Üniform Yüklü Dikdörtgen Temel Altında Oluşan Kayma Gerilmelerinin Hesaplanması

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Üniform Yüklü Dikdörtgen Temel Altında Oluşan Kayma Gerilmelerinin Hesaplanması"

Transkript

1 6 th International Advanced Technologies Symposium (IATS 11), May 011, Elazığ, Turkey Üniform Yüklü Dikdörtgen Temel Altında Oluşan Kayma Gerilmelerinin Hesaplanması U. Dağdeviren 1 ve Z. Gündüz 1 Sakarya Üniversitesi, Sakarya/Türkiye, Sakarya Üniversitesi, Sakarya/Türkiye, Calculation of Shear Stressess Under Uniformly Loaded Rectangular Foundation Abstract Structures cause extra stresses in the soils. It has to be known that the stress increment values to solve the problems in the geotechnical engineering. It can be seen frequently vertical stress increment expressions for foundations which have different geometry and loading types in literature. But, shear stress increment expressions has been limited to strip and circular foundations. In this study, shear stresses under rectangular foundation have been determined based on Boussinesq s elastic solution. Influence values for shear stress have been presented as graphical to simplify the conclusions. Shear stress expressions which obtained from this method can be used to determine initial static shear stress ratio and correlation factor to estimate liquefaction resistance of soils under rectangular foundations. Keywords Shear stress increment, rectangular foundation, initial static shear stress, analytical solution, numerical solution. Z I. GİRİŞ EMİNLER kendi ağırlıkları ve yapı temellerinin aktardıkları yüklerden dolayı gerilmelere maruz kalmaktadır. Yapıların zemine uyguladığı gerilmeler, yapı altında ve çevresinde sabit olmayıp derinlik boyunca değişim göstermektedir. Yapı altında zeminde oluşan gerilme dağılımları, geoteknik mühendisliğindeki birçok problemin çözümü ve projelerin tasarımında oldukça büyük bir öneme sahiptir. Özellikle yapıların zeminde oluşturduğu düşey gerilme artışları, temeller ya da dolgular gibi yüzey yükleri uygulamalarından dolayı yapı altında zeminde oluşacak oturmaların tahmini için geniş bir kullanım alanı bulmuştur. Dış yüklerin zeminde oluşturacağı gerilmelerin gerçek dağılımında, uygulanan yükün şiddetinin ve uygulandığı alanın boyutlarının yanında zemin özelliklerinin de etkisi söz konusudur. Ancak, zeminin karmaşık yapısından dolayı, zemin içerisinde gerçekçi gerilme-deformasyon analizleri yapmak oldukça zordur. Bu nedenle, zeminlerdeki gerilme artışı genellikle zeminin yarı sonsuz, ağırlıksız, izotrop, homojen ve elastik yarı uzay bir ortam kabulüyle belirlenmeye çalışılmaktadır. Boussinesq (188), Şekil 1 de gösterildiği gibi, düzleme dik olarak etkiyen tekil yükün (P) elastik malzemeler üzerinde oluşturacağı genel gerilme ifadelerini kartezyen koordinat sisteminde, Denklem 1 deki gibi formüle etmiştir []. Şekil 1. Kartezyen koordinat sistemindeki zemin elemanı P 3x z x y y z σ = ( 1 ) + ( ) x υ (1a) 3 π R Rr R + z R r 3 3Pz σ z = (1b) πr 3Pxz τ = (1c) πr = P 3xyz xy τ (1d) xy π R ( R + z ) R 3 ( ) ( R + 1 υ ) Zemin Yüzeyi Burada, R = x + y + z, r = x + y dir. Yukarıdaki gerilme ifadelerinden anlaşılacağı gibi, elastisite teorisinden yararlanarak elde edilen bu çözümlerde, zeminin türü, plastikliği ve sıkılığı gibi parametreler dikkate alınmamakta, her tür zemin (hatta malzeme) için aynı gerilme dağılımları elde edilmektedir. Laman ve Keskin (004), farklı sıkılıktaki kum numuneleri üzerine oturan kare temellerde gerçekleştirdiği deneylerde, aynı derinliklerde ve aynı yükler altında, sıkılık değerinin artmasıyla düşey gerilme değerlerinin önemli miktarda arttığını göstermiştir. Sadek ve Shahrour (007), Boussinesq nun elastik çözümü ile elasto-plastik 19

2 Üniform Yüklü Dikdörtgen Temel Altında Oluşan Kayma Gerilmelerinin Hesaplanması çözüm karşılaştırmış ve yüklü alan altındaki zemindeki düşey gerilme dağılımında plastisitenin etken bir davranış sergilediğini göstermiştir. Ancak, düşey gerilmelerde bu farkın belirgin şekilde düşük olması nedeniyle, elastik yöntemle belirlenen düşey gerilme hesabının pratikte yeterli sonuçlar verdiği kabul edilmektedir [6, 16]. Yapı yükleri zemine temeller aracılığı ile aktarıldığı için, tekil yük için elde edilen gerilme dağılımları birçok inşaat mühendisliği probleminde gerçekçi olmamaktadır. Fakat tekil yük çözümlerinin integrali alınarak farklı geometride tanımlanan (dairesel, dikdörtgen, trapez vs.) yayılı yüklerin zeminde yol açacağı gerilme dağılımlarını analitik çözümlerle bulmak mümkün olmaktadır [6, 17]. Newmark (193), üniform olarak yüklenmiş B L boyutlarındaki dikdörtgen temelin köşesi altındaki düşey gerilmeyi belirleyebilmek için Denklem 1b deki eşitliği B ve L boyunca integre ederek, Denklem deki ifadeyi elde etmiştir. Daha sonra, Fadum (1948) bu bağıntıyı özetleyerek etki sayısını (I z ) grafik çözüm olarak sunmuştur. Bu grafik çözümler, geoteknik mühendisliğinde büyük bir kullanım kolaylığı sağlamış ve düşey gerilme artışı hesaplarında önemli bir yer almıştır. Bu grafiklerden elde edilen etki sayıları ile üniform yüklü dikdörtgen alanın köşe noktası altındaki zeminde düşey gerilme artışları hesaplanabilmektedir. σ = q. z I z 1/ ( ) 1/ 1 mn m + n + 1 m + n + ( ) =. + tan mn 1 m n m n m n m n m + n m n + 1 I z π () Burada, m = B/z ve n = L/z olup, bu ifadeler birbirlerinin yerine kullanılabilen türdendir. B ve L dikdörtgen temelin boyutlarını, z, gerilme artışının hesaplanacağı derinliği, q ise dikdörtgen yüklü alandaki üniform taban basıncını göstermektedir (Şekil ). Geoteknik mühendisliğinde, oturma hesaplamalarının gerçekleştirilebilmesi için yapılardan kaynaklanan düşey gerilme artışlarının bilinmesi gerekmektedir. Bu nedenle, farklı geometri ve farklı yükleme şekillerine maruz yapı temellerinin, zeminde oluşturacağı düşey gerilme artışlarının belirlenmesine yönelik pekçok analitik çözüm geliştirilmiştir [1, 13, 8]. Zaman içerisinde geoteknik mühendisliğindeki gelişmeler doğrultusunda düşey gerilmeler yanında yatay gerilmeler ve kayma gerilmeleri ifadelerinin de belirlenmesi gereken problemler oluşmuştur. Bu çalışmada, zemin içerisinde, dikdörtgen yüklü temelden kaynaklanan yatay düzlemdeki kayma gerilmelerinin belirlenebilmesi için analitik ve nümerik çözümler geliştirilmiştir. Elde edilen analitik çözümler için, basitleştirilmiş kayma gerilmesi etki sayısı çözüm diyagramları sunulmuştur. Ayrıca nümerik çözüm için bir bilgisayar programı hazırlanmış ve literatürdeki daire ve şerit temel çözümleri ile bu çalışmada geliştirilen çözümlerin uyumu incelenmiştir. II. KONUNUN GEOTEKNİK MÜHENDİSLİĞİNDEKİ YERİ Geoteknik deprem mühendisliğinde, zeminlerin tekrarlı yükler altındaki davranışları üzerine yapılan çalışmaların çoğu, yapı yüklerinden oldukça uzakta ve eğimsiz yer düzlemindeki zemin davranışı üzerine yoğunlaşmıştır [1]. Serbest saha koşulları olarak da tanımlanan bu gerilme şartlarında, özellikle kumlu zeminlerin tekrarlı yükler altında sıvılaşma potansiyelinin belirlenmesine yönelik literatürde genel bir görüş birliği bulunmaktadır. Ancak, sıvılaşma potansiyeli üzerinde yapıların etkisi tam olarak açıklanamamıştır. Çoğu durumda, yapı altındaki sıvılaşma potansiyelinin analizinde yapının etkisi ihmal edilerek, serbest saha koşullarındaymış gibi zemin davranışı incelenmektedir. Bu durumda, zemin elemanlarının tekrarlı yüklemelerden önce yatay düzlemde herhangi bir statik kayma gerilmesine maruz kalmadığı kabulü yapılmaktadır. Pratikte ise pek çok durumda zemin elemanları yatay düzlemde başlangıç statik kayma gerilmesine maruz kalmaktadır. Yapıdan oldukça uzakta olan veya yapının simetri ekseni boyunca yer alan elemanlarda başlangıç statik kayma gerilmesi oluşmazken, yapı altında, özellikle de yapı köşesi altındaki zemin elemanlarında önemli miktarda başlangıç kayma gerilmeleri oluşmaktadır [19,, 9]. Ayrıca, yamaçlar, dolgular, barajlar ve rıhtım duvarları gibi eğimli yüzey altındaki zemin elemanlarının da sismik yüklemelerden önce başlangıç kayma gerilmesine maruz kaldığı bilinmektedir [, 1]. Bu zemin elemanları, tekrarlı yüklemeler karşısında, başlangıç statik kayma gerilmesi ve dinamik kayma gerilmesinin büyüklüğüne bağlı olarak kısmi gerilme çevrilmesi ya da gerilme çevrilmesi olmayan tekrarlı kayma gerilmelerinin etkisi altında kalacaklardır. Zeminlerin tekrarlı yükler karşısında direnci için geliştirilen prosedürlerin genellikle başlangıç statik kayma gerilmesinin olmadığı (τ s = 0) ve atmosferik basınç (p a =1 atm) altındaki serbest saha koşulları için geliştirildiği görülmektedir. Ancak bu durum her zaman gerçekçi bir model olmamaktadır. Seed (1983), serbest saha koşulları dışındaki zemin elemanları için statik kayma gerilmesi oranı düzeltme faktörü (K α ) ve örtü gerilmesi düzeltme faktörü (K σ ) ile referans tekrarlı gerilme oranının ayarlanması gerektiğini belirtmiştir. ( CRR) ' Kσ Kα CRR = (3) 0 σ = 1; α = Burada, CRR; herhangi bir gerilme durumundaki (σ v0 ve τ s ) tekrarlı direnç oranı, CRR σ =1;α=0 ; referans gerilme durumundaki (σ v0 =1 atm, τ s =0) tekrarlı direnç oranı olarak tanımlanır. K α düzeltme faktörü, eğimli zeminler ve temel yükleri altındaki zeminlerin deprem sarsıntıları gibi tekrarlı yüklerden önce (yani statik şartlarda) maruz kaldığı kayma gerilmelerinin zemin davranışına olan etkisini hesaba katmak için kullanılmaktadır. Yapılan araştırmalar, kumlu zeminlerde, K α düzeltme faktörünün zeminin sıkılığı, efektif çevre gerilmesi ve Denklem 4 de tanımlanan başlangıç statik kayma 130

