ı ı ı ğ ş ı

ı ı ı ıı ıı ıı ı ı ı ğ ş ı Ü Ğ Ş ö İ Ş ç ç Ğ ç ö Ü Ü Ş ö Ö ç ç ğ ö ö ğ ö İ Ş ğ ğ ç ö Ü ğ Ç Ö İ ğ ğ ğ Ş ö ç ç ö ö ç ö Ü İ İ ö ö ç «ğ Ü Ş ğ ö ğ ç ğ ç ö ç ç ç ç ö ö ö ç ç ç ö ç ö İ ö Ü ö ğ Ü Ş Ü Ş ö ç ç İŞ ğ ğ ğ ö İŞ ö İ Ü İ İ İ İ

Detaylı

ö ğ ğ ğ ö ğ ğ ğ ğ ğ ğ ğ ğ İ ğ ö ğ ğ ğ İ ğ ğ ğ ğ ö ö ö ğ ğ ğ ö ö

ö ğ ğ ğ ö ğ ğ ğ ğ ğ ğ ğ ğ İ ğ ö ğ ğ ğ İ ğ ğ ğ ğ ö ö ö ğ ğ ğ ö ö İ ğ ö ö İ ğ ğ ğ ö İ ö İ İ ö İ İ ğ İ İ ğ ğ ğ ö ğ ğ ğ ö ğ ğ ğ ğ ğ ğ ğ ğ İ ğ ö ğ ğ ğ İ ğ ğ ğ ğ ö ö ö ğ ğ ğ ö ö İ ö ğ İ ö ö ğ ö ğ ğ ğ İ İğ ö ğ ğ ğ ğ ğ ö ğ ğ ğ ğ ğ ö ğ ö ö ğ ö ğ ğ ğ ğ ğ Ş ö ö Ş ğ ğ ğ ğ ğ ğ

Detaylı

AĞUSTOS / 2017 AYI İTİBARİYLE K TÜRÜ YETKİ BELGESİ SÜRESİ BİTECEK FİRMALAR

AĞUSTOS / 2017 AYI İTİBARİYLE K TÜRÜ YETKİ BELGESİ SÜRESİ BİTECEK FİRMALAR AĞUSTOS / 2017 AYI İTİBARİYLE K TÜRÜ YETKİ BELGESİ SÜRESİ BİTECEK FİRMALAR SIR A NO U -N ET NO FİRM A Ü N VANI BELGE TÜ RÜ BELG E G E Ç ER LİLİK TA R İH İ 1 47894 E R H A LLA R D.Ç SA N. T İC.A.Ş K İ 2

Detaylı

GELECEĞİ DÜŞÜNEN ÇEVREYE SAYGILI % 70. tasarruf. Sokak, Park ve Bahçelerinizi Daha Az Ödeyerek Daha İyi Aydınlatmak Mümkün

GELECEĞİ DÜŞÜNEN ÇEVREYE SAYGILI % 70. tasarruf. Sokak, Park ve Bahçelerinizi Daha Az Ödeyerek Daha İyi Aydınlatmak Mümkün www.urlsolar.com S L D-S K -6 0 W ile 1 5 0 W St an d art S o kak L a m ba sı F iya t K arşılaşt ırm a sı kw h Ü c reti Yıllık Tü ke tim Ü cre ti Y ıllık T ü ketim Fa rkı kw Sa at G ü n A y Stan d art

Detaylı

1.BÖLÜM ÇÖZÜM SORU. Su miktar 4k olsun. Eklenen tuz miktar k olur.

1.BÖLÜM ÇÖZÜM SORU. Su miktar 4k olsun. Eklenen tuz miktar k olur. .ÖLÜM MTEMT K Derginin bu say s nda Problemler konusunda çözümlü sorular yer almaktad r. u konuda, ÖSS de ç kan sorular n çözümü için gerekli temel bilgileri ve pratik yollar, sorular m z n çözümü içinde

Detaylı

ADLİ AMAÇLI KONUŞMA VE KONUŞMACI TANIMADAKİ ETMENLERDEN BİRİ OLARAK PROSODY (BÜRÜN) ÖĞELERİ

ADLİ AMAÇLI KONUŞMA VE KONUŞMACI TANIMADAKİ ETMENLERDEN BİRİ OLARAK PROSODY (BÜRÜN) ÖĞELERİ ANKARA ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ ADLİ AMAÇLI KONUŞMA VE KONUŞMACI TANIMADAKİ ETMENLERDEN BİRİ OLARAK PROSODY (BÜRÜN ÖĞELERİ Ekrem MALKOÇ DİSİPLİNLERARASI ADLİ TIP ANABİLİM DALI FİZİK İNCELEMELER

Detaylı

[BC] // [AD] [AC] ve [BD] AD =6 br BC =10 br. olduğuna göre, EF MN k a ç birimdir? Ayr ı c a. [AC] ve [BD] EF =6 br BC =8 br.

[BC] // [AD] [AC] ve [BD] AD =6 br BC =10 br. olduğuna göre, EF MN k a ç birimdir? Ayr ı c a. [AC] ve [BD] EF =6 br BC =8 br. YU ( YU TII ORT T YU LI İİZR YU İ YU ) YU TII ORT T Y l n ı z ik i k e n r ı b i r b i r i n e p r l e l l n d ö r t g e n e Y U d e n i r. [ ] / / [ ] i s e y m u k t u r. y m u ğ u n d, ve L kenr rt

Detaylı

Çözüm : Genel formül : Yol = Hız. Zaman. Açıklama : Çözüm : x = v. t. Buna göre verilenler, x = 200, t = 5 ise V =? V = 200 / 5. Çözüm : x = V.

