MEH535 Örüntü Tanıma. 6. Boyut Azaltımı (Dimensionality Reduction)

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "MEH535 Örüntü Tanıma. 6. Boyut Azaltımı (Dimensionality Reduction)"

Transkript

1 MEH535 Örüntü anıma 6. Boyut Azaltımı (Dimensionality Reduction) Doç.Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Bölümü web: E-posta: Neden Boyut Azaltımı? Daha düşük hesapsal yük Daha az parametre/uzay karmaşıklığı k<<d Sadece gerekli öznitelikleri alabilme olanağı Küçük veri kümelerinde dafha gürbüz çalışan daha basit model oluşturabilme Daha açıklanabilir yapılar Verileri B ve 3B olarak görselleştirebilme (yapıları, grupları, aykırı örnekleri görebilme)

2 Boyut Azaltımı Boyutluluk belası (curse of dimensionality) Boyut azaltımı Öznitelik seçimi/çıkartımı (feature selection/extraction) İşaret temsili/sınıflandırma için emel Bileşenler Analizi (Principal Component Analysis-PCA) Doğrusal Ayırtaç Analizi (Linear Discriminant Analysis-LDA) 3 Deyim 96 de Bellman tarafından bulunmuştur. Çok değişkenli veri analizinde boyutluluğun artması problem oluşturmaktadır. Örneğin; Boyutluluk Belası Bir kişinin araç alırken aradığı kriterlerin çok fazla olması piyasada seçebileceği araç bulamamasına neden olabilir. En önemli kriterleri belirlemek! 4

3 Boyutluluk Belası emel örnek: Boyut/3 sınıf: Başarımı arttırmak için boyuta geçildiğinde: Kutudaki yoğunluk (N-örnek/kutu) sabit Örnek sayısı sabit (Kutulara seyrek örnek düşüyor) 5 Boyutluluk Belası Sabit örnek sayısında 3 boyuta geçildiğinde: Yoğunluğu sabit tutmak için örnek sayısı = N D olmalı Kutu sayısı = 7 Yoğunluk N=3 sabit seçildiğinde örnek sayısı = 8 Örnek sayısı sabit 9 iken 3B saçılım grafiği neredeyse boş 6 3

4 Boyutluluk Belası Pratikte, verilen bir veri kümesinde, sınıflandırıcının başarımının tepe noktaya ulaştığı bir öznitelik sayısı mevcuttur Fazla öznitelik kullanımı başarım düşüşü Boyutluluk sorunu ile mücadele için: Önsel bilgi kullanılabilir (değerli öznitelikler hk) Boyut azaltımı gerçekleştirilebilir 7 Boyut Azaltımı Boyut azaltımında ayrı yaklaşım mevcuttur: Öznitelik çıkartımı (feature extraction) Yeni özniteliklere sahip k<<d boyutlu yeni bir alt küme oluşturma Alt uzay seçme algoritmaları Öznitelik seçimi (feature selection) Mevcut özniteliklerden k<<d adedi seçilerek yeni bir alt küme oluşturma PCA, LDA 8 4

5 Boyut Azaltımı 9 Öznitelik Seçimi D özniteliğin d altkümesi oluşmaktadır (örn; mantıksal AND operatörünü öğrenme) İleri Arama (forward search): Her bir adımda en iyi özniteliği ekle Set of features F initially Ø. At each iteration, find the best new feature j = argmin i E ( F x i ) Add x j to F if E ( F x j ) < E ( F ) epe tırmanma (Hill-climbing O(d )) algoritması Geri Arama (backward search): üm öznitelikler ile başla ve mümkünse her adımda bir öznitelik azalt Kayan Arama (Floating search (Add k, remove l)) 0 5

6 Öznitelik Çıkartımı İşaret temsili: Bir alt uzayda işareti verimli şekilde temsil edebilme Sınıflandırma: Bir alt uzayda sınıf ayrımsama gücünü arttırma emel Bileşenler Analizi (PCA) x izdüşürüldüğünde bilgi kaybının en küçüklendiği bir düşük boyutlu uzay bul x in w üzerindeki izdüşümü: z = w x Var(z) nin en büyükleneceği w yı bul Var(z) = Var(w x) = E[(w x w μ) ] = E[(w x w μ)(w x w μ)] = E[w (x μ)(x μ) w] = w E[(x μ)(x μ) ]w = w w where Var(x)= E[(x μ)(x μ) ] = 6

7 emel Bileşenler Analizi Var(z) yi w = kısıtıyla en büyükle: w = αw, w, nın bir öz vektörü Var(z) yi en büyüklemek için, en büyük özdeğere karşılık gelen vektörü seç. emel bileşen: En büyük Var(z ), kısıt: w = ve w e dik w w w = α w max w w w w max w w w w w w 0, w, nın diğer bir öz vektörü 3 z = W (x m) W nın sütunları nın özvektörleri, m: örnek ortalaması emel Bileşenler Analizi Verinin ortalamasını merkeze taşı ve eksenleri döndür! 4 7

8 emel Bileşenler Analizi k boyut kararı nasıl verilmeli? Değişintinin oranı (PoV): k Not: özdeğerler genliklerine göre büyükten küçüğe sıralı Genel kullanım: PoV>0.9 olduğunda dur k d 5 emel Bileşenler Analizi 6 8

