MEKANSAL VERİ ANALİZİNDE POINT IN POLYGON TESTİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "MEKANSAL VERİ ANALİZİNDE POINT IN POLYGON TESTİ"

Transkript

1 MEKANSAL VERİ ANALİZİNDE POINT IN POLYGON TESTİ İ. Öztuğ BİLDİRİCİ Seçu Ünverte Mühend Mmarı Faüte Jeodez ve Fotogrametr Mühendğ Böümü, 4203 Kampü KONYA, ema: Özet: Coğraf bg temernde meana ver anaznde pont n pogon tet oduça önem br ere ahptr. Söz onuu tet e br notaa obenn br aana obenn (pogonun) çnde oup omadığı tet edr. Pont n pogon tet, apaı pogonu ouşturan doğru parçaarı e, tet eden nota ve pogonun dışında br notanın ouşturduğu doğru parçaının (tet doğru parçaı) eşmne daanır. Tet doğru parçaı e pogonun eşm aıı te e, nota pogonun çnde, değe nota pogonun dışındadır.. GİRİŞ Coğraf Bg Stemernde meana ver anaznde pont n pogon tet oduça önem br ere ahptr. Söz onuu tet e br notaa obenn br aana obenn (pogonun) çnde oup omadığı berenr. Pont n pogon tet, pogonu (aana obe) ouşturan enarar e, tet eden nota ve pogonun dışında br notanın ouşturduğu doğru parçaının (tet doğru parçaı) eşmne daanır. Tet doğru parçaı e pogonun eşm aıı te e, nota pogonun çnde, değe nota pogonun dışındadır. Pogonun şe ne adar armaşı oura oun, bu bat tet öntem doğru onuç verr. Pogonun şene bağı oara tette doğru parçaının eşm probem önem azanır. Keşm probem, programama açıından gnç br probemdr. Tet şemnde aranan adece doğru parçaının eşp eşmedğdr. Keşm notaının oordnatarı e tet açıından gere değdr. Keşme heapamaarı bo tet oara adandırıan br programama tenğ e hızandırıabr. Bu çaışmada, bo avramı ve bo tet, doğrunun eşm probem ve pont n pogon tet teor ve programama tenğ açıından nceenecetr. Öneren aaşımarın uguandığı FORTRAN dnde azımış program parçacıarı (ubroutne) da e oara vermştr. 2. İKİ DOĞRU PARÇASININ KESİŞİM PROBLEMİ Geometr oara doğru brbrne parae değe eşr. Anca CBS, bgaar dete çzm ve gene oara graf programamada doğrunun değ doğru parçaının eşm önemdr. İ doğrunun eşmnn gene fade, Brnc doğru A Η B Η C 0 İnc doğru E Η F Η G 0 oma üzere, ΕGB FGΦ ΕFA EBΦ ΕCE AGΦ ΕFA EBΦ () İ doğru parae e, FA-EB=0 our. Bu durumda eşm mevcut değdr.

2 Yuarıda gb neer denem formu e çözüm apııra önce eşm notaı heapanır, onra eşm notaının doğrunu üzernde oup omadığı araştırıır. Çeşt öze durumarın date aınmaını geretren bu aaşım erne, programama açıından daha uanışı oan ve nota oordnatarına daanan aşağıda öntem zenebr. Brnc doğru parçaının başangıç ve btm notaarı (, ) ve (, ), nc doğru parçaının başangıç ve btm notaarı (, ) ve (, ) oun (Şe ). Şe : İ doğru parçaının eşm Doğru parçaarının parae oup omadığını bereme çn d parametre heapanır. d Ε ϑ ΦΕ ϑ Φ ϑ Ε ϑ ΦΕ ϑ Φ (2) d=0 e doğru parçaarı parae oup eşm heapanamaz. d 0 e p ve p 2 parametreer heapanır. p p 2 Ε ϑ ΦΕ ϑ Φ ϑ Ε ϑ ΦΕ ϑ Φ d Ε ϑ ΦΕ ϑ Φϑ Ε ϑ ΦΕ ϑ Φ d (3) 0 p ve 0 p e eşm notaı doğru parçaarının üzerndedr. Keşm 2 notaının oordnatarı, Η Η p p Ε Ε ϑ ϑ Φ Φ (4) Keşm probem programama tenğ açıından düşünüüre ree aıar oan nota oordnatarının hang değşen tp e tanımandığı önemdr. Doube precon (8 bte) değşen tp uanıdığında ondaı notanın ernden bağımız oara 4 raam anamıdır. Sez değş değerden heapanan d parametrenn (2) doğruarın parae omaı durumunda tam oara ıfır omaı beenemez. Daha da açı oara d parametrenn nadren ıfır çıacağı, genee ıfıra ço aın br değer aacağı öenebr.

3 Doğru parçaarının paraeğn bereme çn br heap haaet bereme gerer. Örneğn d parametre atıncı baamağına adar ıfır e ıfır abu edebr. Bu durumda azıaca od aşağıda gb oabr: f ab(d)<e-6 then Bazı haerde adece eşmn var oup omadığını bereme gerer. Bu durumda önce parae nceenr, onra p ve p 2 parametreer heapanara eşmn doğru parçaarı üzernde oup omadığı berenr. Keşm notaının oordnatarı heapanmaz. Örneğn pont n pogon tetnde adece eşmn var oup omadığını bme önemdr. p ve p 2 parametreernn geometr anamı: p =0 e, eşm notaı notaı e çaışı p = e, eşm notaı notaı e çaışı p 2 =0 e, eşm notaı notaı e çaışı p 2 = e, eşm notaı notaı e çaışı Yne programama tenğ açıından p ve p 2 parametreernn tam oara ıfır a da br omaı beenemez. Bunun anında aıaaştırma hataarı vb gb nedenere parametreern ıfırdan ço az üçü a da brden ço az büü omaarı durumunda eşm notaının doğru parçaarının g uç notaarı e çaışı oara abu edme gereebr. Ugun eçece br toeran değerne göre parametreern rdeenme, ϑ p ve ϑ p Η (5) Η 2 bçmnde apıabr. Anca p ve p 2 parametreer brer orantı oup br uzaı fade etmezer. Bu baımdan toeran değernn eçm ço oa değdr. Bu notada şöe br aaşım önerebr. Toeran değer abu edebr br uvaratma hataı oara aınır, daha onra oordnatarı heapanan eşm notaının uç notaarına oan uzaıarına baııp bu notaara çaışı abu edp edemeeceğne baıır. 3. BOX TESTİ Graf programama tenğnde bo tet oara bnen önteme, çzge ve aana obeern brbr e oan aınığı rdeenr. Kutu oara da Türçeeştrebece bo avramı çzge a da aana obenn dışına çzen, obe apaan, oordnat eenerne parae br ddörtgen obe fade eder. Bo ardımıa adece mantıa arşıaştırma apara çzge obenn eşme oaıığı oup omadığı, aana obenn e brbrn örtme oaıığının oup omadığı berenebr. Şe 2'de de görüdüğü gb, bo oordnatarı g obenn mamum ve mnmum oordnat değerernden ede edebr. - ve - doğru parçaarının eşme oaıığını rdeeme durumunda bo tet (Şe 3), f ma(, )< mn(, ) AND ma(, )< mn(, ) then >> Keşme mümün değ ee >> Keşme mümün end f

4 şende odanabr. Yapıan bu arşıaştırmaar onucu eşme mümün değe eşme g hç br heapamaa gere otur [Crome, 992; Bdrc, 2000]. Benzer şede aana obeern de brbrn örtme oaıığının oup omadığı tet edebr. Bo Şe 2: Bo avramı Bo'ar eşmor Bo'ar eşor Şe 3: Bo tetnn geometr anamı 4. POINT IN POLYGON TESTİ "Pont n Pogon" tet, br notanın br aana obenn çnde oup omadığının berenme probemdr. Br notanın br aana obenn (apaı şen) çnde oup omadığını bereme çn apaı şen ene dışında oan br ardımcı notadan araranıır. Araştırıan nota m, ardımcı nota n oma üzere m-n doğru parçaının, şe aç defa etğ berenr (Şe 4). Keşm aıı te e nota şen çnde, çft e dışındadır [Crome, 992]. Pont n pogon tet end çnde on derece battr. Anca araında programama açıından ço da bat omaan eşm probem vardır. Burada eşm notaının oordnatarı e değ anızca eşmn var oup omadığı e genmetedr. Keşm aıının araştırımaından önce, m notaının P pogonu çnde oup oamaacağının nceenme gerer (Şe 4). m notaı pogonu ouşturan bo'ın çnde değe pogonun da çnde oamaz. Bo'ın o at öşe oordnatarı pogonu ouşturan nota oordnatarının en üçüer, ağ üt öşe oordnatarı e şe ouşturan oordnatarın en büüer oduğuna göre; f mn( )> m > ma( )AND mn( )> m > ma( )