Çözüm : Genel formül : Yol = Hız. Zaman. Açıklama : Çözüm : x = v. t. Buna göre verilenler, x = 200, t = 5 ise V =? V = 200 / 5. Çözüm : x = V. HAREKET PROBLEMLERİ ÇÖZÜMLÜ SORULAR 1) Saatte 50 km hızla giden bir araç 3 saatte kaç km yol alır? Genel formül : Yol = Hız. Zaman YOL = 50. 3 = 150 km yol gider. Açıklama : Bir saatte 50 km hızla gitmek

Detaylı

İ İ Ü İ İ İ İ

İ İ Ü İ İ İ İ İ İ Ü İ İ İ İ İ İ Ü Ü Ö Ü Ö Ş Ö Ş Ğ Ç Ş Ğ Ç Ş Ü Ü Ş Ü Ü Ö Ü Ü Ğ İ İ Ü Ü İ İ Ş Ü ÜŞ Ü Ü Ç Ü Ü İ Ş Ü İ İ İ İ İ Ş Ü İ Ö Ş İ İ Ü Ü Ü Ş Ğ Ü Ü Ş Ü Ğ Ğ Ö Ç Ü Ç Ü Ö Ü Ü İ Ü Ş İ Ü Ö Ü Ü Ü Ü Ü İ İ Ş Ü Ç Ü Ş Ü İ

Detaylı

ö Ö ğ

ö Ö ğ Ü ö ö ö Ğ ğ Ü Ğ Ğ Ö ğ ö ö ğ «ö Ö ğ Ü Ü Ü Ğ Ö Ö Ü Ğ ğ ö ö Ö ğ ğ ğ ğ ö ğ ğ Ü ğ ğ ğ ö ğ Ü ğ ğ ö ğ ğ ğ ğ Ü Ü ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ö ğ ğ Ö ö ğ ğ ö ğ ğ ö» ğ ö ğ ğ ğ ğ ö ğ ğ ö ö ö ö ğ Ö ğ Ğ ğ ö

Detaylı

Ü Ü Ğ Ü Ğ Ü «Ğ Ğ» Ü

Ü Ü Ğ Ü Ğ Ü «Ğ Ğ» Ü Ü Ü Ğ Ü Ğ Ü «Ğ Ğ» Ü ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü Ü ğ ğ ğ ğ ğ ğ Ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ

Detaylı

Ğ ç ğ ç ç ğ ç ğ ç ç ğ ç ğ ğ ç ç ğ ç ç ğ ç ç ç ğ ç ç ğ ç ç ç İ ğ ğ ğ ç ğ ğ ç ğ ğ ğ ğ ğ ç ç ç ç ğ ç ğ ç ç ğ ğ ç ç ç ğ ğ ç ğ ğ ç ç ç ç İ ğ ç ğ ç ğ ç ç ğ

Ğ ç ğ ç ç ğ ç ğ ç ç ğ ç ğ ğ ç ç ğ ç ç ğ ç ç ç ğ ç ç ğ ç ç ç İ ğ ğ ğ ç ğ ğ ç ğ ğ ğ ğ ğ ç ç ç ç ğ ç ğ ç ç ğ ğ ç ç ç ğ ğ ç ğ ğ ç ç ç ç İ ğ ç ğ ç ğ ç ç ğ İ Ü İ İ İ ç ğ ğ ç ç Ğ «Ö Ğ ğ ç ğ ç ğ ç ç ğ ğ ç ğ ç ğ ç ğ ç ğ ç ç Ö ğ Ö ğ ç Ğ ç ğ ç ç ğ ç ğ ç ç ğ ç ğ ğ ç ç ğ ç ç ğ ç ç ç ğ ç ç ğ ç ç ç İ ğ ğ ğ ç ğ ğ ç ğ ğ ğ ğ ğ ç ç ç ç ğ ç ğ ç ç ğ ğ ç ç ç ğ ğ ç ğ ğ ç

Detaylı

ö ü ü ö ö ü ö ü ü ğ ö ç ü Ç ğ ç ç ö ü ç ü ö Ş ğ üç ğ ç ü ö ç ç ç ç ğ ç ü ü ç ö ç ü ç ü ö ğ ç ç ö ç ğ ğ ç ç ö ç ö ü ğ ü Ş Ü Ü ö

ö ü ü ö ö ü ö ü ü ğ ö ç ü Ç ğ ç ç ö ü ç ü ö Ş ğ üç ğ ç ü ö ç ç ç ç ğ ç ü ü ç ö ç ü ç ü ö ğ ç ç ö ç ğ ğ ç ç ö ç ö ü ğ ü Ş Ü Ü ö ö Ş ü ö ü ö ğ ç ü Ç ç ü ğ ü ü ğ ç ö ğ ö ç ö ç ü ö ü ö ğ ü ç ö ğ ö ö ğ ğ ğ ç ö ğ ö ç ö «Ö ö ü ğ Ç ğ ğ ç ü ç ö ö ö ğ ç ö ü ü ö ö ü ö ü ü ğ ö ç ü Ç ğ ç ç ö ü ç ü ö Ş ğ üç ğ ç ü ö ç ç ç ç ğ ç ü ü ç ö ç ü ç

Detaylı

ö Ş Ç ö ö ö ö ö Ö ö Ö ö Ç ö ö ö Ö Ğ Ğ

ö Ş Ç ö ö ö ö ö Ö ö Ö ö Ç ö ö ö Ö Ğ Ğ ö ö ö ö ö ö ö ö ö ö ö ö ö Ş Ş ö ö Ş Ç ö ö ö ö ö Ö ö Ö ö Ç ö ö ö Ö Ğ Ğ ö ö Ç Ş Ğ Ç Ş Ş Ğ ö Ü Ğ ö Ü ö ö Ü Ü Ç Ü Ç ö ö ö ö Ç ö ö ö ö Ö Ü Ö ö ö ö ö ö ö ö Ö Ü ö ö ö ö ö ö ö ö ö Ü ö ö Ö ö ö ö ö Ö ö ö ö ö Ş ö

Detaylı

Ş Ğ ş Ğ İ Ğ İ ş ş Ü Ü Ş Ü İ ş ş ş

Ş Ğ ş Ğ İ Ğ İ ş ş Ü Ü Ş Ü İ ş ş ş İ İ Ğ Ğ İ İ ş Ğ Ğ «Ğ İ Ğ ş ş ş ş ş Ç ş ş İ ş Ç ş İ İ İ ş Ş Ğ ş Ğ İ Ğ İ ş ş Ü Ü Ş Ü İ ş ş ş Ğ İ İ Ş Ğ ş ş İ ş ş Ş ş İ İ ş Ğ ş ş ş Ü ş ş ş İ ş Ğ ş ş ş Ş ş İ ş İ İ ş İ İ ş İ İ Ö Ü ş Ö ş ş ş İ ş ş ş ş İ ş