9 PCA Örnek 7 PCA Örnek 8 9

10 Faktör Analizi x i doğrusal kombinasyon ile oluşturmak için az sayıda z faktörü bul: x i µ i = v i z + v i z v ik z k + ε i z j, j =,...,k : gizli faktörler (latent factors) ve E[ z j ]=0, Var(z j )=, Cov(z i,, z j )=0, i j, ε i : gürültü kaynakları E[ ε i ]= ψ i, Cov(ε i, ε j ) =0, i j, Cov(ε i, z j ) =0 v ij ler faktör yüklemeleri (factor loadings) 9 PCA - FA Faktör Analizi PCA x z z = W (x µ) FA z x x µ = Vz + ε 0 0

11 Faktör Analizi z j ler, x i üretmek için gerilir, döndürülür ve ötelenir: Doğrusal Ayırtaç Analizi (LDA) x izdüşürüldüğünde sınıfların iyi şekilde ayrımsandığı bir boyut azaltımı gerçekleştir Aşağıdaki ifadeyi en büyükleyen bir w bul: J m w m t s s t m wxr t t r t t wx t s m r t

12 Doğrusal Ayırtaç Analizi Sınıflar arası saçılım (between scatter): m m w m w m w m m m m w w SBw where SB m m m m Sınıf içi saçılım (within scatter): s, t t wx t t t t x m x m r s m r t S t t t r S w x m x m w w w t s w S w where S S S W W 3 Fisher Doğrusal Ayırtacı Aşağıdaki ifadeyi en büyükleyen w yı bul: LDA çözümü: Parametrik çözüm: J w w SBw w m m w SWw w SWw w cs m m w W μ μ x N, p C i ~ μ, i 4

13 Doğrusal Ayırtaç Analizi K> sınıf için: Sınıflar arası saçılım: K t t t r x m x m t S S S W i i i i i i Sınıf içi saçılım: K K S N m m m m, m m B i i i i i K i Aşağıdaki ifadeyi en büyükleyen W yı bul: J B W S W W W S - W S B in en büyük özdeğerleri W S W En büyük rank: K- 5 LDA Örnek 6 3

14 PCA - LDA Karşılaştırma 7 4

MEH535 Örüntü Tanıma

MEH535 Örüntü Tanıma MEH535 Örüntü Tanıma 6 Boyut Azaltımı (Dimensionality Reduction) DoçDr M Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Bölümü web: http://akademikpersonelkocaeliedutr/kemalg/ Eposta: kemalg@kocaeliedutr

Detaylı

MEH535 Örüntü Tanıma. Karar Teorisi

MEH535 Örüntü Tanıma. Karar Teorisi MEH535 Örüntü Tanıma 2. Karar Teorisi Doç.Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Bölümü web: http://akademikpersonel.kocaeli.edu.tr/kemalg/ E-posta: kemalg@kocaeli.edu.tr Karar Teorisi

Detaylı

Geliştirilmiş Fisher Ayraç Kriteri Kullanarak Hiperspektral Görüntülerde Sınıflandırma

Geliştirilmiş Fisher Ayraç Kriteri Kullanarak Hiperspektral Görüntülerde Sınıflandırma Geliştirilmiş Fisher Ayraç Kriteri Kullanarak Hiperspektral Görüntülerde Sınıflandırma Mustafa TEKE, Dr. Ufuk SAKARYA TÜBİTAK UZAY IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013),

Detaylı

MEH535 Örüntü Tanıma

MEH535 Örüntü Tanıma MEH535 Örüntü Tanıma 1. Örüntü Tanımaya Giriş Doç.Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Bölümü web: http://akademikpersonel.kocaeli.edu.tr/kemalg/ E-posta: kemalg@kocaeli.edu.tr Değerlendirme

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

MEH535 Örüntü Tanıma

MEH535 Örüntü Tanıma MEH535 Örüntü Tanıma 3. Denetimli Öğrenme Doç.Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Bölümü web: http://akademikpersonel.kocaeli.edu.tr/kemalg/ E-posta: kemalg@kocaeli.edu.tr Örneklerden

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 10 Nesne / Yüz Tespiti ve Tanıma Alp Ertürk alp.erturk@kocaeli.edu.tr Nesne Tespiti Belirli bir nesnenin sahne içindeki konumunun tespitidir Tespit edilecek nesne önceden

Detaylı

Çok-öbekli Veri için Aradeğerlemeci Ayrışım

Çok-öbekli Veri için Aradeğerlemeci Ayrışım Interpolative Decomposition for Data with Multiple Clusters Çok-öbekli Veri için Aradeğerlemeci Ayrışım İsmail Arı, A. Taylan Cemgil, Lale Akarun. Boğaziçi Üniversitesi, Bilgisayar Mühendisliği 25 Nisan

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 10 Hiperspektral Görüntülerde Öznitelik Çıkarımı ve Boyut Azaltımı Alp Ertürk alp.erturk@kocaeli.edu.tr Öznitelik Çıkarımı Veriden ayırt edici yapıda nitelikler çıkarma

Detaylı

MEH535 Örüntü Tanıma

MEH535 Örüntü Tanıma MEH535 Örünü Tanıma 4. Paramerik Sınıflandırma Doç.Dr. M. Kemal GÜLLÜ Elekronik ve Haberleşme Mühendisliği Bölümü web: hp://akademikpersonel.kocaeli.edu.r/kemalg/ E-posa: kemalg@kocaeli.edu.r Paramerik

Detaylı

Kredi Onayı İçin Bir Sınıflandırma Algoritması Önerisi A Classification Algorithm Advice for Credit Approval