3 U. Dağdeviren, Z. Gündüz gerilmesi oranına (α) bağlı olduğunu göstermektedir [11]. τ α = (4) σ s ' v0 Başlangıç statik kayma gerilmesi oranı (α), deprem öncesi durumda, zemin elemanının yatay düzlemine etkiyen kayma gerilmesinin, düşey efektif gerilmeye oranı olarak tanımlanmaktadır. Sonsuz şev durumunda α değeri yaklaşık olarak şev oranına eşit olarak seçilmektedir (Şev oranı = Düşey mesafe / Yatay mesafe) [7]. Serbest saha koşullarında başlangıç statik kayma gerilmesi oranı, α = 0 iken, yapı yakınlarındaki zeminde α sıfırdan farklı değerler almaktadır. Literatürde yer alan laboratuvar çalışmaları, başlangıç statik kayma gerilmesi oranının (α) kumların ve killerin tekrarlı yükler altında davranışını etkileyebileceğini göstermiştir [9, 10, 11, 18,, 4, 6, 7]. Statik kayma gerilmesi oranının belirlenmesi için de, başlangıç statik kayma gerilmesinin doğru olarak tahmin edilmesini gerektirmektedir. Ancak, literatürde, yapı yüklerinin zeminde oluşturduğu kayma gerilmelerinin hesabına yönelik çözümler önemli bir yer bulamamıştır. III. ÜNİFORM YÜKLÜ DİKDÖRTGEN TEMEL ALTINDA OLUŞAN KAYMA GERİLMELERİNİN BELİRLENMESİ A. Analitik Çözüm Boussinesq (188) kabullerine göre, zemin yüzeyinde tekil bir yükün zeminde oluşturacağı kayma gerilmeleri Denklem 1c ve 1d deki gibi ifade edilmiştir. Bu çalışma kapsamında, bir düşey yükün zemin içinde herhangi bir yatay düzlemde (xy düzlemi) oluşturduğu kayma gerilmeleri (τ,τ zy ) araştırılmıştır. Uygulamada tekil yükleme türü ile çok fazla karşılaşılmadığı için bu ifadeler, temel şekillerine uygun olarak integre edilmesiyle anlam kazanmaktadır. x ve y doğrultusundaki temel boyutları sırasıyla B ve L olan üniform yüklü dikdörtgen bir temelin köşe noktaları altında, temel tabanından z kadar derinlikte oluşacak kayma gerilmesi ifadeleri bu integrasyon işlemi ile elde edilebilir. Dikdörtgen temelin dx.dy boyutlarında küçük elemanlara bölünmesi durumunda herbir elemana gelecek tekil yük q.dx.dy olacaktır (Şekil ). Dikdörtgen temelin köşesinin altında z derinliğinde yatay düzlemde oluşacak kayma gerilmesi için, y L z dy dx P(0; 0; z) B Üniform düşey taban basıncı, q (kpa) x Şekil. Kartezyen koordinat sistemindeki zemin elemanı 3qz x. dxdy dτ = () π + ( x + y z ) ifadesi oluşturulabilir. Bu ifadenin dikdörtgen boyutlarınca integrasyonu yapılır ve x ile y yönündeki temel boyutları, m = B/z ve n = L/z dönüşümleri ile normalize edilirse, kayma gerilmesi ifadeleri temel boyutları ve derinlikten bağımsız bir hale dönüştürülebilir. nq τ = π 1 n + 1 ( m + 1) 1 m + n + 1 = Burada, I, xy düzleminde, x doğrultusundaki kayma gerilmesi için etki sayısını ifade etmektedir. m, n değerlerine karşılık gelen I değerleri Şekil 3 de verilmiştir. Benzer işlemler y yönündeki kayma gerilmesi için de gerçekleştirildiğinde, * τ zy = I zy. q = I. q (7) * m 1 1 I zy = I = π m + 1 n + 1 m + n + 1 I ( ) ifadesi elde edilecektir. Burada, I zy = I *, xy düzleminde, y doğrultusundaki kayma gerilmesi için etki sayısını ifade etmektedir. m * = L/z, n * = B/z değerlerine karşılık gelen I * değerleri Şekil 3 de verilmiştir. Böylece (6) ve (7) ifadelerinden, boyutları ve taban basıncı bilinen dikdörtgen temelin köşesi altındaki herhangi bir noktada oluşacak kayma gerilmeleri belirlenebilecektir. Yukarıdaki ifadelerde dikkat edilmesi gereken en önemli nokta, formül içerisindeki m ve n ifadelerinin birbirlerinin yerine kullanılamayacağıdır. B ve L ifadelerinin kısa veya uzun kenar uzunlukları gibi bir ayrımı yoktur. Buradaki B, x doğrultusundaki temel boyutunu, L ise y doğrultusundaki temel boyutunu göstermektedir. Üniform dikdörtgen yüklü temellerin altındaki zeminde oluşan kayma gerilmelerinin analitik çözümü sonunda elde edilen ifadeler, dörtgenin köşe noktası altındaki bir derinlikte oluşacak kayma gerilmesi artışını vermektedir. Köşe noktası dışında bir noktada kayma gerilmesi artışının hesaplanmak istenmesi durumunda, yüklü alan farklı parçalara bölünerek, her parçanın o noktada oluşturacağı etkinin belirlenmesi ve süperpozisyon kuralı ile net gerilme artışının hesaplanması gerekmektedir. B. Nümerik Çözüm Boussinesq gerilme ifadelerini çözmek için günümüzde nümerik yöntemler de kullanılmaktadır. Bunların içinde en çok bilineni, mevcut yüklü alanın küçük elemanlara q (6) 131

4 Üniform Yüklü Dikdörtgen Temel Altında Oluşan Kayma Gerilmelerinin Hesaplanması bölünmesi yöntemidir. Bu yöntemde, yüklü alan yüzlerce veya binlerce küçük elemanlara bölünmekte ve her bir elemanın merkezinden nokta yüklerin (P i ) etkidiği düşünülmektedir (Şekil 4). Her bir elemana etkiyen eşdeğer tekil yükün gerilme artışının hesaplanacağı noktada oluşturacağı gerilme artışları ayrı ayrı hesaplanır. Hesaplanan tüm gerilme değerleri toplanarak, istenilen noktada oluşan kayma gerilme artışı (τ, τ zy ) belirlenebilir. q. B. P L i = (8) ES ES 3P i. zi. xi τ = (9) i= 1 π. Ri Burada, ES, dikdörtgen temelin bölündüğü eleman sayısını; P i ; her bir elemana etkiyen eşdeğer tekil yükü, x i, y i, z i küçük elemanların ağırlık merkezi ile gerilme artışının hesaplanacağı noktanın sırasıyla x, y, z koordinatları arasındaki mesafeyi, R i ise her bir küçük elemanın merkezi ile gerilme artışının hesaplanacağı nokta arasındaki mesafeyi göstermektedir. Şekil 4. Küçük elemanlara bölme yöntemi Sistemin bölündüğü eleman sayısı arttıkça, bulunan sonuçlar analitik çözüm sonuçlarına daha da yaklaşacaktır. Coduto (1999) eleman sayısının 1000 den az olmamasını önermiştir. Ancak, özellikle temel yüzeyine (z=0) yakın bölgelerdeki gerilme ifadelerini belirlemek için bu şart yeterli olmamaktadır. Genellikle, küçük elemanların kenar uzunluğunun (b ve l), bu elemanın merkezi ile gerilme artışının hesaplanacağı nokta arasındaki mesafenin (R i ) üçte birden az olması önerilmektedir [3]. Capper ve Cassie (1969), bu oranın üçte birden az olması durumunda hata yüzdesinin %3, dörtte birinden az olması halinde ise hatanın % civarında olacağını belirtmektedirler. Bu çalışmada, hazırlanan bilgisayar programında hatanın mümkün olduğunca küçük mertebelerde kalması için, bu oran ¼ ve parça sayısı en az olarak seçilmiştir. Nümerik çözüm hesap yöntemi için oluşturulan bilgisayar programının, bu iki şarta göre eleman seçiminde bulunması sağlanmıştır. Şekil de burada belirtilen hususlara göre hazırlanan bilgisayar programının akış diyagramı gösterilmektedir. Şekil. Nümerik çözüm için akış diyagramı Şekil 3. Kayma gerilmesi artışı için etki sayısı (I veya I * ) 13