5 şartı ağanmıora, nota pogonun çnde oamaz. Şart ağanıora eşm heaparına geçebr [Bdrc, 2000]. m Pogon P Bo n Şe 4: Pogon çnde oup omadığı araştırıan nota (p), ardımcı nota (n) ve bo Yardımcı n notaının oordnatarı, pogonu ouşturan bo dan araranara aşağıda gb heapanabr: n n mn mn ΕΦ ϑ ΕmaΕΦ ϑ mnεφ Φ ΕΦϑ ΕmaΕΦϑ mnεφφ (6) (7) eştğ e n notaının en oara pogonun dışında omaı ağanabr. Uzata br n notaı eçme erne eenerden brne parae br ardımcı doğru da eçebr [Crome, 992]. Pogonu ouşturan enar aıı adar eşm heabı apıara, eşme aıı berenme zorundadır. Bu aşamada da böüm 3 de değndğ gb eşm önce bo tet uguanara (Şe 3), m-n doğruu e g enarın eşme oaıığı var e d (2), parametre e parae araştırıır. Parae oma durumu o e p ve p 2 (3) parametreer heapanır. Eğer, 0 [ p [ VE 0 [ p2 [ (7) şartı ağanıora, eşm var, a hade otur. Keşm notaının oordnatarına htaç omadığından heapama bu notada er, eşm aıı br artırıır ve br onra enara geçr. Pogonu ouşturan tüm enarar çn eşm oup omadığı araştırıdıtan onra, topam eşm aıı te e nota pogonun çnde, çft e değdr. Bu notada br üçüncü oaıı notanın pogonu ouşturan enararın brnn üzernde omaıdır. (7) bağıntıına göre nota herhang br enar üzernde e a da nota pogonu ouşturan notaardan br e çaışı e notanın pogon dışında oduğu ararı vermetedr. Çünü nota enarardan br üzernde e p a da p 2 ıfıra a da bre eşt our. Nota pogonu ouşturan notaardan br e çaışı e hem p hem de p 2 ıfıra a da bre eşt our. Bu durumarda nota pogonun çnde abu edecee (7) bağıntıı aşağıda gb omaıdır.

6 0 p VE 0 p2 (8) p, p 2 ve d parametreer ree aıar oduğundan, değşen tp oara doube precon uanımaı gerer. Anca bu şede tanımanan değşenern tam oara ıfıra a da bre eşt omaarı beenemez. Sıfıra a da bre eşt oma (5) bağıntıında mantı e apımaıdır. Burada parametre dat eçmedr. Burada parametreer uzunu değ, orantıdır. Örneğn p parametrenn brden farı, eşm notaının enarardan brne ne adar aaştığı (uzaı oara) haında br fr vermez. p ve p 2 parametreer ugun şede tet edere pont n pogon tet onucu, nota çerde, nota pogon enarı üzernde ve nota dışarıda oma üzere üç değş onuç da ede edebr. Bo, eşm ve pont n pogon agortmaının uguanmaı onuunda Fortran dnde odanmış üç program parçacığı e oara vermştr. 5. SONUÇ Pont n pogon tet, Coğraf Bg Stemernde meana orguama ve anazde önemdr. Agortma end çnde programama oara battr. Anca agortma, programama açıından gnç özeer oan doğru parçaının eşmne daanmatadır. Bu çaışmada önce eşm probem rdeenmş, daha onra tetn daandığı agortma programama tenğ açıından tartışımıştır. E oara her probemn çözümü çn Fortran dnde odanmış program parçacıarı vermştr. 6. KAYNAKLAR Crome, R.G., 992, Dgta Cartograph, Prentce Ha, New Jere, 36p. Bdrc, İ.Ö., 2000, : 000-: Öçe Araığında Bna ve Yo Obeernn Saıa Ortamda Kartograf Geneeştrme, Dotora Tez, İTÜ Fen Bmer Enttüü, İtanbu. 7. EK: Program Kodarı c***************box BELIRLEME******************************* ubroutne cg_bo(mn,mn,ma,ma,,,pt_anz,rnu) c******************decaaraton**************************** mpct none nteger*4,pt_anz rea*8 mn,mn,ma,ma,rnu rea*8 (pt_anz),(pt_anz) c******************program********************************** mn=.d09 mn=.d09 ma=0.d0 ma=0.d0 c do =,pt_anz f(().gt.ma) ma=() f(().t.mn) mn=() f(().gt.ma) ma=() f(().t.mn) mn=() end do mn=mn-rnu mn=mn-rnu ma=ma+rnu

7 ma=ma+rnu 00 end c******************kesisim********************************* ogca functon cg_nt2(,,,,,,,,p,p2) c*********************************************************** c. dogru, c 2. dogru, c p 0 e aranda e em. dogru parca uzernde c p2 0 e aranda e em 2. dogru parca uzernde c em vara true oa fae (em uzantda e ne fae) c em notaı notaardan br e çaışı a da enarardan br c uzernde oa da true c c Oztug Bdrc 2/2002 c c************************decaraton********************** mpct none rea*8,,,,,,, rea*8 a, a2,b, b2,c, c2,d,p, p2 rea*8 r_nu parameter (r_nu=.d-4) c*****************************program********************** a = - a2 = - b = - b2 = - c = - c2 = - d = a*b2 - a2*b c... parae m? f( dab(d).t. r_nu) then cg_nt2=.fae. goto 00 end f c em nota varm? p = ( b*c2 - b2*c ) / d p2 = ( c*a2 - c2*a ) / d f(dab(p2).e..d-8) p2=0.d0 cg_nt2=p.ge.0.d0.and.p.e..d0 *.and.p2.ge.0.d0.and.p2.e..d0 00 end c******************point IN POLYGON************************ ogca functon cg_pp(,,n,p,p) c******************decaraton**************************** mpct none nteger*4,,n,chntte rea*8 (n),(n),p,p,r,r rea*8 mn,mn,ma,ma,rnu,p,p2 parameter (rnu=.d-4) c Eterna fuct ogca cg_nt2 c******************program********************************* chntte=0 c bo heapa.. ca cg_bo(mn,mn,ma,ma,,,n,rnu) r=2.d0*ma-mn r=2.d0*ma-mn f(p.ge.mn.and.p.ge.mn.and. * p.e.ma.and.p.e.ma) then do =,n f(.eq.n)then = ee =+ end f f(dab(()-p).e.rnu.and.dab(()-p).e.rnu.or. * dab(()-p).e.rnu.and.dab(()-p).e.rnu) then cg_pp=.true. goto 00 end f f(cg_nt2((),(),(),(),p,p,r,r,p,p2)) then f(p.ge.0.d0.and.p.e..d0.and.p2.eq.0.d0) then cg_pp=.true. goto 00 end f chntte=chntte+ end f

8 end do cg_pp=(chntte.gt.0.and.mod(chntte,2).ne.0) ee cg_pp=.fae. end f 00 end

ITAP_Fizik Olimpiyat Okulu

ITAP_Fizik Olimpiyat Okulu Ttreş_ ITAP FOO: art-6 art 4 Opat Konu Sınaı. Açıa hızarı büüü oara anı, öner e zıt e br brne parae oan ata ndr ütünde ndrern eenne d oara üte oan br tahta buunatadır. Sndrern erezer araında eafe L, tahta

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

3.Seviye Deneme Sınavı ITAP_12_14_2011 Titreşim

3.Seviye Deneme Sınavı ITAP_12_14_2011 Titreşim 3.Seviye Deneme Sınavı TAP_1_14_011 Titreşim 1. Notasa bir cisim şeidei çemberin A notasından sıfır i hızı ie AB doğrutuda yer çeim aaında hareet etmetedir. Çemberin çapı BC= ye eşit oduğuna öre cisim

Detaylı

BİR BOYUTLU HAREKET FİZİK I. Bir Boyutlu Hareket? 12.10.2011. Hız ve Sürat. 1 boyut (doğru) 2 boyut (düzlem) 3 boyut (hacim) 0 boyut (nokta)

BİR BOYUTLU HAREKET FİZİK I. Bir Boyutlu Hareket? 12.10.2011. Hız ve Sürat. 1 boyut (doğru) 2 boyut (düzlem) 3 boyut (hacim) 0 boyut (nokta) .0.0 r oulu Hareke? İR OYUTLU HREKET FİZİK I bou (doğru bou (düzlem 3 bou (hacm 0 bou (noka u bölümde adece br doğru bounca harekee bakacağız (br boulu. Hareke ler olablr (pozf erdeğşrme ea ger olablr