Kredi Onayı İçin Bir Sınıflandırma Algoritması Önerisi A Classification Algorithm Advice for Credit Approval Kredi Onayı İçin Bir Sınıflandırma Algoritması Önerisi A Classification Algorithm Advice for Credit Approval İsmail Haberal Bilgisayar Mühendisliği Bölümü Başkent Üniversitesi ihaberal@baskent.edu.tr Umut

Detaylı

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME YZM 317 YAPAY ZEKA DERS#10: KÜMELEME Sınıflandırma (Classification) Eğiticili (supervised) sınıflandırma: Sınıflandırma: Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğunu bilinir Eğiticisiz (unsupervised)

Detaylı

Günümüzde birçok yüz tanıma yöntemleri geliştirilmiş olup [2], bunlar şu şekilde sınıflandırılabilir:

Günümüzde birçok yüz tanıma yöntemleri geliştirilmiş olup [2], bunlar şu şekilde sınıflandırılabilir: YÜZ TANIMA YÖNTEMLERİNİN SIKIŞTIRILMIŞ ARŞİVLERDE BAŞARIMI Mustafa Ersel Kamaşak ve Bülent Sankur Sinyal ve İmge İşleme Laboratuvarı (BUSIM) Boǧaziçi Üniversitesi Elektrik Elektronik Mühendisliǧi {kamasak,

Detaylı

Makine Öğrenmesi 11. hafta

Makine Öğrenmesi 11. hafta Makine Öğrenmesi 11. hafta Özellik Çıkartma-Seçme Boyut Azaltma PCA LDA 1 Özellik Çıkartma Herhangi bir problemin makine öğrenmesi yöntemleriyle çözülebilmesi için sistemin uygun şekilde temsil edilmesi

Detaylı

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Akış Makine Öğrenmesi nedir? Günlük Hayatımızdaki Uygulamaları Verilerin Sayısallaştırılması Özellik Belirleme Özellik Seçim Metotları Bilgi Kazancı (Informaiton Gain-IG) Sinyalin Gürültüye Oranı: (S2N

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 7 SIFT ve Öznitelik Eşleme Alp Ertürk alp.erturk@kocaeli.edu.tr Panorama Oluşturma Görüntü mozaikleme, panorama oluşturma gibi tüm uygulamalar için öncelikle ilgili görüntülerin

Detaylı

Makine Öğrenmesine Giriş (Machine Learning ML)

Makine Öğrenmesine Giriş (Machine Learning ML) Makine Öğrenmesine Giriş (Machine Learning ML) Doç.Dr.Banu Diri Doğal Dil Đşlemede Eğilimler Önce : Yapay Zeka Tabanlı, Tam olarak anlama Şimdi : Külliyat(Corpus)-tabanlı, Đstatistiki, Makine Öğrenmesi

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

Algoritmalara Giriş. Prof. Erik Demaine. November 16, 2005 Copyright by Erik D. Demaine and Charles E. Leiserson L18.1

Algoritmalara Giriş. Prof. Erik Demaine. November 16, 2005 Copyright by Erik D. Demaine and Charles E. Leiserson L18.1 Algoritmalara Giriş 6.06J/8.0J Ders 8 En Kısa Yollar II Bellman-Ford algoritması Doğrusal Programlama ve fark kısıtları VLSI yerleşimi küçültülmesi Prof. Erik Demaine November 6, 00 Copyright 00- by Erik

Detaylı

Yrd. Doç. Dr. Ümit ATİLA

Yrd. Doç. Dr. Ümit ATİLA Yrd. Doç. Dr. Ümit ATİLA Sıralama Bir grup veriyi azalan veya artan şekilde yerleştirme. Bilgisayar sistemleri için veri sıralama çok önemlidir. Sıralama işlemi, hem arama işlemlerini hem de bir grup veriyi

Detaylı

Kanonik Korelasyon Analizi ile Cinsiyet Tabanlı İmge Sınıflandırması. Gender Based Image Classification via Canonical Correlation Analysis

Kanonik Korelasyon Analizi ile Cinsiyet Tabanlı İmge Sınıflandırması. Gender Based Image Classification via Canonical Correlation Analysis Kanonik Korelasyon Analizi ile Cinsiyet Tabanlı İmge Sınıflandırması Gender Based Image Classification via Canonical Correlation Analysis * Mehmet Cem Catalbas 1, Yakup Ozkazanc 2, Arif Gulten 1 1 Electric

Detaylı

BLM-112 PROGRAMLAMA DİLLERİ II. Ders-7 Sıralama Algoritmaları

BLM-112 PROGRAMLAMA DİLLERİ II. Ders-7 Sıralama Algoritmaları BLM-112 PROGRAMLAMA DİLLERİ II Ders-7 Sıralama Algoritmaları Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/ Sıralama Bir grup veriyi azalan veya artan şekilde yerleştirme.

Detaylı

Doküman Sınıflandırma Text Categorization - TC

Doküman Sınıflandırma Text Categorization - TC Doküman Sınıflandırma Text Categorization - TC Doç.Dr.Banu Diri Akış Görev Eğiticili Eğiticisiz Öğrenme Metin Özellikleri Metin Kümeleme Hiyerarşik eklemeli kümeleme Metin kümelerinin birbirine benzerliği

Detaylı

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21 İçindekiler Önsöz İkinci Basım için Önsöz Türkçe Çeviri için Önsöz Gösterim xiii xv xvii xix 1 Giriş 1 1.1 Yapay Öğrenme Nedir?......................... 1 1.2 Yapay Öğrenme Uygulamalarına Örnekler...............