5 U. Dağdeviren, Z. Gündüz Hazırlanan bilgisayar programına veri olarak, dikdörtgen temelin boyutları, zemine aktarılan taban basıncı ve gerilme artışının hesaplanacağı derinlik bilgileri girilmektedir. Program, temel boyutları ve gerilme artışının hesaplanacağı noktayı dikkate alarak, sistemin bölünmesi gereken parça sayısını hesaplamaktadır. Programda gerilme artışları tek bir noktada veya o derinlikteki bir doğrultu boyunca hesaplanabilmektedir. Tek nokta seçeneğinde, gerilme artışının hesaplanacağı noktanın (x; y) koordinatları girilmektedir. Bir doğrultu boyunca gerilme artışlarının değişiminin belirlenmesi seçeneğinde ise doğrultunun x veya y değerinin girilmesi gerekmektedir. Bu seçenekte, hesaplamanın yapılacağı doğrultuda, temelin orta noktasından o doğrultu boyunca temel boyutunun 1. katı kadarlık mesafede 16 noktada gerilme artışları hesaplanabilmektedir. Programda, ayrıca, kayma gerilmelerinin yanı sıra düşey gerilme artışları da benzer hesap yöntemi ile hesaplanabilmektedir. Programın ekran görüntüsü ve girdileri Şekil 6 da, sonuçların Excel çıktıları ise Şekil 7 de gösterilmektedir. x=0 x=1.b Şekil 7. Program çıktısının Excel görüntüsü IV. DEĞERLENDİRME Çalışmanın bu bölümünde, analitik ve nümerik çözümlemeleri yapılan dikdörtgen temeller ile literatürde çözümü verilen dairesel ve şerit temeller altında oluşan kayma gerilmesi değerlerinin [8] karşılaştırılmasına yer verilmiştir. Şekil 8 de, farklı temel oranlarındaki dikdörtgen temeller ile dairesel ve şerit temeller için, köşe-orta (O) noktasında oluşacak kayma gerilmesinin derinlik boyunca değişimi görülmektedir. Kare ile dairesel temeller ve L/B oranı büyük olan dikdörtgen temeller ile şerit temellerin altında oluşan kayma gerilmelerinin birbirine yakın değerler vermektedir. Elde edilen bu sonuçlar, çalışmada gerçekleştirilmiş olan analitik çözümü doğrulamaktadır. Ayrıca tüm temel türleri için temel altında oluşacak en büyük kayma gerilmesinin yaklaşık olarak 0.3q olacağı ve bu gerilmenin temellerin uzun kenarının orta noktasında gerçekleşeceği anlaşılmaktadır. Şekil 6. Program ekran görüntüsü L B Şekil 8. Farklı geometrideki temellerin köşesinde oluşacak kayma gerilmelerinin derinlikle değişimi 133

6 Üniform Yüklü Dikdörtgen Temel Altında Oluşan Kayma Gerilmelerinin Hesaplanması V. SONUÇLAR Zeminde uygulanan dış yüklerden dolayı oluşan ilave gerilmelerin belirlenmesi geoteknik mühendisliğinin önemli konularından birisini oluşturmaktadır. Literatürdeki çalışmaların önemli bir kısmı düşey gerilme artışı üzerine yoğunlaşmıştır. Özellikle son yıllarda, geoteknik deprem mühendisliğinde, yapı yükü altındaki zeminlerde oluşan başlangıç kayma gerilmesi değerlerinin de zeminlerin dinamik davranışını önemli ölçüde etkileyebileceği gündeme gelmiştir. Literatürde, şerit ve dairesel temeller için kayma gerilmesi ifadeleri olmasına karşın, uygulamada en çok karşılaşılan dikdörtgen temeller için kayma gerilmesi ifadeleri kitaplarda yerini alamamıştır. Bu çalışmada, üniform olarak yüklenmiş dikdörtgen temelin altında oluşacak kayma gerilmelerinin belirlenmesi için tam analitik çözüm geliştirilmiştir. Analitik ifadenin çözümünün sade ve kullanışlı bir şekle sokulması için temel boyutu, gerilme artışının hesaplanacağı derinliğe göre normalize edilmiştir. Normalize edilmiş temel boyutları ifadelerinin (m, n) kullanımıyla kayma gerilmesi için etki sayılarını veren grafik çözümler oluşturulmuştur. Boussinesq nun elastik çözümüne dayanan bu ifadelerin pratik amaçlar için kullanılabileceği düşünülmektedir. Elde edilen ifadelerle gerçekleştirilen analizler sonucunda, üniform olarak yüklenmiş dikdörtgen temeller altındaki en büyük kayma gerilmesinin, temel alt yüzeyinde (z = 0 derinliğinde) ve temelin köşe düzleminin ortasında oluşacağı belirlenmiştir. Tüm temel türleri için en büyük kayma gerilmesi değeri yaklaşık olarak τ = 0.3q kadardır. Bu sonuç, depremler sırasında sıvılaşma kaynaklı olarak yapıların yan yatma problemi ile örtüşmektedir. Adapazarı nda sıvılaşma kaynaklı göçmelerin de genellikle kısa kenar doğrultusunda olduğu gözlemlenmiştir. Şerit ve şeride yakın dikdörtgen temeller dışındaki temellerde, yapıdan kaynaklı kayma gerilmelerinin z/b >. derinlik oranından itibaren etkisinin ihmal edilebilir seviyeye indiği görülmektedir. KAYNAKLAR [1] Algın, H.M., Stresses From Linearly Distributed Pressures Over Rectangular Areas, Int. J. Numer. Anal. Meth. Geomech., Vol. 4, p , 000. [] Arangelovski, G., Towhata, I., Accumulated Deformation of Sand with Initial Shear Stress and Effective Stress State Lying Near Failure Conditions, Soils and Foundations, Vol. 44, No. 6, p.1-16, 004. [3] Boussinesq, J., Application des Potentials a L Etude de L Equilibre et due Mouvement des Solides Elastiques, Gauthier-Villars, Paris, 188. [4] Capper, P.L. ve Cassie, W.F., The Mechanics of Engineering Soils, Fifth Edition. Çeviri: Kumbasar, V. ve Kip, F., İnşaat Mühendisliğinde Zemin Mekaniği, Çağlayan Kitabevi, [] Coduto, D.P., Geotechnical Engineering: Principles and Practices, New Jersey: Prentice Hall, [6] Das, B.M., Advanced Soil Mechanics, Third Edition, Taylor & Francis, New York, 008. [7] Day, R.W., Geotechnical Earthquake Engineering Handbook, McGraw-Hill, 00. [8] Fadum, R.E., Influence Values for Estimating Stresses in Elastic Foundations, Proc. nd Int. Conf. Soil Mech. Found. Eng., Vol. 3, p.77-84, [9] Hyodo, M., Murata, H., Yasufuku, N., Fujii, T., Undrained Cyclic Shear Strength and Residual Shear Strain of Saturated Sand by Cyclic Triaxial Tests, Soils and Foundations, Vol. 31, No. 3, p.60-76, [10] Hyodo, M., Yamamoto, Y., Sugiyama, M., Undrained Cyclic Shear Behaviour of Normally Consolidated Clay Subjected to Initial Static Shear Stress, Soils and Foundations, Vol. 34, No. 4, p.1-11, [11] Idriss, I.M., Boulanger, R.W., Estimating Kα for Use in Evaluating Cyclic Resistance of Sloping Ground, 8th U.S.-Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures against Liquefaction, Tokyo, Japan, December 16 18, 00, Proceedings to be published by MCEER, 003. [1] Ishibashi, I., Kawamura, M., Bhatia, S.K., Effect of Initial Shear on Cyclic Behavior of Sand, Journal of Geotechnical Engineering, Vol. 111, No. 1, p , 198. [13] Jarquio, R. ve Jarquio, V., Vertical Stress Formulas For Triangular Loading, Journal of Geotechnical Engineering, Vol. 110, No. 1, p.73-78, January, [14] Laman, M. ve Keskin, M.S., Kumlu Zeminlere Oturan Kare Temeller Altında Düşey Gerilme Analizi, Türkiye Mühendislik Haberleri, Sayı: 431, s. 3-7, 004. [1] Newmark, N.M., Simplified Computation of Vertical Pressures in Elastic Foundations, University of Illinois Engineering Experiment Station, Circular No. 4, Illinois, 193. [16] Özaydın, K., Zemin Mekaniği, Birsen Yayınevi, İstanbul, 00. [17] Poulos, H.G ve Davis, E.H., Elastic Solutions for Soil and Rock Mechanics, John Wiley & Sons, Inc., New York, [18] Rahhal, M.E., Lefebvre, G., Understanding the Effect of a Static Driving Shear Stress on the Liquefaction Resistance of Medium Dense Granular Soils, Soil Dynamics and Earthquake Engineering, Vol. 0, No. -8, p , 000. [19] Rollins, K.M. ve Seed, H.B., Influence of Buildings on Potential Liquefaction Damage, Journal of Geotechnical Engineering, Vol. 116, No., p.16-18, [0] Sadek, M. ve Shahrour, I., Use of the Boussinesq Solution in Geotechnical and Road Engineering: Influence of Plasticity, C.R.Mecanique, Vol. 33, p.16-0, 007. [1] Seed, H.B., Earthquake resistant design of earth dams, Proc. Symp. On Seismic Design of Embankments and Caverns, ASCE, Vol. 1, p.41-64, [] Song, B.W., The Influence of Initial Static Shear Stress on Post-Cyclic Degradation of Non-Plastic Silt, Lowland Technology International, Vol., No. 1, p.14-4, 003. [3] Stoll, U.W., Computer Solution of Pressure Distribution Problem, Journal of the Soil Mechanics and Foundations Division, Vol. 86, SM 6, p.1-9, [4] Uchida, K., Hasegawa, T., Strength-Deformation Characteristics of a Soil Subjected to Initial Shear Stress, Soils and Foundations, Vol. 6, No. 1, p.11-4, [] Unutmaz, B. ve Çetin, K.Ö., Sismik Zemin Sıvılaşmasında Zemin- Yapı-Deprem Etkileşimi, Teorik ve Uygulamada Zemin Yapı Etkileşimi Sempozyumu, İstanbul, 8-9 Kasım, 007. [6] Vaid, Y.P., Chern, J.C., Effect of Static Shear on Resistance to Liquefaction, Soils and Foundations, Vol. 3, No. 1, p.47-60, [7] Vaid, Y.P., Stedman, J.D., Sivathayalan, S., Confining Stress and Static Shear Effects in Cyclic Liquefaction, Canadian Geotechnical Journal, Vol. 38, No. 3, p.80-91, 001. [8] Vitone, D.M.A. ve Valsangkar, A.J., Stresses From Loads Over Rectangular Areas, Journal of Geotechnical Engineering, Vol. 11, No. 10, p , October, [9] Yoshimi, Y., Oh-Oka, H., Influence of Degree of Shear Stress Reversal on the Liquefaction Potential of Saturated Sand, Soils and Foundations, Vol. 1, No. 3, p.7-40,

