İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2014)

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2014)"

Transkript

1 İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2014) S-1) Hipotez testi için asagıdaki veriler saptanmıştır. n = 64 ve s = 16, sayet X ortalamasi 160 ise p-value (p-degerini hesaplayiniz)? (p-value = P(z > 5.0) = 0.0) S-2) 50 müşteriye yeni bir ürün tattırılır. 15 kişi begenmiştir. Yeni yemeği beğenenler için Yüzde 80 güven aralığını hesaplayınız: S-3) Iki methotdan hangisinin daha verimli olduguna dair calisanlar ile bir anket yapilmakta ve Birinci method icin 78 kisiden 63 kisisi olumlu buldugunu soylerken, Method 2 icin 82 kisiden 49 u olumlu buldugunu soylemekte. Yuzde 99 guven araliginda yapacaginiz tes icen Z-kritik degerini kac buldunuz? Ve iki method arasinda siz ce bir fark varmidir? S-4) Bir arastirmaci yaptigi calismada urununun ortalama araliginin %90 guven araliginda 2 gram olmasini hedeflemekte. Calismaya ait standard sapma 35 ise bu calisma icin kullanilmasi gereken ornek kutle eleman sayisi ne olmalidir? S-5) Fakültedeki kız öğrencilerin ortalama ağırlığının 54.4 kg olduğu iddia edilmektedir. Bu iddaya inanmayan Prof. A. Kız öğrencilerden 100 tanesini rasgele seçmiş ve ortalama ağırlıklarını kg olarak bulmuştur. Standart sapmayı 5.4 kg olarak bulan Prof.A. nın iddiasını te araştırınız. S-6) Bir fabrikada çalışan işçilerin ortalama ücretlerin dağılımı normal dağılıma uygun olup, işçilerin aylık ücretleri 200 TL ve standart sapması 32 TL olarak belirlenmiştir. Bu fabrikada aylık ortalama ücreti 176 TL ve 240 TL arasında olan işçi sayısı 82 olduğuna göre, toplam işçi sayısı kaçtır. S-7) İstatistik dersini ilk defa alan 1200 öğrenciden 852 sinin başarılı olduğu tespit edilmiştir. İstatistik dersini ilk defa öğrencilerin başarı oranı güvenle hangi aralıktadır. S-8) Bir işletmede üretilen ürünlerin ortalama ağırlığının 95 gr ve standart sapmasının 2 gr olduğu ve normal dağılış gösterdiği bilinmektedir. Paketleme ünitesinde meydana gelen arıza giderildikten sonra deneme üretimi yapılmış ve 16 adet ürün rasgele seçilerek ağırlıkları ölçülmüş ortalama ağırlık 94 gr olarak saptanmıştır. Paketleme ünitesinin ayarı bozulmuş mudur.( S-9) Bir işletmede A teknolojisi kullanılarak üretim yapılmakta ve günlük ortalama 120 gr ürün üretilmektedir. Standart sapma ise 6.4 olarak saptanmıştır. Ancak şirket B teknolojisi kullanmayı düşünmektedir ve B teknolojisi ile bir test üretimi yapılmıştır. 12 test üretiminde günlük ortalama üretim 135 birime çıkmıştır. da B teknolojisinin üretimi artırıp artırmadığını test ediniz. 1

