SIRADAN EN KÜÇÜK KARELER (OLS)

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "SIRADAN EN KÜÇÜK KARELER (OLS)"

Transkript

1 SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 1

2 OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri Önceki derslerde SEKK (OLS) tahmin edicilerinin belirli sayıda gözlem içeren sonlu örneklem (finite sample) özelliklerini gördük. Bu özellikler herhangi bir örneklem büyüklüğü, n, için geçerliydi. Bunlar şu özelliklerdi: Sapmasızlık (MLR.1-MLR4 altında) BLUE özelliği (MLR.1-MLR5 altında)(best=en Etkin) Varsayım MLR.6 nın işlevi: Hata terimi, u, normal dağılmıştır ve açıklayıcı değişkenlerden bağımsızdır. Bu varsayım kullanılarak OLS tahmin edicilerinin x lere koşullu kesin örneklem dağılımları türetilebilir. Normal örnekleme dağılımı: t ve F testleri standart dağılımlara sahip olur (her gözlem boyutunda). Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 2

3 OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri Önceki derslerde SEKK (OLS) tahmin edicilerinin belirli sayıda gözlem içeren sonlu örneklem (finite sample) özelliklerini gördük. Bu özellikler herhangi bir örneklem büyüklüğü, n, için geçerliydi. Bunlar şu özelliklerdi: Sapmasızlık (MLR.1-MLR4 altında) BLUE özelliği (MLR.1-MLR5 altında)(best=en Etkin) Varsayım MLR.6 nın işlevi: Hata terimi, u, normal dağılmıştır ve açıklayıcı değişkenlerden bağımsızdır. Bu varsayım kullanılarak OLS tahmin edicilerinin x lere koşullu kesin örneklem dağılımları türetilebilir. Normal örnekleme dağılımı: t ve F testleri standart dağılımlara sahip olur (her gözlem boyutunda). Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 2

4 OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri Önceki derslerde SEKK (OLS) tahmin edicilerinin belirli sayıda gözlem içeren sonlu örneklem (finite sample) özelliklerini gördük. Bu özellikler herhangi bir örneklem büyüklüğü, n, için geçerliydi. Bunlar şu özelliklerdi: Sapmasızlık (MLR.1-MLR4 altında) BLUE özelliği (MLR.1-MLR5 altında)(best=en Etkin) Varsayım MLR.6 nın işlevi: Hata terimi, u, normal dağılmıştır ve açıklayıcı değişkenlerden bağımsızdır. Bu varsayım kullanılarak OLS tahmin edicilerinin x lere koşullu kesin örneklem dağılımları türetilebilir. Normal örnekleme dağılımı: t ve F testleri standart dağılımlara sahip olur (her gözlem boyutunda). Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 2

5 OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri Önceki derslerde SEKK (OLS) tahmin edicilerinin belirli sayıda gözlem içeren sonlu örneklem (finite sample) özelliklerini gördük. Bu özellikler herhangi bir örneklem büyüklüğü, n, için geçerliydi. Bunlar şu özelliklerdi: Sapmasızlık (MLR.1-MLR4 altında) BLUE özelliği (MLR.1-MLR5 altında)(best=en Etkin) Varsayım MLR.6 nın işlevi: Hata terimi, u, normal dağılmıştır ve açıklayıcı değişkenlerden bağımsızdır. Bu varsayım kullanılarak OLS tahmin edicilerinin x lere koşullu kesin örneklem dağılımları türetilebilir. Normal örnekleme dağılımı: t ve F testleri standart dağılımlara sahip olur (her gözlem boyutunda). Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 2

6 OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri Önceki derslerde SEKK (OLS) tahmin edicilerinin belirli sayıda gözlem içeren sonlu örneklem (finite sample) özelliklerini gördük. Bu özellikler herhangi bir örneklem büyüklüğü, n, için geçerliydi. Bunlar şu özelliklerdi: Sapmasızlık (MLR.1-MLR4 altında) BLUE özelliği (MLR.1-MLR5 altında)(best=en Etkin) Varsayım MLR.6 nın işlevi: Hata terimi, u, normal dağılmıştır ve açıklayıcı değişkenlerden bağımsızdır. Bu varsayım kullanılarak OLS tahmin edicilerinin x lere koşullu kesin örneklem dağılımları türetilebilir. Normal örnekleme dağılımı: t ve F testleri standart dağılımlara sahip olur (her gözlem boyutunda). Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 2

