TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER"

Transkript

1 TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr: Eksi sonsuzdn gelip eksi ire kdr giden tm syılr denir ve Z ile gösterilir. Z = {...,-,-,-1} ÇÖZÜM En içteki prntezden şlyrk prntezleri çrsk 11 (4 + ) +.( (-8)) = ( + 8) ÖRNEK = = 4 + = 6 Cevp C dir : + 4.(4. 1) işleminin sonucu kçtır? A) 8 B) 4 C) 0 D) 8 ) Pozitif Tmsyılr: Birden şlyıp sonsuz kdr giden tm syılr denir ve Z + ile gösterilir. Z + = {1,,,...} Tmsyılrd işlem sırsı: ) Vrs prntezin içi ) Çrpm - Bölme c) Toplm Çıkrm ÖRNEK 0 pozitif vey negtif değildir. Am ir tm syıdır ve ynı zmnd çifttir. Pozitif tm syılr sıfırdn uzklştıkç, negtif tm syılr sıfır yklştıkç üyür. (+). (+) = (+) (+) : (+) = (+) ( ). ( ) = (+) ( ) : ( ) = (+) ( ). (+) = ( ) ( ) : (+) = ( ) (+). ( ) = ( ) (+) : ( ) = ( ) 11 (4 + ( + 5)) +. ( (1 9)) işleminin sonucu şğıdkilerden hngisidir? A) 4 B) 5 C) 6 D) 7 ÇÖZÜM İşlem sırsın dikkt ederek önce : + 4.(4. 1) işlemlerini yprsk (8 1) şekline dönüşür = 0 8 = 8 olur. MUTLAK DEĞER Cevp A dır. Syı doğrusu üzerinde 0 ın ulunduğu nokty şlngıç noktsı denir. Syı doğrusu üzerindeki ir noktnın şlngıç noktsın uzklığın, o syının mutlk değeri denir. Mutlk değerin içindeki ifde pozitif ise ynen, negtif ise önüne eksi ( ) lrk dışrı çıkr. Bşk ir deyişle ir syının mutlk değeri o syının işretinin dikkte lınmmış hlidir. Örneğin; = 1 = 1 7= 7 = 981 = = 0 c) Çift Tm Syılr : Sıfırdn şlyıp ikişer ikişer rtrk giden syılr çift doğl syılr denir. {0,,4,6,8,...,n,n+,n+4,...} 1

2 TAM SAYILAR VE MUTLAK DEĞER d) Tek Tm Syılr : Birden şlyıp ikişer ikişer rtrk giden syılr tek doğl syılr denir. {1,,5,7,9,...,n,n+,n+4,...} ÖRNEK Tek Syı Tek Syı = Çift Syı Tek Syı Çift Syı = Tek Syı Çift Syı Çift Syı = Çift Syı Tek Syı x Tek Syı = Tek Syı Tek Syı x Çift Syı = Çift Syı Çift Syı x Çift Syı = Çift Syı Çift syının tüm kuvvetleri çift, tek syının tüm kuvvetleri tektir. Aşğıdki ifdelerden hngisi tektir? A) B) C) D) ÇÖZÜM A) 000 = çift, = tek çift. tek = çift B) 99 = tek, 100 = çift tek - çift = tek C) = çift, 8 17 = çift çift + çift = çift D) = tek, 7 99 = tek tek - tek = çift Cevp B dir. B. ARDIŞIK TEK SAYI Arlrındki frk dim oln tek syılrdır., +, + 4, + 6, şeklinde gösterileilir. ARDIŞIK TEK SAYILARIN TOPLAMI n 1 = (n terim syısı) C. ARDIŞIK ÇİFT SAYI n Arlrındki frk dim oln çift syılrdır., +, + 4, + 6, şeklinde gösterileilir. ARDIŞIK ÇİFT SAYILARIN TOPLAMI n = ( n) n (n 1) n =. n (n 1) (n terim syısı) ÖRNEK Dikkt edilirse yukrıdki ifdelerde rdışık çift syı ve rdışık tek syı ynı şekilde gösterilmiştir. Burd y vereceğiniz değer tek syı olurs rdışık tek syılr, çift syı olurs rdışık çift syılr elde edilmiş olur. Ardışık tek tm syının toplmı 51 ise, u syılrın en üyüğü kçtır? A) 15 B) 17 C) 19 D) 1 ÇÖZÜM Ardışık tek syılr şer şer rtr. Bu durumd en küçük syıy n dersek, diğerleri n + ve n + 4 olur. n + n + + n + 4 = 51 n + 6 = 51 n = 45 n = 15 En üyük syı d n + 4 tür = 19 olur. Ardışık syı dizilerinde, Terim Syısı: Son Terim - İlk Terim 1 Sit f rk Terimler Toplmı: ( Son terim İlk terim)(son terim İlk terim Sit f rk) x Sit Frk ÖRNEK toplmı kçtır? A) 01 B) 1 C) 165 D) 4 ÇÖZÜM ( 89 5).(89 5 ) Terim Toplmı =. = = 01 Cevp A dır. w w w. k d e m i v i z y o n. c o m. t r

3 M A T E M A T İ K ÇÖZÜMLÜ TEST 1. [(+).(+4) (+6): ( )] : [( 8) + (+0): (+6)] işleminin sonucu kçtır? A) 5 B) 4 C) D) 6.,, c irer tm syı, c 4 olduğun göre, şğıdkilerden hngisi kesinlikle doğrudur? A) c çifttir B) tektir C) çifttir D) tek ise c çifttir..,, c irer tm syıdır.. = 0.c = 1 olduğun göre, + + c toplmının en küçük değeri kçtır? A) 1 B) 1 C) 0 D) 4 7.,, c irer tmsyı, 4. > 0.c < 0.c > 0 olduğun göre,, ve c nin işretleri sırsıyl şğıdkilerden hngisidir? A) (, +, ) B) (, +, +) C) (,, +) D) (+, +, +) Yukrıdki syı doğrusund verilen işlem şğıdkilerden hngisidir? A) (+) + ( 7) + ( 1) = ( 5) B) (+7) + ( ) + ( 4) = 0 C) ( 5) + (+7) + ( ) = ( 1) D) ( 1) + ( 5) + (+8) = (+) 8.,, c rdışık tek tm syılr ve < < c olduğun göre, ( c).( c) ( ) ifdesinin değeri kçtır? A) 16 B) 8 C) D) 4 4. ir tm syı olmk üzere, x 6 ir tek syı olduğun göre, şğıdkilerden hngisi kesinlikle çift syıdır? A) x + x + 4 B) (x + 1) C) x + 5 D) x , 17, 11, 67, 7 syı dizisinde kç tne terim vrdır? A) 15 B) 16 C) 17 D) ( ) ( ) 5 ( 4 ) 7.( ) işleminin sonucu şğıdkilerden hngisidir? A) B) C) 4 D) ün ktı oln rdışık 4 tmsyının toplmı 54 tür. Bun göre, u syılrdn en küçüğü kçtır? A) 9 B) 1 C) 15 D) 18