Detaylı

Titreşim_1 ITAP FOO: 04 Mart 2014 Olimpiyat Konu Sınavı

Titreşim_1 ITAP FOO: 04 Mart 2014 Olimpiyat Konu Sınavı Titreşi_ ITAP FOO: art Oipiyat Konu Sınavı. Şeidei esne, hafif ütei tahtanın ucunda buunan sporcu ağırına tahtanın ucunun yerine aşağı doğru h.5 adar değiştiriyor. Tahtanın dene onuuna öre titreşi periyotunu

Detaylı

ı ı ı ğ ş ı ı ıı ıı ıı ı ı ıı ıı ıı ıı ııı

ı ı ı ğ ş ı ı ıı ıı ıı ı ı ıı ıı ıı ıı ııı Ş Ü Ğ Ü Ğİ Ö İ Ö öç Ş İ Ğ ç ç ö Ü Ş ö Ö ç ç ö ö ö Ğ Ğ Ü Ş Ü Ş İ İ ö ö ç ç İ Ç İ Ü Ş İ Ç Ç Ü Ş İ İ ö İ Ü İ İ Ü Ü Ü Ü İ Ü ö ç ö Ç İ ç İ İ ç ç ç İ İ İ ö ö İ ö ö ç İ ö ç İ İ İ ç ç ö ç ö ç ç İ ç İ ö ç ç ç ö

Detaylı

HASAR GÖREBİLİRLİK MODELLERİNİN DOĞRULANMASI İÇİN YENİ BİR YAKLAŞIM

HASAR GÖREBİLİRLİK MODELLERİNİN DOĞRULANMASI İÇİN YENİ BİR YAKLAŞIM 2. Türye Deprem Mühendsğ ve Ssmoo Konferansı 25-27 Eyü 203 MKÜ HATAY ÖZET: HASAR GÖREBİLİRLİK MODELLERİNİN DOĞRULANMASI İÇİN YENİ BİR YAKLAŞIM U. Yazgan ve S. Günay 2 Yrd.Doç.Dr., Deprem Mühendsğ ve Afet

Detaylı

Şekilde gösterilen kola F= 1kN luk bir kuvvet etki etmektedir. Milde izin verilen gerilme em =120 N/mm 2 ve mil çapı d= 30 mm dir. Kolda izin verilen

Şekilde gösterilen kola F= 1kN luk bir kuvvet etki etmektedir. Milde izin verilen gerilme em =120 N/mm 2 ve mil çapı d= 30 mm dir. Kolda izin verilen Şeide gösterien oa = 1N u bir uvvet eti etmetedir. Mide izin verien gerime em =10 N/mm ve mi çapı d= 30 mm dir. Koda izin verien gerime ise em =60 N/mm dir, a) Koun işaret edien esitindei boyut oranının

Detaylı

ANOVA. CRD (Completely Randomized Design)

ANOVA. CRD (Completely Randomized Design) ANOVA CRD (Completely Randomzed Desgn) Örne Problem: Kalte le blgnn, ortalama olara, br urumun üç farlı şehrde çalışanları tarafından eşt olara algılanıp algılanmadığını test etme amacıyla, bu üç şehrde

Detaylı

NOT: Deney kılavuzunun Dönme Dinamiği Aygıtının Kullanımı İle İlgili Bilgiler Başlıklı Bölümü okuyunuz.

NOT: Deney kılavuzunun Dönme Dinamiği Aygıtının Kullanımı İle İlgili Bilgiler Başlıklı Bölümü okuyunuz. 8. AÇISAL HIZ, AÇISAL İVME VE TORK Hazırlayan Arş. Grv. M. ERYÜREK NOT: Deney kılavuzunun Dönme Dnamğ Aygıının Kullanımı İle İlgl Blgler Başlıklı Bölümü okuyunuz. AMAÇ 1. Küle merkez boyunca geçen ab br

Detaylı

1- Tek parçalı veya enkesitini oluşturan parçaları çubuk boyunca birbirlerine sürekli olarak birleştirilmiş basınç çubukları:

1- Tek parçalı veya enkesitini oluşturan parçaları çubuk boyunca birbirlerine sürekli olarak birleştirilmiş basınç çubukları: YTÜ İnşaat Müh. Bö. Çk Yapıar I Drs Notarı Yrd. Doç. Dr. Dvrm ÖZHENDEKCİ BSINÇ ÇUBUKLRININ SINIFLNDIRILMSI Basınç çubukarı nkst özkr v hsapanma sasarına bağı oarak k ana gruba arıırar: - Tk parçaı va nkstn

Detaylı

C) 2 2 2 2H c. D) v = v + 2uv + 2u ; tanθ= C) v 0 =10 3 m/s; tanθ= 2 3

C) 2 2 2 2H c. D) v = v + 2uv + 2u ; tanθ= C) v 0 =10 3 m/s; tanθ= 2 3 . Bi uça sesten ızı oaa, H yüseiğinde üstüüzden uçaen ta tepeizden geçtiten τ süe sona sesini duyabiiyouz. es ızı c ise uçağın ızını buunuz. H c τ H c τ H c τ H c τ H c τ tenis oeti u o v tenis topu. Kütesi

Detaylı

UYGULAMALAR ÇIKIŞ OLSAYDI!!

UYGULAMALAR ÇIKIŞ OLSAYDI!! UYGULAMALAR ( Duruş Görüş Uzunuğu, Fren Eniyet Meaei, Stopping Sight Ditance ) PROBLEM: 90 k/a' ik hıza uygun, % 3 eğii bir yo üzerinde tairat (onarı) ebebiye işaret ( uyarı) evhaı konuacaktır. Bu evha

Detaylı

2.7 Bezier eğrileri, B-spline eğrileri

2.7 Bezier eğrileri, B-spline eğrileri .7 Bezer eğrler, B-splne eğrler Bezer eğrler ve B-splne eğrler blgsaar grafklernde ve Blgsaar Destekl Tasarım (CAD) ugulamalarında çok kullanılmaktadır.. B-splne eğrler sadece br grup ver noktası çn tanımlanan

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matemat Deneme Sınavı. ii basamalı doğal saıdır. 6 en büü saısı ile en üçü saısının toplamı açtır? 8 89 8 6. için, 9 ( ) ifadesinin sonucu aşağıdailerden hangisidir? 6. ile saıları arasındai çift saıların

Detaylı

2.a: (Zorunlu Değil):

2.a: (Zorunlu Değil): Uygulaa 5-7:.7 6 7 Baar Yarıyılı Jeodezk Ağlar e Uygulaaları UYGULAMA FÖYÜ,..7.a: (Zorunlu Değl: Yanına arılaayan br kule yükeklğnn trgonoetrk yükeklk belrlee yönteyle eaplanaı UYGULAMA.b : (Zorunlu C3

Detaylı

Ü Ğ Ş Ü Ğ İ ö İ ö öç Ğ ö İ Ü Ş ö Ö ç ç ğ ö ö ğ ö Ğ Ğ «Ü Ş ğ Ü Ş İ ğ İ ğ ğ ğ ö ö ç ç ğ ğ İ ğ Ç ğ ğ Ü Ş İ ğ İ Ç ğ ğ Ç ğ Ü Ş ğ ğ İ ğ ğ ğ ğ İ ö İ ğ İ Ü İ İ Ü Ü Ü Ü İ ğ Ü ğ ö ç ö ğ ğ İ ğ İ ç ç ç İ ğ ğ İ ğ İ

Detaylı

ÇEKME DENEYİ İLE İLGİLİ ÖRNEK PROBLEMLER

ÇEKME DENEYİ İLE İLGİLİ ÖRNEK PROBLEMLER 1 ÇEKME DENEYİ İLE İLGİLİ ÖRNEK PROBLEMLER ORMÜLLER. S =. ise;.. % Uzama müh = ise. %Uzama ger =. n %Uzama ger = n % Kesit an Daraması = BİRİMLER 1 kg = 9,81 N 1 N =,1193 kg = 1 5 Dyn 1 MPa = 15 Psi =

Detaylı

ELEKTR K AKIMI BÖLÜM 19

ELEKTR K AKIMI BÖLÜM 19 EET II BÖÜ 9 ODE SOU DE SOUIN ÇÖZÜE ODE SOU DE SOUIN ÇÖZÜE. letken tel Teln kestnden geçen yük mktarı; q N elektron.q elektron T. - gra fğ nn eğ m y ve rr. T Bu na gö re;. ara lık ta, sa bt. ara lık ta,