Detaylı

LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH111) Dersi Final Sınavı 1.Ö

LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH111) Dersi Final Sınavı 1.Ö LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH) Dersi Final Sınavı.Ö. 02.0.207 Ad Soyad : (25p) 2(25p) 3(25p) 4(25p) Toplam Numara : İmza : Kitap ve notlar kapalıdır. Yalnızca kalem, silgi, sınav kağıdı

Detaylı

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Akış Makine Öğrenmesi nedir? Günlük Hayatımızdaki Uygulamaları Verilerin Sayısallaştırılması Özellik Belirleme Özellik Seçim Metotları Bilgi Kazancı (Informaiton Gain-IG) Sinyalin Gürültüye Oranı: (S2N

Detaylı

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir.

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir. ÇELĐK YÜZEYLERĐN SINIFLANDIRILMASI * Cem ÜNSALAN ** Aytül ERÇĐL * Ayşın ERTÜZÜN *Boğaziçi Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü unsalan@boun.edu.tr **Boğaziçi Üniversitesi, Endüstri Mühendisliği

Detaylı

KAHKAHA TANIMA İÇİN RASSAL ORMANLAR

KAHKAHA TANIMA İÇİN RASSAL ORMANLAR KAHKAHA TANIMA İÇİN RASSAL ORMANLAR Heysem Kaya, A. Mehdi Erçetin, A. Ali Salah, S. Fikret Gürgen Bilgisayar Mühendisliği Bölümü Boğaziçi Üniversitesi / Istanbul Akademik Bilişim'14, Mersin, 05.02.2014

Detaylı

Büyük Veri ve Endüstri Mühendisliği

Büyük Veri ve Endüstri Mühendisliği Büyük Veri ve Endüstri Mühendisliği Mustafa Gökçe Baydoğan Endüstri Mühendisliği Bölümü Boğaziçi Üniversitesi İstanbul Yöneylem Araştırması/Endüstri Mühendisliği Doktora Öğrencileri Kolokyumu 21-22 Nisan

Detaylı

Veride etiket bilgisi yok Denetimsiz öğrenme (unsupervised learning) Neden gereklidir?

Veride etiket bilgisi yok Denetimsiz öğrenme (unsupervised learning) Neden gereklidir? MEH535 Örünü Tanıma 7. Kümeleme (Cluserng) Doç.Dr. M. Kemal GÜLLÜ Elekronk ve Haberleşme Mühendslğ Bölümü web: hp://akademkpersonel.kocael.edu.r/kemalg/ E-posa: kemalg@kocael.edu.r Verde eke blgs yok Denemsz

Detaylı

MEH535 Örüntü Tanıma. Örneklerden Sınıf Öğrenme

MEH535 Örüntü Tanıma. Örneklerden Sınıf Öğrenme MEH535 Örünü Tanıma 3. Deneimli Öğrenme Doç.Dr. M. Kemal GÜLLÜ Elekronik ve Haberleşme Mühendisliği Bölümü web: hp://akademikpersonel.kocaeli.edu.r/kemalg/ E-posa: kemalg@kocaeli.edu.r Örneklerden Sınıf

Detaylı

Örüntü Tanıma (EE 448) Ders Detayları

Örüntü Tanıma (EE 448) Ders Detayları Örüntü Tanıma (EE 448) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Örüntü Tanıma EE 448 Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü Dersin

Detaylı

BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036. atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036. atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036 atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİŞKEK 2012 Ahmet Atakan

Detaylı

UBE Machine Learning. Kaya Oguz

UBE Machine Learning. Kaya Oguz UBE 521 - Machine Learning Kaya Oguz Support Vector Machines How to divide up the space with decision boundaries? 1990s - new compared to other methods. How to make the decision rule to use with this boundary?

Detaylı

ÖZDEĞERLER- ÖZVEKTÖRLER

ÖZDEĞERLER- ÖZVEKTÖRLER ÖZDEĞERLER- ÖZVEKTÖRLER GİRİŞ Özdeğerler, bir matrisin orijinal yapısını görmek için kullanılan alternatif bir yoldur. Özdeğer kavramını açıklamak için öncelikle özvektör kavramı ele alınsın. Bazı vektörler

Detaylı

Kümeleme Algoritmaları. Tahir Emre KALAYCI

Kümeleme Algoritmaları. Tahir Emre KALAYCI Tahir Emre KALAYCI 2010 Gündem En önemli gözetimsiz öğrenme (unsupervised learning) problemi olarak değerlendirilmektedir Bu türdeki diğer problemler gibi etiketsiz veri kolleksiyonları için bir yapı bulmakla

Detaylı

Kaynak: A. İŞLİER, TESİS PLANLAMASI, 1997

Kaynak: A. İŞLİER, TESİS PLANLAMASI, 1997 Mühendislik Fakültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2016-2017 Güz Dönemi Kaynak: A. İŞLİER, TESİS PLANLAMASI, 1997 2 Tesis Yer Seçimi Problemi (TYSP) TEK AMAÇLI

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ METİN SINIFLAMA İÇİN YENİ BİR ÖZELLİK ÇIKARIM YÖNTEMİ GÖKSEL BİRİCİK

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ METİN SINIFLAMA İÇİN YENİ BİR ÖZELLİK ÇIKARIM YÖNTEMİ GÖKSEL BİRİCİK T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ METİN SINIFLAMA İÇİN YENİ BİR ÖZELLİK ÇIKARIM YÖNTEMİ GÖKSEL BİRİCİK DOKTORA TEZİ BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI BİLGİSAYAR MÜHENDİSLİĞİ PROGRAMI