4 11. x + = 6 y 1 = 5 olduğun göre, şğıdkilerden hngisi ynlıştır? A) x + y toplmı en çok 9 dur. B) x + y toplmı en z 1 tür. C) x y frkı en çok 7 dir. D) y x frkı en z 1 dir. 16. x 4 x TAM SAYILAR VE MUTLAK DEĞER ifdesinin tm syı olmsı için x kç frklı tm syı değeri lır? A) 6 B) 4 C) D) 1. = 8 = olduğun göre, şğıdkilerden hngisi doğrudur? 17. İki smklı, rkmlrı frklı iki tm syı rsındki frk en çok kçtır? A) 88 B) 89 C) 196 D) 198 A) = B) + = + C) D) < 1. Rkmlrı frklı en üyük üç smklı negtif tm syı ile, en üyük iki smklı tm syının frkı kçtır? A) 01 B) 199 C) D) 18.,, c irer tmsyı ve < 0 < < c olduğun göre, şğıdkilerden hngisi kesinlikle pozitiftir? A) C) c c B) D) c c 14.,, c irer tm syı,. = 40.c = 60 olduğun göre, şğıdkilerden hngisi ynlıştır? A) pozitif ise c negtiftir. B) negtif ise.c pozitiftir. C) en üyük değerin ldığınd + c = 1 dir. D) en küçük değerini ldığınd.c = 6 dır. 19. negtif ir tm syı ise, şğıdkilerden hngisi pozitiftir? A) B) ( ) C) ( ) 4 D) ( ) ve üç smklı tm syılrdır. > 0 ve < 0 ise, nın en üyük değeri kçtır? A) 1998 B) 00 C) 00 D) ir tm syı olduğun göre, ifdesinin lileceği en üyük ve en küçük de- ğerlerin toplmı kçtır? A) 5 B) C) 0 D) 7 w w w. k d e m i v i z y o n. c o m. t r

5 M A T E M A T İ K ÇÖZÜMLER 1. [(+).(+4) (+6): ( )]: [( 8) + (+0): (+6)] = [(+1) ( )]: [( 8) + (+5)] = [(+1) + (+)] : ( ) = (+15) : ( ) = 5 Cevp A dır. 6. c 4 + = 4c çrpnlrındn iri çift olduğundn çrpım d çift olduğun göre, 4c Ç Ç urdn nin çift olmsı gerektiği görülmektedir.. hem 0 un, hem de 1 nin çrpnı olduğun göre, 6,,, 1, 1,,, 6 değerlerinden iri olilir. = 1 için = 0 ve c = 1 olur. + + c = ( 1) + ( 0) + ( 1) = 4 Cevp D dir ( 5) + (+7) + ( ) = ( 1) 4. x Ç = T olduğun göre, x = T ve X = T O hlde A) T + Ç.T + Ç = T B) (T + T) = Ç = Ç C) Ç.T + T = T D) T + Ç = T Cevp B dir > pozitiftir.. c < 0 + c negtif ise c de negtiftir.. c > 0 negtiftir. Cevp A dır. 8. < < c olduğun göre, = 1, =, c = 5 lınilir. ( c).( c) (1 5) ( 5) ( ) (1 ) = ( 4) ( ) ( 4) ( 8) ( ) ( 4) ( ) = 8 ( 4) Cevp B dir. 5. ) ( ) 5 ( 4 ) 7.( ) ( 9) 8 ( 5) ( 16) ( 7) ( ) ( 9) ( 8) ( 5) ( 16) ( 14) 9., 17, 11, 67, 7 syı dizinde İlk terim = Son terim = 7 Artış miktrı = 6 7 ( ) Terim syısı ( 16) ( 14) 1 = 6 Cevp D dir. 96 =

6 TAM SAYILAR VE MUTLAK DEĞER 10. ün ktı oln rdışık syılrdn en küçüğü x ise değerleri sırsıyl (x + ), (x + 6), (x + 9) dur. O hlde x + x + + x x + 9 = 54 4x + 18 = 54 4x = 6 x = 9 Cevp A dır. 11. x + = 6 ise x + = 6 vey x + = 6 x = x = 9 y 1 = 5 ise y 1 = 5 vey y 1 = 5 y = 6 y = 4 x + y toplmı en çok + 6 = 9 dur. x + y toplmı en z ( 9) + ( 4) = 1 tür. x y frkı en çok ( 4) = 7 dir. y x frkı en z 4 (+) = 7 dir. Cevp D dir. 15. frkının en çok olmsı için en üyük değerini, en küçük değerini lmsı gerekir. > 0 ve < 0 olduğun göre, nin en üyük değeri ( 100), nın en küçük değeri 100 dür. O hlde, nın en üyük değeri 100 (+100) = x 4 x 4 4 ifdesinin tm syı x x x x olmsı için x 4 ü klnsız ölmelidir. 4 ün tm ölenleri ltı tnedir. 4,, 1, 1,, 4 tür. Cevp A dır. 17. Frkın en üyük olmsı en üyük ve en küçük iki smklı rkmlrı frklı syılrın frkı ulunmlıdır. 1. = 8, = ( 8) 4 4 ( ) 98 ( 98) = = Küçük syıdn üyük syı çıkrtılırs, sonuç negtif olur. ( ) ( ) c ( ) Cevp B dir. 1. Rkmlrı frklı, en üyük üç smklı negtif tm syı ( 10), iki smklı en üyük tm syı (+99) dur. ( 10) (+99) = ( 10) + ( 99) = ( 01) Cevp A dır. 19. A) ( ) ( ) = ( ). (+) = ( ) B) ( ) [( ) ( ) ] = ( ).[( ) ( )] = ( ).(+) = ( ) C) [( ).( )] 4 = (+) 4 = (+) D) ( ) [( ) ( ) 5 ] = ( ) ( ) ( ) = ( ) 14.. = 40.c = 60 A) pozitif ise, de pozitiftir. (Çünkü çrpımlrı pozitiftir.) pozitif ise, c negtiftir. (Çünkü çrpımlrı negtiftir.) B) negtif ise, negtif, c pozitiftir. O hlde.c nin işreti negtiftir. ( ).(+) = ( ) C) nin en üyük değeri 0 dir. Bu durumd = ve c = + c = (+) + ( ) = ( 1) D) nin en küçük değeri 0 dir. Bu durumd = ve c = tür..c = ( ).(+) = ( 6) Cevp B dir İfdenin en üyük değer lmsı için = 1 olmlıdır İfdenin en küçük değerini lmsı için, = 1 olmlıdır ( 10) 9 ( 1) 11 + ( 9) = Cevp B dir. 6 w w w. k d e m i v i z y o n. c o m. t r