Detaylı

3. Parçaları Arasında Aralık Bulunan Çok Parçalı Basınç Çubukları

3. Parçaları Arasında Aralık Bulunan Çok Parçalı Basınç Çubukları 3. Parçaları Arasında Aralık Bulunan Çok Parçalı Basınç Çubukları Basınç çubukları brden fazla profl kullanılarak, bu profller arasında plan düzlemnde bell br mesafe bulunacak şeklde düzenleneblr. Bu teşklde,

Detaylı

Basel II Geçiş Süreci Sıkça Sorulan Sorular

Basel II Geçiş Süreci Sıkça Sorulan Sorular Basel II Geçş Sürec Sıkça Sorulan Sorular Soru No: 71 Cevaplanma Tarh: 06.03.2012 İlgl Hüküm: --- Konu: Gayrmenkul İpoteğyle Temnatlandırılmış Alacaklar İçn KR510AS Formunun Doldurulmasına İlşkn Örnek

Detaylı

Ü ş ş ö ş ş ş ş ş ö ş ö ö ş ş ö ş ö ö ö ö ş ö ş ş ö ş ş ş ö ş ş ş ş Ç ş Ç ş ş Ö ö ö ş ş ş ö ş ş ö ö ö ö ö ş ö ş ş ş ş ş ş ş ş ş ö ş

Ü ş ş ö ş ş ş ş ş ö ş ö ö ş ş ö ş ö ö ö ö ş ö ş ş ö ş ş ş ö ş ş ş ş Ç ş Ç ş ş Ö ö ö ş ş ş ö ş ş ö ö ö ö ö ş ö ş ş ş ş ş ş ş ş ş ö ş ş ö ö ö ö ş ş ş Ü ş ş ş Ü ş ş ö ş ş ş ş ş ö ş ö ö ş ş ö ş ö ö ö ö ş ö ş ş ö ş ş ş ö ş ş ş ş Ç ş Ç ş ş Ö ö ö ş ş ş ö ş ş ö ö ö ö ö ş ö ş ş ş ş ş ş ş ş ş ö ş Ç ş Ö ö ş ş ş ş ş ö Ç Ç ş ö ş ö ö ö ö ö ö ş ş

Detaylı

2 0 1 6 / 1. D Ö N E M

2 0 1 6 / 1. D Ö N E M MALİ MÜŞAVİRLİK YETERLİLİK SINAVI HAZIRLIK KURSLARI YENİLENEN KURSLARIMIZIN AVANTAJLARINDANYARARLANIN bizime uaşın KURS YERLERİ Şişi (Gayrettepe, Dedeman İş Merkezi) Kadıköy (Hasanpaşa Mh.) Şirinever Eğitim

Detaylı

ö ç İ ç ç İ ö Ö ö ç İ İ Ö İ ç ç ç ç ç İ İ İİ İ ç İ ç ç ç ç ö ö ç ç İ İ ö İ Ş İ İ İ Ğ ö Ç İ Ö ç Ş ö İ İ Ş Ş ö İİ Şİİ İ İ ç Üİ ç ö İ ö ö ç ö ç İ

ö ç İ ç ç İ ö Ö ö ç İ İ Ö İ ç ç ç ç ç İ İ İİ İ ç İ ç ç ç ç ö ö ç ç İ İ ö İ Ş İ İ İ Ğ ö Ç İ Ö ç Ş ö İ İ Ş Ş ö İİ Şİİ İ İ ç Üİ ç ö İ ö ö ç ö ç İ İ İ İ İ Ö İ ç İ ö İ ö ö ç İ ö ç ç ö ö İç ö ç ö ö ö ö ç ç ö ö ç İ İ ç ö ç İ ç İ İ ö ö ö ö ç ç ö ö ç ö ç ö ç İ ç ç İ ö Ö ö ç İ İ Ö İ ç ç ç ç ç İ İ İİ İ ç İ ç ç ç ç ö ö ç ç İ İ ö İ Ş İ İ İ Ğ ö Ç İ Ö ç Ş ö

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A) KOCELİ ÜNİVERSİTESİ Mühendslk akültes Makna Mühendslğ Bölümü Mukavemet I Vze Sınavı () dı Soyadı : 18 Kasım 013 Sınıfı : No : SORU 1: Şeklde verlen levhalar aralarında açısı 10 o la 0 o arasında olacak

Detaylı

Elektrik Akımı Test Çözümleri. Test 1'in Çözümleri 3. 4 Ω. 1. Kolay çözüm için şekli yeniden çizip harflendirelim.

Elektrik Akımı Test Çözümleri. Test 1'in Çözümleri 3. 4 Ω. 1. Kolay çözüm için şekli yeniden çizip harflendirelim. Elektrk kımı Test Çözümler Test 'n Çözümler. 4 Ω voltmetre. olay çözüm çn şekl yenden çzp harflendrelm. 0 Ω Ω Ω 5 Ω Ω oltmetrenn ç drenc sonsuz büyük kabul edlr. u nedenle voltmetrenn bulunduğu koldan

Detaylı

02 Mayıs 2007 tarih ve 26510 sayılı Resmi Gazetede yayımlanarak yürürlüğe girmiştir.

02 Mayıs 2007 tarih ve 26510 sayılı Resmi Gazetede yayımlanarak yürürlüğe girmiştir. Enerji Verimiiği 5627 SAYILI ENERJİ VERİMLİLİĞİ KANUNU; 02 Mayıs 2007 tarih ve 26510 sayıı Resmi Gazetede yayımanarak yürürüğe girmiştir. Enerji Verimiiği: Binaarda yaşam standardı ve hizmet kaitesinin,

Detaylı

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain *

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain * BİR ESAS İDEAL BÖLGESİ ÜZERİNDEKİ SONLU DOĞURULMUŞ BİR MODÜLÜN DİREK PARÇALANIŞI * Drec Decompoon of A Fnely-Generaed Module Over a Prncpal Ideal Doman * Zeynep YAPTI Fen Blmler Enüü Maemak Anablm Dalı

Detaylı

Üstün performans... paranızın tam karşılığı

Üstün performans... paranızın tam karşılığı DİZEL VE YÜK DENGELİ FORKLİFTLER 4 TEKERLİ, PNÖMATİK LASTİKLİ 1,5 3,5 ton S FD/FG15NT FG15ZNT FD/FG18NT FG18ZNT FD/FG20CNT FD/FG20NT FG20ZNT FD/FG25NT FG25ZNT FD30N, FG30NT FD35N, FG35NT Üstün performans...

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı,

Detaylı

TEK-FAZLI TRANSFORMATÖRÜN PARAMETRELERİNİN BULUNMASI DENEY 325-02

TEK-FAZLI TRANSFORMATÖRÜN PARAMETRELERİNİN BULUNMASI DENEY 325-02 İNÖNÜ ÜNİERSİTESİ MÜENDİSİK FKÜTESİ EEKTRİK-EEKTRONİK MÜ. BÖ. 325 EEKTRİK MKİNRI BORTURI I TEK-FZI TRNSFORMTÖRÜN PRMETREERİNİN BUUNMSI DENEY 325-02 1. MÇ: Tek fazlı tranformatörün çalışmaını incelemek

Detaylı

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim.

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim. SM de yer alacak fermyonlar Standart Model (SM) agrange Yoğunluğu u s t d c b u, d, c, s, t, b e e e,, Şmdlk nötrnoları kütlesz Kabul edeceğz. Kuark çftlern gösterelm. u, c ve t y u (=1,,) olarak gösterelm.