Detaylı

ğ Ü ğ ğ ğ ğ ğ ğ ğ İ ğ ğ ğ İ ğ ğ ğ ğ ğ ğ

ğ Ü ğ ğ ğ ğ ğ ğ ğ İ ğ ğ ğ İ ğ ğ ğ ğ ğ ğ İ İ İ İ İ İ İ İ İ İ Ö İ İ İ Ö İ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ ğ ğ ğ İ ğ ğ ğ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ Ö ğ ğ ğ Ö ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ İ ğ ğ ğ Ö ğ ğ Ç ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ Ç ğ ğ

Detaylı

Ç Ç Ç Ş İ ğ ğ ğ Ç Ş İ ğ Ç ğ ğ ğ Ç ğ Ş ğ ğ ğ Ç ğ Ş ğ ğ ğ ğ İ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ

Ç Ç Ç Ş İ ğ ğ ğ Ç Ş İ ğ Ç ğ ğ ğ Ç ğ Ş ğ ğ ğ Ç ğ Ş ğ ğ ğ ğ İ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ğ İ Ü Ş İ İ Ş İ Ş Ğ Ç Ö İĞİ Ç Ç ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ İ İ ğ ğ ğ ğ ğ ğ Ç Ç Ç Ş İ ğ ğ ğ Ç Ş İ ğ Ç ğ ğ ğ Ç ğ Ş ğ ğ ğ Ç ğ Ş ğ ğ ğ ğ İ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü Ü İŞ İ İ ğ İ

Detaylı

ç ç ç ç ç

ç ç ç ç ç Ğ Ö Ş ç ç ç ç ç ç ç Ç Ş Ü Ş Ü ç ç ç ç Ö ç ç ç ç ç ç ç Ş ç ç Ö ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ö ç ç ç Ş ç ç ç Ö ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç

Detaylı

İĞİ ğ ş. ğ ş ğ ğ ğ Ş İ. ş ş. ş ğ ğ. ş ş ğ ş ş ş. ğ ş ş İ İ İ. ş ş

İĞİ ğ ş. ğ ş ğ ğ ğ Ş İ. ş ş. ş ğ ğ. ş ş ğ ş ş ş. ğ ş ş İ İ İ. ş ş İĞİ ğ ş ğ ş ğ ğ ğ ğ ş ş ş Ş İ İ İ İ ş ş ş ğ ğ ş ş ğ ş ş ş ğ ş ş ş ğ ş ş ş ş ş İ İ İ ş ş ş ğ İ ş ş ş ğ ş ş ğ ş ş ş ğ ğ ş ş ş ğ ş ş ş ğ ğ ş ş ğ ş ğ ğ ğ ş ş ğ ğ ş ş ğ ş ğ ğ ş ğ İ ğ ğ ş ğ ğ ş ş ğ ş ğ ğ ş ş

Detaylı

ö Ç ş ş ö ç ç ş ş ö ö ö Ç ö ş ş ö

ö Ç ş ş ö ç ç ş ş ö ö ö Ç ö ş ş ö Ğ Ğ Ğ Ğ Ğ Ğ ş ş ş ş ş ş ş ş ş ş ş ç ç ş ş ç ö ş ö ö ş ö ö ş ö Ç ş ş ö ç ç ş ş ö ö ö Ç ö ş ş ö Ğ Ğ Ğ Ğ ş Ğ ş ş ş ş ş ş ş ş ş ş ş ş ş ş ş ç ş ç ş ş ç ö ö ş ö ö ş ş ş ş ö ş ş ö Ğ Ğ Ğ Ğ ş Ğ ş Ğ ş ş ş ş ş ş

Detaylı

ü ü ü ü ü ü ü ü

ü ü ü ü ü ü ü ü İ Ğ Ş Ğ Ğ ü»ü üğü ü İ ü ü İ ü üü ü ü ü ü ü ü ü ü ü ü İ Ğ» Ğ Ğ ü ü İ ü Ü İ Ş ü İ Ş ü ü ü ü Ş ü İ Ş ü İ Ş ü ü ü ü İ İ ü ü ü ü ü ü üü ü İ üü ü ü ü ü Ş üü üü ü ü Ş ü Ş ü ü ü İ ü ü İ ü İ İ ü İ ü ü ü ü ü ü ü

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI fonksionunun ekseninin kestiği k noktaların m apsisleri b, c, e dir. u noktalar a b c f()= denkleminin n kök leridir p in eksenini kestiği nokta ise (,p)

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI =f() fonksio - nunun ekseninin kestiği noktaların m apsisleri b, c, e dir. u noktalar a b f()= denkleminin kökleridir n =f() in p eksenini kestiği nokta

Detaylı

İ İ Öğ ş İ İİ ğ ş ş Öğ ş İş Öğ İ ş İ İşİ ğ ç ğ ş ğ

İ İ Öğ ş İ İİ ğ ş ş Öğ ş İş Öğ İ ş İ İşİ ğ ç ğ ş ğ Ö Ğ ş ğ Ğ Ğ ğ İ İ Öğ ş İ İİ ğ ş ş Öğ ş İş Öğ İ ş İ İşİ ğ ç ğ ş ğ İ İ İ İ Ğ İ İ İş İ ş İ İ İ İş İ Öğ ş İ ş İ İ ş ş ç ş ş ş ş ğ ş ğ ş ş Öğ ş ş ğ ğ ş ğ ş ş ğ ğ ş ç ş Öğ ş ş ğ Öğ ş ç ş Öğ ş ş ş ğ ç ş ç ş ş