Detaylı

Aşağı Link MC-CDMA Sistemlerinde Kullanılan PIC Alıcının EM-MAP Tabanlı Olarak İlklendirilmesi

Aşağı Link MC-CDMA Sistemlerinde Kullanılan PIC Alıcının EM-MAP Tabanlı Olarak İlklendirilmesi IEEE 15. Sinyal İşleme ve İletişim Uygulamaları Kurultayı - 2007 Aşağı Link MC-CDMA Sistemlerinde Kullanılan PIC Alıcının EM-MAP Tabanlı Olarak İlklendirilmesi Hakan Doğan 1,Erdal Panayırcı 2, Hakan Ali

Detaylı

Lineer Cebir (MATH 275) Ders Detayları

Lineer Cebir (MATH 275) Ders Detayları Lineer Cebir (MATH 275) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Lineer Cebir MATH 275 Her İkisi 4 0 0 4 6 Ön Koşul Ders(ler)i Yok Dersin Dili Dersin

Detaylı

EMAT ÇALIŞMA SORULARI

EMAT ÇALIŞMA SORULARI EMAT ÇALIŞMA SORULARI 1) A = 4. ı x 2. ı y ı z ve B = ı x + 4. ı y 4. ı z vektörlerinin dik olduğunu gösteriniz. İki vektörün skaler çarpımlarının sıfır olması gerekir. A. B = 4.1 + ( 2). 4 + ( 1). ( 4)

Detaylı

AYTUĞ ONAN CELAL BAYAR ÜNİVERSİTESİ, BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ SERDAR KORUKOĞLU EGE ÜNİVERSİTESİ, BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

AYTUĞ ONAN CELAL BAYAR ÜNİVERSİTESİ, BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ SERDAR KORUKOĞLU EGE ÜNİVERSİTESİ, BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Metin Sınıflandırmada Öznitelik Seçim Yöntemlerinin Değerlendirilmesi AYTUĞ ONAN CELAL BAYAR ÜNİVERSİTESİ, BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ SERDAR KORUKOĞLU EGE ÜNİVERSİTESİ, BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Detaylı

Hiperspektral Görüntüler ile Uzaktan Algılama Hafta 2

Hiperspektral Görüntüler ile Uzaktan Algılama Hafta 2 Hiperspektral Görüntüler ile Uzaktan Algılama Hafta 2 Lisans 2017-18 Egitim Yili Dr.Esra Tunc Gormus Ders Icerigi 1 Uzaktan algilamaya giris Hiperspektral goruntu (HSG) islemeye giris Standart islem adimlari

Detaylı

Ğ Ğ ş ç ş ç ç ç ş ç ç Ş ç «ş ş Ö Ş Ş ş ş ç Ö Ş ş Ü ç ç ş ş ş ç Ş ş ç ç ç ş ç ş ş ş ç ç ç ş Ç ş ş ç ş ç ş ş Ş ş ç ş ç ç ş ç ş ç ç ş ç ç ş Ü ş çş ş ş Çş Ç Ü çş ş Ç çş ç ş Ş Ö Ö ş ç ç ç ş ç ç ç ş ş ç ç ş

Detaylı

ç ç Ö Ç Ş Ç ç Ç ç ç ç Ö ç Ç Ş ç ç Ş Ç Ş Ö Ö Ş ç Ö ç ç ç ç Ş Ö Ç Ç Ş ç ç Ş Ş Ş Ö ç ç ç ç Ö Ş Ç Ö Ö ç «Ö ç Ş ç Ç «ÇŞ Ş Ö Ç ç Ö ç Ç Ş Ö Ö ç ç ç Ö Ş Ö ç Ö ç Ç Ş Ç «ç Ö Ç Ş ç ç ç «ç Ç Ş Ö Ö Ç ç ç Ş ç ç Ö ç

Detaylı

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir.

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. . nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. Buna göre, n C r + n C r toplamı aşağıdakilerden hangisine eşittir? A) n + C r B)

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

Dr. Hidayet Takçı. Veri Madenciliği Dersi GYTE Dr. Hidayet Takçı 10/05/2008 1

Dr. Hidayet Takçı. Veri Madenciliği Dersi GYTE Dr. Hidayet Takçı 10/05/2008 1 İkinci Ders Veri Madenciliği: Veri Dr. Hidayet Takçı Veri Madenciliği Dersi GYTE Dr. Hidayet Takçı 10/05/2008 1 Veri Nedir? Sayısal veya mantıksal her türlü değer bir veridir. Öznitelik Bir nesneye ait

Detaylı

Çok Katlı Yapılarda Perdeler ve Perdeye Saplanan Kirişler

Çok Katlı Yapılarda Perdeler ve Perdeye Saplanan Kirişler Çok Katlı Yapılarda Perdeler ve Perdeye Saplanan Kirişler Kat Kalıp Planı Günay Özmen İstanbul Teknik Üniversitesi 1/4 2/4 1 Aksı Görünüşü B Aksı Görünüşü 3/4 4/4 SAP 2000 Uygulamalarında İdealleştirmeler

Detaylı

Müzik Türlerinin Co-MRMR ile Sınıflandırılması Audio Genre Classification with Co-MRMR

Müzik Türlerinin Co-MRMR ile Sınıflandırılması Audio Genre Classification with Co-MRMR Müzik Türlerinin Co-MRMR ile Sınıflandırılması Audio Genre Classification with Co-MRMR Yusuf Yaslan, Zehra Çataltepe Bilgisayar Mühendisliği Bölümü İstanbul Teknik Üniversitesi, Maslak İstanbul {yyaslan,