ZEMİNDE GERİLMELER ve DAĞILIŞI

ZEMİNDE GERİLMELER ve DAĞILIŞI ZEMİNDE GERİLMELER ve DAĞILIŞI MALZEMELERİN GERİLME ALTINDA DAVRANIŞI Hooke Yasası (1675) σ ε= ε x = υε. E τzx E γ zx= G= G 2 1 z ( +υ) BOL 1 DOĞAL GERİLMELER Zeminler elastik olsalardı ν σx = σz 1 ν Bazı

Detaylı

INM 305 Zemin Mekaniği

INM 305 Zemin Mekaniği Hafta_9 INM 305 Zemin Mekaniği Gerilme Altında Zemin Davranışı Yrd.Doç.Dr. İnan KESKİN inankeskin@karabuk.edu.tr, inankeskin@gmail.com Haftalık Konular Hafta 1: Zeminlerin Oluşumu Hafta 2: Hafta 3: Hafta

Detaylı

Ders: 6 ZEMİN GERİLMELERİ. Doç. Dr. Havvanur KILIÇ İnşaat Mühendisliği Bölümü Geoteknik Anabilim Dalı

Ders: 6 ZEMİN GERİLMELERİ. Doç. Dr. Havvanur KILIÇ İnşaat Mühendisliği Bölümü Geoteknik Anabilim Dalı 0423111 Ders: 6 ZEMİN GERİLMELERİ Doç. Dr. Havvanur KILIÇ İnşaat Mühendisliği Bölümü Geoteknik Anabilim Dalı Gerilme kavramı Zemin tabakalarının kendi ağırlıkları ve uygulanan dış yükler, zemin içindeki

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ Adı Soyadı: Berna UNUTMAZ Doğum Tarihi: 12 Eylül 1977 Öğrenim Durumu: Derece Bölüm/Program Üniversite Yıl Lisans İnşaat Mühendisliği Orta Doğu Teknik Üniversitesi 2000

Detaylı

Zemin Gerilmeleri. Zemindeki gerilmelerin: 1- Zeminin kendi ağırlığından (geostatik gerilme),

Zemin Gerilmeleri. Zemindeki gerilmelerin: 1- Zeminin kendi ağırlığından (geostatik gerilme), Zemin Gerilmeleri Zemindeki gerilmelerin: 1- Zeminin kendi ağırlığından (geostatik gerilme), 2- Zemin üzerine eklenmiş yüklerden (Binalar, Barağlar vb.) kaynaklanmaktadır. 1 YERYÜZÜ Y.S.S Bina yükünden

Detaylı

İNM 305 ZEMİN MEKANİĞİ

İNM 305 ZEMİN MEKANİĞİ İNM 305 ZEMİN MEKANİĞİ 2015-2016 GÜZ YARIYILI Prof. Dr. Zeki GÜNDÜZ 1 2 Zeminde gerilmeler 3 ana başlık altında toplanabilir : 1. Doğal Gerilmeler : Özağırlık, suyun etkisi, oluşum sırası ve sonrasında

Detaylı

2004 Üniversitesi Y. Lisans İnşaat Mühendisliği İzmir Yüksek 2008 Teknoloji Enstitüsü Doktora İnşaat Mühendisliği Ege Üniversitesi 2015

2004 Üniversitesi Y. Lisans İnşaat Mühendisliği İzmir Yüksek 2008 Teknoloji Enstitüsü Doktora İnşaat Mühendisliği Ege Üniversitesi 2015 ÖZGEÇMİŞ 1. Adı Soyadı: Eyyüb KARAKAN 2. Doğum Tarihi: 23.06.1980 3. Ünvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Doktora Derece Alan Üniversite Yıl Lisans Çukurova 2004 Üniversitesi Y. Lisans İzmir Yüksek

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

9. TOPRAKTA GERİLME DAĞILIMI VE YANAL TOPRAK BASINCI

9. TOPRAKTA GERİLME DAĞILIMI VE YANAL TOPRAK BASINCI 9. TOPRAKTA GERİLME DAĞILIMI VE YANAL TOPRAK BASINCI Birçok mühendislik probleminin çözümünde, uygulanan yükler altında toprak kütlesinde meydana gelebilecek gerilme/deformasyon özelliklerinin belirlenmesi

Detaylı

İLERİ ZEMİN MEKANİĞİ. Ders 1. Genel Giriş. Doç. Dr. Havvanur KILIÇ İnşaat Mühendisliği Bölümü Geoteknik Anabilim Dalı

İLERİ ZEMİN MEKANİĞİ. Ders 1. Genel Giriş. Doç. Dr. Havvanur KILIÇ İnşaat Mühendisliği Bölümü Geoteknik Anabilim Dalı 0426102 İLERİ ZEMİN MEKANİĞİ Ders 1. Genel Giriş Doç. Dr. Havvanur KILIÇ İnşaat Mühendisliği Bölümü Geoteknik Anabilim Dalı HAFTALIK KONULAR VE İLGİLİ ÖN HAZIRLIK ÇALIŞMALARI Hafta / Week Konular / Subjects

Detaylı

KAYMA GERİLMESİ (ENİNE KESME)

KAYMA GERİLMESİ (ENİNE KESME) KAYMA GERİLMESİ (ENİNE KESME) Demir yolu traversleri çok büyük kesme yüklerini taşıyan kiriş olarak davranır. Bu durumda, eğer traversler ahşap malzemedense kesme kuvvetinin en büyük olduğu uçlarından

Detaylı

Sıvı Depolarının Statik ve Dinamik Hesapları

Sıvı Depolarının Statik ve Dinamik Hesapları Sıvı Depolarının Statik ve Dinamik Hesapları Bu konuda yapmış olduğumuz yayınlardan derlenen ön bilgiler ve bunların listesi aşağıda sunulmaktadır. Bu başlık altında depoların pratik hesaplarına ilişkin

Detaylı

ZEMİN GERİLMELERİNİN SAYISAL GERİLME ÇÖZÜMLEMESİ YÖNTEMİYLE TAHMİNİ PREDICTION WITH NUMERICAL STRESS ANALYSIS METHOD OF SOIL STRESSES

ZEMİN GERİLMELERİNİN SAYISAL GERİLME ÇÖZÜMLEMESİ YÖNTEMİYLE TAHMİNİ PREDICTION WITH NUMERICAL STRESS ANALYSIS METHOD OF SOIL STRESSES 121 SDU International Technologic Science Vol. 5, No 1, June 2013 pp. 121-127 Constructional Technologies ZEMİN GERİLMELERİNİN SAYISAL GERİLME ÇÖZÜMLEMESİ YÖNTEMİYLE TAHMİNİ Cevdet Emin EKİNCİ, Müge Elif

Detaylı

YÜZEYSEL TEMEL GEOMETRİSİNİN ZEMİNLERDE OLUŞAN GERİLMELERE ETKİSİNİN ARAŞTIRILMASI

YÜZEYSEL TEMEL GEOMETRİSİNİN ZEMİNLERDE OLUŞAN GERİLMELERE ETKİSİNİN ARAŞTIRILMASI ISSN 1019-1011 ISSN 1019-1011 Ç.Ü.MÜH.MİM.FAK.DERGİSİ CİLT.25 SAYI.1-2 Haziran/Aralık June/December 2010 Ç.Ü.J.FAC.ENG.ARCH. VOL.25 NO.1-2 YÜZEYSEL TEMEL GEOMETRİSİNİN ZEMİNLERDE OLUŞAN GERİLMELERE ETKİSİNİN

Detaylı

ÖZGEÇMİŞ. Derece Üniversite Alanı Yılı. Lisans Uroumieh Üniversitesi İnşaat Mühenlisliği

ÖZGEÇMİŞ. Derece Üniversite Alanı Yılı. Lisans Uroumieh Üniversitesi İnşaat Mühenlisliği ÖZGEÇMİŞ Yard. Doç. Dr. Ehsan ETMİNAN Işık Üniversitesi, Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Oda AMF-334 34980 Şile/ İstanbul, Türkiye Telefon: +90(216) 5287269 ehsan.etminan@isikun.edu.tr

Detaylı

Kirişlerde Kesme (Transverse Shear)

Kirişlerde Kesme (Transverse Shear) Kirişlerde Kesme (Transverse Shear) Bu bölümde, doğrusal, prizmatik, homojen ve lineer elastik davranan bir elemanın eksenine dik doğrultuda yüklerin etkimesi durumunda en kesitinde oluşan kesme gerilmeleri

Detaylı

ZEMİNLERDE GERİLME ARTIMININ K 0 KOŞULLARINA BAĞLI OLARAK İNCELENMESİ. Cafer KAYADELEN, M. Arslan TEKİNSOY, Mustafa LAMAN, M.