Detaylı

Ö Ö Ü İ ö Ü Ş ö Ğ Ğ Ğ Ö Ö Ü Ö İ Ö Ç Ğ Ğ ö Ö Ğ Ö Ü Ç Ö ÜĞÜ Ö ÜĞÜ Ü Ğ ö İ ö Ğ Ğ Ğ ö Ü Ü Ğ Ğ ö Ü Ğ ö Ü ö ö Ü Ö ö Ü ö ĞÜ ö ÜĞÜ Ü Ü Ö ö ö ö Ğ öi Ğ Ç ö Ö Ü

Ö Ö Ü İ ö Ü Ş ö Ğ Ğ Ğ Ö Ö Ü Ö İ Ö Ç Ğ Ğ ö Ö Ğ Ö Ü Ç Ö ÜĞÜ Ö ÜĞÜ Ü Ğ ö İ ö Ğ Ğ Ğ ö Ü Ü Ğ Ğ ö Ü Ğ ö Ü ö ö Ü Ö ö Ü ö ĞÜ ö ÜĞÜ Ü Ü Ö ö ö ö Ğ öi Ğ Ç ö Ö Ü Ğ Ğ Ğ Ğ İ Ğ Ş Ğ Ş Ö Ü İ ğ İ Ö ö Ğ Ş İ Ş Ö Ü Ş Ş Ü Ö Ş Ş ğ Ş İ ğ Ö Ö Ü İ ö Ü Ş ö Ğ Ğ Ğ Ö Ö Ü Ö İ Ö Ç Ğ Ğ ö Ö Ğ Ö Ü Ç Ö ÜĞÜ Ö ÜĞÜ Ü Ğ ö İ ö Ğ Ğ Ğ ö Ü Ü Ğ Ğ ö Ü Ğ ö Ü ö ö Ü Ö ö Ü ö ĞÜ ö ÜĞÜ Ü Ü Ö ö ö ö Ğ

Detaylı

H A S T A N E E N F E K S İY O N L A R IN I Ö NLEM E. E L İF C O Ş K U N E n fe k s iy o n K o n tr o l H e m ş ir e s i

H A S T A N E E N F E K S İY O N L A R IN I Ö NLEM E. E L İF C O Ş K U N E n fe k s iy o n K o n tr o l H e m ş ir e s i H A S T A N E E N F E K S İY O N L A R IN I Ö NLEM E E L İF C O Ş K U N E n fe k s iy o n K o n tr o l H e m ş ir e s i H ip o k r a t (M.Ö. 4 6 0-3 7 0 ) Ö n c e lik le z a r a r v e r m e 2 F lo r e

Detaylı

ü ç ü ü ü ö Ö ç

ü ç ü ü ü ö Ö ç İ Ç Ü ö üğü ö üğü Ü ü öğ ü ç Ç ü ü ğ ö ö ç ç ğ Ğ İ İ ç ç ç Ü ç ö üğü ö ü ü ç ç ğ ü ğ ç ğ ü ü ü Ç ü ğ Ç Ş ü ü ü ü ü Ç ö Ş ö Ö ğ ö ü Ç ğ ç Ü Ç ğ Ç ğ İ Ü Ü İ ü ç ü ü ü ö Ö ç ğ ü ü ğ ğ ö ğ ö ü ğ ü ü ü ü ü

Detaylı

Ğ Ğ Ü Ş «ğ ğ ğ ç ü ü ğ ç ü ü ü ğ ç Ş ç ç ü ü ü ü ü ü ü ü Ü Ü ü ğ Ş ç ü ü ü ü ğ ç ü ğ ü ü ü Ş ç ğ ğ ç ç ğ ü ü ü ç ğ ğ ü ü ü ü ç ü ç ü ü ü ü ü ü ü ğ ğ ç

Ğ Ğ Ü Ş «ğ ğ ğ ç ü ü ğ ç ü ü ü ğ ç Ş ç ç ü ü ü ü ü ü ü ü Ü Ü ü ğ Ş ç ü ü ü ü ğ ç ü ğ ü ü ü Ş ç ğ ğ ç ç ğ ü ü ü ç ğ ğ ü ü ü ü ç ü ç ü ü ü ü ü ü ü ğ ğ ç Ğ ĞÜ Ü Ş ü ğ ğ ç ğ ğ ü ü ç ç ğ ç Ş Ö Ş Ş ç ü ç ğ Ö Ş ğ ğ ü ç ü ü ğ ğ ğ ç ç ğ ğ ü ü ü üü ğ ç ç ü ç ğ Ğ Ğ Ü Ş «ğ ğ ğ ç ü ü ğ ç ü ü ü ğ ç Ş ç ç ü ü ü ü ü ü ü ü Ü Ü ü ğ Ş ç ü ü ü ü ğ ç ü ğ ü ü ü Ş ç ğ ğ ç

Detaylı

PROBLEMLER DEĞERLENDİRME 1 (SAYI - KESİR) 3 sini sonra. ini ödüyor. 7. Bir kişi borcunun önce

PROBLEMLER DEĞERLENDİRME 1 (SAYI - KESİR) 3 sini sonra. ini ödüyor. 7. Bir kişi borcunun önce DEĞERLENDİRME (SAYI - KESİR) Toplamları 55 olan iki sayıdan, kuçüğünün üç katı ile büyüğünün iki katı eşittir. Bu iki sayının toplamı kaçtır? Bir grup arkadaş yemeğe gidiyor. Hesap geldiğinde 5 kişinin

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI fonksionunun ek seninin k estiği k nok taların m apsisleri b, c, e dir. u noktalar a b c f()= denk leminin n kök leridir p in eksenini kestiği nokta ise

Detaylı

ÖZEL SERVERGAZİ LİSELERİ

ÖZEL SERVERGAZİ LİSELERİ S R İ M Y ÖZL SRVRGZİ LİSLRİ VI. İ L K Ö Ğ R T İ M OKU L L R I R S I MT M Tİ K YRIŞMSI ÇIKLMLR u sınav çoktan seçmeli 5 ve klasik sorudan oluşmaktadır. Sınav süresi 50 dakikadır. Tavsiye edilen süre (5*=05