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Sınıflandırıcıların Değerlendirilmesi Skorlar Karışıklık matrisi Accuracy Precision Recall

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 6 Kenar, Köşe, Yuvarlak Tespiti Alp Ertürk alp.erturk@kocaeli.edu.tr KENAR TESPİTİ Kenar Tespiti Amaç: Görüntüdeki ani değişimleri / kesintileri algılamak Şekil bilgisi elde

Detaylı

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri ÖNSÖZ Gerçekte herhangi bir olguyu etkileyen dinamikler çok karmaşıktır ve her alanda olayların akışını etkileyen faktörler çok sayıda (genellikle sonsuz sayıda) özellik tarafından belirlendiğinden çok

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

TEMEL BİLEŞENLER ANALİZİ VE KANONİK KORELASYON ANALİZİ İLE İMGE TANIMA VE SINIFLANDIRMA

TEMEL BİLEŞENLER ANALİZİ VE KANONİK KORELASYON ANALİZİ İLE İMGE TANIMA VE SINIFLANDIRMA TEMEL BİLEŞENLER ANALİZİ VE KANONİK KORELASYON ANALİZİ İLE İMGE TANIMA VE SINIFLANDIRMA IMAGE RECOGNITION AND CLASSIFICATION BY PRINCIPAL COMPONENT ANALYSIS AND CANONICAL CORRELATION ANALYSIS MEHMET CEM

Detaylı

BSM-767 MAKİNE ÖĞRENMESİ. Doğrusal Ayırıcılar (Linear Discriminants)

BSM-767 MAKİNE ÖĞRENMESİ. Doğrusal Ayırıcılar (Linear Discriminants) BSM-767 MAKİNE ÖĞRENMESİ Doğrusal Ayırıcılar (Linear Discriminants) Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/ Perceptron Perceptron, bir giriş kümesinin ağırlıklandırılmış

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: Pattern Recognition

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: Pattern Recognition Dersi Veren Birim: Fen Bilimleri Enstitüsü Dersin Türkçe Adı: Örüntü Tanıma Dersin Orjinal Adı: Pattern Recognition Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisansüstü Dersin Kodu: CSE

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL PARAMETRİK OLMAYAN TESTLER Daha önce incelediğimiz testler, normal dağılmış ana kütleden örneklerin

Detaylı

ÜÇ BOYUTLU SINIR TABAKA AKIŞLARININ KARARLILIK ÖZELLİKLERİNİN DOĞRUSAL KARARLILIK TEORİSİ YAKLAŞIMI İLE BELİRLENMESİ

ÜÇ BOYUTLU SINIR TABAKA AKIŞLARININ KARARLILIK ÖZELLİKLERİNİN DOĞRUSAL KARARLILIK TEORİSİ YAKLAŞIMI İLE BELİRLENMESİ V. ULUSAL HAVACILIK VE UZAY KONFERANSI 8-10 Eylül 2014, Erciyes Üniversitesi, Kayseri ÜÇ BOYUTLU SINIR TABAKA AKIŞLARININ KARARLILIK ÖZELLİKLERİNİN DOĞRUSAL KARARLILIK TEORİSİ YAKLAŞIMI İLE BELİRLENMESİ

Detaylı

Çekişmeli Üretici Ağlar Kullanarak Dış Mekan Görüntülerinin Geçici Niteliklerini Düzenleme

Çekişmeli Üretici Ağlar Kullanarak Dış Mekan Görüntülerinin Geçici Niteliklerini Düzenleme Çekişmeli Üretici Ağlar Kullanarak Dış Mekan Görüntülerinin Geçici Niteliklerini Düzenleme Adjusting Transient Attributes of Outdoor Images using Generative Adversarial Networks Levent Karacan, Aykut Erdem,

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: CME 4410

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: CME 4410 Dersi Veren Birim: Bilgisayar Mühendisliği Dersin Türkçe Adı: ÖRÜNTÜ TANIMAYA GİRİŞ Dersin Orjinal Adı: INTRODUCTION TO PATTERN RECOGNITION Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: LINEAR ALGEBRA. Dersin Kodu: CME 1004

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: LINEAR ALGEBRA. Dersin Kodu: CME 1004 Dersi Veren Birim: Bilgisayar Mühendisliği Dersin Türkçe Adı: LİNEER CEBİR Dersin Orjinal Adı: LINEAR ALGEBRA Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: CME 004 Dersin

Detaylı

İMGE İŞLEME Ders-7. Morfolojik İmge İşleme. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm. (Yrd. Doç. Dr. M.

İMGE İŞLEME Ders-7. Morfolojik İmge İşleme. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm. (Yrd. Doç. Dr. M. İMGE İŞLEME Ders-7 Morfolojik İmge İşleme (Yrd. Doç. Dr. M. Kemal GÜLLÜ) Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm Hazırlayan: M. Kemal GÜLLÜ Morfoloji Biyolojinin canlıların

Detaylı

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K);

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K); 2009-2010 BAHAR DÖNEMİ MC 689 ALGORİTMA TASARIMI ve ANALİZİ I. VİZE ÇÖZÜMLERİ 1. a) Böl ve yönet (divide & conquer) tarzındaki algoritmaların genel özelliklerini (çalışma mantıklarını) ve aşamalarını kısaca

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 1009

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 1009 Dersi Veren Birim: Mühendislik Fakültesi Dersin Türkçe Adı: MATEMATİK I Dersin Orjinal Adı: MATEMATİK I Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAT 1009 Dersin Öğretim