Detaylı

HACİM HESAPLARI. Toprak İşlerinde Karşılaşılan Hacim Hesapları

HACİM HESAPLARI. Toprak İşlerinde Karşılaşılan Hacim Hesapları 03..04 İnşaat Mühendisiği Böümü HACİM HEAPLARI Hacim hesabı, İnşaat Mühendisiğinde apıan toprak işerinin temeini ouşturur. Zira, toprak işeri ödemeeri, hacim (m 3 ) bazında apıır. oprak İşeri ers Notarı

Detaylı

ö ğ ğ ğ ö ö ö ö ç ö çö ç ö ö ö ğ ç ö ç ğ ğ ö ğ ö ç ğ ö ğ ç ğ ğ ç ğ Ö ğ ğ ç ç ö ç ğ ö ğ ç ö ğ ç ç ö ö ğ ç ğ ğ ö ğ ç ğ ğ ö ç ö ç ö ö ğ ö ç Ş Ü ğ Ü ö Ö Ş ğ Ş Ü ö ğ ö ğ ö ö Ü ö «Ç ğ ö ğ ç ğ ğ ğ çö ç ğ ö ğ

Detaylı

Ğ Ğ Ğ Ç Ç Ç Ş ç Ş Ü ö çö ö ö Ç ö ç ç ç ö ö ç ç ç ö Ç Ç ç Ç Ç Ç Ç ç ç ç Ç Ö Ç ç Ç ç ç ç ö ç ö ö Ç ç ö ö ö ö ç ö Ş Ş Ü Ü ç ö ö Ö ö ö ö çö ç Ğ ö ç Ğ ö Ü Ü ç ö ö Ö Ç Ç ç Ç Ç ç Ç Ö ö ö ç Ş Ç ç ö Ö Ş Ş Ü Ü ç

Detaylı

Ğ İ Ç Ü Ö Ö ö Ü ö ç İ ö ç ç ğ ç «Ü İ ğ İ Ü Ü İ İ İ ğ Ü Ü İ İ ğ ç ç ğ ğ ö ö Ç Ö İ ö İ ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ ğ ğ ç ğ ö ğ ğ ğ ç ğ ğ ğ ğ ö ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ

Detaylı

Ğ ğ Ç ğ ğ ğ ö ö ğ ğ Ö ğ ğ ö ğ ğ ğ ö ğ ö ğ ö ğ ö ğ ö ğ ğ ö ğ ö ğ ğ ö ğ Ç ğ Ğ ğ ö ğ Ö ğ ö ğ ö ö ğ Ç Ç ö Ç ğ ğ Ç Ç ö Ç ğ ö ğ Ç ğ ö ğ ğ Ç Ç ö ğ ğ ö öç ğ ğ Ç ğ öç Ç ö ğ Ğ ö ö ğ ğ ö ğ ğ Ğ ğ Ö ğ Ğ ğ ğ ğ Ç ğ ğ»

Detaylı

ı ı ı ğ ş ı ı ı ı ı ı ı ı

ı ı ı ğ ş ı ı ı ı ı ı ı ı Ş Ü Ğ ö ö İ ö öç Ğ Ş ö ç İ Ö Ü Ş ö Ö ç ç ğ ö ö ğ ö İ Ş ç ç ç ğ ğ ç İ İ İİ ö ç Ş ö İİ ö ç ç İ İ ğ ö İ ğ ğ ö ğ ö ç ğ ç ğ İç Ş Ü Ş ğ Ü Ş ö İŞ Ü Ş İ ğ İ İ Ü İ ö «İ ö Ş ç ç ğ ö ğ ö ç İ ö ğ ç ö İ İ ğ ğ ğ ğ ğ

Detaylı

5. Kuvvetler flekildeki gibi

5. Kuvvetler flekildeki gibi VETÖE - UVVETE TEST - 1 1. + 4. A B X = br C fieide görüdü ü gibi Y = 3 br vetörü 4 ie gösterien vetördür. X = br, Y = 3 br dir. Vetörerin büüüeri orn X = Y 3. N 5. uvveter feidei gibi uç uc eenere feidei

Detaylı

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI OLASILIĞA GİRİŞ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Ünverstes Tıp Fakültes Byostatstk Anablm Dalı uerkorkmaz@sakarya.edu.tr OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI Br olayındoğal koşullar altında toplumda

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

Kullanım Kılavuzu 3173

Kullanım Kılavuzu 3173 MO0908-E Kuanım Kıavuzu 3173 Bu SIO saati seçtiğiniz için sizi tebrik ederiz. Özeiker Bu saate konmuş oan agıayıcıar sayesinde yön, barometrik basınç, ısı ve yüksekik öçümeri yapabiirsiniz. Öçüen değerer

Detaylı

Kanape & Atıştırmalık Sunumlarında porselenmelamin zarafeti ve mini sepetler

Kanape & Atıştırmalık Sunumlarında porselenmelamin zarafeti ve mini sepetler H A Z İ R A N 1 3 Kanap & Atıştırmaı Sunumarında porsnmamin zarafti v mini sptr Prati v sti sahibi sunum dninc aa gn Dabroo porsnmamin sunum ipmanarı anap v atıştırmaı sunumarı için d atrnatifr çözümr

Detaylı

Kullanım Kılavuzu 3173

Kullanım Kılavuzu 3173 MO0908-E Kuanım Kıavuzu 3173 Bu SIO saati seçtiğiniz için sizi tebrik ederiz. Özeiker Bu saate konmuş oan agıayıcıar sayesinde yön, barometrik basınç, ısı ve yüksekik öçümeri yapabiirsiniz. Öçüen değerer

Detaylı

- 1 - 3 4v A) 450 B) 500 C) 550 D) 600 E) 650

- 1 - 3 4v A) 450 B) 500 C) 550 D) 600 E) 650 - -. Bi cisi uzunutai younu sabit hızı ie at eteye başıyo. Cisi youn yaısını at ettiğinde hızını yaıya düşüüp aan youn yaısını at ettiğinde yine hızını yaıya düşüetedi. Cisi aan youn yaısını gittiğinde

Detaylı

EETROÝ ÞEBEE AAÝZÖRÜ PR-53S Gene Bigi ve uaným Prensiperi: PR-53S bir eetri þebeesine ait tüm parametreeri öçme amacýya tasaranmýþ miroiþemci tabaný üniversa bir cihazdýr. Öçüen parametreer 5 ayrý dispayde

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

Alsancakıizmir/TÜRKiYE Tel :+90(232)464 30 40 (PBX) Fax:+90(232)464 39 19. Web site : http://www.hlbsaygin.com.lre-posta:mailbox@hlbsaygin.com.

Alsancakıizmir/TÜRKiYE Tel :+90(232)464 30 40 (PBX) Fax:+90(232)464 39 19. Web site : http://www.hlbsaygin.com.lre-posta:mailbox@hlbsaygin.com. ID!B Saygın Yemini Mai Müşavirik ve Bağımsız Denetim A.Ş. Rapor N : SYMM 116/1795-184 BÜYÜME AMAÇLI HİsSE SENEDİ EMEKLİLİK YATIRIM FONU'NUN YATIRIM PERFORMANSI KONUSUNDA KAMUYA AÇIKLANAN BİLGİLERE İLİşKİN

Detaylı

IQ PLUS BUTİK EĞİTİM MERKEZİ

IQ PLUS BUTİK EĞİTİM MERKEZİ TÜRKÇE www.ilusegitim.com 0 232 2013 2013 www.ilusegitim.com www.ilusegitim.com 0 232 2013 2013 www.ilusegitim.com 2013 www.ilusegitim.com 0 232 2013 www.ilusegitim.com www.ilusegitim.com 0 232 www.ilusegitim.com

Detaylı

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1.

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1. Ders: MAT6 Konu: Matrisler, Denklem Sistemleri. A = matrisi bulunuz.. A = a b c d e f ve B = ÇALIŞMA SORULARI- olmak üzere X = AX + B olacak şekilde bir X matrisi satır basamak hale getirildiğinde en fazla

Detaylı

Değerlerin Önemi. W L = ILI«O ve W C = CE 2 0. W = f pdt R W t = j,*,, l öt. 2 l. i (o) -e (o) (la) (lb) (Ic)

Değerlerin Önemi. W L = ILI«O ve W C = CE 2 0. W = f pdt R W t = j,*,, l öt. 2 l. i (o) -e (o) (la) (lb) (Ic) UDK: 61.39 Devre Anaizinde Başangıç Şartan ve Nihaî özet: Devre anaizinde esas probem, Ohm ve Kirchhoff kanunarından faydaanarak, întegre - diferansiye denkemer diye adandırıan denge denkemerini ede etmek

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu TAP Fzk Olmpyat Okulu Eylül Deneme Sınavı (Prof.Dr.Ventsslav Dmtrov Konu: Elektrk Devrelernde İndüktans Soru. Şekldek gösterlen devrede lk anda K ve K anahtarları açıktır. K anahtarı kapatılıyor ve kondansatörün

Detaylı

ç ö ö ç ğ ğ ç ğ ğ ö

ç ö ö ç ğ ğ ç ğ ğ ö ç ç ç ç ö ç ğ ğ ğ ğ ç ö ğ ğ ç ç ğ ğ ç ğ ö ö ç ğ ğ ç ç ö ç ö ç ğ ğ ç ö ö ç ö ö ç ğ ğ ç ğ ğ ö ğ ç ğ ö ç ğ ç ç ğ ç ç ö ö ö ç ğ ö ç ğ ç ç ğ ö ç ç ç ö öç ö ç ğ ğ ö ç ğ ç ö ç ç ğ ğ ç ğ ç ğ ö ğ ğ ğ ğ ğ ğ ö ğ