ZEMİNLERDE GERİLME ARTIMININ K 0 KOŞULLARINA BAĞLI OLARAK İNCELENMESİ. Cafer KAYADELEN, M. Arslan TEKİNSOY, Mustafa LAMAN, M. ZEMİNLERDE GERİLME ARTIMININ K 0 KOŞULLARINA BAĞLI OLARAK İNCELENMESİ Cafer KAYADELEN, M. Arslan TEKİNSOY, Mustafa LAMAN, M. Salih KESKİN Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Mühendisliği

Detaylı

KİLLİ ZEMİNLERE OTURAN MÜNFERİT KAZIKLARIN TAŞIMA GÜCÜNÜN MS EXCEL PROGRAMI KULLANILARAK HESAPLANMASI. Hanifi ÇANAKCI

KİLLİ ZEMİNLERE OTURAN MÜNFERİT KAZIKLARIN TAŞIMA GÜCÜNÜN MS EXCEL PROGRAMI KULLANILARAK HESAPLANMASI. Hanifi ÇANAKCI KİLLİ ZEMİNLEE OTUAN MÜNFEİT KAZIKLAIN TAŞIMA GÜCÜNÜN MS EXCEL POGAMI KULLANILAAK HESAPLANMASI Hanifi ÇANAKCI Gaziantep Üniersitesi, Müh. Fak. İnşaat Mühendisliği Bölümü. 27310 Gaziantep Tel: 0342-3601200

Detaylı

TEMEL ZEMİNLERİNDE SIVILAŞMA POTANSİYELİNİN İKİ BOYUTLU SAYISAL ANALİZLERLE DEĞERLENDİRİLMESİ

TEMEL ZEMİNLERİNDE SIVILAŞMA POTANSİYELİNİN İKİ BOYUTLU SAYISAL ANALİZLERLE DEĞERLENDİRİLMESİ TEMEL ZEMİNLERİNDE SIVILAŞMA POTANSİYELİNİN İKİ BOYUTLU SAYISAL ANALİZLERLE DEĞERLENDİRİLMESİ ÖZET: B. Unutmaz 1 1 Yrd. Doç. Dr., İnşaat Müh. Bölümü, Kocaeli Üniversitesi, Kocaeli Email: berna.unutmaz@kocaeli.edu.tr

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

9. TOPRAKTA GERİLME DAĞILIMI VE YANAL TOPRAK BASINCI

9. TOPRAKTA GERİLME DAĞILIMI VE YANAL TOPRAK BASINCI 9. TOPRAKTA GERİLME DAĞILIMI VE YANAL TOPRAK BASINCI Birçok mühendislik probleminin çözümünde, uygulanan yükler altında toprak kütlesinde meydana gelebilecek gerilme/deformasyon özelliklerinin belirlenmesi

Detaylı

KUMLU ZEMİNLERE OTURAN KARE TEMELLER ALTINDA DÜŞEY GERİLME ANALİZİ

KUMLU ZEMİNLERE OTURAN KARE TEMELLER ALTINDA DÜŞEY GERİLME ANALİZİ KUMLU ZEMİNLERE OTURAN KARE TEMELLER ALTINDA DÜŞEY GERİLME ANALİZİ Mustafa LAMAN(*), M. Salih KESKİN(**) ÖZET Bu çalışmada, kumlu zeminler üzerine oturan kare temellerden dolayı zemin içinde oluşan ilave

Detaylı

DOYGUN, KISMİ DOYGUN VE KURU KUM NUMUNELERİN DİNAMİK DAVRANIŞLARININ İNCELENMESİ

DOYGUN, KISMİ DOYGUN VE KURU KUM NUMUNELERİN DİNAMİK DAVRANIŞLARININ İNCELENMESİ DOYGUN, KISMİ DOYGUN VE KURU KUM NUMUNELERİN DİNAMİK DAVRANIŞLARININ İNCELENMESİ Barış ELİBOL ve Ayfer ERKEN İTÜ. İnş. Fak., İnş. Müh. Böl. İstanbul ÖZET Yapılan çalışmada, kuru yağmurlama yöntemiyle Dr=%5

Detaylı

Ek-3-2: Örnek Tez 1. GİRİŞ

Ek-3-2: Örnek Tez 1. GİRİŞ 1 Ek-3-2: Örnek Tez 1. GİRİŞ.. 2 2. GENEL KISIMLAR 2.1. YATAY YATAK KATSAYISI YAKLAŞIMI Yatay yüklü kazıkların analizinde iki parametrenin bilinmesi önemlidir : Kazığın rijitliği (EI) Zeminin yatay yöndeki

Detaylı

Sıvılaşma hangi ortamlarda gerçekleşir? Sıvılaşmaya etki eden faktörler nelerdir? Arazide tahkik; SPT, CPT, Vs çalışmaları

Sıvılaşma hangi ortamlarda gerçekleşir? Sıvılaşmaya etki eden faktörler nelerdir? Arazide tahkik; SPT, CPT, Vs çalışmaları SIVILAŞMA Sıvılaşma Nedir? Sıvılaşma hangi ortamlarda gerçekleşir? Sıvılaşmaya etki eden faktörler nelerdir? Sıvılaşmanın Etkileri Geçmiş Depremlerden Örnekler Arazide tahkik; SPT, CPT, Vs çalışmaları

Detaylı

DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI

DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI Yrd. Doç. Dr. Uğur DAĞDEVİREN 2 3 Genel anlamda temel mühendisliği, yapısal yükleri zemine izin verilebilir

Detaylı

Zeminlerde Gerilme Dağılışının Bilgisayar ile Analizi

Zeminlerde Gerilme Dağılışının Bilgisayar ile Analizi Zeminlerde Gerilme Dağılışının Bilgisayar ile Analii Devrim Alkaya 1, Burak Yeşil * 1 Yard. Doç. Dr., Pamukkale Üniversitesi, İnşaat Müh. Bölümü, Denili * Öğretim Gör, Düce Üniversitesi, DMYO, İnşaat Teknolojisi

Detaylı

POLİPROPİLEN FİBERLERLE GÜÇLENDİRİLMİŞ KUM ZEMİNLERİN DİNAMİK ETKİ ALTINDA BOŞLUK SUYU BASINCI DAVRANIŞI

POLİPROPİLEN FİBERLERLE GÜÇLENDİRİLMİŞ KUM ZEMİNLERİN DİNAMİK ETKİ ALTINDA BOŞLUK SUYU BASINCI DAVRANIŞI 4-6 Ekim 25 DEÜ İZMİR ÖZET: POLİPROPİLEN FİBERLERLE GÜÇLENDİRİLMİŞ KUM ZEMİNLERİN DİNAMİK ETKİ ALTINDA BOŞLUK SUYU BASINCI DAVRANIŞI Eyyüb KARAKAN Selim ALTUN 2 ve Tuğba ESKİŞAR 3 Yrd. Doç. Dr., İnşaat

Detaylı

SİSMİK ZEMİN SIVILAŞMASINDA ZEMİN-YAPI-DEPREM- ETKİLEŞİMİ

SİSMİK ZEMİN SIVILAŞMASINDA ZEMİN-YAPI-DEPREM- ETKİLEŞİMİ Altıncı Ulusal Deprem Mühendisliği Konferansı, 16-20 Ekim 2007, İstanbul Sixth National Conference on Earthquake Engineering, 16-20 October 2007, Istanbul, Turkey SİSMİK ZEMİN SIVILAŞMASINDA ZEMİN-YAPI-DEPREM-

Detaylı

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Gerilme ve Şekil değiştirme bileşenlerinin lineer ilişkileri Hooke Yasası olarak bilinir. Elastisite Modülü (Young Modülü) Tek boyutlu Hooke

Detaylı

Sismik zemin sıvılaşmasında zemin-yapı-deprem etkileşimi

Sismik zemin sıvılaşmasında zemin-yapı-deprem etkileşimi Sismik zemin sıvılaşmasında zemin-yapı-deprem etkileşimi Effects of soil-structure-earthquake interaction on seismic soil liquefaction triggering Berna Unutmaz, K. Önder Çetin Ortadoğu Teknik Üniversitesi

Detaylı

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması Farklı sonlu eleman tipleri ve farklı modelleme teknikleri kullanılarak yığma duvarların

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 kışkan Statiğine Giriş kışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

SIVILAŞMA RİSKİNİN DÜŞÜK BASINÇLI ÇİMENTO ENJEKSİYONU İLE AZALTILMASI REDUCING LIQUEFACTION POTENTIAL BY LOW PRESURE CEMENT GROUTING

SIVILAŞMA RİSKİNİN DÜŞÜK BASINÇLI ÇİMENTO ENJEKSİYONU İLE AZALTILMASI REDUCING LIQUEFACTION POTENTIAL BY LOW PRESURE CEMENT GROUTING SIVILAŞMA RİSKİNİN DÜŞÜK BASINÇLI ÇİMENTO ENJEKSİYONU İLE AZALTILMASI REDUCING LIQUEFACTION POTENTIAL BY LOW PRESURE CEMENT GROUTING Utkan MUTMAN -1, Aydın KAVAK -1 Posta Adresi: 1- KOU Mühendislik Fakültesi