2 S-10) Öğrencilerin en az %35 inin kütüphaneye gittiği iddia edilmektedir. Bu iddiayı araştırmak üzere 250 kişilik bir öğrenci grubu rasgele seçilmiş ve 95 inin kütüphaneye gittiği saptanmıştır. %5 güven seviyesinde iddiayı araştırınız. S-11) Daktilo yazma kursuna katılan öğrencilerin dakikada ortalama olarak 50 kelimeyi yazabildikleri ve standart sapmanın olduğu biliniyor. Kursun sonunda 10 öğrencilik bir örneklem için ortalamalar 57, 62, 48, 51, 63, 55, 44, 46, 59, 50 bulunmuştur. alarak kursun öğrenciye yararlı olup olmadığını inceleyiniz. S-12) Belli bir işi bitirmek için gereken ortalama zaman 12.5 dakika olarak biliniyor.10 yeni işçi belirtilen işi yapmak üzere denendiklerini kabul edelim. Deneme sonunda aynı işi yapma zamanları şöyledir; 9.3, 12.1, 15.7, 10.3, 12.2, 14.8, 15.1, 13.2, 15.9, 14.5; ( ) önem düzeyinde bu örneklemin alındığı kitle için zamanın ortalamadan farklı olmadığı hipotezini test edin. S-13) Bir bölgede arıcılıkla uğraşan arıcıların kovan başına 21 kg bal aldıkları biliniyor. Arı kovanları arasından rasgele 14 tane seçiliyor. Bu 14 arı ayrı bir bölgeye götürülerek bal mevsimini orada geçirmeleri sağlanıyor. Bal mevsimi sonucunda arı kovanlarının sağımı yapıldığında elde edilen kovan başına bal miktarları; 23, 24, 19, 22, 18, 26, 22,21, 20, 26, 17, 19, 18, 25. alarak yeni seçilen bölgenin arıcılara yararlı olup olmadığını inceleyiniz. S-13) Bir bölgede hayvancılıkla uğraşan çiftçilerin inek başına günde 15 lt süt verdikleri biliniyor. İnekler arasından rasgele 13 tane seçiliyor. Bu 13 inek yaylaya götürülerek orada ki çayırlarda beslenmeleri sağlanıyor(organik süt üretimi düşünülüyor). Yaylada otlayan ineklerin bir günlük sağımı yapıldığında elde edilen inek başına süt miktarları; 14.2, 16.5, 13.6, 12.9, 18.4, 16.1, 17.9, 18.6, 20.2, 16.5, 17.3, 14.6, 13.7, alarak yeni seçilen yaylanın çiftçilere yararlı olup olmadığını inceleyiniz. S-14) Bir firma tarafından üretilen halatlar için ortalama kırılma gücü 300 kg ve standart sapma 20 kg olarak belirlenmiştir. Uygulanacak yeni bir üretim tekniğinin kırılma gücünü artırıp artırmadığı test edilecektir. 64 birimlik bir örneklemle eski üretim sürecinin önem düzeyinde reddi olanaklımıdır. S-15) Bir kutu mısır gevreğinin ağırlığının 368 gr dan fazla olduğu iddia edilmektedir. Ayrıca gram olduğunu belirtmiştir. n= 25 kutuluk bir örnek alınmış ve gr. olarak bulunmuştur seviyesinde test ediniz. S-16) Bu sene Gümüşhane Üniversitesi.İİBF İktisat bölümünden mezun olacak öğrencilerin mezuniyet not ortalamalarının 70 olduğu iddia edilmektedir. Bu amaçla mezuniyet sonrası 36 öğrencilik bir örnek alınmış ve mezuniyet ortalamalarının 66, standart sapmasının 12 olduğu bulunmuştur. Bu veriler ışığında iddiayı =0.01 için test ediniz S-17) Bir fabrikada üretilmekte olan vidaların boylarının ortalaması 100 mm, ve standart sapması 2 mm olan normal dağılım gösterdikleri bilinmektedir. Makinalarda olan bir arıza giderildikten sonra üretilen vidalardan alınan 9 vidalık bir örneğin boy ortalaması 102 mm olarak bulunmuştur. Makinalardaki arıza giderilirken vidaların boyunun ayarı bozulmuş mudur? =0.05 için test ediniz ve yorumlayınız. 2

3 S-18)Bir süpermarketler zinciri sahibi müşterilerinin %95 ten fazlasının süpermarketlerindeki fiyatlardan memnun olduğunu söylemektedir. Tesadüfi olarak seçilen 200 müşteriden 184 ü fiyatlardan memnun olduğunu bildirmektedir.%1 önem düzeyinde, süpermarketteki fiyatlardan memnun olanların oranının %95 e eşit olmadığını söyleyebilir miyiz? S-19) Bir toplumda erkekler arasında akciğer hastalığı oranının %30 olduğu bilinmektedir. Sigara içenlerde akciğer hastalıklarına daha sık rastlanıp rastlanmadığı araştırılmak isteniyor. Bu amaçla sigara içen erkekler arasından rasgele seçilen 200 erkekten 80 inin bir akciğer hastalığı geçirdiği/geçirmekte olduğu saptanıyor. Sigara içenlerde akciğer hastalığına yakalanma oranının daha fazla olduğu söylenebilir mi? S-20) Bir konserve fabrikasının imal ettiği konservelerin üzerinde brüt 455 gr yazmaktadır. Bu konservelerin brüt ağırlıkları ile ilgili bir karar vermek üzere rasgele seçilen 17 kutunun ortalama ağırlığı 450 gr ve standart sapması 13 gr bulunmuştur. Brüt ağırlığın 455 gr olmadığını 0.05 önem seviyesinde söyleyebilir misiniz? S-21). Bir çimento fabrikası ürettiği çimentodan yapılan beton blokların sağlamlığının standart sapmasının 10 kg/m2 den fazla olduğunu iddia etmektedir. İddiayı test etmek amacıyla 10 beton blok alınmış ve sağlamlık test yapılmıştır. Test sonucunda alınan örneğin sağlamlık ortalaması 312 kg/m2, varyansı 195 kg2/m4 olarak bulunmuştur. a) İddiayı %95 güvenle test ediniz. b) Aynı veriler için populasyon varyansının 200 ün altında olduğu iddiasını test ediniz. c) Aynı veriler için populasyon varyansının 100 olup olmadığını test ediniz. S-22) Bir fabrikada imal edilen belli bir tip çelik bilyelerin çaplarının ortalama 5 mm olamsı gerekmektedir. Bu fabrikanın imalatından rastgele alınan 50 bilyenin çap ortalaması 4,8 mm ve standart sapması 0,4 mm bulunmuştur. Buna göre, bu fabrikanın imal ettiği çelik bilyelerin ortalama çapının 5 mm olduğunu, 0,01 önem seviyesinde, söyleyebilir miyiz? S-23) 3500 aile ile ilgili araştırmada bunlar arasından 200 aile rastgele seçilerek, bunların yıllık ortalama gelirinin 5100 TL, standart sapmanın ise 420 TL olduğu belirlenmiştir. Buna göre, bu 3500 aile için yıllık ortalama gelirin 5000 TL üstünde olduğu söylenebilir mi? (α=0,05) S-24) Bir konserve fabrikasının imal ettiği konservelerin üzerinde brüt 400 gram yazılmaktadır. Bu konservelerin brüt ağırlıklarıyla ilgili bir karar vermek amacıyla, rastgele seçilen 81 kutunun ağırlıkları ortalamasının 398 gr ve standart sapmasının 12 gr olduğu görülmüştür. Buna göre, %1 önem seviyesi için, bu fabrikanın imal ettiği konservelerin, üzerinde yazılan ağırlığın 400 gr ın altında olduğu söylenebilir mi? S-25) A lisesi son sınıfta okuyan 1000 öğrenci özel dersaneler birliğinin düzenlediği sınava girmiştir. Okul yöneticileri sınav öncesinde öğrencilerinin bu sınavdaki; 1. Fen puanı ortalamasının 160 puan, 2. Sosyal puan ortalamasının en az 150 puan, 3