Detaylı

GÜÇLENDİRME PERDELERİNDE BOŞLUKLARIN KAPASİTEYE OLAN ETKİSİ

GÜÇLENDİRME PERDELERİNDE BOŞLUKLARIN KAPASİTEYE OLAN ETKİSİ 2. Türkiye Deprem Müendisiği ve Sismooji Konferansı 25-27 Eyü 213 MKÜ HATAY GÜÇLENDİRME PERDELERİNDE BOŞLUKLARIN KAPASİTEYE OLAN ETKİSİ ÖZET: K. Pençereci 1, S. Yıdırım 1, Y.İ. Tonguç 1 1 İnş. Yük. Mü.,Promer

Detaylı

Çok Parçalı Basınç Çubukları

Çok Parçalı Basınç Çubukları Çok Parçalı Basınç Çubukları Çok parçalı basınç çubukları genel olarak k gruba arılır. Bunlar; a) Sürekl brleşk parçalardan oluşan çok parçalı basınç çubukları b) Parçaları arasında aralık bulunan çok

Detaylı

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #9 Otomatik Kontrol Kararlılık (Stability) 1 Kararlılık, geçici rejim cevabı ve ürekli hal hataı gibi kontrol taarımcıının üç temel unurundan en önemli olanıdır. Lineer zamanla değişmeyen itemlerin

Detaylı

A) 45 cm B) 48 cm C) 40 cm D) 50 cm E) 42 cm

A) 45 cm B) 48 cm C) 40 cm D) 50 cm E) 42 cm XIX. ULUSAL FİZİK OLİPİYAI BİRİNCİ AŞAA SINAI-. Yürüyen erdiven üzerinde buunan ve endii de erdivene göre abit bir v ızıya yürüyen işi n = baaa ayar. Bu işi iinci ez erdiven üzerinde aynı yönde, erdivene

Detaylı

Servis ve Destek Videojet Uzaktan Servis

Servis ve Destek Videojet Uzaktan Servis Servis ve Destek Videojet Uzaktan Servis Ethernet özeiki 1000 Serisi yazıcıar için Üretkeniği artırmak için verierin ve bağantının gücünü kuanın Artık yazıcınızın verierine anında erişerek daha hızı yanıt

Detaylı

İ Ş İ İ ş ş ğ ç ğ ş ç ç ğ ç ğ Ç ö ç şi İ ç ç ş ğ ç ğ ç ç Ç ğ ö ğ İ ç ğ İ İ ğ ş ğ ğ ş öş ç ç ç ğ İ ş ğ İ ğ ç ç Ğ ş öş Ğ ç ç ç İ ğ ş ğ İ Ş ğ İ ğ ç ç İ Ğ

İ Ş İ İ ş ş ğ ç ğ ş ç ç ğ ç ğ Ç ö ç şi İ ç ç ş ğ ç ğ ç ç Ç ğ ö ğ İ ç ğ İ İ ğ ş ğ ğ ş öş ç ç ç ğ İ ş ğ İ ğ ç ç Ğ ş öş Ğ ç ç ç İ ğ ş ğ İ Ş ğ İ ğ ç ç İ Ğ İ Ş İ İ ş ş ğ ç ş ş ğ ğ ğ İ ğ İ İ ğ ş ğ ö ğ İ «ş ğ ş İ Ş ş ğ ş ş ğ İ ş ğ Ş İ Ş ş İ Ş ş Ş İİ Ş ş İ ğ Ş ö ş ö İ Ü Ü İ ö İ ş ç ğ ş çi ö ğ ç ş ç ö ğ ş ö ğ ç ş ğ ş ğ ş İ ö İ İ ö İ İ ç ş ş ö İ Ö ğ ş ğ İ ğ ş

Detaylı

LAMBALAR BÖLÜM X 6. X MODEL SORU 1 DEK SORULARIN ÇÖZÜMLER. K anahtarı açık iken: Z ve T lambaları yanar. X ve Y lambaları = 2 dir.

LAMBALAR BÖLÜM X 6. X MODEL SORU 1 DEK SORULARIN ÇÖZÜMLER. K anahtarı açık iken: Z ve T lambaları yanar. X ve Y lambaları = 2 dir. ÖÜ 0 ODE SOU 1 DE SOUN ÇÖÜE anahtarı açık ken: ve lambaları yanar. ve lambaları yanmaz. N 1 = dr. 1. 3 1 4 5 6 al nız lam ba sı nın yan ma sı çn 4 ve 6 no lu anah tar lar ka pa tıl ma lı dır. CE VP. U

Detaylı

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü 4. TRANSFER FONKSİYONU VE BLOK DİYAGRAM İNDİRGEME

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü 4. TRANSFER FONKSİYONU VE BLOK DİYAGRAM İNDİRGEME . TRNSFER FONKSİYONU VE BLOK DİYRM İNDİREME. Hedefler Bu bölümün amacı;. Tranfer fonkiyonu ile blok diyagramları araındaki ilişki incelemek,. Fizikel itemlerin blok diyagramlarını elde etmek, 3. Blok diyagramlarının

Detaylı

MO1104-EA Kullanım Kılavuzu 3261 3281. Pil gücü göstergesi. Saatinizin şarjı yeterli. Detaylı bilgi için Saatin Şarj Edilmesi ne (sayfa 12) bakınız.

MO1104-EA Kullanım Kılavuzu 3261 3281. Pil gücü göstergesi. Saatinizin şarjı yeterli. Detaylı bilgi için Saatin Şarj Edilmesi ne (sayfa 12) bakınız. MO1104-EA Kuanım Kıavuzu 3261 3281 Bu CASIO saati seçtiğiniz için sizi tebrik ederiz. 1 Uyarı! Bu saatte buunan öçüm işemeri profesyone ve endüstriye kesinik isteyen öçümer için tasaranmamıştır. Bu saatin

Detaylı

Elektrik Enerjisi ve Elektriksel Güç Testlerinin Çözümleri

Elektrik Enerjisi ve Elektriksel Güç Testlerinin Çözümleri Elektrk Enerjs ve Elektrksel Güç Testlernn Çözümler Test 1 n Çözümü 1. Her brnn gerlm 1,5 volt olan 4 tane pl brbrne ser bağlı olduğundan devrenn toplam gerlm 6 volt olur. est S, uzunluğu / olan demr çubuğun

Detaylı

Sonlu kanat Teorisi Açıklık oranıküçük kanatlar etrafındaki akımın fiziksel yapısı

Sonlu kanat Teorisi Açıklık oranıküçük kanatlar etrafındaki akımın fiziksel yapısı Sou kt Teor çıkık orıküçük ktr etrfıdk kımı fke pıı çıkık orı küçük (R < -5 ktr çıkık orı büük (R > -5 ktr UCK5 erodmk der otrı UCK5 erodmk der otrı çıkık orıküçük ktr etrfıdk kımı fke pıı çıkık orıükek

Detaylı

İÇİNDEKİLER 3. GAUNT KATSAYILARI 22

İÇİNDEKİLER 3. GAUNT KATSAYILARI 22 İÇİNDEKİLER. GİRİŞ. KOMPLEKS KÜRESEL HARMONİKLER 6.. Hdrojen Atounda Eetronun Bağı Hareet 6.. Eetronun Bağı Hareet İçn azıan Schrödnger Denenn Kürese Koordnatarda Çözüü 7.. Açısa Kısın Çözüü 9.4. Kürese

Detaylı

EMO İSTANBUL ŞUBESİ TARAFINDAN HOBİ ELEKTRONİK KURSU İÇİN DERLENMİŞTİR. BOBİNLER

EMO İSTANBUL ŞUBESİ TARAFINDAN HOBİ ELEKTRONİK KURSU İÇİN DERLENMİŞTİR. BOBİNLER EMO İSTANBUL ŞUBESİ TAAFNDAN HOBİ ELEKTONİK KUSU İÇİN DELENMİŞTİ BOBİNLE Bobnler, akara, adren veya karkas olarak adlandırılan yalıkanlar üzerne plask, serak, serkağı spral, helezon, düz, peek şeklnde

Detaylı

ELEKTRİK DEVRELERİ. Devreden geçen akım, Devreden geçen akım, ampermetresi i = 4A okur. ampermetresi ise 2A i gösterir. olur. A 1