Detaylı

Kare Temeller Altında Gerilme ve Taşıma Gücü Analizi

Kare Temeller Altında Gerilme ve Taşıma Gücü Analizi Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 31(2), ss. 59-66, Aralık 2016 Çukurova University Journal of the Faculty of Engineering and Architecture, 31(2), pp. 59-66, December 2016 Kare

Detaylı

ENİNE DİKİŞLİ KAYNAK BAĞLANTILARINDA GERİLME ANALİZİ

ENİNE DİKİŞLİ KAYNAK BAĞLANTILARINDA GERİLME ANALİZİ PAMUKKALE ÜNÝVERSÝTESÝ MÜHENÝSLÝK YIL FAKÜLTESÝ PAMUKKALE UNIVERSITY ENGINEERING ÝLT OLLEGE MÜHENÝSLÝK BÝLÝMLERÝ SAYI SAYFA ERGÝSÝ JOURNAL OF ENGINEERING SIENES : 1997 : 3 : 2 : 323-329 ENİNE İKİŞLİ KAYNAK

Detaylı

AKADEMİK BİLİŞİM Şubat 2010 Muğla Üniversitesi GEOTEKNİK RAPORDA BULUNAN HESAPLARIN SPREADSHEET (MS EXCEL) İLE YAPILMASI

AKADEMİK BİLİŞİM Şubat 2010 Muğla Üniversitesi GEOTEKNİK RAPORDA BULUNAN HESAPLARIN SPREADSHEET (MS EXCEL) İLE YAPILMASI AKADEMİK BİLİŞİM 2010 10-12 Şubat 2010 Muğla Üniversitesi GEOTEKNİK RAPORDA BULUNAN HESAPLARIN SPREADSHEET (MS EXCEL) İLE YAPILMASI 1 ZEMİN İNCELEME YÖNTEMLERİ ZEMİN İNCELEMESİ Bir alanın altındaki arsanın

Detaylı

Posta Adresi: Sakarya Üniversitesi, Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, 54187 Esentepe Kampüsü/Sakarya

Posta Adresi: Sakarya Üniversitesi, Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, 54187 Esentepe Kampüsü/Sakarya DİNAMİK YÜKLER ETKİSİ ALTINDAKİ ÜSTYAPI-ZEMİN ORTAK SİSTEMİNİN EMPEDANS FONKSİYONLARINA DAYALI ÇÖZÜMÜ SUBSTRUCTURING ANALYSIS BASED ON IMPEDANCE FUNCTIONS FOR SOIL-STRUCTURE COUPLING SYSTEM SUBJECTED TO

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 1 sh Ocak 2004

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 1 sh Ocak 2004 DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 1 sh. 139-152 Ocak 24 SUYA DOYGUN KUMLARIN DRENAJSIZ KOŞULLARDAKİ DAVRANIŞININ TEKRARLI YÜKLER ALTINDA BURULMALI KESME DENEY ALETİ İLE

Detaylı

Sedat SERT-Aşkın ÖZOCAK-Ertan BOL 1

Sedat SERT-Aşkın ÖZOCAK-Ertan BOL 1 T.C. SAKARYA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-201 2016 ÖĞRETİM YILI BAHAR YARIYILI İNM 302 TEMELLER Yrd. Doç. Dr. Sedat SERT Yrd. Doç. Dr. Aşkın ÖZOCAK Doç. Dr. Ertan

Detaylı

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu BASİT MESNETLİ KİRİŞTE SEHİM DENEYİ Deneyin Amacı Farklı malzeme ve kalınlığa sahip kirişlerin uygulanan yükün kirişin eğilme miktarına oranı olan rijitlik değerin değişik olduğunun gösterilmesi. Kiriş

Detaylı

34. Dörtgen plak örnek çözümleri

34. Dörtgen plak örnek çözümleri 34. Dörtgen plak örnek çözümleri Örnek 34.1: Teorik çözümü Timoshenko 1 tarafından verilen dört tarafından ankastre ve merkezinde P=100 kn tekil yükü olan kare plağın(şekil 34.1) çözümü 4 farklı model

Detaylı

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER MUKAEMET I ÇÖZÜMÜ ÖRNEKER ders notu Yard. Doç. Dr. Erdem DAMCI Şubat 15 Mukavemet I - Çözümlü Örnekler / 7 Örnek 1. Üzerinde yalnızca yayılı yük bulunan ve açıklığı olan bir basit kirişe ait eğilme momenti

Detaylı

DÖRTGEN DELİKLİ KOMPOZİT LEVHALARDA ELASTO- PLASTİK GERİLME ANALİZİ

DÖRTGEN DELİKLİ KOMPOZİT LEVHALARDA ELASTO- PLASTİK GERİLME ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K Bİ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 000 : 6 : 1 : 13-19

Detaylı

Düzce Üniversitesi Bilim ve Teknoloji Dergisi

Düzce Üniversitesi Bilim ve Teknoloji Dergisi Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 4 (2016) 453-461 Düzce Üniversitesi Bilim ve Teknoloji Dergisi Araştırma Makalesi İki Tabakalı Profilinde Kazık Temellere Gelen Deprem Yüklerinin Eşdeğer

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Yrd. Doç. Dr. Beytullah EREN Çevre Mühendisliği Bölümü BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Atatürk Barajı (Şanlıurfa) BATMIŞ YÜZEYLERE ETKİYEN KUVVETLER

Detaylı

Cevaplar 1) a) Kare alanı her bir kenarı B=L=1m olan 4 eşit kareye bölünür ve tablo 9.6 dan faydalanarak aşağıdaki tablo doldurulur. İstenen derinliklere tekabül eden gerilmeler tablonun son kolonunda

Detaylı

INM 308 Zemin Mekaniği

INM 308 Zemin Mekaniği Hafta_3 INM 308 Zemin Mekaniği Zeminlerde Kayma Direnci Kavramı, Yenilme Teorileri Yrd.Doç.Dr. İnan KESKİN inankeskin@karabuk.edu.tr, inankeskin@gmail.com www.inankeskin.com ZEMİN MEKANİĞİ Haftalık Konular

Detaylı

Kırıkkale İli Bahçelievler ve Fabrikalar Mahallelerinin Sıvılaşma Potansiyelinin Coğrafi Bilgi Sistemlerinde Analizi

Kırıkkale İli Bahçelievler ve Fabrikalar Mahallelerinin Sıvılaşma Potansiyelinin Coğrafi Bilgi Sistemlerinde Analizi International Journal of Engineering Research and Development, Vol.4, No.1, January 2012 33 Kırıkkale İli Bahçelievler ve Fabrikalar Mahallelerinin Sıvılaşma Potansiyelinin Coğrafi Bilgi Sistemlerinde

Detaylı

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele alınmıştı. Bu bölümde ise, eksenel yüklü elemanların şekil

Detaylı

Şekil 1. DEÜ Test Asansörü kuyusu.

Şekil 1. DEÜ Test Asansörü kuyusu. DOKUZ EYLÜL ÜNĐVERSĐTESĐ TEST ASANSÖRÜ KUYUSUNUN DEPREM YÜKLERĐ ETKĐSĐ ALTINDAKĐ DĐNAMĐK DAVRANIŞININ ĐNCELENMESĐ Zeki Kıral ve Binnur Gören Kıral Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Makine

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

BASINÇLI KAPLAR Endüstride kullanılan silindirik veya küresel kaplar genellikle kazan veya tank olarak görev yaparlar. Kap basınç altındayken

BASINÇLI KAPLAR Endüstride kullanılan silindirik veya küresel kaplar genellikle kazan veya tank olarak görev yaparlar. Kap basınç altındayken BASINÇLI KAPLAR BASINÇLI KAPLAR Endüstride kullanılan silindirik veya küresel kaplar genellikle kazan veya tank olarak görev yaparlar. Kap basınç altındayken yapıldığı malzeme her doğrultuda yüke maruzdur.

Detaylı

2. Basınç ve Akışkanların Statiği

2. Basınç ve Akışkanların Statiği 2. Basınç ve Akışkanların Statiği 1 Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvet olarak tanımlanır. Basıncın birimi pascal (Pa) adı verilen metrekare başına newton (N/m 2 ) birimine

Detaylı

EK-2 BERGAMA OVACIK ALTIN İŞLETMESİ TÜBİTAK RAPORU ELEŞTİRİSİ NE İLİŞKİN GÖRÜŞLER

EK-2 BERGAMA OVACIK ALTIN İŞLETMESİ TÜBİTAK RAPORU ELEŞTİRİSİ NE İLİŞKİN GÖRÜŞLER EK- BERGAMA OVACIK ALTIN İŞLETMESİ TÜBİTAK RAPORU ELEŞTİRİSİ NE İLİŞKİN GÖRÜŞLER Rüştü GÜNER (İnş. Y. Müh.) TEMELSU Uluslararası Mühendislik Hizmetleri A.Ş. ) Varsayılan Zemin Parametreleri Ovacık Atık

Detaylı

SP (KÖTÜ DERECELENMİŞ ORTA-İNCE KUM) ZEMİNLERDE KESME HIZININ KESME DİRENCİ PARAMETRELERİ ÜZERİNE ETKİSİ

SP (KÖTÜ DERECELENMİŞ ORTA-İNCE KUM) ZEMİNLERDE KESME HIZININ KESME DİRENCİ PARAMETRELERİ ÜZERİNE ETKİSİ S.Ü. Müh. Bilim ve Tekn. Derg., c.2, s.1, 2014 Selcuk Univ. J. Eng. Sci. Tech., v.2, n.1, 2014 ISSN: 2147-9364 (Elektronik) SP (KÖTÜ DERECELENMİŞ ORTA-İNCE KUM) ZEMİNLERDE KESME HIZININ KESME DİRENCİ PARAMETRELERİ