4 olacağını iddia etmişlerdir. Bu hipotezleri (iddiaları) test etmek amacıyla bu okulun sınava giren öğrencilerin arasında rassal olarak 36 öğrenci seçilmiş ve bunların fen puan ortalamasının 150 puan, standart sapmasının 15 puan; sosyal puan ortalamasının 145 puan ve standart sapmasının 22 puan, olduğu hesaplanmıştır. Yukarıdaki iki hipotezin doğruluğunu α = 0.05 değerini seçmek suretiyle ayrı ayrı araştırınız. S-26) Ortalama üretimi günde 880 kg. olan bir ilaç firmasında uygulanan yeni bir yöntemin üretimi arttırdığı öne sürülmektedir. İddiayı incelemek amacıyla 81 günün üretimi incelenmiş ve ortalama üretimin 892 kg. standart sapmanın ise 21 kg. olduğu görülmüştür. Yeni yöntemin üretimi arttırdığı söylenebilir mi? α = 0,01 S-27) 11 kişilik bir hasta grubunda plazmadaki yağ asidi aşağıdaki şekilde ölçülmüştür. 160, 168, 154, 156, 172, 163, 166, 169, 150, 170, 167;bu hastaların geldiği popülasyon için %90 güven aralığını hesaplayınız. S-28) Normal değerin 205 olduğu bilinen bir enzimin belli bir tip diyet sonucunda değişip değişmediğini merak eden bir diyetisyen diyeti uygulayan 10 kişide aşağıdaki değerleri ölçmüştür. 239,176, 235, 217, 234, 216, 318, 190, 181,225, =0.05 için test ediniz ve yorumlayınız. S-29) Bir depodaki piller arasından seçilen 25 pilin voltajının standart sapması 0.5 volt olarak bulunmuştur. Böyle pillerin voltajının varyansları için %90,%95 ve %99 luk güven aralıkları bulunuz. S-30) ortalamalı varyanslı normal dağılıma sahip bir kitleden birimlik bir örneklem seçilmiştir(1, 1, 0.7, 2.3, 1.7, 1). için %99 luk güven aralığı belirleyiniz. S-31) Belli bir mahalledeki erkeklerin boylarının normal dağılıma sahip olduğu kabul ediliyor. olan bir örneklemin boy ortalaması ve standart sapması 6 bulunuyor. Kitlenin boy ortalaması için %95 lik güven aralığı hesaplayınız. S-32) Futbol hakemleri tarafından kuralların yeniden yorumlanması sonucunda maç başına düşen sarı kart sayısında bir artış olması bekleniyor. Şimdiye kadar maç başına düşen ortalama sarı kart sayısı 4, standart sapması da 0,5 olsun. 121 maçlık bir örneklemden elde edilen verilere göre maç başına ortalama 4,7 sarı kart çıktığı hesaplanmıştır. %5 lik anlamlılık seviyesinde, gerçekten sarı kartlarda artış olmuş mudur? S-33) iki ilacın karşılaştırıldığını kabul edelim. A ilacını kullanan 200 kişiden 70 inde ilaç ters etki yapmıştır. B ilacını kullanan 50 kişiden 10 unda ters tepki görülmüştür. İki ilacın etkilerindeki fark için %95 lik güven aralığını hesaplayınız. S-34) Spor malzemeleri üreten bir firma, ürettiği olta iplerinin dayanma mukavemeti ortalamasının, standart sapmasının olduğunu açıklamıştır. 4