Detaylı

29 Ni san 2014 Salı Bİ Rİ NCİ OT URUM

29 Ni san 2014 Salı Bİ Rİ NCİ OT URUM 29 Ni san 2014 Salı Bİ Rİ NCİ OT URUM Açılm a Saati : 1 5. 0 0 BAŞKAN: Başk a n Vek i li Şükra n G ül d al MUMCU KÂTİ P ÜYELER: Fehm i KÜPÇÜ ( Bolu), Mi n e LÖK BEYAZ ( Diyarba k ır ) - -- -- 0 -- -- -

Detaylı

Sistem-atik Membran Kapak Sipariş Takip ve Üretim Takip Sistemi;

Sistem-atik Membran Kapak Sipariş Takip ve Üretim Takip Sistemi; S i s t e m - a t i k M e m b r a n K a p a k S i p a r i T a k i p v e Ü r e t i m T a k i p S i s t e m i ; T ü r k i y e l d e b i r i l k o l a r a k, t a m a m e n m e m b r a n k a p a k ü r e t

Detaylı

ELAZIĞ MESLEKİ EĞİTİM MERKEZİ MÜDÜRLÜĞÜ KALFALIK SORU BANKASI MATEMATİK

ELAZIĞ MESLEKİ EĞİTİM MERKEZİ MÜDÜRLÜĞÜ KALFALIK SORU BANKASI MATEMATİK MATEMATİK 1-)Ekmeğin tanesi 75 krş.tur.2ekmek alana 1 ekmek bedava olduğuna göre 30 ekmek için kaç tl ödenir? a)22,5 tl b)30 tl c)15tl d)10 tl 2-)3 kardeşin yaşları toplamı 45 tir.10 yıl sonra yaşları

Detaylı

ç ç ç ç ç İ ç ç ç ç ç ç

ç ç ç ç ç İ ç ç ç ç ç ç İ Ğİ Ş «Ü İ Ç Ç İ İ Ş İ ç İ ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç İ ç ç ç ç ç ç ç ç Ü Ö ç ç İ ç ç ç ç ç İ İ ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ç ç ç ç ç ç ç ç İç ç ç ç ç

Detaylı

Ş İ ç İ İ Ş ç ç ç ç Ö İ ç İ Ö İ ç ğ ç ç ç ç ç ğ Ö ç ğ ç ç ç ğ ç ç ç ğ ç ç ğ ğ ç ç ç ğ ç ğ ğ ç İ Ç İ ğ ç ç ç ğ Ç ğ ç ç ç ğ Ö ğ İğ ç ğ ğ ç ğ ğ ğ ğ ç ğ ğ ğ ğ ğ ğ ğ ğ ç ğ ç ç ç ç ç ğ ç ç ç ğ ç ç ğ ç ğ ğ ğ

Detaylı

üç Ç Ş İ ü Ş ü Ş İ ş ü İ ç ş ç İ Ç Ğ ş ğ ğ İ İ ğ ğ ş ö ç ş ş ş ü ü ş ç ş İç ç ğ ş ö ç ğ ş ü Ü ü ü ü ü ş ü ğ ş ğ ö ü ş ş ç ş ğ ş Ç ğ çğ ç ş İç ü İ ü ğ

üç Ç Ş İ ü Ş ü Ş İ ş ü İ ç ş ç İ Ç Ğ ş ğ ğ İ İ ğ ğ ş ö ç ş ş ş ü ü ş ç ş İç ç ğ ş ö ç ğ ş ü Ü ü ü ü ü ş ü ğ ş ğ ö ü ş ş ç ş ğ ş Ç ğ çğ ç ş İç ü İ ü ğ Ğ ç ş ç Ç ğ ö üğü ü ü ü ü ğ ğ İş İ ğ ş ş ş ü ü ş ç ş İç ç ğ ğ ş ç ş ç ş ü ş ç ç ğ ş Ğ ş üç Ç Ş İ ü Ş ü Ş İ ş ü İ ç ş ç İ Ç Ğ ş ğ ğ İ İ ğ ğ ş ö ç ş ş ş ü ü ş ç ş İç ç ğ ş ö ç ğ ş ü Ü ü ü ü ü ş ü ğ ş ğ ö

Detaylı

MATEMATÝK GEOMETRÝ DENEMELERÝ

MATEMATÝK GEOMETRÝ DENEMELERÝ ENEME MTEMTÝK GEOMETRÝ ENEMELERÝ 1. ( ) 1, 3 9 : 9 4 6 0,5 1 4. K dğal sayısının 36 ile bölümünden kalan 14 tür. işleminin snucu kaçtır? 1 ) 3 ) 1 ) ) 1 E) 3 3 una göre, aşağıdakilerden hangisi 4 ile tam

Detaylı

M G - M A T E M A T İ K D E R S N O T L A R I Sayfa 1

M G - M A T E M A T İ K D E R S N O T L A R I Sayfa 1 A. SAYI PROBLEMLERİ ÇÖZME STRATEJİSİ Bir soruyu çözmek için verilen zamanın yarısından fazlasını soruyu anlamaya, kalan zamanı da soruyu çözmeye ayırmalısınız. Buna göre, soruları çözerken; 1) Soru, verilenler

Detaylı

ç ç ç ç ç Ç Ç Ü ç

ç ç ç ç ç Ç Ç Ü ç Ç ç Ğ ««ç Ğ Ç ç Ğ ç Ü ç Ç Ğ Ğ Ç Ç ç Ü ç ç ç ç ç ç ç Ç Ç Ü ç ç Ç Ü Ç Ü Ğ ç Ç Ç Ğ Ç Ç Ğ ç Ç Ğ Ç ç Ç Ü ç Ç Ü Ç Ü ç ç Ç Ü ç ç Ü Ü ç ç ç ç ç ç ç ç ç Ç Ü ç ç ç ç ç ç ç ç Ç ç ç ç ç ç ç «ç ç ç ç Ü ç ç ç ç ç ç

Detaylı

Ü ğ ü ü İç ç ç ü ü ü üş ç ş ş ğ ü ü ş Ü ü ş ç Ç ğ Ü ç Ü İç ü Öğ ü İ ğ ş ç ç ü ü ü ü ğ Öğ ö ğ ğ Ş ÜÇ ğ ü ü ü ü