7 M A T E M A T İ K CEVAPLI TEST 1 1., Z olmk üzere,. = 6 olduğun göre, + nin en üyük ve en küçük değerleri toplmı için hngisi doğrudur? A) En küçük tmsyıdır. B) 4 ile ölümünden klnını verir. C) İki smklı en üyük tmsyıdır. D) En küçük doğl syıdır. 6. < 0 < < c olmk üzere, c + + c işleminin sonucu nedir? A) 0 B) C) D) c 7. Aşğıdkilerden hngileri doğrudur? I. İki smklı, en üyük tmsyı ile en küçük tmsyının toplmı 89 dur. II. Her tmsyı ynı zmnd doğl syıdır. III. Her tmsyının kresi doğl syıdır. A) Ylnız l B) l ve ll C) ll ve lll D) Ylnız lll. x < 0 < y olduğun göre, şğıdkilerden hngisi en üyüktür? A) x + y B) x.y C) y x D) x y işleminin çözümü için şğıdki yol izlenmiştir. Kçıncı dımd ht ypılmıştır? I. Adım : II. Adım: ( 1) + ( 1) ( 1) : + işleminin sonucu kçtır? A) 0 B) 7 C) 108 D) tne III. Adım: 50. ( 1) = 50 A) l. dım B) ll. dım C) lll. dım D) Ht ypılmmıştır olduğun göre, ( + ) tmsyısının en üyük değeri kçtır? A) 0 B) 1 C) D) 4 9. İki tmsyının çrpımı 16 ise u tmsyılrın toplmının en üyük değeri ile en küçük değerinin frkının mutlk değeri kçtır? A) 0 B) 8 C) D) m [ [7m ( m + 8m)]] + [.(m)] = olduğun göre, m için şğıdkilerden hngisi söyleneilir? A) En küçük pozitif tmsyıdır. B) En küçük doğl syıdır. C) Çift syıdır. D) ün tm ktıdır. 10. ( 4 ) (1) + ( 5) ( 1) 19 ( ) işleminin sonucu için şğıdkilerden hngisi doğrudur? A) En küçük tmsyıdır. B) Asl syıdır. C) ile ölümünden klnını verir. D) Toplm işleminin etkisiz elemnıdır. 7

8 TAM SAYILAR VE MUTLAK DEĞER 11. x, y, z rdışık tek tmsyılr ve, x < y < z olmk üzere, ( x z) (y x) (x z) (z y) y işleminin sonucu nedir? A) B) 0 C) D) ( 4). = (+4) = +8 : c = (d) c = 1 Yukrıd verilen işlemlere göre, şğıdki işlemlerin hngisinin sonucu negtiftir? A). + d B).c + C).c + D) +.d + c 1. x. z < 0, z.y 4 < 0 x. y > 0 olduğun göre, şğıdkilerden hngisi kesinlikle doğrudur? A) x.y < 0 B) y + z > 0 C) x + z > 0 D) x + y > x ifdesinin ir doğl syı olmsı için x in lileceği kç frklı tm syı değeri vrdır? A) 4 B) 6 C) 7 D) 8 1. Ardışık 5 çift syının toplmının mutlk değeri 0 ise u syılrdn en küçüğü en z kç olilir? A) 50 B) 4 C) 48 D) ,, c Z olmk üzere, 4 5c olduğun göre, şğıdkilerden hngileri kesinlikle doğrudur? I. c + 1 tek tmsyıdır. II. + çift tmsyıdır. III. + tek tmsyıdır. IV. ( ) + 4 çift tmsyıdır. A) l ve ll B) l, ll ve lll C) ll ve lv D) ll, lll ve lv 18., Z olmk üzere,. = 4 olduğun göre, şğıdkilerden hngisi kesinlikle ynlıştır? A) + = olilir. B) = 10 olilir. C) + = 1 olilir. D) = 11 olilir < x < 7 < y 4 x, y tmsyılrı için şğıdkilerden hngisi ynlıştır? A) x + y nin en küçük değeri ( 6) dır. B) x.y nin en üyük değeri (+4) tür. C) x y nin en üyük değeri (+8) dir. D) x + y nin en üyük değeri (+11) dir. 15., Z olmk üzere, şğıdkilerden hngileri kesinlikle doğrudur? I. + = + II.. =. III. = () IV. + = + A) l ve ll B) ll ve lll C) l, ll ve lll D) l ve ll ve lv 8 0.,, c Z olmk üzere,. = 4.c = 7 olduğun göre, + c nin en üyük değeri kçtır? A) B) 1 C) 1 D) 47 w w w. k d e m i v i z y o n. c o m. t r

9 M A T E M A T İ K CEVAPLI TEST 1. ( 8) [ 1. (7 5) ] işleminin sonucu kçtır? 5. > (6:8) : nedir? 7 4 olduğun göre ifdesinin en küçük tmsyı değeri A) 4 B) 5 C) 6 D) 8 A) 8 B) 0 C) 0 D) 8. < 0 < < c olduğun göre, şğıdkilerden hngisi doğrudur? A).c 0 B).c 0 C) c > 0 D) c < 0 6. ( ) [ ( 5 ) + ( 4) ] 11 işleminin sonucu kçtır? A) 0 B) C) 7 D) 8. x = 9 y = 4 olduğun göre,x y nin lileceği en küçük değer kçtır? A) 1 B) 5 C) 5 D) 9 7., Z, > 0 olduğun göre, şğıdkilerden hngisi dim doğrudur? A). <0 B). 0 C) 0 D) 0 4.,, c Z. = 1.c = 6 olduğun göre, + + c toplmının lileceği en küçük değer kçtır? A) 85 B) 19 C) 19 D) < <6 4 ve tmsyılrı için ifdesinin en küçük değeri kçtır? A) 15 B) 1 C) 10 D) 9

10 9. 1 x - ifdesini doğl syı ypn x tmsyılrının toplmı nedir? A) 0 B) 8 C) 6 D) 46 TAM SAYILAR VE MUTLAK DEĞER 1.,, c Z < 0 < < c olmk üzere c c ifdesinin sonucu ne dir? A) c B) c C) +c D) c 10.,, c Z, c > 0.c..c = 7 olmk üzere, ( + + c) toplmının en küçük değeri kçtır? A) 19 B) 17 C) 1 D) 1 14.,, c tm syılr ve..c = 180 olmk üzere ( + + c) ifdesi en küçük değerini ldığınd şğıdkilerden hngisi doğru olur? A) sl syıdır B) + c = 9 dur C) + c = 8 dir D) + + c = 1 dir 11., Z 8 olduğun göre, u koşullr uygun kç tne pozitif tmsyısı vrdır? A) 8 B) 6 C) 5 D) 4 15.,, 1 irer tmsyı < 8, < olduğun göre, ( + ) ifdesinin en üyük değeri kç tır? A) 1 B) 11 C) 10 D) 8 1.,, c, m Z > > c olmk üzere m= c olduğun göre m nin lileceği en üyük değer kçtır? 16. x, y Z x < 0 y > 0 için şğıdkilerden hngisi doğrudur? A) B) 6 C) 10 D) 14 A) x.y < 0 B) x.y < 0 C) x.y < 0 D) x. y < 0 10 w w w. k d e m i v i z y o n. c o m. t r