5 Firmanın bu iddiasını test etmek isteyen bir tüketici örgütü firmanın üretiminden rastgele 50 olta ipi almış ve ortalamasını olarak belirlemiştir. %1 hata seviyesinde olta İpleri mukavemetinin 15kg/mm2 ye eşit olup olmadığını test ediniz. S-35) Bir belediyenin sular idaresi abonesinin ortalama aylık su tüketim miktarını tahmin etmek istiyor. Bu amaçla araştırmacı rastgele olarak n = 100 abonelik örneklem oluşturuyor ve bu abonelerin ortamala aylık su tüketim miktarının., standart sapmasının da. olduğunu hesaplıyor. İstenen tahmini nokta tahmini olarak yapınız. Bu tahmini yaparken işlediğiniz hatanın büyüklüğünü hesaplayınız. S-36) Bir bölgedeki sigara içen insanların arasında kanser hastası olanların oranının belirlenmesi amaçlanmaktadır. Bu amaçla rasgele seçimle 1500 kişilik bir örneklem oluşturuluyor ve 1500 kişinin içinde 375 kişinin kanser hastası olduğu belirleniyor. Bu bölgedeki sigara içen insanların içindeki kanserli hasta oranını 1- α = 0.95 güven düzeyinde tahmin ediniz. S-37) İki farklı un fabrikasında paketlenen standart 1 kg lık un paketleri test edilmiş ve birinci fabrikadan alınan 100 paketin ortalaması 1.03 kg, standart sapması 0.04kg; ikinci fabrikadan alınan 120 paketin ortalaması 0.99 kg, standart sapması 0.05 kg bulunmuştur. Anakütle standart sapmaları bilinmediği için örnek standart sapmalarından hareketle ortalamalar arası farkın standart hatası, S-38) Bir fabrikada üretilen 100 mamulün ortalama ağırlığı 1040 gr standart sapması 25 gr bulunmuştur. Bu imalat prosesinde üretilen mamullerin ortalama ağırlığı %95 güvenle hangi aralıktadır? S-39) n = 25 hacimli bir şans örneğinin ortalaması dir. Populasyonun standart sapmasının olduğu bilindiğine göre için 95% lik güven aralığını oluşturunuz. S-40) 400 lise öğrencisinden oluşan bir örnekte 32 öğrenci üniversite sınavını kazanmıştır. Üniversite öğrencilerinin sınavı kazanma oranı için %95 lik güven aralığını bulunuz. S-41) Bir yabancı dil kursunun A sınıfında bilgisayar destekli ve B sınıfında klasik yöntemlerle eğitim verilmektedir. Kursun başlangıcından 6 hafta sonra her iki sınıfa da aynı test uygulanarak sonuçlar karşılaştırılmıştır. A sınıfından rassal olarak seçilen 40 öğrencinin test sonucunda elde ettiği ortalama başarı notu 86 ve standart sapması 12, B sınıfından rassal olarak seçilen 35 öğrencinin ortalama başarı notu 72 ve standart sapması 14 tür. Her iki sınıftaki öğrencilerin ortalama başarı notları arasındaki farkın güven aralığını %99 olasılıkla belirleyiniz. S-42) İki farklı ilacın bir hastalığı tedavi etme oranlarının farklı olup olmadığı kontrol edilmek istenmektedir. Bu amaçla 1000 er adet hasta üzerinde A ve B ilaçları denensin. Tedavi 5

6 sonunda A ve B ilaçlarının uygulandığı hastaların sırasıyla 825 ve 760 ının iyileştiği gözlendiğine göre ilaçların hastalığı tedavi etme oranlarının farkının %95 lik güven aralığını bulunuz. S-43) Bir makinada, bir hafta içerisinde yapılan 200 bilyeli yatağın çapları ölçülmüş ve ortalama 2.09 cm, standart sapma ise 0.11 cm bulunmuştur. Bütün bilyeli yatakların çaplarına ait standart sapmanın güven sınırlarını bulunuz. S-44) Bir sanayii kuruluşunda çalışanların gündelikleri μ= tl ortalama ve σ=90.000tl standart sapmalıdır. Rasgele seçilen 81 işçinin gündeliklerinin ortalamasının TL ve TL arasında bulunma olasılığı nedir? S-45) Rasgele seçilen 100 öğrenciden 40 tanesinin sigara içtiği gözlenmiştir. Sigara içenlerin kitledeki oranı p için 1 %95 güven katsayılı bir güven aralığı bulunuz. S-46) Türkiyenin 81 ili içinden rastgele seçilen 12 il için devletin yaptığı kişi başına düşen sağlık harcaması aşağıdaki gibi belirlenmiştir. Bursa 3259 Eskişehir 3133 Adana 3465 Konya 2963 Malatya 3295 İzmir 4410 Manisa 6540 İstanbul 5460 Yalova 4396 Muğla 4320 Maraş 5490 Ağrı 2700 a. Gerçek ortalama için yansız nokta tahmini nedir? b. Örnek ortalamasının standart hatasını tahmin ediniz. c. %95 güven seviyesinde gerçek ortalama için güven aralığı kurarak, ortalama harcamanın üst sınırını belirtiniz. 6

7 d. %95 güven seviyesinde gerçek varyans ve standart sapma için güven aralığının sınırlarını hesaplayınız. S-47) Bir araştırma raporu, dakikada solunan oksijen miktarının kalp krizi üzerine etkisini araştıran bir rapor yayınlamış ve rastgele seçilen 12 kişinin soluduğu oksijen miktarını aşağıdaki gibi belirlemiştir. 9.7, 21.0, 14.3, 15.2, 12.8, 8.6, 10.9, 8.3, 19.1, 7.0, 19.5, 12.5 a. Tüm yığın için oksijen miktarının aritmetik ortalaması için nokta tahmini nedir? b. Örnek ortalamasının standart hatasının tahmini kaçtır? c güven seviyesinde gerçek ortalama için bulunacak güven sınırları nedir? d. Güven seviyesi 0.95 için güven aralığı boyu ve tahminin maksimum hatası ne olur? e. %90 güven seviyesinde yığın standart sapmasının güven sınırlarını hesaplayınız. S-48) Bir endüstri mühendisi üretilen bataryaların ortalama ömrünü tahmin etmek istemektedir. Üretimden rastgele aldığı 50 batarya için ortalama ömür, 262 saat, standart sapma 15.2 saat hesaplanmıştır. a. Tüm üretim için ortalama ömüre ilişkin % 99 güven seviyesinde alt/üst sınırları tahmin ediniz. b. Tahminin maksimum hatası ne olur? S-49) Bir toplulukta evlilik oranı % 40 olarak verilmektedir. Topluluktan rastgele oluşturulacak 50 kişilik bir örnekte evli olma oranının hangi sınırlar içinde kalma olasılığı olur. ( Chebysev teoremini kullanınız. ) S-50) Geçmiş çalışmalara göre kalabalık bir grubun başarı ortalaması 75 puan olarak kayıtlıdır. Bir eğitimci gruptan rastgele belirlediği 20 öğrenci için başarı puanlarını aşağıdaki gibi belirlemiştir Yukardaki örnek değerlerini kullanarak 0.01 anlamlılık düzeyinde anılan ortalamanın geçerliliği konusunda ne söyleyebilirsiniz? S-51) BM örgütü tarafından yaptırılan bir araştırmaya göre yeni keşfedilen bir adada yaşayan bir kabileden alınan 116 kişi içinde 74 kişinin A grubu kan taşıdığı belirlenmiştir. a. Tüm ada halkı için A gurubu kan taşıyan kişi oranının yansız nokta tahmini nedir? Neden? b. Anılan orana ilişkin standart hata tahmini kaçtır.? 7