Ü ğ ü ü İç ç ç ü ü ü üş ç ş ş ğ ü ü ş Ü ü ş ç Ç ğ Ü ç Ü İç ü Öğ ü İ ğ ş ç ç ü ü ü ü ğ Öğ ö ğ ğ Ş ÜÇ ğ ü ü ü ü üş Ğ ü ü Ğ İ İ ü ç ü İ İ Ş ç Ü ş Ğ İ ş İ Ü ğ ü ü İç ç ç ü ü ü üş ç ş ş ğ ü ü ş Ü ü ş ç Ç ğ Ü ç Ü İç ü Öğ ü İ ğ ş ç ç ü ü ü ü ğ Öğ ö ğ ğ Ş ÜÇ ğ ü ü ü ü ğ ö ü ö ğ ğ ö ü ç ç ü ç ö İ ğ ü ğ ş ş ğ Ş ç ş ö ü

Detaylı

Ğ İ ğ ğ İ ğ ü üğü ü İ ğ İ ö üü ü ö ğ ğ ğ İ İ ö Ş ü ü üğ ö ö ğ ğ ğ ğ ğ ğ ö ç ç ğ ü ü ğ ğ ü ü Ş Ş Çö ü Çö ü ü İ

Ğ İ ğ ğ İ ğ ü üğü ü İ ğ İ ö üü ü ö ğ ğ ğ İ İ ö Ş ü ü üğ ö ö ğ ğ ğ ğ ğ ğ ö ç ç ğ ü ü ğ ğ ü ü Ş Ş Çö ü Çö ü ü İ İ İ İ Ş Ğ ğ Ş İ İ ç ü ç ö ç İ ğ ğ İ İ ö ç İ ü ç ü ğ ğ ğ ç ö ğ ğ ç ü ğ ö ç ç ğ Ş ö ü ü ü ü ğ ö ü ü ü ğ ğ ö ç İ ğ ğ ğ Ş ğ ö ğ Ş ğ ö ç İ ğ ğ ç ü ğ ö ü ü ü İ ö ü ü ö ü Ğ İ ğ ğ İ ğ ü üğü ü İ ğ İ ö üü ü ö ğ

Detaylı

ç İ Ü Ü Ü» üç ü İ

ç İ Ü Ü Ü» üç ü İ İ Ç Ü üğü üğü ü İ ğ ü ç Ü ü ü Ü ü Ö ç Ü Ç ğ Ç ç ğ ç Ü Ü Ü ğ ü ç ğ ü ç ç Ü ç üğü ü ü ç ü ğ ü ğ ç ü ğ Ç ü ü ç ü ç Ç Ş ü ü Ö Ş Ö ğ Ç ğ Ç Ü Ç ğ Ç ğ Ü Ü ç İ Ü Ü Ü» üç ü İ ğ İ ğ ü ğ Ç ç ç ç ğ ğ ü ü ğ üü ü ü

Detaylı

İŞÇİ-HAVUZ PROBLEMLERİ. Bu bağıntı, .t 1 biçiminde de ifade edilebilir. Örnek: Çözüm: 1 sini, Selim işin tamamını 24 günde bitirebiliyorsa 1

İŞÇİ-HAVUZ PROBLEMLERİ. Bu bağıntı, .t 1 biçiminde de ifade edilebilir. Örnek: Çözüm: 1 sini, Selim işin tamamını 24 günde bitirebiliyorsa 1 İŞÇİ-HAVUZ PROBLEMLERİ Burada inceleyeceğimiz işçi problemleri, orantı konusunda ele aldığımız soru modellerinden farklıdır. Burada ele alacağımız, birlikte iş yapma problemleri dir. İki işçinin bir işi

Detaylı

MARMARĠS ULUSLARARASI YAT KULÜBÜ ERGO MIYC KIġ TROFESĠ YAT YARIġLARI

MARMARĠS ULUSLARARASI YAT KULÜBÜ ERGO MIYC KIġ TROFESĠ YAT YARIġLARI MARMARĠS ULUSLARARASI YAT KULÜBÜ ERGO MIYC KIġ TROFESĠ YAT YARIġLARI 6. Ayak 13-14 MAYIS 2017 MARMARĠS MUĞLA YARIġ ĠLANI 1. ORGANĠ ASYON OTORĠTESĠ 1.1. l n o n z yon o o I 1.2. Of I C, m l O h n y n po

Detaylı

KPSS 2009 GY-(31) YAPRAK TEST SORU KONU ANLATIM SAYFA SORU x olduğuna göre, x kaçtır? A) 5 B) 4 C) 3 D) 2 E) 1

KPSS 2009 GY-(31) YAPRAK TEST SORU KONU ANLATIM SAYFA SORU x olduğuna göre, x kaçtır? A) 5 B) 4 C) 3 D) 2 E) 1 KPSS 009 GY-(31) YAPRAK TEST-17 19. SORU 31. x 1 3 9 1 x 1 7 9 olduğuna göre, x kaçtır? A) 3 B) C) 1 19. x 6 x 1 3 9 olduğuna göre, x kaçtır? A) 5 B) 4 C) 3 D) E) 1 D) 1 E) KONU ANLATIM SAYFA 194 15. SORU

Detaylı

TÜRKİYE BÜYÜK MİLLET MECLİSİ T U T A N A K D E R G İ S İ. 15 inci Birleşim 1 Kasım 2012 Perşembe

TÜRKİYE BÜYÜK MİLLET MECLİSİ T U T A N A K D E R G İ S İ. 15 inci Birleşim 1 Kasım 2012 Perşembe TÜRKİYE BÜYÜK MİLLET MECLİSİ T U T A N A K D E R G İ S İ 15 inci Birleşim 1 Kasım 2012 Perşembe (TBMM Tutanak Hizmetleri Başkanlığı tarafından hazırlanan bu Tutanak Dergisi nde yer alan ve kâtip üyeler