11 M A T E M A T İ K Ç I K M I Ş S O R U L A R 6. Örnek I : = x 4 Örnek II : = 5 x 14 Yukrıd verilen örneklere göre, ifdesinin toplmı şğıdkilerden hngisine eşittir? 1. x, y ve z tm syılr olmk üzere, < x < 6 1 < y < 8 5 < z < olduğun göre, x y z ifdesinin en üyük değeri kçtır? A) 18 B) 14 C) 1 D) 6 (001 - LGS). ve irer tm syı olmk üzere, < < 10 < < 8 olduğun göre, syısının en küçük olmsı için ve nin değeri ne olmlıdır? A) = 9, = 7 B) = 9, = 11 C) =, = 7 D) =, = 11 (001 - ÖO). En üyük negtif tmsyı ile iki smklı en üyük negtif tmsyının çrpımı kçtır? A) 100 B) 10 C) 10 D) 100 (00 - ÖO) 4. x, y, z pozitif tm syılrdır. x.y = 11 ve y.z = 17 ise, x y z ifdesinin değeri kç olur? A) 7 B) 5 C) 5 D) 7 (00 - LGS) 5., ve c rdışık syılr < < c içiminde sırlnıyor. Bun göre, şğıdkilerden hngileri doğrudur? I. tek ise, + + c çifttir. II. çift ise,.c çifttir. III. + + c çift ise,.c tektir. IV. + + c tek ise, + c tektir. A) I ve II B) I ve III C) II ve IV D) III ve IV (00 - LGS) A) 106 x 4 B) 107 x 40 C) 106 x 40 D) 107 x 4 (00 - LGS) 7.,, c, d iririnden frklı rkmlrı göstermektedir. Rkmlrdn iri tek syı olduğun göre, u rkmlrl üç smklı kç tne çift syı yzılilir? Bu prolemin çözüleilmesi için, şğıdkilerden hngisi gereklidir? A) Bşk verilere gerek yoktur, mevcut verilerle çözüleilir. B) Rkmlrdn irinin sıfır olup olmdığı elirtilmelidir. C) Hngi hrfin tek syıyı gösterdiği elirtilmelidir. D) Rkmlrın rdışık çift syılr olduğu elirtilmelidir. (00 - LGS) 8., ve c rdışık çift doğl syılrdır. < < c olduğun göre, ( ) ( c) c ifdesinin değeri şğıdkilerden hngisidir? A) 1 B) 0 C) D) 4 (00 - LGS) 9. < ve < eşitsizliklerini sğlyn ve gerçek (reel) syılrı için, şğıdkilerden hngisi her zmn doğrudur? A) < 0 ise, > 0 dır. B) < 0 ise, < 0 dır. C) < 0 ise, < dır. D) > 0 ise, > 0 dır. (000 - LGS) = 15 ve = 15 olduğun göre, şğıdki ifdelerden hngisi ynlıştır? A) nin en üyük değeri 5 tir. B) - nin en küçük değeri 5 tir. C) + nin en küçük değeri 9 dur. D) + nin en üyük değeri 1 dir. (00 - ÖO) 11

sayısından en az kaç çıkarmalıyız ki kalan sayı 6,9,12 ve 15 ile kalansız bölünebilsin? ()

sayısından en az kaç çıkarmalıyız ki kalan sayı 6,9,12 ve 15 ile kalansız bölünebilsin? () 1. x,y,z,t rdışık çift syılrdır. Bun göre (xy)-(zt)=. İki smklı () syısının değeri, rkmlrı toplmının 7 ktıdır. Üç smklı () syısının ile ölümünden elde edilen ölüm kçtır. En z dört smklı ir doğl syının

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır.

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır. gösterilir. MUTLAK DEĞER Syı doğrusu üzerinde syısının sıfır oln uzklığın in mutlk değeri denir ve ile B O A 0 OA = OB =, 0 =, < 0 olrk tnımlnır. < 0 < y için y = y işleminin eşitini bulunuz. < 0 için

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

( ) ( ) ( ) Üslü Sayılar (32) 2. ( ) ( 2 (2) 3. ( ) ( ) 3 4. ( 4 9 ) eşitliğini sağlayan a değeri kaçtır? (0) 0,6 0,4 : 4,9 =?

( ) ( ) ( ) Üslü Sayılar (32) 2. ( ) ( 2 (2) 3. ( ) ( ) 3 4. ( 4 9 ) eşitliğini sağlayan a değeri kaçtır? (0) 0,6 0,4 : 4,9 =? Üslü Sılr. +.4 8 (8) 4. ( ) (. ). ( ) 4 6 ( ) :( ) () + + 5..4. ( ) ( ) () 4. 5 5 ( 4 9 ) 5. 9 + + 9 = + eşitliğini sğln değeri kçtır (0) 6. ( ) ( ) ( ) 0,6 0,4 : 4,9 (-6) 4 8.. c 7. 4.. c ( c ) 8. 6 8

Detaylı

RASYONEL SAYILAR. ÖRNEK: a<0<b<c koşulunu sağlayan a, b, c reel sayıları. tan ımsız. belirsiz. basit kesir

RASYONEL SAYILAR. ÖRNEK: a<0<b<c koşulunu sağlayan a, b, c reel sayıları. tan ımsız. belirsiz. basit kesir RASYONEL SAYILAR 0 ve, Z olmk üzere şeklindeki syılr rsyonel syı denir. 0 0 tn ımsız 0 0 elirsiz 0 sit kesir ileşik kesir Genişletilerek vey sdeleştirilerek elde edilen kesirlere denk kesirler denir. Sıfır

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır?

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır? RAKAM Syılrı ifde etmek için kullndığımız 0,,2,3,4,5,6,7,8,9 sembollerine rkm denir. Örnek... :, b ve c birbirlerinden frklı birer rkmdır..b+9.b c en çok kçtır? DOĞAL SAYILAR N={0,,2,3...,n,...} kümesine

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı,

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı, Rsyonel Syılr. Sınıf Mtemtik Soru Bnksı TEST. Aşğıdki bilgilerden hngisi ynlıştır? A) Rsyonel syılr Q sembolü ile gösterilir. B) Her tm syı bir rsyonel syıdır. şeklinde yzıln bütün syılr rsyoneldir. b

Detaylı

SAYILAR TEMEL KAVRAMLAR

SAYILAR TEMEL KAVRAMLAR YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - - 1-1 - 1 Pozitif tmsyılr,negtif tmsyılr ve 0 ın ererce oluşturduğu kümeye Tmsyılr kümesi denir Z ile gösterilir SAYILAR TEMEL KAVRAMLAR Temel

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER

SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER ÖRÜNTÜLER VE İLİŞKİLER Belirli bir kurl göre düzenli bir şekilde tekrr eden şekil vey syı dizisine örüntü denir. ÖRNEK: Aşğıdki syı dizilerinin kurlını bulunuz. 9, 16, 23, 30, 37 5, 10, 15, 20 bir syı

Detaylı

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM YILLAR 00 003 004 00 006 007 008 009 00 0 ÖSS-YGS - - - - - - - ASAL SAYILAR ve kendisinden bşk pozitif böleni olmyn den büyük tmsyılr sl syı denir Negtif ve ondlıklı syılr sl olmz Asl syılrı veren bir

Detaylı

MATEMATİK BÖLME BÖLÜNE BİLME RASYONEL VE ONDALIK SAYI BÖLÜNEBİ LME KURA LLARI 4 İ LE BÖLÜNE Bİ LME 5 İ LE BÖLÜNEBİ LME ÖRNEK ÇÖZÜM ÖRNEK ÖRNEK ÖRNEK

MATEMATİK BÖLME BÖLÜNE BİLME RASYONEL VE ONDALIK SAYI BÖLÜNEBİ LME KURA LLARI 4 İ LE BÖLÜNE Bİ LME 5 İ LE BÖLÜNEBİ LME ÖRNEK ÇÖZÜM ÖRNEK ÖRNEK ÖRNEK MATEMATİK BÖLME BÖLÜNE BİLME RASYONEL VE ONDALIK SAYI BÖLÜNEBİ LME KURA LLARI İ LE BÖ LÜNEBİ LME Syımızın irler smğı çift (son rkmı 0) ise syımız iki ile tm ölünür. 0 0 v. iki ile ölünür. syısı iki ile