8 c. %90 güven seviyesinde tüm ada için A gurubuna sahip kişi oranı için güven aralığı kurunuz. d. Tahminin maksimum hatasını yarıya indirmek için, aynı güven seviyesi için alınması gerekli minimum örnek hacmi ne olmalıdır.? S-52) İki farklı paketleme makinesinde yapılan tartım işleminin varyanslarının farkı için (varyans oranları) bir araştırma yapılıyor. Bu makinelerde 1000 gr. lık paketleme işlemi yapılmaktadır. 1. makinenin tarttığı 12 paket rasgele olarak alınıp tartılıyor ve varyansının, 2. makinenin tarttığı 10 paket rassal olarak seçilip tartılıyor varyansının oranlarının %95 güven aralığını oluşturarak sonucu yorumlayınız. olduğu görülüyor. Varyans S-53) Binom dağılımı için nin nin yansız tahmin edicisi olduğunu ve nin nin yanlı (yansız olmayan) tahmin edicisi olduğunu gösteriniz. S-54) bağımsız örneklemlerden bulunan ortalamalar ise olduğunu gösteriniz. Yrd.Doç.Dr. Mehmet MERDAN Matematik Mühendisliği Bölümü 8

İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2014) S-1) Standart normal dağılıma sahip Z değişkeni için aşağıda istenilen olasılıkları hesaplayınız. S-2) 50 müşteriye yeni bir ürün tattırılır.

Detaylı

İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2015)

İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2015) İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2015) S-1) Bir matematik dersinin sınavı aynı anda iki farklı gruba uygulansın. Bu gruplardan rasgele seçilen 15 öğrencinin sınav notları aşağıdaki

Detaylı

Hipotez Testleri. Mühendislikte İstatistik Yöntemler

Hipotez Testleri. Mühendislikte İstatistik Yöntemler Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ

Detaylı

İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2016)

İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2016) İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2016) S-1) Bir matematik dersinin sınavı aynı anda iki farklı gruba uygulansın. Bu gruplardan rasgele seçilen öğrencinin sınav notları aşağıdaki

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

GÜVEN ARALIKLARI ALISTIRMA SORULARI. 2012 Aras.Gör. Efe SARIBAY

GÜVEN ARALIKLARI ALISTIRMA SORULARI. 2012 Aras.Gör. Efe SARIBAY GÜVEN ARALIKLARI ALISTIRMA SORULARI 2012 Aras.Gör. Efe SARIBAY 1) Bir bankada bir gün içerisinde açılan vadeli TL. hesaplarının ortalamasını incelemek amacıyla yapılan bir araştırmada 12 günlük yapılan

Detaylı

HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY

HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI 2012 Araş.Gör. Efe SARIBAY 1) Bir kafede yaz aylarında satılan limonataların satış miktarının ortalamasının 24 lt. den az olduğu iddia edilmektedir. İddiayı test etmek

Detaylı

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08 1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel

Detaylı

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN HİPOTEZ TESTLERİ Yrd. Doç. Dr. Emre ATILGAN Hipotez Nedir? HİPOTEZ: parametre hakkındaki bir inanıştır. Parametre hakkındaki inanışı test etmek için hipotez testi yapılır. Hipotez testleri sayesinde örneklemden

Detaylı

Araş.Gör. Efe SARIBAY

Araş.Gör. Efe SARIBAY GÜVEN ARALIKLARI (ARALIK TAHMİNİ) ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY 1) Bir hisse senedinin $ bazında fiyatının ortalamasını incelemek için yapılan bir araştırmada 18 gün boyunca hisse senedinin

Detaylı

HİPOTEZ TESTLERİ ANADOLU ÜNİVERSİTESİ. Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014

HİPOTEZ TESTLERİ ANADOLU ÜNİVERSİTESİ. Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014 ANADOLU ÜNİVERSİTESİ Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014 HİPOTEZ TESTLERİ Pek çok problemde bazı parametrelere bağlı bir ifadeyi kabul yada red etmek için karar

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL İSTATİSTİKSEL TAHMİN Örnekten anakütle parametrelerinin tahmin edilmesidir. İki tür tahminleme yöntemi vardır:

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir.