ELEKTRİK DEVRELERİ. Devreden geçen akım, Devreden geçen akım, ampermetresi i = 4A okur. ampermetresi ise 2A i gösterir. olur. A 1 . BÖÜ EETİ DEEEİ IŞTI ÇÖZÜE EETİ DEEEİ. 8 r0 8 r0 8 r0 40 40 40 4 Devreden geçen akım, 8+ 8+ 8 4 + + 4 8 ampermetres, ampermetres se gösterr. Devreden geçen akım, 40 + 40 40 40 4 + + + + + 0 ampermetres

Detaylı

Çoklu Frekanslı GNSS Ölçüleri Đle Anlık Bağıl Konum Belirlemede Stokastik Model Oluşturma

Çoklu Frekanslı GNSS Ölçüleri Đle Anlık Bağıl Konum Belirlemede Stokastik Model Oluşturma Çou Freansı GNSS Öçüer Đe Anı Bağı Konum Beremede Stoast Mode Ouşturma Orhan KUR Özet BFB Başangıç Faz Berszğ) çözüm aşaması, GNSS gözemernn değerendrmesnn en önem aşamasını ouşturur. BFB çözüm yöntemernn

Detaylı

DENEY 8 İKİ KAPILI DEVRE UYGULAMALARI

DENEY 8 İKİ KAPILI DEVRE UYGULAMALARI T.C. Maltepe Ünverstes Müendslk ve Doğa Blmler Fakültes Elektrk-Elektronk Müendslğ Bölümü EK 0 DERE TEORİSİ DERSİ ABORATUAR DENEY 8 İKİ KAP DERE UYGUAMAAR Haırlaanlar: B. Demr Öner Same Akdemr Erdoğan

Detaylı

Tebrik. Genel Rehber. Radyo-Kontrollü Atomik Zaman İşleyişi. MO0306-EA Kullanım Kılavuzu 2608 2638 2688

Tebrik. Genel Rehber. Radyo-Kontrollü Atomik Zaman İşleyişi. MO0306-EA Kullanım Kılavuzu 2608 2638 2688 MO0306-EA Kuanım Kıavuzu 2608 2638 2688 Tebrik Bu CASIO saati seçtiğiniz için sizi tebrik ederiz. Ürününüzden en iyi seviyede yararanmak için bu e kıavuzunu dikkatice okuyarak, gerektiğinde tekrar bakmak

Detaylı

Enbüyük uzaklığın. enküçüklenmesi (ENKENB) Mühendislik Fakültesi Endüstri Mühendisliği Bölümü

Enbüyük uzaklığın. enküçüklenmesi (ENKENB) Mühendislik Fakültesi Endüstri Mühendisliği Bölümü Müendslk Fkültes Endüstr Müendslğ Bölümü Enüük uklığın Doç. Dr. Nl ARAS ENM4 Tess Plnlmsı 06-07 Gü Dönem enküçüklenmes (ENKENB) Yen tess, sstemdek en uk tesse le mümkün olduğun çuk ulşk erde konumlndırmk.

Detaylı

ÖZEL EGE LİSESİ 13. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ 13. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI 1. x,y,z pozitif tam sayılardır. 1 11 x + = 8 y + z olduğuna göre, x.y.z açtır? 3 B) 4 C) 6 D)1 3 1 4. {,1,1,1,...,1 } 1 ümesinin en büyü elemanının diğer 1 elemanın toplamına oranı, hangi tam sayıya en

Detaylı

( k) Ayrık Zaman Hopfield Ağı ile Çağrışımlı Bellek Tasarımı. x 1, 1 1. Aşama: Belleğin Oluşturulması. n Aşama: Anımsama

( k) Ayrık Zaman Hopfield Ağı ile Çağrışımlı Bellek Tasarımı. x 1, 1 1. Aşama: Belleğin Oluşturulması. n Aşama: Anımsama Hatıratma Kaıa Hücre Moe: McCoch-Ptts Örütüer: { } Arı Zama Hoe Ağı e Çağrışımı Bee Tasarımı, { }. Aşama: Beeğ Oştrması s brşe ar!! > 0 < 0 bot, tae ere araraara beeğ oştrma ç ağırıar bereme Her öro çıışı

Detaylı

AJANDA LİTERATÜR TARAMASI

AJANDA LİTERATÜR TARAMASI AJANDA İSTANBUL DAKİ HASTANELERDEN TIBBİ ATIKLARIN TOPLANMASI İÇİN ARA TESİSE UĞRAMALI BİR ARAÇ ROTALAMA MODELİ Denz Asen Koç Ünverstes İtsad ve İdar Blmler Faültes Müge Güçlü Koç Ünverstes Endüstr Mühendslğ

Detaylı

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul Ercan Kaha 1 Hdrolk. B.M. Sümer, İ.Ünsal, M. Baazıt, Brsen Yaınev, 2007, İstanbul BÖLÜM 12 AÇIK KANALLARDA AKIM: ÜNİFORM OLMAYAN AKIMLAR 12.1 GİRİŞ - --- --.;! Baraj sonrak su üze öncek su üze.. Vnfom

Detaylı

ş Ş Ş ş ş ş ç ş ç ş Ş ş ö ş Ş Ş ö ş ş ş ç ş ş ç ç Ç ş Ş Ş ş ş ş ş ş ö ş ş Ç Ş Ş ş ş Ş ş Ş ş ş ş ç ş ş ş ç ş ş ç ş ö ş ö ş ş ç ç ö ç Ç ş ş Ş ç ş ş ş ş

ş Ş Ş ş ş ş ç ş ç ş Ş ş ö ş Ş Ş ö ş ş ş ç ş ş ç ç Ç ş Ş Ş ş ş ş ş ş ö ş ş Ç Ş Ş ş ş Ş ş Ş ş ş ş ç ş ş ş ç ş ş ç ş ö ş ö ş ş ç ç ö ç Ç ş ş Ş ç ş ş ş ş ş Ş Ş Ş ş Ş Ç «Ş ç ş ç ç ş ş ş Ş Ş ş ş ş ç ş ç ş Ş ş ö ş Ş Ş ö ş ş ş ç ş ş ç ç Ç ş Ş Ş ş ş ş ş ş ö ş ş Ç Ş Ş ş ş Ş ş Ş ş ş ş ç ş ş ş ç ş ş ç ş ö ş ö ş ş ç ç ö ç Ç ş ş Ş ç ş ş ş ş ö Ş ç ş ş ş ş ş ö ş ş

Detaylı

ş Ğ» ş Ğ ş Ü ğ Ö ğ ğ ğ ç ğ ş ğ ç ç ğ ğ ş ç ğ ş ğ ç ğ ş Ö Ö ç ö ş ç ş ö ş ğ ğ ğ ş ö ç ş ç ğ ğ ğ ç ş ç ö ş ş ç ğ Ö ğ ç ş ş ç ş ö ç ş ç ş ş ö ğ ş ş ö ö ş ö ş ç ş ğ ç ş ç ş ğ ç ç ö ş ö ö ş ö ğ ç ç ö ş ğ ö

Detaylı

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler 6.4.7 NÜMERİK ANALİZ Yrd. Doç. Dr. Hatce ÇITAKOĞLU 6 Müendslk sstemlernn analznde ve ugulamalı dsplnlerde türev çeren dferansel denklemlern analtk çözümü büük öneme saptr. Sınır değer ve/vea başlangıç

Detaylı

Seramiklerin, metallerin ve plastiklerin ısıl özellikleri nasıl değişkenlik gösterir? Isı Kapasitesi. Malzemenin ısıyı emebilme kabiliyetidir.