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Bibliography 9 Index 13 CONTENTS 5 0.1 Doğru, Düzlem, Uzay Bu derste sık sık doğru, düzlem ve

Detaylı

Temelleri. Doç.Dr.Ali Argun Karacabey

Temelleri. Doç.Dr.Ali Argun Karacabey Doğrusal Programlamanın Temelleri Doç.Dr.Ali Argun Karacabey Doğrusal Programlama Nedir? Bir Doğrusal Programlama Modeli doğrusal kısıtlar altında bir doğrusal ğ fonksiyonun değerini ğ maksimize yada minimize

Detaylı

Bu durumu, konum bazında bileşenlerini, yani dalga fonksiyonunu, vererek tanımlıyoruz : ) 1. (ikx x2. (d)

Bu durumu, konum bazında bileşenlerini, yani dalga fonksiyonunu, vererek tanımlıyoruz : ) 1. (ikx x2. (d) Ders 10 Metindeki ilgili bölümler 1.7 Gaussiyen durum Burada, 1-d de hareket eden bir parçacığın önemli Gaussiyen durumu örneğini düşünüyoruz. Ele alış biçimimiz kitaptaki ile neredeyse aynı ama bu örnek

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK I. Dersin Kodu: MAT 1009

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK I. Dersin Kodu: MAT 1009 Dersi Veren Birim: Mühendislik Fakültesi Dersin Adı: MATEMATİK I Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Dersin Kodu: MAT 9 Dersin Öğretim Dili: Türkçe Formun Düzenleme / Yenilenme Tarihi:

Detaylı

ÜNİTE NESNE TABANLI PROGRAMLAMA I. Uzm. Orhan ÇELİKER VERİTABANI SORGULARI İÇİNDEKİLER HEDEFLER

ÜNİTE NESNE TABANLI PROGRAMLAMA I. Uzm. Orhan ÇELİKER VERİTABANI SORGULARI İÇİNDEKİLER HEDEFLER VERİTABANI SORGULARI İÇİNDEKİLER Select İfadesi Insert İfadesi Update İfadesi Delete İfadesi Verileri Sıralamak Verileri Gruplandırmak Veriler Üzerinde Arama Yapmak NESNE TABANLI PROGRAMLAMA I Uzm. Orhan

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği Bu bölümde, BÖLÜM - 6 Sıralama(Sort) Algoritmaları 1. Bubble Sort

Detaylı

Birliktelik Kuralları Analizi. Yard. Doç. Dr. Derya BİRANT Prof. Dr. Alp KUT

Birliktelik Kuralları Analizi. Yard. Doç. Dr. Derya BİRANT Prof. Dr. Alp KUT İş Zekası Çözümleri için i Çok Boyutlu Birliktelik Kuralları Analizi Yard. Doç. Dr. Derya BİRANT Prof. Dr. Alp KUT İçerik 1 Veri Madenciliği 2 Birliktelik Kuralları Analizi 3 Uygulama 4 Algoritma 5 Sonuçlar

Detaylı

Örnek 4: Örnek Özyinelemeli fonksiyon örneği Bölüm 9. C++ programlama dilinde Nesne ve sınıf

Örnek 4: Örnek Özyinelemeli fonksiyon örneği Bölüm 9. C++ programlama dilinde Nesne ve sınıf İçindekiler 1. Giriş... 1 1.2. c++ Programı Yapısı... 2 1.3.Using Direktifi... 5 Bölüm 2. Veri türleri, değişken kavramı, sabit ve değişken bildirimleri ve c++ da kullanımı 7 2.1. Temel veri türleri...

Detaylı

Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları

Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları 4.Ders Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları Tanım:,U, P bir olasılık uzayı ve X, X,,X n : R n X, X,,X n X, X,,X n olmak üzere, her a, a,,a n R n için : X i a i, i,, 3,,n U özelliği sağlanıyor

Detaylı

Önsöz. İçindekiler Algoritma Algoritma Nasıl Hazırlanır? Yazılımda Algoritma Mantığı Nedir? 1.2. Algoritma Örnekleri ve Sorular

Önsöz. İçindekiler Algoritma Algoritma Nasıl Hazırlanır? Yazılımda Algoritma Mantığı Nedir? 1.2. Algoritma Örnekleri ve Sorular Önsöz Giriş İçindekiler V VII IX 1.1. Algoritma 1.1.1. Algoritma Nasıl Hazırlanır? 1.1.2. Yazılımda Algoritma Mantığı Nedir? 1.2. Algoritma Örnekleri ve Sorular 2.1. Programın Akış Yönü 19 2.2. Başlama

Detaylı

Üç Boyutlu Serpilme (Saçılım) Grafikleri

Üç Boyutlu Serpilme (Saçılım) Grafikleri Üç Boyutlu Serpilme (Saçılım) Grafikleri 3D Scatterplot of boy vs kol vs bacak 90 boy 0 70 0 90 70 00 0 bacak 0 0 90 kol 3D Scatterplot of kol vs omuz vs kalca 90 kol 0 70 00 kalca 0 0 0 0 00 omuz Merkez

Detaylı

PSK 510 Research Methods and Advanced Statistics

PSK 510 Research Methods and Advanced Statistics PSK 510 Research Methods and Advanced Statistics Lecture 09: PCA and FA Doğan Kökdemir, PhD http://www.kokdemir.info dogan@kokdemir.info 1 İstatistik Las Meninas - Picasso 2 Gerçek Las Meninas - Diego