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. İSTATİSTİKSEL TAHMİNLEME Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. 1 ŞEKİL: Evren uzay-örneklem uzay İstatistiksel tahmin

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten elde edilen

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

Araş.Gör. Efe SARIBAY

Araş.Gör. Efe SARIBAY HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY 1) Telekom da çalışan bir operatör A ve B şehirleri arasında yapılan telefon görüşmelerinin ortalamasının 6 dakikadan daha fazla sürdüğünü iddia

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı

Detaylı

Popülasyon Ortalamasının Tahmin Edilmesi

Popülasyon Ortalamasının Tahmin Edilmesi Güven Aralıkları Popülasyon Ortalamasının Tahmin Edilmesi Tanımlar: Nokta Tahmini Popülasyon parametresi hakkında tek bir rakamdan oluşan tahmindir. Popülasyon ortalaması ile ilgili en iyi nokta tahmini

Detaylı

ĐŞLE 544 ĐSTATĐSTĐK ARA SINAV 11 Mayıs 2006

ĐŞLE 544 ĐSTATĐSTĐK ARA SINAV 11 Mayıs 2006 ĐŞLE 5 ĐSTATĐSTĐK ARA SINAV Mayıs 00 Adı Soyadı: No: [0 puan] -Bir Üniversitede okutulan derslerin öğrenciler tarafından değerlendirilmesi amacı ile hazırlanan bir anket formundaki sorulardan biri: Aldığınız

Detaylı

İŞLETMECİLER İÇİN İSTATİSTİK II UYGULAMA III. Yrd. Doç. Dr. Pembe GÜÇLÜ

İŞLETMECİLER İÇİN İSTATİSTİK II UYGULAMA III. Yrd. Doç. Dr. Pembe GÜÇLÜ İŞLETMECİLER İÇİN İSTATİSTİK II UYGULAMA III Yrd. Doç. Dr. Pembe GÜÇLÜ 2 Yrd. Doç.Dr. Pembe GÜÇLÜ SORU 1. Toplu sözleşme görüşmeleri sırasında bir şirket, yeni bir teşvik planının, üretimdeki bütün işçiler

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) S-1) Bir otoyol üzerinde radarla hız kontrolü yapan, polis ekipler tarafından tespit edilen tane aracın hızları aşağıdaki tabloda

Detaylı

İstatistiksel Tahmin ÜNİTE. Amaçlar. İçindekiler. Yazar Doç.Dr. Ahmet ÖZMEN

İstatistiksel Tahmin ÜNİTE. Amaçlar. İçindekiler. Yazar Doç.Dr. Ahmet ÖZMEN İstatistiksel Tahmin Yazar Doç.Dr. Ahmet ÖZMEN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; evren parametreleri hakkında yorum yapmayla ilgili iki yöntemden birisi olan evren parametrelerinin tahmin edilmesine

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI Tarih/Saat/Yer: 24.06.16/11:00-12:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL PARAMETRİK OLMAYAN TESTLER Daha önce incelediğimiz testler, normal dağılmış ana kütleden örneklerin

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık - I Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kes1rim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmak7r. ü Bu anlamda, anakütleden çekilen

Detaylı

HİPOTEZ TESTLERİ HİPOTEZ NEDİR?

HİPOTEZ TESTLERİ HİPOTEZ NEDİR? HİPOTEZ TESTLERİ HİPOTEZ NEDİR? Örnekleme ile test edilmeye çalışılan bir popülasyonun ilgili parametresi hakkında ortaya sunulan iddiadır. Örneğin; A dersi için vize ortalaması 50 nin altındadır Firestone

Detaylı

T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ. Yrd. Doç. Dr. C. Deha DOĞAN

T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ. Yrd. Doç. Dr. C. Deha DOĞAN T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ Yrd. Doç. Dr. C. Deha DOĞAN Gruplara ait ortalamalar elde edildiğinde, farklı olup olmadıkları ilk bakışta belirlenemez. Ortalamalar arsında bulunan

Detaylı

Hipotez Testi ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 4 Minitab da İstatiksel Çıkarım-I. Hipotez Testi. Hipotez Testi

Hipotez Testi ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 4 Minitab da İstatiksel Çıkarım-I. Hipotez Testi. Hipotez Testi ENM 52 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 4 Minitab da İstatiksel Çıkarım-I (Ortalamalar ve Oranlar İçin ) İstatistiksel Hipotezler İstatistiksel hipotez testi ve parametrelerin güven aralığı tahmini,

Detaylı

Hipotez Testi Rehberi. Orhan Çevik İstanbul, 30 Ağustos 2014

Hipotez Testi Rehberi. Orhan Çevik İstanbul, 30 Ağustos 2014 Hipotez Testi Rehberi Orhan Çevik İstanbul, 30 Ağustos 2014 Hipotezler Sıfır Hipotezi: H 0 Aksi kanıtlanmadığı sürece doğru olduğu düşünülen varsayımdır. H 0 ın kanıta ihtiyacı yoktur. H 0 ı ret etmek

Detaylı

009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL

Detaylı

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Örnek Senaryo İmplant üreten İMPLANTDENT

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER A) Normal Dağılım ile İlgili Sorular Sayfa /4 Hamileler ile ilgili bir araştırmada, bu grubun hemoglobin değerlerinin normal dağılım gösterdiği

Detaylı

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0 YTÜ-İktisat İstatistik II Hipotez Testi 1 HİPOTEZ TESTİ: AMAÇ: Örneklem bilgisinden hareketle anakütleye ilişkin olarak kurulan bir hipotezin (önsavın) geçerliliğinin test edilmesi Genel notasyon: anakütleye

Detaylı

Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır.

Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır. Hipotez testleri-oran testi Oran Testi Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır Örnek: Yüz defa atılan bir para 34 defa yazı gelmiştir Paranın yazı gelme olasılığının

Detaylı

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI aysecagli@beykent.edu.tr 1 Güven aralığı ve Hipotez testi Güven aralığı µ? µ? Veriler, bir değer aralığında hangi değeri gösteriyor? (Parametrenin gerçek

Detaylı

İSTATİSTİK HAFTA. ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ

İSTATİSTİK HAFTA. ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ HEDEFLER Bu üniteyi çalıştıktan sonra; Örneklemenin niçin ve nasıl yapılacağını öğreneceksiniz. Temel Örnekleme metotlarını öğreneceksiniz. Örneklem

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 Prof. Dr. Ali ŞEN İki Populasyonun Karşılaştırılması: Eşleştirilmiş Örnekler için Wilcoxon İşaretli Mertebe Testi -BÜYÜK ÖRNEK Bağımsız populasyonlara uygulanan

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

İŞLETMECİLER İÇİN İSTATİSTİK II

İŞLETMECİLER İÇİN İSTATİSTİK II İŞLETMECİLER İÇİN İSTATİSTİK II UYGULAMA II Yrd.Doç.Dr. Pembe GÜÇLÜ Soru 1. Küçük işletmelerden rastsal olarak seçilen yöneticilere liderlik anketi uygulaması yapılmıştır. Aşağıda her yöneticinin kendi

Detaylı

Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir.

Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir. BÖLÜM 4. HİPOTEZ TESTİ VE GÜVEN ARALIĞI 4.1. Hipotez Testi Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir. Örneklem dağılımlarından

Detaylı

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI Prof. Dr. Nezir KÖSE 30.12.2013 S-1) Ankara ilinde satın alınan televizyonların %40 ı A-firması tarafından üretilmektedir.

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

Merkezi Limit Teoremi

Merkezi Limit Teoremi Örnekleme Dağılımı Merkezi Limit Teoremi Şimdiye kadar normal dağılıma uygun olan veriler ile ilgili örnekler incelendi. Çarpıklık gösteren veriler söz konusu olduğunda ne yapılması gerekir? Hala normal

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

İSTATİSTİK ÖRNEK SORULARI

İSTATİSTİK ÖRNEK SORULARI 1. Aşağıda gruplandırılmış seri verilmiştir. (n) 0-10 den az 5 10-20 den az 6 20-30 den az 9 30-40 den az 11 40-50 den az 4 50-60 den az 3 TOPLAM 38 İSTATİSTİK ÖRNEK SORULARI a) Mod değerini bulunuz? (15

Detaylı

Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER

Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER Parametrik Olmayan İstatistik Prof. Dr. Cenk ÖZLER Not: Beklenen Frekansı 5 in altında olan gruplar varsa, bu gruplar bir önceki veya bir sonraki grupla birleştirilir. Hipotezler χ 2 Dağılışa Uyum Testi

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

KESİKLİ DÜZGÜN DAĞILIM

KESİKLİ DÜZGÜN DAĞILIM KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

İŞLETMECİLER İÇİN İSTATİSTİK II

İŞLETMECİLER İÇİN İSTATİSTİK II İŞLETMECİLER İÇİN İSTATİSTİK II UYGULAMA I SORU 1 Bir maden işletmesi kazılan madendeki ton başına ortalama bakır cevheri miktarının değeri tahminlemek istemektedir. Rastsal olarak seçilen 50 tonluk örnekten

Detaylı

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi 2010 S 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek t ablolar ve f ormüller bu kitapçığın sonunda verilmiştir. 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi yanlıstır? ) Maddesel

Detaylı

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma 2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal

Detaylı

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A 2Q 10 BS 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek tablolar ve f ormüller bu kita p ç ığın sonunda ver-ilmiştir. 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre cevaplandırılacaktır

Detaylı

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ ÖRNEKLEME TEORİSİ 1 Bir popülasyonu istatistiksel açıdan incelemek ve işlemler yapabilmek için popülasyon içerisinden seçilen örneklemlerden yararlandığımızı söylemiştik. Peki popülasyonun istatistiksel

Detaylı

ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM

ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ KESİKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 GEOMETRİK DAĞILIM Bir Bernoulli deneyi ilk olumlu sonuç elde edilmesine kadar tekrarlansın. X: ilk olumlu sonucun

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı 1 Bernoulli Dağılımı Bir şans değişkeninin bernoulli dağılımı göstermesi için ilgilenilen süreçte bernoulli

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) Parametrik Olmayan Testler Binom Testi SPSS Ders Notları III (3 Mayıs 2012) Soru 1: Öğrencilerin okul