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

Mtemtik Öğretmeni: Mhmut BAĞMANCI www.zevklimtemtik.com LOGARİTMA ÇALIŞMA SORULARI.) Aşğıdkı ifdelerde x i veren ifdeyi yzınız x ) x b) 7 x c) 0 7 d) +x.) 7 7 7 ise x... ise x... ise x... ise x....) Aşğıdki

Detaylı

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS LİMİT VE SÜREKLİLİK KONU ÖETLİ ÇÖÜMLÜ SORU BANKASI ANKARA İÇİNDEKİLER Limit Kvrmı ve Grfik Sorulrı... Limitle İlgili Bzı Özellikler...7 Genişletilmiş Reel Sılrd Limit... Bileşke Fonksionun Limiti...

Detaylı

2011 RASYONEL SAYILAR

2011 RASYONEL SAYILAR 011 RASYONEL SAYILAR AKDENİZ ÜNİVERSİTESİ 06.01.011 A.Tnım 3 B.Kesir 3 C.Kesir çeşitleri 3 1.Bsit kesirler 3.Birleşik kesirler 3 3. Tm syılr 3 D.Rsyonel syılrı sırlm 4 E.Rsyonel syılrd işlemler 5 1.Rsyonel

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24.

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24. DENKLEM ÇÖZME + + = 0 + = 0 + = 0 + y = 0 İkinci dereceden ir ilinmeyenli denklemdir. İkinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden İki ilinmeyenli

Detaylı

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x MC www.mtemtikclub.com, 006 Cebir Notlrı Çrpnlr Ayırm Gökhn DEMĐR, gdemir3@yhoo.com.tr Đki ifdenin çrpımı ypılırken, sonuc çbuk ulşmk için, bzı özel çrpımlrın eşitini klımızd tutr ve bundn yrrlnırız. Bu

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI OKULLAR ARASI 9. MATEMATİK YARIŞMASI. 700 doğl syısı için şğıdkilerden kç tnesi doğrudur? I. Asl çrpnı tnedir. II. Asl çrpnlrının çrpımı 0 dir. III. Tmsyı bölenlerinin toplmı 0 dır. IV. Asl çrpnlrının

Detaylı

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları... İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel

Detaylı

ORAN ve ORANTI-1 ORAN-ORANTI KAVRAMI. 1. = olduğuna göre, aşağıdaki ifadelerin. + c c sisteminin çözümüne. 3. olduğuna göre, nin değeri

ORAN ve ORANTI-1 ORAN-ORANTI KAVRAMI. 1. = olduğuna göre, aşağıdaki ifadelerin. + c c sisteminin çözümüne. 3. olduğuna göre, nin değeri ORAN ve ORANTI- ORAN-ORANTI KAVRAMI A) B) 9 C) 7 D) 5 E). olduğun göre, şğıdki ifdelerin hngisi d doğrudur? + d A) d + 4 + d C) 4 d E) 5 + 5 5 5 + d d + d B) n + m n + md D) d x y z. 4 5 sisteminin çözümüne

Detaylı

MUTLAK DEĞER. a ε R olmak üzere; Mutlak Değer MATEMATĐK ĐM YILLAR 2002 203 2004 2005 2006 2007 2008 2009 2010 2011 14) GENEL ÖRNEKLER.

MUTLAK DEĞER. a ε R olmak üzere; Mutlak Değer MATEMATĐK ĐM YILLAR 2002 203 2004 2005 2006 2007 2008 2009 2010 2011 14) GENEL ÖRNEKLER. Mutlk Değer YILLAR 4 6 8 9 1 11 ÖSS-YGS - - - 1 - - 1 - - 1/1 MUTLAK DEĞER ε R olmk üzere;, -, ise < ise ve b reel syı olmk üzere; 1) dır Eğer ise dır ) 14) + n n Z olmk üzere dır 1) f ( ) > g( ) f ( )

Detaylı

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra;

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra; MATEMATİK Üslü Syılr Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK 5.Hft Hedefler Bu üniteyi çlıştıktn sonr; Gerçel syılrd üslü işlemler ypbilecek, Üslü denklem ve üslü eşitsizlikleri çözebileceksiniz.

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :, b, R ve 0 olmk üzere denklem denir. b = 0 denklemine, ikini dereeden bir bilinmeyenli Bu denklemde, b, gerçel syılrın

Detaylı

Cebir Notları Mustafa YAĞCI, Eşitsizlikler

Cebir Notları Mustafa YAĞCI, Eşitsizlikler www.mustfygci.com.tr, 4 Cebir Notlrı Mustf YAĞCI, ygcimustf@yhoo.com Eşitsizlikler S yılr dersinin sonund bu dersin bşını görmüştük. O zmnlr dın sdece birinci dereceden denklemleri içeren mnsınd Bsit Eşitsizlikler

Detaylı

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21.

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21. Deneme - / Mt MATMATİK DNMSİ. - + -. 0,.., f -, 0, p. 0,. c- m.,,. ^- h.. 7. ^- h 7 - ulunur. +. c m olur.. + + ulunur. ( ) c m + c m. cc m m. c m.. ulunur. evp evp. Sekiz smklı herhngi ir özel syı cdefgh

Detaylı

MATEMATİK.

MATEMATİK. MTEMTİK www.e-ershne.iz. s( \ ) = 6, s( \ ) = 8 tür. kümesinin lt küme syısı ise, kümesinin elemn syısı kçtır?... D. 7 Ynıt:. s( ) =? s( ) = = s( ) = 6 8 s( ) = 6 + + 8 =. Rkmlrı frklı üç smklı üç oğl

Detaylı

DENKLEM ve EŞİTSİZLİKLER

DENKLEM ve EŞİTSİZLİKLER DENKLEM ve EŞİTSİZLİKLER Sf No..................................................... - 7 Denklem ve Eşitsizlikler Konu Özeti............................................. Konu Testleri ( 0)..........................................................

Detaylı

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 PROBLEMLER İÇİNDEKİLER Syf No Test No ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 SAYI PROBLEMLERİ... 299-314... 01-08 YAŞ PROBLEMLERİ...