Detaylı

Ğ ş ö ş ç ç İ ş İ ş Ş ç ş ş ş İ İ İ İ ç ğ ş ç ö ç ğ ş ö ö ç ç ğ ş ö ö ş ş ğ ğ ş ç ğ ğ ç ğ ş ç ş ç ç ş ğ ğ çö ç ş ş ş ö ğ ğ ş ş ö

Ğ ş ö ş ç ç İ ş İ ş Ş ç ş ş ş İ İ İ İ ç ğ ş ç ö ç ğ ş ö ö ç ç ğ ş ö ö ş ş ğ ğ ş ç ğ ğ ç ğ ş ç ş ç ç ş ğ ğ çö ç ş ş ş ö ğ ğ ş ş ö Ğ İ İĞİ Ğ Ğ Ğ Ğ Ş Ö Ü Ş ş ğ ç Ç ş ğ ş İ İ ş Ş Ş İ» İ İ Ğ ş ö ş ç ç İ ş İ ş Ş ç ş ş ş İ İ İ İ ç ğ ş ç ö ç ğ ş ö ö ç ç ğ ş ö ö ş ş ğ ğ ş ç ğ ğ ç ğ ş ç ş ç ç ş ğ ğ çö ç ş ş ş ö ğ ğ ş ş ö ğ ç ç ç ç ş ş ş ğ

Detaylı

ORAN-ORANTI TEST 1. 1) Asağıdaki şekillerde mavi bölgelerin kırmızı bölgelere oranını bulunuz. a) b) c)

ORAN-ORANTI TEST 1. 1) Asağıdaki şekillerde mavi bölgelerin kırmızı bölgelere oranını bulunuz. a) b) c) 7BÖLÜM ORAN - ORANTI ORAN-ORANTI TEST 1 1) Asağıdaki şekillerde mavi bölgelerin kırmızı bölgelere oranını bulunuz. a) b) c) ) Aşağıda okunuşları verilen oranları yazınız. a) 16 nın 14 e oranı b) 6 nın

Detaylı

Ö Ö Ö ö İ Ö ö Ü ö ö Ö ö İ İ ö öö Ö Ö Ş Ö ö ö Ö Ö» Ö Ö Ö Ş Ö Ö Ö Ö Ö Ö Ö ö Ö ö Ö ö ö ö ö ö ö ö Ğ ö ö ö Ö ö Ö ö» ö Ö Ö ö ö İ ö ö ö Ş ö Ö ö ö ö» Ö Ö ö ö ö ö ö Ö ö ö ö ö ö Ö Ş ö ö ö İ Ö Ş ö Ö ö ö ö ö ö ö İ

Detaylı

KARTEZYEN ÇARPIM VE BAĞINTI

KARTEZYEN ÇARPIM VE BAĞINTI KRTEZYEN ÇRPIM VE BĞINTI 3. Bölüm TEST -2 1. β={(x,y):2x+y=8,x,y N} şeklinde tanımlı β bağıntısı kaç elemanlıdır? ) 4 B) 5 C) 6 D) 7 E) 8 6. R'de bağıntısı yansıyan ise a.b kaçtır? ) 18 B) 9 C) 2 D) 18

Detaylı

İ ğ ğ çö Ç ç ö ğ ğ çö ç ö ö Ö ğ ö ğ ç ğ ç Ü İ İ Üİ ö ğ ö ö ğ öğ ğ ğ İ ğ ç ğ ö İ ğ öğ öğ öğ öğ ç ğ ğ Ü

İ ğ ğ çö Ç ç ö ğ ğ çö ç ö ö Ö ğ ö ğ ç ğ ç Ü İ İ Üİ ö ğ ö ö ğ öğ ğ ğ İ ğ ç ğ ö İ ğ öğ öğ öğ öğ ç ğ ğ Ü ö ç ö ç ç ç ç ö ğ ö ç ç İ ğ İ ğ ö İ ğ ö İ İ ğ ğ çö Ç ç ö ğ ğ çö ç ö ö Ö ğ ö ğ ç ğ ç Ü İ İ Üİ ö ğ ö ö ğ öğ ğ ğ İ ğ ç ğ ö İ ğ öğ öğ öğ öğ ç ğ ğ Ü ğ Ö ğ öğ ğ ğ ğ İ ğ ö ö Öğ ö ğ öğ ö Ö öğ ğ ğ ğ öğ ö İ ç ç

Detaylı

HAREKET PROBLEMLERİ Test -1

HAREKET PROBLEMLERİ Test -1 HREKET PROLEMLERİ Test -. ir araç saatte 60 km hızla saatte kaç km yol alabilir? ) 560 ) 80 ) 0 60 00 5. ir araç şehrinden şehrine saatte 60 km hızla 0 dakikada gidiyor. una göre, ile şehirleri arasındaki

Detaylı

ÖZEL EGE LİSESİ 10. MATEMATİK YARIŞMASI 7. SINIF TEST SORULARI

ÖZEL EGE LİSESİ 10. MATEMATİK YARIŞMASI 7. SINIF TEST SORULARI 4. + :. 4 7 7 7 =? + : 6 4. x, y, z, a, b, c Z olmak üzere x+a = y+b = z+c= - bağıntısı vardır. x,y,z sayılarının aritmetik ortalaması olduğuna göre, a, b, c sayılarının aritmetik ortalaması kaçtır? A)

Detaylı

MATEMATÝK GEOMETRÝ DENEMELERÝ

MATEMATÝK GEOMETRÝ DENEMELERÝ NM MTMTÝK GOMTRÝ NMLRÝ. 0,4 : 0, 0, 5 5 işleminin sonucu kaçtır? 4. = 4+ 3 5+ 4 6 +... + 3 toplamında her bir terimde birinci çarpan artırılıp ikinci çarpan azaltılırsa kaç artar? ) ) ) ) ) 3 5 ) 4 ) )