Detaylı

BİLGİSAYAR PROGRAMLAMA DERSİ

BİLGİSAYAR PROGRAMLAMA DERSİ BİLGİSAYAR PROGRAMLAMA DERSİ Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü DERS NOTU 5 KONU: Matlab de Diziler ve Matrisler İÇ İÇE FOR DÖNGÜSÜ

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS YAPAY ZEKA BG-421 4/2 2+1+0 2+.5 4 Dersin Dili : TÜRKÇE Dersin Seviyesi : LİSANS

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

Lineer Cebir (MATH275) Ders Detayları

Lineer Cebir (MATH275) Ders Detayları Lineer Cebir (MATH275) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Lineer Cebir MATH275 Her İkisi 4 0 0 4 6 Ön Koşul Ders(ler)i Yok Dersin Dili Dersin

Detaylı

TEMEL BİLEŞEN ANALİZİ YÖNTEMİNİN VE BAZI KLASİK VE ROBUST UYARLAMALARININ YÜZ TANIMA UYGULAMALARI

TEMEL BİLEŞEN ANALİZİ YÖNTEMİNİN VE BAZI KLASİK VE ROBUST UYARLAMALARININ YÜZ TANIMA UYGULAMALARI Eskişehir Osmangazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi Cilt:XXII, Sayı:1, 2009 Journal of Engineering and Architecture Faculty of Eskişehir Osmangazi University, Vol: XXII, No:1, 2009

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

Özet: Açısal momentumun türetimi. Açısal momentum değiştirme bağıntıları. Artırıcı ve Eksiltici İşlemciler Kuantum Fiziği Ders XXI

Özet: Açısal momentumun türetimi. Açısal momentum değiştirme bağıntıları. Artırıcı ve Eksiltici İşlemciler Kuantum Fiziği Ders XXI Özet: Açısal momentumun türetimi Açısal momentum değiştirme bağıntıları Levi- Civita simgesi Genel olarak, L x, L y, L z, nin eşzamanlı özdurumları yoktur L 2 ve bir bileşeni (L z ) nin eşzamanlı özdurumlarıdır.

Detaylı

DOSYA ORGANİZASYONU. Sıralı erişimli dosya organizasyonu yöntemleri ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

DOSYA ORGANİZASYONU. Sıralı erişimli dosya organizasyonu yöntemleri ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DOSYA ORGANİZASYONU ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Sıralı erişimli dosya organizasyonu yöntemleri Sunum planı Sıralı erişimli dosya organizasyonu yöntemleri Basit sıralı

Detaylı

Metin Sınıflandırmada Öznitelik Seçim Yöntemlerinin Değerlendirilmesi

Metin Sınıflandırmada Öznitelik Seçim Yöntemlerinin Değerlendirilmesi Metin Sınıflandırmada Öznitelik Seçim Yöntemlerinin Değerlendirilmesi Aytuğ Onan 1, Serdar Korukoğlu 2 1 Celal Bayar Üniversitesi, Bilgisayar Mühendisliği Bölümü, Manisa 2 Ege Üniversitesi, Bilgisayar

Detaylı

Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması. (Eğitim/Hata geri yayılım)

Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması. (Eğitim/Hata geri yayılım) Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması (Eğitim/Hata geri yayılım) Özetçe Bu çalışmada çok katmanlı ve ileri sürümlü bir YSA

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Bibliography 11 CONTENTS 5 0.1 Kartezyen Çarpım 0.2 Sıralı İkililer Şimdiye kadar sıra ya da

Detaylı

UYGULAMA 1 SPSS E GİRİŞ. SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir.

UYGULAMA 1 SPSS E GİRİŞ. SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir. 1 UYGULAMA 1 SPSS E GİRİŞ SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir. Bu menülerin işlevleri ve alt menüleri ile komutları

Detaylı

ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır.

ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır. ÖRNEKLER-VEKTÖR UZAYLARI. vektör uzayında yer alan w=(9 7) vektörünün, u=( -), v=(6 ) vektörlerinin doğrusal bir kombinasyonu olduğunu ve z=( - 8) vektörünün ise bu vektörlerin doğrusal bir kombinasyonu

Detaylı

Çok değişkenli fonksiyonlar. Maksimum- Minimum

Çok değişkenli fonksiyonlar. Maksimum- Minimum 66 Bölüm 6 Ders 06 Çok değişkenli fonksiyonlar. Maksimum- Minimum 6.1 Çözümler:Alıştırmalar 06 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay Ön Bilgi: z = f (x, y) fonksiyonu 3-boyutlu uzayda bir yüzeyin denklemidir.

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

Alıştırma 1: Yineleme

Alıştırma 1: Yineleme Alıştırma 1: Yineleme Alıştırma 2: Yineleme H10->H2 çevrimini yapınız 7 2 1 3 2 1 1 1 2 0 Hafta 3: Yineleme Alıştırmaları(1) E1. (44/174) S değerini yineleme kullanarak hesap ediniz S = 1 + 2 + 3 + n Hafta3:

Detaylı

Bu işleçlerin dışında, aşağıda belirtilen karşılaştırma işleçlerinden de yararlanılır.

Bu işleçlerin dışında, aşağıda belirtilen karşılaştırma işleçlerinden de yararlanılır. 18 SQL SORGU DİLİ SQL (Structured Query Language) yapısal sorgu dili, veritabanı yönetim sistemlerinin standart programlama dili olarak bilinmektedir. SQL dilinin Access içinde sorgu pencerelerinde veya

Detaylı