Detaylı

3 kesri on ikide üç şeklinde okunur. a kesrinin pay ve paydası sıfırdan farklı bir k tam sayısıyla, a a.k, k 0 ( Kesrin Genişletilmesi )

3 kesri on ikide üç şeklinde okunur. a kesrinin pay ve paydası sıfırdan farklı bir k tam sayısıyla, a a.k, k 0 ( Kesrin Genişletilmesi ) RASYONEL SAYILAR A Rsyonel Syı ve irer tm syı ve 0 olmk üzere, içiminde yzılilen syılr rsyonel syı denir Rsyonel syılr kümesi Q ile gösterilir Q { : ve tm syı ve 0 } dır ifdesinde y py, ye de pyd denir

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva 1 BÖLÜM 1 KÜMELER VE SAYILAR 1.1 KÜMELER 1.1.1. TEMEL TANIMLAR Kesi ir tımı ypılmmkl erer,sezgisel olrk,kümeye iyi tımlmış iri iride frklı eseler topluluğudur diyeiliriz. Kümeyi meyd getire eselere kümei

Detaylı

ÜÇGEN VE PİSAGOR BAĞINTISI

ÜÇGEN VE PİSAGOR BAĞINTISI ÜÇGEN VE PİSGOR ĞINTISI KZNIMLR Üçgen kvrmı Üçgen çizimi Üçgenin kenrlrı rsındki ğıntılr Üçgen eşitsizliği Üçgenlerde yükseklik Üçgenlerde kenrorty Üçgenlerde çıorty Kenr ort dikme kvrmı Pisgor ğıntısı

Detaylı

8. sınıf ders notları zfrcelikoz@yahoo.com

8. sınıf ders notları zfrcelikoz@yahoo.com III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

b göz önünde tutularak, a,

b göz önünde tutularak, a, 3.ALT GRUPLAR Tnım 3.. bir grup ve G, nin boş olmyn bir lt kümesi olsun. Eğer ( ise ye G nin bir lt grubu denir ve G ile gösterilir. ) bir grup Not 3.. ) grubunun lt grubu olsun. nin birimi ve nin birimi

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI ., ÖZEL EGE LİSESİ OKULLR RSI 8. MTEMTİK YRIŞMSI 8. SINI TEST SORULRI 5. 0,0008.0 b 0,0000.0 ise; b.0 kç bsmklı bir sıdır? olduğun göre, ifdesinin değeri şğıdkilerden hngisine eşittir? ) 80 ) 8 ) 8 ) 8

Detaylı

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160 8 ÖSS. Bir çiftlikte 800 koun 00 inek ve 600 mnd vrdır. Bu hvnlrın tümü bir dire grfikle gösterilirse ineklerle ilgili dilimin merkez çısı kç derece olur? A) 60 B) 0 C) 0 D) 0 E) 60 6. 0 - =p olduğun göre

Detaylı

İkinci Dereceden Denklemler

İkinci Dereceden Denklemler İkini Dereeden Denkleler İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :,, R ve olk üzere + + denkleine, ikini dereeden ir ilineyenli denkle denir Bu denkledeki,, gerçel syılrın ktsyılr, e ilineyen

Detaylı

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır?

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır? 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000 6. Bir lstik çekilip uztıldığınd

Detaylı

14) ( 2) 6 üslü sayısının kesir olarak yazılışı A) ) 2 3 sayısı aşağıdakilerden hangisine eşittir? 16) -6 2 üslü sayısının eşiti kaçtır?

14) ( 2) 6 üslü sayısının kesir olarak yazılışı A) ) 2 3 sayısı aşağıdakilerden hangisine eşittir? 16) -6 2 üslü sayısının eşiti kaçtır? ÜSLÜ SAYILAR KAZANIM PEKİŞTİRME SORULARI ) üslü syısı şğıdkilerden hngisine eşittir? 6 9 7 ) +++++++ işleminin sonucu şğıdkilerden hngisi ile ifde edilebilir?. + )... işleminin sonucu şğıdkilerden hngisi

Detaylı

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir?

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir? MTEMTİK TESTİ 1 1 1 1 1. + 4 4 1 ) 0 ) 4 işleminin sonucu kçtır? ) 1 ) 1., irer gerçek syı ve + < 3tür. u syılrın syı doğrusund gösterilişi şğıdkilerden hngisindeki gii olilir? ) -3 - -1 0 1 3 ) -3 - -1

Detaylı

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4.

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4. IV. HTTİN TTIŞ MTEMTİK YRIŞMSI u test 30 sorudn oluşmktdır. İREYSEL YRIŞM SORULRI 1. 4 3 + 1 4. 3 3 + = + 1 + 1 denkleminin çözüm kümesi şğıdkilerden hngisidir? ) 5 3 ) ) 3 D) 13 3 ) { 0 } ) { 1} ) { }

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı., b olduğun göre, b. b ifdesinin değeri şğıdkilerden hngisidir?,,,9 8... b b ifdesinin eşiti şğıdkilerden hngisidir?.. Bun göre, verilior. ifdesinin değeri kçtır? 8. b b c 8 c d

Detaylı

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır. LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden

Detaylı

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000. Bir stıcı, elindeki mlın önce

Detaylı

LOGARİTMA Test -1. olduğuna göre, x kaçtır? olduğuna göre, x aşağıdakilerden hangisidir? A) 3 B) 9 C) 16 D) 64 E) 81.

LOGARİTMA Test -1. olduğuna göre, x kaçtır? olduğuna göre, x aşağıdakilerden hangisidir? A) 3 B) 9 C) 16 D) 64 E) 81. LOGARİTMA Test -. olduğun göre, şğıdkilerden log log log. log olduğun göre, kçtır? 6 6 8. olduğun göre, şğıdkilerden 6. logm olduğun göre, m kçtır? log log log 6 log 6. olduğun göre, şğıdkilerden log log

Detaylı

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız.

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız. Isınm Hreketleri şğıd verilenleri inceleyiniz. Yönlü çı: Trigonometrik irim Çember: Merkezi orjin, yrıçpı br oln çemberdir. O + yön éo Pozitif yönlü (Stin tersi) O yön éo Negtif yönlü (St yönü) O y x Denklemi:

Detaylı

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur?

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur? 986 ÖSS. (0,78+0,8).(0,3+0,7) Yukrıdki işlemin sonucu nedir? B) C) 0, D) 0, E) 0,0. doğl syısı 4 ile bölünebildiğine göre şğıdkilerden hngisi tek syı olbilir? Yukrıdki çrpm işleminde her nokt bir rkmın

Detaylı

Komisyon DGS TAMAMI ÇÖZÜMLÜ 10 DENEME SINAVI ISBN 978-605-364-027-1. Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir.

Komisyon DGS TAMAMI ÇÖZÜMLÜ 10 DENEME SINAVI ISBN 978-605-364-027-1. Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. Komisyon DGS TAMAMI ÇÖZÜMLÜ 0 DENEME SINAVI ISBN 97-0--07- Kitpt yer ln ölümlerin tüm sorumluluğu yzrın ittir. Pegem Akdemi Bu kitın sım, yyın ve stış hklrı Pegem Akdemi Yy. Eğt. Dn. Hizm. Tic. Ltd. Şti

Detaylı

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin 4 () ve (bb) iki bsmklı syılr, () ve 1 x=15! +1 y=15!+16 olmk üzere, (bbb) üç bsmklı syılrdır x ile y rsınd kç tne sl syı vrdır? A)0 B)1 C) D) 3 E) 4 b + bb + bbb = 6 olduğun göre, b çrpımı en çok kçtır?

Detaylı

Öğrenci Seçme Sınavı (Öss) / 7 Nisan Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 7 Nisan Matematik Soruları ve Çözümleri Öğrenci Seçme Sınvı (Öss) / 7 Nisn 99 Mtemtik Sorulrı ve Çözümleri (0,0 0,8) işleminin sonucu kçtır? 0,00 A) 00 B) 0 C) D), E) 0, Çözüm (0,0 0,00 0,8) 0, 0,00 0, 0,00 0 işleminin sonucu kçtır? A) B) C)

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı.,, z rdışık pozitif tmsılr ve z olmk üzere; z olduğun göre, kçtır? C). olduğun göre, ifdesinin değeri şğıdkilerden hngisidir? C) 8 6., b, c Z olmk üzere; b c bc c b olduğun göre,,

Detaylı

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır?