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

Bir Normal Dağılım Ortalaması İçin Testler

Bir Normal Dağılım Ortalaması İçin Testler Bir Normal Dağılım Ortalaması İçin Testler İÇERİK o Giriş ovaryansı Bilinen Bir Normal Dağılım Ortalaması İçin Hipotez Testler P-değerleri: II. Çeşit hata ve Örnekleme Büyüklüğü Seçimi Örnekleme Büyüklüğü

Detaylı

BİYOİSTATİSTİK Uygulama 2 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 2 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 2 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 ÖRNEK SENARYO 15 yıllık hizmet

Detaylı

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ OLASILIĞA GİRİŞ DOÇ. DR. NİHAL ERGİNEL OLASILIĞA GİRİŞ - Bugün yağmur yağma olasılığı % 75 dir. - X marka bilgisayarın hiç servis gerektirmeden 100000 saat çalışması

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

Örneklem Dağılımları ve Merkezi Limit Teoremi

Örneklem Dağılımları ve Merkezi Limit Teoremi Örneklem Dağılımları ve Merkezi Limit Teoremi Çıkarımsal İstatistik (Inferential Statistics) : Örneklemden yola çıkarak ana kütleyle (popülasyonla) ilgili çıkarımlarda bulunmak (Smidt, 2001) İstatistiksel

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

BİYOİSTATİSTİK PARAMETRİK TESTLER

BİYOİSTATİSTİK PARAMETRİK TESTLER BİYOİSTATİSTİK PARAMETRİK TESTLER Doç. Dr. Mahmut AKBOLAT *Bir testin kullanılabilmesi için belirli şartların sağlanması gerekir. *Bir testin, uygulanabilmesi için gerekli şartlar; ne kadar çok veya güçlü

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI 1. Doğum sırasının çocuğun zeka düzeyini etkileyip etkilemediğini araştıran bir araştırmacı çocuklar

Detaylı

ARALIK TAHMİNİ (INTERVAL ESTIMATION):

ARALIK TAHMİNİ (INTERVAL ESTIMATION): YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta

Detaylı

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama Doç.

Detaylı

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI Öğrenci Bilgileri Ad Soyad: İmza: MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI 26 Mayıs, 2014 Numara: Grup: Soru Bölüm 1 10 11 12 TOPLAM Numarası (1-9) Ağırlık 45 15 30 20 110 Alınan Puan Yönerge 1. Bu sınavda

Detaylı

Istatistik ( IKT 253) 4. Çal şma Sorular - Cevaplar 7. CHAPTER (DISTRIBUTION OF SAM- PLE STATISTICS) 1 Ozan Eksi, TOBB-ETU

Istatistik ( IKT 253) 4. Çal şma Sorular - Cevaplar 7. CHAPTER (DISTRIBUTION OF SAM- PLE STATISTICS) 1 Ozan Eksi, TOBB-ETU TOBB-ETÜ, Iktisat Bölümü Istatistik ( IKT 253) 4. Çal şma Sorular - Cevaplar 7. CHAPTER (DISTRIBUTION OF SAM- PLE STATISTICS) 1 Soru 1-(Sampling Distribution of Sample Means): Bir bölgedeki evlerin ortalama

Detaylı

Toplum ve Örnek. Temel Araştırma Düzenleri. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Toplum ve Örnek. Temel Araştırma Düzenleri. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Toplum ve Örnek Temel Araştırma Düzenleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Toplum ve Örnek İstatistik, toplumdan kurallara uygun olarak,

Detaylı

İstatistik. Temel Kavramlar Dr. Seher Yalçın 1

İstatistik. Temel Kavramlar Dr. Seher Yalçın 1 İstatistik Temel Kavramlar 26.12.2016 Dr. Seher Yalçın 1 Evren (Kitle/Yığın/Popülasyon) Herhangi bir gözlem ya da inceleme kapsamına giren obje ya da bireylerin oluşturduğu bütüne ya da gruba Evren veya

Detaylı

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET Bu çalışmada, Celal Bayar Üniversitesi İnşaat Mühendisliği Bölümü öğrencilerinin

Detaylı

1 Hipotez konusuna öncelikle yokluk hipoteziyle başlanılan yaklaşımda, araştırma hipotezleri ALTERNATİF HİPOTEZLER olarak adlandırılmaktadır.

1 Hipotez konusuna öncelikle yokluk hipoteziyle başlanılan yaklaşımda, araştırma hipotezleri ALTERNATİF HİPOTEZLER olarak adlandırılmaktadır. Özellikle deneysel araştırmalarda, araştırmacının doğru olup olmadığını yapacağı bir deney ile test edeceği ve araştırma sonunda ortaya çıkan sonuçlarla doğru ya da yanlış olduğuna karar vereceği bir önermesi

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1

MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1 MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1 şeklinde tanımlanan dağılımın a) Ortalama ve varyans değerlerini bulunuz b) Moment yaratma fonksiyonunu bularak a-şıkkını tekrar çözünüz. Bir tezgahta üretilen

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

ÖĞRENCİNİN ADI SOYADI:. NO:

ÖĞRENCİNİN ADI SOYADI:. NO: ÖĞRENCİNİN ADI SOYADI:. NO: İMZA: 2011-2012 ÖĞRETİM YILI TIP 1. SINIF TEMEL BİYOİSTATİSTİK DERSİ ARA SINAVI (04.11.2011) Biyoistatistik ve Tıp Bilişimi Anabilim Dalı Başarılar Temel Biyoistatistik dersi

Detaylı