Detaylı

Kuma Oturan Kare Temeller Altında Oluşan Düşey Gerilmelerin Deneysel Tespiti ve Sayısal Analizi *

Kuma Oturan Kare Temeller Altında Oluşan Düşey Gerilmelerin Deneysel Tespiti ve Sayısal Analizi * İMO Teknik Dergi, 008 451-4538, Yaı 99 Kuma Oturan Kare Temeller Altında Oluşan Düşey Gerilmelerin Deneysel Tespiti ve Sayısal Analii * M. Salih KESKİN* Mustafa LAMAN** Tarık BARAN*** ÖZ Bu çalışmada,

Detaylı

Microsoft Office Excel Kullanılarak Geoteknik Rapor Hesap Programı. Using Excel Microsof Ofice, Geotechnical Report Program Account

Microsoft Office Excel Kullanılarak Geoteknik Rapor Hesap Programı. Using Excel Microsof Ofice, Geotechnical Report Program Account Yapı Teknolojileri Elektronik Dergisi Cilt: 7, Sayı:1, 2011 (80-88) Electronic Journal of ConstructionTechnologies Vol: 7, No: 1, 2011 (80-88) TEKNOLOJİK ARAŞTIRMALAR www.teknolojikarastirmalar.com e-issn:1305-631x

Detaylı

INM 308 Zemin Mekaniği

INM 308 Zemin Mekaniği Hafta_12 INM 308 Zemin Mekaniği Zeminlerin Taşıma Gücü; Kazıklı Temeller Yrd.Doç.Dr. İnan KESKİN inankeskin@karabuk.edu.tr, inankeskin@gmail.com www.inankeskin.com ZEMİN MEKANİĞİ Haftalık Konular Hafta

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

MAKİNE ELEMANLARI DERS SLAYTLARI

MAKİNE ELEMANLARI DERS SLAYTLARI MAKİNE ELEMANLARI DERS SLAYTLARI YORULMA P r o f. D r. İ r f a n K A Y M A Z P r o f. D r. A k g ü n A L S A R A N A r ş. G ör. İ l y a s H A C I S A L İ HOĞ LU Aloha Havayolları Uçuş 243: Hilo dan Honolulu

Detaylı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı 1. Basma Deneyinin Amacı Mühendislik malzemelerinin çoğu, uygulanan gerilmeler altında biçimlerini kalıcı olarak değiştirirler, yani plastik şekil değişimine uğrarlar. Bu malzemelerin hangi koşullar altında

Detaylı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Gerilme Bölüm Hedefleri Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Copyright 2011 Pearson Education South sia Pte Ltd GERİLME Kesim

Detaylı

Geoteknik Mühendisliği

Geoteknik Mühendisliği Geoteknik Mühendisliği 1 Mühendislik malzemesi nedir? İnşaat mühendisi inşa eder Paslı çelik Hala çelik Çelik Çelik 2 1 Mühendislik malzemesi nedir? İnşaat mühendisi inşa eder Beton Beton Hala beton 3

Detaylı

Saf Eğilme(Pure Bending)

Saf Eğilme(Pure Bending) Saf Eğilme(Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki şekil değiştirmesini/ deformasyonları incelenecek. Burada çıkarılacak formüller

Detaylı

Malzemelerin Mekanik Özellikleri

Malzemelerin Mekanik Özellikleri Malzemelerin Mekanik Özellikleri Bölüm Hedefleri Deneysel olarak gerilme ve birim şekil değiştirmenin belirlenmesi Malzeme davranışı ile gerilme-birim şekil değiştirme diyagramının ilişkilendirilmesi ÇEKME

Detaylı

Sığ temellerin tasarımı ve oturmaların hesabı. Prof Dr Gökhan Baykal

Sığ temellerin tasarımı ve oturmaların hesabı. Prof Dr Gökhan Baykal Sığ temellerin tasarımı ve oturmaların hesabı Prof Dr Gökhan Baykal Program Killerin ve kumların temel davranış özellikleri Yüzeysel temellerin tanımı Tasarım esasları Taşıma gücü Gerilme dağılımları Oturma

Detaylı

YAPILARDA BURULMA DÜZENSİZLİĞİ

YAPILARDA BURULMA DÜZENSİZLİĞİ YAPILARDA BURULMA DÜZENSİZLİĞİ M. Sami DÖNDÜREN a Adnan KARADUMAN a M. Tolga ÇÖĞÜRCÜ a Mustafa ALTIN b a Selçuk Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Mühendisliği Bölümü Konya b Selçuk Üniversitesi

Detaylı

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 7 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 7. HAFTA Kapsam: Parçacık Kinetiği, Kuvvet İvme Yöntemi Newton hareket

Detaylı

Konsol Duvar Tasarımı

Konsol Duvar Tasarımı Mühendislik Uygulamaları No. 2 06/2016 Konsol Duvar Tasarımı Program: Konsol Duvar Dosya: Demo_manual_02.guz Uygulama: Bu bölümde konsol duvar tasarımı ve analizine yer verilmiştir. 4.0 m yüksekliğinde

Detaylı

Anizotropik Yükleme Koşullarında Eksenel Deformasyon İle Sıvılaşma İlişkisi

Anizotropik Yükleme Koşullarında Eksenel Deformasyon İle Sıvılaşma İlişkisi Jeoloji Mühendisliği Dergisi 36 (2) 2012 115 Anizotropik Yükleme Koşullarında Eksenel Deformasyon İle Sıvılaşma İlişkisi Relationship Between Axial Strain and Liquefaction under Anisotropic Loading Conditions

Detaylı

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI tasarım BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI Nihat GEMALMAYAN, Hüseyin ĐNCEÇAM Gazi Üniversitesi, Makina Mühendisliği Bölümü GĐRĐŞ Đlk bisikletlerde fren sistemi

Detaylı

5. KONSOLİDAS YON DENEYİ:

5. KONSOLİDAS YON DENEYİ: 5. KONSOLİDAS YON DENEYİ: KONU: İnce daneli zeminlerin kompresibilite ve konsolidasyon karakteristikleri, Terzaghi tarafından geliştirilen ödometre deneyi ile elde edilir. Bu alet Şekil 1 de şematik olarak

Detaylı

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering Uygulama Sorusu-1 Şekildeki 40 mm çaplı şaft 0 kn eksenel çekme kuvveti ve 450 Nm burulma momentine maruzdur. Ayrıca milin her iki ucunda 360 Nm lik eğilme momenti etki etmektedir. Mil malzemesi için σ

Detaylı

Şev Stabilitesi I. Prof.Dr.Mustafa KARAŞAHİN

Şev Stabilitesi I. Prof.Dr.Mustafa KARAŞAHİN Şev Stabilitesi I Prof.Dr.Mustafa KARAŞAHİN Farklı Malzemelerin Dayanımı Çelik Beton Zemin Çekme dayanımı Basınç dayanımı Kesme dayanımı Karmaşık davranış Boşluk suyu! Zeminlerin Kesme Çökmesi

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

10. KONSOLİDASYON. Konsolidasyon. σ gerilmedeki artış zeminin boşluk oranında e azalma ve deformasyon yaratır (gözeneklerden su dışarı çıkar).

10. KONSOLİDASYON. Konsolidasyon. σ gerilmedeki artış zeminin boşluk oranında e azalma ve deformasyon yaratır (gözeneklerden su dışarı çıkar). . KONSOLİDASYON Konsolidasyon σ gerilmedeki artış zeminin boşluk oranında e azalma ve deformasyon yaratır (gözeneklerden su dışarı çıkar). σ nasıl artar?. Yeraltısuyu seviyesi düşer 2. Zemine yük uygulanır

Detaylı

İnce Daneli Zeminlerin Dinamik Özellikleri

İnce Daneli Zeminlerin Dinamik Özellikleri İnce Daneli Zeminlerin Dinamik Özellikleri *1 Mustafa Özsağır, 1 Ertan Bol, 1 Sedat Sert ve 2 Kurban Öntürk 1 Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Sakarya Üniversitesi. Türkiye 2 Geyve Meslek

Detaylı

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU HİDROLİK Yrd. Doç. Dr. Fatih TOSUNOĞLU Ders Hakkında Genel Bilgiler Görüşme Saatleri:---------- Tavsiye edilen kitaplar: 1-Hidrolik (Prof. Dr. B. Mutlu SÜMER, Prof. Dr. İstemi ÜNSAL. ) 2-Akışkanlar Mekaniği

Detaylı

Artan İnce Kum Oranının Silt Zeminin Sıkışabilirliğine ve Dayanımına Etkisi

Artan İnce Kum Oranının Silt Zeminin Sıkışabilirliğine ve Dayanımına Etkisi 17 Published in 5th International Symposium on Innovative Technologies in Engineering and Science 29-30 September 17 (ISITES17 Baku - Azerbaijan) Artan İnce Kum Oranının Silt Zeminin Sıkışabilirliğine

Detaylı

Mukavemet. Betonarme Yapılar. Giriş, Malzeme Mekanik Özellikleri. Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği

Mukavemet. Betonarme Yapılar. Giriş, Malzeme Mekanik Özellikleri. Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği Mukavemet Giriş, Malzeme Mekanik Özellikleri Betonarme Yapılar Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği GİRİŞ Referans kitaplar: Mechanics of Materials, SI Edition, 9/E Russell

Detaylı

TEKRARLI GERİLME ORANINI KULLANARAK BİNA ALTLARINDA BOŞLUK SUYU BASINCI TAHMİNİ

TEKRARLI GERİLME ORANINI KULLANARAK BİNA ALTLARINDA BOŞLUK SUYU BASINCI TAHMİNİ Zemin Mekaniği ve Temel Mühendisliği Onüçüncü Ulusal Kongresi 30 Eylül - Ekim 00, İstanbul Kültür Üniversitesi, İstanbul TEKRARLI GERİLME ORANINI KULLANARAK BİNA ALTLARINDA BOŞLUK SUYU BASINCI TAHMİNİ