Detaylı

İ Ç Ü ş ö üğü ü İ ç Ş ş ö ş Ö Ş Ö ğ ş ö ü ç ü Ş ğ Ç Ü ç ğ ş Ç ğ Ü

İ Ç Ü ş ö üğü ü İ ç Ş ş ö ş Ö Ş Ö ğ ş ö ü ç ü Ş ğ Ç Ü ç ğ ş Ç ğ Ü İ Ç Ü ş ö üğü ş ş ö üğü ğ ü ü öğ ü ü ü ü ü Ü ş ö ş ç ç ş ş ğ Ğ Ş ç ş ğ ğ ğ ü ğ ç Ü ç ş ö üğü ö ü ü ç ç ş ş ğ ü ş ğ ş ç ş ğ ş ü ü ç ü ş ü ğ ç ş ü ü İ Ç Ü ş ö üğü ü İ ç Ş ş ö ş Ö Ş Ö ğ ş ö ü ç ü Ş ğ Ç Ü

Detaylı

amaçlı olarakta sürekli! olarak ğüncellenmektedir. Bu amaçla Facebook Kurumsal Sayfamıza ana sitemizden daha hızlı ulaşabilir.

amaçlı olarakta sürekli! olarak ğüncellenmektedir. Bu amaçla Facebook Kurumsal Sayfamıza ana sitemizden daha hızlı ulaşabilir. WEB SİTELERİ www.kabala.info.tr Bnei Baruch Kabala Eğitim Merkezinin 2004 yılından beri Türkçe olarak yayında olan ana sitesidir. Kabala hakkında temel makalelerin ve bir çok çalışma metinlerinin bulunduğu

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 10.MATEMATİK YARIŞMASI 7. SINIFLAR FİNAL SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 10.MATEMATİK YARIŞMASI 7. SINIFLAR FİNAL SORULARI 7. SINIFLAR FİNAL SORULARI ) A 5 7 9 0 4 6 8 5 7 9 0 şeklinde 55 basamaklı A sayısı veriliyor. Buna göre, baştan 8. rakam nedir? ) x, y, z Z olmak üzere;, ve 8 sayıları sırasıyla; x.y, y.z ve x.z sayılarıyla

Detaylı

Ğ ç «Ğ ç Ö Ö Ö ş ö ö ç Ö Ö ö ş ö ş Ş Ö Ö ç ş ş ç Ş ş

Ğ ç «Ğ ç Ö Ö Ö ş ö ö ç Ö Ö ö ş ö ş Ş Ö Ö ç ş ş ç Ş ş ö ş Ğ ç ç Ü Ü ÜĞÜ Ö Ö ş ö ö ç Ö Ö ö ş ö ş ç Ö Ö Ğ Ö ş ç ş Ğ ç «Ğ ç Ö Ö Ö ş ö ö ç Ö Ö ö ş ö ş Ş Ö Ö ç ş ş ç Ş ş Ğ Ğ Ö Ö ç Ğ Ö ş ö Ö ş ö ç ş ö ö ş ş ö ö ş ş ç ç ş ö ö ö ç ş ş ö ö ş ç ş ş ç ç ş Ö ö ş Ö ş

Detaylı

1) BU TESTTE TEMEL MATEMATİK VE GEOMETRİ OLMAK ÜZERE, TOPLAM 40 ADET SORU VARDIR. 2) BU TESTİN CEVAPLANMASI İÇİN TAVSİYE EDİLEN SÜRE 40 DAKİKADIR.

1) BU TESTTE TEMEL MATEMATİK VE GEOMETRİ OLMAK ÜZERE, TOPLAM 40 ADET SORU VARDIR. 2) BU TESTİN CEVAPLANMASI İÇİN TAVSİYE EDİLEN SÜRE 40 DAKİKADIR. ) U ESE EEL Eİ VE GEOERİ OL ÜERE, OPL 40 DE SORU VRDIR. ) U ESİN CEVPLNSI İÇİN VSİYE EDİLEN SÜRE 40 DİDIR. ) -(3-x)+4-x=3x+ denkleminin çözüm aşağıdakilerden hangisidir? ) {} ) {} C) {-} D) {0} E) {-,0}

Detaylı

A)22 B)24 C)zo D)za E)so

A)22 B)24 C)zo D)za E)so üçrırın çıorty 1 1. bir üçgen _...-\ _,.-..\ m() : m() Io1 = 2.. Ia1 = 4.. I + ; = 9.1n 4. 6 üçgeninde [] dı açıortay n1 = 4., IR1 = 6.. l = 12 m 2 x Yukarıdakiverilere göre, = x kaç m dir? )ı )4 )5 )6

Detaylı

Öğrenci Seçme Sınavı (Öss) / 15 Nisan Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 15 Nisan Matematik Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 5 Nisan 990 Matematik Soruları ve Çözümleri. 0,0703.(0,3 0,) işleminin sonucu kaçtır? A) 0,00703 B) 0,0703 C) 0,703 D) 0,0703 E) 0,00703 Çözüm 0,0703.(0,3 0,) 0,0703.0, 0,00703.

Detaylı

MATEMATİK SORULARI 1) 66 ile 6 doğal sayıları arasında kaç tane doğal sayı vardır? a) 55 b) 56 c) 59 d) 60 2) sayısında 3 rakamlarının basamak

MATEMATİK SORULARI 1) 66 ile 6 doğal sayıları arasında kaç tane doğal sayı vardır? a) 55 b) 56 c) 59 d) 60 2) sayısında 3 rakamlarının basamak MATEMATİK SORULARI ) 66 ile 6 doğal sayıları arasında kaç tane doğal sayı vardır? a) b) 6 c) 9 d) 60 2) 2 sayısında rakamlarının basamak değerleri toplamı kaçtır? a) 00 b)2 c)000 d)00000 ) 208 sayısının

Detaylı

Ü Ğ Ğ Ğ Ğ Ğ ş Ğ Ğ Ö Ğ ö ö ş ş ö ş Ğ Ğ Ğ Ğ ş ö ş ş ö ş ş ç ş ş ç ş ş ş ş ç ö ö ö ş ö ö ş ç ç ö ö ç Ç Ç ş ş Ğ ç ş ş ş ş ç ş ö ş ç ş ö ş ş ö ç ş ş ö Ö ç ş ö ş ö Ö ç ş ş ş ç ş ö ş ş ç ç ö ö ç ş Ö ö ş ö ö ş

Detaylı