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır? 987 ÖSS. Yukrıdki çıkrm işlemine göre, K+L+M toplmı şğıdkilerden hngisine dim eşittir? A) M B) L C) K M K 5. 4 işleminin sonucu kçtır? A) 0 B) C) 5 4 5. Aşğıdki toplm işleminde her hrf sıfırın dışınd fklı

Detaylı

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK MTEMTİK KPSS ÇEVİR KONU - ÇEVİR SORU MTEMTİK EDİTÖR Turgut MEŞE YZR İdris DOĞN ütün hklrı Editör Yyınlrın ittir. Yyınevinin izni olmksızın, kitbın tümünün vey bir kısmının bsımı, çoğltılmsı ve dğıtımı

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VEKTÖRLER. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. YÖNLÜ

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS Rsonel Sılr YILLAR 00 00 00 00 00 00 00 00 00 0 ÖSS-YGS RASYONEL SAYILAR KESĐR: Z ve 0 olmk üzere şeklindeki ifdelere kesir denir p pd kesirçizgisi KESĐR ÇEŞĐTLERĐ: kesri için i) < ise kesir sit kesirdir

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ LYS / MATEMATİK DENEME ÇÖZÜMLERİ Deneme -. A) - - + B) - 7 - + C) 5-5 - 5 +. + m ; + me + > H + D) - 5 - + E) 7- - + Sılrın plrı eşit olduğun göre, pdsı en üük oln sı en küçüktür. Bun göre A seçeneğindeki

Detaylı

MATEMATİK 1 TESTİ (Mat 1)

MATEMATİK 1 TESTİ (Mat 1) ÖSS MT-1 / 008 MTMTİK 1 TSTİ (Mt 1) 1. u testte 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik 1 Testi için yrıln kısmın işretleyiniz. 1. 1 + 4 1 ( ) 4. syısı b 0 ) b syısının kç ktıdır? ) b ) b işleminin

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =?

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =? Lisns Yerleştirme Sınvı (Ls ) 6 Hirn Mtemtik Sorulrının Çöümleri 8 sı tnınd verilen ( ) 8 sısının sı tnınd ılışı? Bu durumd ( ) 8 sısı önce tnın çevrilir Sonr tnınd ılır ( ) 8 8 8 8 Bun göre ( ) 8 ( )

Detaylı

ÜSLÜ SAYILAR. (-2) 3 = (-2). (-2). (-2) = (-8) Kuvvet Tek; NEGATİF. (-2) 4 = (-2). (-2). (-2). (-2) = 16 Kuvvet Çift; POZİTİF.

ÜSLÜ SAYILAR. (-2) 3 = (-2). (-2). (-2) = (-8) Kuvvet Tek; NEGATİF. (-2) 4 = (-2). (-2). (-2). (-2) = 16 Kuvvet Çift; POZİTİF. SINIF ÜSLÜ SAYILAR www.tyfuolcu.co Üslü Syı : ifdesi ı te çrpıı lı gelektedir. =.... te =.. = 8 =. = 4 =. = 9 4 =... = 81 10 6 = 10.10.10.10.10.10 Teel Kvrlr ile. ifdeleri çok sık krıştırıl ifdelerdeir.

Detaylı

a , 3, π v.b sayılardır. 9. SINIF MATEMATİK - SAYILAR

a , 3, π v.b sayılardır. 9. SINIF MATEMATİK - SAYILAR 9. SINIF MTEMTİK - SYIR. BÖÜM: TEME KVRMR. RKM VE SYI KVRMI Rkm: Syılrı ife etmek için kullnıln { 0,,,,,,6,,8, 9} semollerinen her irine rkm enir. ÖRNEK:, rkm olmk üzere; + = ise. nin lğı en üyük eğer

Detaylı

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm LOGARİTMA Üstel Fonksion >0 ve olmk üzere f:r R +, f() = şeklindeki fonksionlr üstel fonksion denir. Üstel fonksionlr birebir ve örtendir. f:r R +, f()=( ) bğıntısının üstel fonksion olup olmdığını inceleiniz.

Detaylı

) = 5 = 0,5 Ö.S.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. işleminin sonucu kaçtır? A) 3 B) 9 C) 27 D) Çözüm 1 = 3. isleminin sonucu kaçtır?

) = 5 = 0,5 Ö.S.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. işleminin sonucu kaçtır? A) 3 B) 9 C) 27 D) Çözüm 1 = 3. isleminin sonucu kaçtır? Ö.S.S. 00 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. ( 9 (9 9 9 işleminin sonucu kçtır? 0 A B 9 C 7 D 8 E 9 Çözüm ( 9 (9 9 9 0 8 8 80 9 9 9 9.. 4 isleminin sonucu kçtır? A 4 B 4 C D E 4 Çözüm 4 4.(.(. 4.( ².( 4.

Detaylı

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu Fonksionlr Konu Özeti. Köklü fonksionlrın en geniş tnım kümesi: f( f( n f( g( fonksionun en geniş tnım kümesi, g( koşulunu sğln noktlr kümesidir. f( f( n f( g( tüm reel sılrd tnımlıdır. fonksionu g( in

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı 8. sısının pozitif tek tmsı bölenlerinin sısı kçtır? 8. olmk üzere; kesrinin değeri şğıdkilerden hngisi olmz?. (8!) sısının sondn kç bsmğı sıfırdır? 8. ifdesinin sonucu kçtır? (

Detaylı

Öğrenci Seçme Sınavı (Öss) / 19 Haziran Matematik Soruları ve Çözümleri 82 E) 9

Öğrenci Seçme Sınavı (Öss) / 19 Haziran Matematik Soruları ve Çözümleri 82 E) 9 Öğrenci Seçme Sınvı (Öss) / 9 Hzirn 005 Mtemtik Sorulrı ve Çözümleri. 3 (3 ) 3 3 9 (9 ) 9 9 işleminin sonucu kçtır? 0 A) 3 B) 9 C) 7 D) 3 8 E) 9 Çözüm 3 (3 ) 3 3 9 (9 ) 9 9 0 8 3 3 8 80 9 9 3 9 9. 3 3

Detaylı

LYS 2016 MATEMATİK ÇÖZÜMLERİ

LYS 2016 MATEMATİK ÇÖZÜMLERİ LYS 06 MATEMATİK ÇÖZÜMLERİ 6.. 5. 5. ( ) 8 6 65 buluruz. 5. 5 5 Doğru Cevp: C Şıkkı 8 7 ()... 9 buluruz. Doğru Cevp : D Şıkkı 9 8 8 9 8 9 8 9 9 9 9 9 8 buluruz. 8 8 8 8 8 Doğru Cevp : A Şıkkı (n )! (n

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu OĞRU ÇILR Temel Kvrmlr ve oğrud çılr Nokt: Nokt geometrinin en temel terimidir. ni, boyu vey yüksekliği yoktur. İnce uçlu bir klemin kğıt üzerinde bırktığı iz olrk düşünebilirsiniz. oğru: üz, klınlığı

Detaylı

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir.