Seramiklerin, metallerin ve plastiklerin ısıl özellikleri nasıl değişkenlik gösterir? Isı Kapasitesi. Malzemenin ısıyı emebilme kabiliyetidir. Terma Özeiker Mazemeer ısı etkisi atında nası bir davranış sergierer? Isı özeikeri nası öçeriz ve tanımarız... -- ısı kapasitesi? -- terma uzama? -- ısı ietkenik? -- ısı şok direnci? Seramikerin, metaerin

Detaylı

d K d6 m Karışımın özkütlesini bulalım. (1) 6m kütleli sıvının özkütlesini bulalım.

d K d6 m Karışımın özkütlesini bulalım. (1) 6m kütleli sıvının özkütlesini bulalım. 1.. Karışıın özkütleini bulalı. d K 6 v v v d 9 3v (1) 6 kütleli ıvının özkütleini bulalı. O noktaına göre oent alırak şekildeki T niceliğinin büyüklüğünü bulabiliriz. 7P. = P.1 + T.4 Bu ifade yardııyla

Detaylı

ğ İ Ü Ü İĞ Ğİ İ İ Ü Ü Ü Ü ğ ğ öğ ğ ö Ö ğ ç ğ ş ğ ğ ç ç ğ ğ ö ğ ş ğ ğ ç ö ş ö ş ş ğ İ ş ğ ğ ç Ö ö ö ş ş ğ ğ ğ ğ ö ş ö ş ğ ğ ğ ğ Ü ğ ç Ş ç Ü ğ ş ş ç ş ş ö ö ş ç ş ş ğ ş ş ğ ğ İ ş ğ ç ğ ç ç ö öğ Ü ğ ç ş ğ

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8 FARKLI YÜZEY ÖZELLİKLERİNE SAHİP PLAKALARIN ISIL IŞINIM YAYMA ORANLARININ HESAPLANMASI BAŞKENT ÜNİVERSİTESİ

Detaylı

IDDM YARDIMIYLA TERS MATRİS HESAPLAMA. Kadınhanı, KONYA, e-posta: aocdiken@selcuk.edu.tr

IDDM YARDIMIYLA TERS MATRİS HESAPLAMA. Kadınhanı, KONYA, e-posta: aocdiken@selcuk.edu.tr SDÜ FEN EDEBİT FKÜLTESİ FEN DERGİSİ E-DERGİ. 8,, 98- DDM RDML TERS MTRİS HESPLM O ÇBKDİKEN *, Ke DN ** * Seçu Üverte, Kdıhı MO, Bgyr Teooer ve Prog, Kdıhı, KON, e-pot: ocde@ecu.edu.tr ** Seçu Üverte, dd

Detaylı

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007 Yrd. Doç. Dr. Atlla EVİN Afyon Kocatepe Ünverstes 007 ENERJİ Maddenn fzksel ve kmyasal hal değşm m le brlkte dama enerj değşm m de söz s z konusudur. Enerj değşmler mler lke olarak Termodnamğn Brnc Yasasına

Detaylı

VEKTÖRLER. DOĞRU PARÇASI: Doğrunun A ve B noktaları ile bunların arasında kalan bütün noktalarından oluşan kümeye [AB] DOĞRU PARÇASI denir.

VEKTÖRLER. DOĞRU PARÇASI: Doğrunun A ve B noktaları ile bunların arasında kalan bütün noktalarından oluşan kümeye [AB] DOĞRU PARÇASI denir. VEKTÖRLER DOĞRU PRÇSI: Doğrunun ve B noktaları ile bunların arasında kalan bütün noktalarından oluşan kümeye [B] DOĞRU PRÇSI denir. Doğrultusu (üzerinde bulunduğu doğru) ve uzunluğundan söz edilebilir.

Detaylı

Belirtilen kapasitede son kata aittir

Belirtilen kapasitede son kata aittir TE Sers Elektrkl Vnçler 00 kg le, ton aras kapastelerde Her türlü kald rma, çekme uygulamas çn, tona kadar standart modeller mevcuttur. Dayan kl l k ve büyük sar m kapastes le genfl br uygulama alan nda

Detaylı

2 MANYETİZMA. 7. Etki ile mıknatıslanmada mıknatısın 5. K L M F F S N S N S N

2 MANYETİZMA. 7. Etki ile mıknatıslanmada mıknatısın 5. K L M F F S N S N S N 3 Manyetzma Test Çözümler 1 Test 1'n Çözümler 3. 1 2 3 4 5 6 1. X Şekl I M 1 2 Y 3 4 Mıknatıs kutupları Şekl I dek gb se 4 ve 5 numaralı kutuplar zıt şaretl olur. Manyetk alan çzgler kutup şddet le doğru

Detaylı

VEKTÖRLER Koordinat Sistemleri. KONULAR: Koordinat sistemleri Vektör ve skaler nicelikler Bir vektörün bileşenleri Birim vektörler

VEKTÖRLER Koordinat Sistemleri. KONULAR: Koordinat sistemleri Vektör ve skaler nicelikler Bir vektörün bileşenleri Birim vektörler 11.10.011 VEKTÖRLER KONULR: Koordnat ssteler Vektör ve skaler ncelkler r vektörün bleşenler r vektörler Koordnat Ssteler Karteen (dk koordnatlar: r noktaı tesl etenn en ugun olduğu koordnat ssten kullanırı.

Detaylı

Markalama, kodlama ve sistem çözümleri. Kimyasallar

Markalama, kodlama ve sistem çözümleri. Kimyasallar Markaama, kodama ve sistem çözümeri Kimyasaar Üretim hatarınızda karşıaştığınız zorukarın farkındayız Kimyasa imaatında kodama, sıcak, tozu ve ısak oabien zoru üretim ortamarı nedeniye zor oabiir. Güveniir

Detaylı

ÜRÜN KATALOĞU ÜRÜN KATEGORİLERİMİZ. Vücut Koruyucular. Kulak Koruyucular. El Koruyucular. Temizlikçi Emniyet Kemeri

ÜRÜN KATALOĞU ÜRÜN KATEGORİLERİMİZ. Vücut Koruyucular. Kulak Koruyucular. El Koruyucular. Temizlikçi Emniyet Kemeri ÜRÜN KATALOĞU ÜRÜN KATEGORİLERİMİZ El Koruyucular Kulak Koruyucular Vücut Koruyucular Temzlkç Emnyet Kemer ABA N1813 33 cm Yeşl Ntrl Eldven ABA N1815 38 cm Yeşl Ntrl Eldven ABA RNU-18 46 cm Yeşl Ntrl Eldven

Detaylı

10. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 3. Konu ELEKTRİK ENERJİSİ VE ELEKTRİKSEL GÜÇ ETKİNLİK ve TEST ÇÖZÜMLERİ

10. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 3. Konu ELEKTRİK ENERJİSİ VE ELEKTRİKSEL GÜÇ ETKİNLİK ve TEST ÇÖZÜMLERİ 10. SINIF ONU NTII. ÜNİTE: EETİ E NYETİZ. onu EETİ ENEJİSİ E EETİSE GÜÇ ETİNİ ve TEST ÇÖZÜEİ Ünte Elektrk ve anyetzma. Ünte. onu (Elektrk Enerjs ve Elektrksel Güç) nın Çözümler 1. Noktalama sstemyle Şekl

Detaylı

AQUA DRILL EX. Yeni Nesil Karbür Matkap Uçları AQUAEX Matkap Ucu Serileri

AQUA DRILL EX. Yeni Nesil Karbür Matkap Uçları AQUAEX Matkap Ucu Serileri AQUA DRI EX Standart Ortaama Mazeme Deik Çapı....... 1.. Yapı Çeiği Karbon Çeiği 1 1 HB Aaşım HRC 1 1) Makinenin rijitiği, iş parçası tutucusuna göre deme koşuarınızı ayarayın. ) Burada yazıan deme koşuarında

Detaylı

ihazınkulanım alanları limaderecesi Belirtilenodasıcaklı ıaralı ınındı ında cihazıçalı tırmayın. u ltresi ihazıntanımı dasıcaklı ı urulum modu

ihazınkulanım alanları limaderecesi Belirtilenodasıcaklı ıaralı ınındı ında cihazıçalı tırmayın. u ltresi ihazıntanımı dasıcaklı ı urulum modu en m eu Ün e eh ge meme e nm enge eme n h n f nd n m e u u m ge e C h e m ndh, e m d nön e hemen ed e e mege n Gü en u n m n h nbu u n m m nd be d ğ e de u u duğund n eb ğ nd ğ nd nem n o un He h ng b

Detaylı

VERİ MADENCİLİĞİ Sosyal Ağlar

VERİ MADENCİLİĞİ Sosyal Ağlar Sosyal Ağ VERİ MADENCİLİĞİ Sosyal Ağlar Yrd. Doç. Dr. Şule Gündüz Öğüdücü Sosyal ağ kşler arasındak lşklern oluşturduğu br yapıdır Sosyal ağ ncelemes: ağ yapısının, kşler ya da gruplar (topluluklar) arasındak

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROA ÜNİERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Eg ARICAN NİTEL YANIT DEĞİŞKENE SAHİP REGRESYON MODELLERİNDE TAHMİN YÖNTEMLERİ İSTATİSTİK ANABİLİM DALI ADANA, ÇUKUROA ÜNİERSİTESİ FEN BİLİMLERİ

Detaylı

Ders #10. Otomatik Kontrol. Sürekli Hal Hataları. Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #10. Otomatik Kontrol. Sürekli Hal Hataları. Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #0 Otomatik ontrol Sürekli Hal Hataları Prof.Dr.alip Canever Prof.Dr.alip Canever Denetim Sitemlerinin analiz ve taarımında üç kritere odaklanılır:. eçici Rejim Cevabı. ararlılık 3. Sürekli Hal ararlı

Detaylı