Detaylı

Fotoğraf Albümü. Zeliha Kuyumcu. Mesnetlerinden Farklı Yer Hareketlerine Maruz Kablolu Köprülerin Stokastik Analizi

Fotoğraf Albümü. Zeliha Kuyumcu. Mesnetlerinden Farklı Yer Hareketlerine Maruz Kablolu Köprülerin Stokastik Analizi Mesnetlerinden Farklı Yer Hareketlerine Maruz Kablolu Köprülerin Stokastik Analizi Fotoğraf Albümü Araş. Gör. Zeliha TONYALI* Doç. Dr. Şevket ATEŞ Doç. Dr. Süleyman ADANUR Zeliha Kuyumcu Çalışmanın Amacı:

Detaylı

Ders De erlendirme % 50 % 50 Adet Oran 100

Ders De erlendirme % 50 % 50 Adet Oran 100 T.C. SAKARYA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 009-0 ÖĞRETİM YILI GÜZ YARIYILI İNM 30 ZEMİN MEKANİĞİ I II. Öğretim A Gurubu (Tek Numaralar) Yrd.Doç.Dr. Sedat SERT Geoteknik

Detaylı

İSTİNAT YAPILARI TASARIMI

İSTİNAT YAPILARI TASARIMI İSTİNAT YAPILARI TASARIMI İstinat Duvarı Tasarım Kriterleri ve Tasarım İlkeleri Yrd. Doç. Dr. Saadet BERİLGEN İnşaat Mühendisliği Bölümü Geoteknik Anabilim Dalı Devrilmeye Karşı Güvenlik Devrilmeye Karşı

Detaylı

BURULMA DENEYİ 2. TANIMLAMALAR:

BURULMA DENEYİ 2. TANIMLAMALAR: BURULMA DENEYİ 1. DENEYİN AMACI: Burulma deneyi, malzemelerin kayma modülü (G) ve kayma akma gerilmesi ( A ) gibi özelliklerinin belirlenmesi amacıyla uygulanır. 2. TANIMLAMALAR: Kayma modülü: Kayma gerilmesi-kayma

Detaylı

YTÜ İnşaat Fakültesi Geoteknik Anabilim Dalı. Ders 5: İÇTEN DESTEKLİ KAZILAR. Prof.Dr. Mehmet BERİLGEN

YTÜ İnşaat Fakültesi Geoteknik Anabilim Dalı. Ders 5: İÇTEN DESTEKLİ KAZILAR. Prof.Dr. Mehmet BERİLGEN YTÜ İnşaat Fakültesi Geoteknik Anabilim Dalı Ders 5: İÇTEN DESTEKLİ KAZILAR Prof.Dr. Mehmet BERİLGEN İçten Destekli Kazılar İçerik: Giriş Uygulamalar Tipler Basınç diagramları Tasarım Toprak Basıncı Diagramı

Detaylı

KISA KOLON TEŞKİLİNİN YAPI HASARLARINA ETKİSİ. Burak YÖN*, Erkut SAYIN

KISA KOLON TEŞKİLİNİN YAPI HASARLARINA ETKİSİ. Burak YÖN*, Erkut SAYIN Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 (1-2) 241-259 (2008) http://fbe.erciyes.edu.tr/ ISSN 1012-2354 KISA KOLON TEŞKİLİNİN YAPI HASARLARINA ETKİSİ Burak YÖN*, Erkut SAYIN Fırat Üniversitesi,

Detaylı

Yüksek Modüllü Kolonların (Jetgrouting) Tablolama Programı Kullanarak Tasarımı

Yüksek Modüllü Kolonların (Jetgrouting) Tablolama Programı Kullanarak Tasarımı Akademik Bilişim 11 - XIII. Akademik Bilişim Konferansı Bildirileri 2-4 Şubat 2011 İnönü Üniversitesi, Malatya Yüksek Modüllü Kolonların (Jetgrouting) Tablolama Programı Kullanarak Tasarımı Pamukkale Üniversitesi,

Detaylı

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır.

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Mühendislikte en önemli yapı ve makine elemanları mil ve kirişlerdir. Bu bölümde, mil ve kirişlerde

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II ZAMANA BAĞLI ISI İLETİMİ 1.Deneyin Adı: Zamana bağlı ısı iletimi. 2. Deneyin

Detaylı

İTME ANALİZİ KULLANILARAK YÜKSEK RİSKLİ DEPREM BÖLGESİNDEKİ BİR PREFABRİK YAPININ SİSMİK KAPASİTESİNİN İNCELENMESİ

İTME ANALİZİ KULLANILARAK YÜKSEK RİSKLİ DEPREM BÖLGESİNDEKİ BİR PREFABRİK YAPININ SİSMİK KAPASİTESİNİN İNCELENMESİ İTME ANALİZİ KULLANILARAK YÜKSEK RİSKLİ DEPREM BÖLGESİNDEKİ BİR PREFABRİK YAPININ SİSMİK KAPASİTESİNİN İNCELENMESİ ÖZET: B. Öztürk 1, C. Yıldız 2 ve E. Aydın 3 1 Yrd. Doç. Dr., İnşaat Müh. Bölümü, Niğde

Detaylı

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir.

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir. A-36 malzemeden çelik çubuk, şekil a gösterildiği iki kademeli olarak üretilmiştir. AB ve BC kesitleri sırasıyla A = 600 mm ve A = 1200 mm dir. A serbest ucunun ve B nin C ye göre yer değiştirmesini belirleyiniz.

Detaylı

KİRİŞLERDE PLASTİK MAFSALIN PLASTİKLEŞME BÖLGESİNİ VEREN BİLGİSAYAR YAZILIMI

KİRİŞLERDE PLASTİK MAFSALIN PLASTİKLEŞME BÖLGESİNİ VEREN BİLGİSAYAR YAZILIMI IM 566 LİMİT ANALİZ DÖNEM PROJESİ KİRİŞLERDE PLASTİK MAFSALIN PLASTİKLEŞME BÖLGESİNİ VEREN BİLGİSAYAR YAZILIMI HAZIRLAYAN Bahadır Alyavuz DERS SORUMLUSU Prof. Dr. Sinan Altın GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ Malzemelerde Elastisite ve Kayma Elastisite Modüllerinin Eğme ve Burulma Testleri ile Belirlenmesi 1/5 DENEY 4 MAZEMEERDE EASTĐSĐTE VE KAYMA EASTĐSĐTE MODÜERĐNĐN EĞME VE BURUMA TESTERĐ ĐE BEĐRENMESĐ 1.

Detaylı

Ders Kodu Ders Adı İngilizce Ders Adı TE PR KR AKTS Ders Kodu Ders Adı İngilizce Ders Adı TE PR KR AKTS

Ders Kodu Ders Adı İngilizce Ders Adı TE PR KR AKTS Ders Kodu Ders Adı İngilizce Ders Adı TE PR KR AKTS FEN BİLİMLERİ ENSTİTÜSÜ İNŞAAT MÜHENDİSLİĞİ ABD YÜKSEK LİSANS ANABİLİM DALI KODU : 81109 01.Yarıyıl Dersleri Ders Kodu INS735* 02.Yarıyıl Dersleri Ders Adı İngilizce Ders Adı TE PR KR AKTS Ders Kodu Ders

Detaylı

DEPREM KUVVETLERİ ETKİSİ ALTINDAKİ ŞEVLERİN STABİLİTESİNİ ETKİLEYEN FAKTÖRLERİN İNCELENMESİ. Murat OLGUN 1, M. Hilmi ACAR 2

DEPREM KUVVETLERİ ETKİSİ ALTINDAKİ ŞEVLERİN STABİLİTESİNİ ETKİLEYEN FAKTÖRLERİN İNCELENMESİ. Murat OLGUN 1, M. Hilmi ACAR 2 S.Ü. Müh. Mim. Fak. Derg., c.24, s.2, 29 J. Fac.Eng.Arch. Selcuk Univ., v.24, n.2, 29 DEPREM KUVVETLERİ ETKİSİ ALTINDAKİ ŞEVLERİN STABİLİTESİNİ ETKİLEYEN FAKTÖRLERİN İNCELENMESİ Murat OLGUN 1, M. Hilmi

Detaylı

YÜKSEK SİSMİSİTELİ BİR BÖLGEDE 170 METRE YÜKSEKLİĞİNDEKİ BİR KAYA DOLGU BARAJIN DİNAMİK TASARIMI

YÜKSEK SİSMİSİTELİ BİR BÖLGEDE 170 METRE YÜKSEKLİĞİNDEKİ BİR KAYA DOLGU BARAJIN DİNAMİK TASARIMI YÜKSEK SİSMİSİTELİ BİR BÖLGEDE 170 METRE YÜKSEKLİĞİNDEKİ BİR KAYA DOLGU BARAJIN DİNAMİK TASARIMI ÖZET E. Yıldız 1 ve R. Güner 2 1 Dr. İnşaat Yüksek Mühendisi, Temelsu Uluslararası Müh. Hiz. A.Ş. 2 İnşaat

Detaylı

Silt Kum Karışımlarının Sıvılaşma Davranışı ve Sıvılaşma Sonrası Hacimsel Deformasyon Özellikleri *

Silt Kum Karışımlarının Sıvılaşma Davranışı ve Sıvılaşma Sonrası Hacimsel Deformasyon Özellikleri * İMO Teknik Dergi, 216 7593-7617, Yazı 462 Silt Kum Karışımlarının Sıvılaşma Davranışı ve Sıvılaşma Sonrası Hacimsel Deformasyon Özellikleri * Eyyüb KARAKAN 1 Selim ALTUN 2 ÖZ Sunulan çalışmada, silt kum

Detaylı