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir. FONKSİYONLAR Boş kümeden frklı oln A ve B kümeleri verildiğinde, A kümesindeki her elemnı B kümesindeki ir elemn krşı getiren ğıntıy A dn B ye fonksiyon denir. y=f(x) ile gösterilir. Bir diğer ifdeyle

Detaylı

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - LYS - - - - - - - - FONKSĐYONLAR A ve B oşn frklı iki küme olsun A dn B ye tnımlı f fonksiyonu f : A B ile gösterilir A y tnım kümesi, B ye

Detaylı

c

c Mtemt ık Ol ımp ıytı Çlışm Sorulrı c www.sbelin.wordpress.com sbelinwordpress@gmil.com Bu çlışm kğıdınd mtemtik olimpiytlrı sınvlrın hzırlnn öğrenciler ve öğretmenler için hzırlnmış sorulr bulunmktdır.

Detaylı

ÜÇGENDE AÇI-KENAR BAĞINTILARI

ÜÇGENDE AÇI-KENAR BAĞINTILARI ÜÇGN ÇI-NR ĞINTILRI ir üçgende üük çı krşısınd üük kenr, küçük çı krşısınd küçük kenr ulunur. 3 Şekildeki verilere göre, en uzun kenr şğıdkilerden hngisidir? 3 3 üçgeninde, kenrlr rsınd > > ğıntısı vrs,

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 19 Haziran Matematik Soruları ve Çözümleri

Lisans Yerleştirme Sınavı 1 (Lys 1) / 19 Haziran Matematik Soruları ve Çözümleri Lisns Yerleştirme Sınvı (Lys ) / 9 Hzirn Mtemtik Sorulrı ve Çözümleri. (x )(x + ) + (x )(x ) eşitliğini sğlyn x gerçel syılrının toplmı kçtır? A) B) C) 5 D) 6 5 E) 6 7 Çözüm (x )(x + ) + (x )(x ) (x ).[(x

Detaylı

ORAN ORANTI ORAN ORANTI ORANTININ ÖZELLİKLERİ ÖRNEK - 1 TANIM. x ve y tamsayıdır. x y

ORAN ORANTI ORAN ORANTI ORANTININ ÖZELLİKLERİ ÖRNEK - 1 TANIM. x ve y tamsayıdır. x y ORAN ORANTI TANIM Anı irimden iki çokluğun iririle krşılştırılmsın orn denir. ornınd ve nı irimden olduğu için nin irimi oktur. ÖRNEK - 1 ve tmsıdır. = ve + = 0 olduğun göre, kçtır? A) 1 B) C) 0 9 D) 1

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. SINIF TEST SORULARI. + işleminin sonucu kçtır? 5 5 A) 0 B) 0 C) 0 7 D) 0 9 E). y = x x + prbolünün y = x doğrusun en ykın noktsının koordintlrı toplmı

Detaylı

POLİNOMLARIN ÇARPANLARA AYRILMASI

POLİNOMLARIN ÇARPANLARA AYRILMASI POLİNOMLARIN ÇARPANLARA AYRILMASI Tnım: P ( ) polinomu Q ( ) polinomun bölündüğünde bölüm B ( ), Kln ( ) 0 durumd, P ( ) = Q( ). B( ) yzılır. K = olsun. Bu Q ( ) ve B ( ) polinomlrın P ( ) polinomunun

Detaylı

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi Kesir.. Trlı lnı gösteren kesri bulunuz. kesrini ile genişlettiğimizde elde edilecek kesri bulunuz.. Yndki şekilde bir bütün 8 eş prçy bölünmüş ve bu prçlrdn tnesi trnmıştır. Trlı lnı gösteren kesir syısı

Detaylı

İKİ DEĞİŞKENLİ ARİTMETİK FONKSİYONLAR. Funda ÇETİN YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HAZİRAN 2007 ANKARA

İKİ DEĞİŞKENLİ ARİTMETİK FONKSİYONLAR. Funda ÇETİN YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HAZİRAN 2007 ANKARA İKİ DEĞİŞKENLİ ARİTMETİK FONKSİYONLAR Fund ÇETİN YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HAZİRAN 2007 ANKARA iv İKİ DEĞİŞKENLİ ARİTMETİK FONKSİYONLAR (Yüksek Lisns Tezi)

Detaylı

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında ORAN ORANTI syısının 0 dn frklı oln b syısın ornı :b vey olrk gösterilir. b İki vey dh fzl ornın eşitlenmesiyle oluşn ifdeye orntı denir. b =c d ifdesine ikili orntı denir. Bir orntı orntı sbitine eşitlenerek

Detaylı

4. x ve y pozitif tam sayıları için,

4. x ve y pozitif tam sayıları için, YGS MTEMTİK ENEMESİ., b ve c pozitif tm syılrı için, b c b b c c biçiminde tnımlnıyor. un göre, işleminin sonucu kçtır? ) 6 ) 4 ) 0 ) 6 E) 8. Rkmlrı frklı dört bsmklı doğl syısının ilk iki bsmğı ile son

Detaylı

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik)

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik) ÜÇGN LN Üçgende ln Şekilde verilen üçgeninde,, üçgenin köşeleri, [], [], [] üçgenin kenrlrıdır. c b üçgeninin kenrlrı dlndırılırken, her kenr krşısınd bulunn köşenin hrfi ile isimlendirilir. üçgeninin

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

Öğrenci Seçme Sınavı (Öss) / 29 Mart Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 29 Mart Matematik Soruları ve Çözümleri Öğrenci Seçme Sınvı (Öss) / 9 Mrt 998 Mtemtik Sorulrı ve Çözümleri. Rkmlrı sıfırdn frklı, eş smklı ir syının yüzler ve inler smğındki rkmlr yer değiştirildiğinde elde edilen yeni syı ile eski syı rsındki

Detaylı

MATRİSLER. r r r A = v v v 3. BÖLÜM. a a L a. v r. a = M a. Matris L L L L. elemanları a ( i = 1,2,..., m ; j = 1,2,... n) cinsinden kısaca A = [ ]

MATRİSLER. r r r A = v v v 3. BÖLÜM. a a L a. v r. a = M a. Matris L L L L. elemanları a ( i = 1,2,..., m ; j = 1,2,... n) cinsinden kısaca A = [ ] 3. BÖLÜM 2 v r = M m v r 2 2 = 22 M m2 v r n n 2n = M mn MTRİSLER gibi n tne vektörün oluşturduğu, r r r = v v v [ L ] 2 n şeklindeki sırlnışın mtris denir. 2 nlitik Geometriden Biliyoruz ki : Mtris 2

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

UZAYDA VEKTÖRLER / TEST-1

UZAYDA VEKTÖRLER / TEST-1 UZAYDA VEKTÖRLER / TEST-. A(,, ) ve B(,, ) noktlrı rsındki uklık kç birimdir? 6. A e e e B e e e AB vektörü ile nı doğrultud ıt öndeki birim vektör şğıdkilerden ( e e e ). A(, b, ) B(,, ) noktlrı ve U

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) 009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..

Detaylı