7 OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri Önceki derslerde SEKK (OLS) tahmin edicilerinin belirli sayıda gözlem içeren sonlu örneklem (finite sample) özelliklerini gördük. Bu özellikler herhangi bir örneklem büyüklüğü, n, için geçerliydi. Bunlar şu özelliklerdi: Sapmasızlık (MLR.1-MLR4 altında) BLUE özelliği (MLR.1-MLR5 altında)(best=en Etkin) Varsayım MLR.6 nın işlevi: Hata terimi, u, normal dağılmıştır ve açıklayıcı değişkenlerden bağımsızdır. Bu varsayım kullanılarak OLS tahmin edicilerinin x lere koşullu kesin örneklem dağılımları türetilebilir. Normal örnekleme dağılımı: t ve F testleri standart dağılımlara sahip olur (her gözlem boyutunda). Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 2

8 OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri Önceki derslerde SEKK (OLS) tahmin edicilerinin belirli sayıda gözlem içeren sonlu örneklem (finite sample) özelliklerini gördük. Bu özellikler herhangi bir örneklem büyüklüğü, n, için geçerliydi. Bunlar şu özelliklerdi: Sapmasızlık (MLR.1-MLR4 altında) BLUE özelliği (MLR.1-MLR5 altında)(best=en Etkin) Varsayım MLR.6 nın işlevi: Hata terimi, u, normal dağılmıştır ve açıklayıcı değişkenlerden bağımsızdır. Bu varsayım kullanılarak OLS tahmin edicilerinin x lere koşullu kesin örneklem dağılımları türetilebilir. Normal örnekleme dağılımı: t ve F testleri standart dağılımlara sahip olur (her gözlem boyutunda). Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 2

9 OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri Önceki derslerde SEKK (OLS) tahmin edicilerinin belirli sayıda gözlem içeren sonlu örneklem (finite sample) özelliklerini gördük. Bu özellikler herhangi bir örneklem büyüklüğü, n, için geçerliydi. Bunlar şu özelliklerdi: Sapmasızlık (MLR.1-MLR4 altında) BLUE özelliği (MLR.1-MLR5 altında)(best=en Etkin) Varsayım MLR.6 nın işlevi: Hata terimi, u, normal dağılmıştır ve açıklayıcı değişkenlerden bağımsızdır. Bu varsayım kullanılarak OLS tahmin edicilerinin x lere koşullu kesin örneklem dağılımları türetilebilir. Normal örnekleme dağılımı: t ve F testleri standart dağılımlara sahip olur (her gözlem boyutunda). Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 2

10 Asimptotik Özellikler OLS tahmin edicilerinin sonlu (finite) örneklem özelliklerinin yanında büyük örneklem özelliklerini de incelememiz gerekmektedir. Bu özellikler örneklem hacmi, n, sınırsız olarak artarken durumu altında incelenecektir. İnceleyeceğimiz özellikler: tutarlılık (consistency) ve asimptotik normallik OLS tahmincilerinin asimptotik özelliklerini ortaya koyarken MLR varsayımlarından bazılarını yumuşatabileceğiz. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 3

11 Asimptotik Özellikler OLS tahmin edicilerinin sonlu (finite) örneklem özelliklerinin yanında büyük örneklem özelliklerini de incelememiz gerekmektedir. Bu özellikler örneklem hacmi, n, sınırsız olarak artarken durumu altında incelenecektir. İnceleyeceğimiz özellikler: tutarlılık (consistency) ve asimptotik normallik OLS tahmincilerinin asimptotik özelliklerini ortaya koyarken MLR varsayımlarından bazılarını yumuşatabileceğiz. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 3

12 Asimptotik Özellikler OLS tahmin edicilerinin sonlu (finite) örneklem özelliklerinin yanında büyük örneklem özelliklerini de incelememiz gerekmektedir. Bu özellikler örneklem hacmi, n, sınırsız olarak artarken durumu altında incelenecektir. İnceleyeceğimiz özellikler: tutarlılık (consistency) ve asimptotik normallik OLS tahmincilerinin asimptotik özelliklerini ortaya koyarken MLR varsayımlarından bazılarını yumuşatabileceğiz. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 3

13 Asimptotik Özellikler OLS tahmin edicilerinin sonlu (finite) örneklem özelliklerinin yanında büyük örneklem özelliklerini de incelememiz gerekmektedir. Bu özellikler örneklem hacmi, n, sınırsız olarak artarken durumu altında incelenecektir. İnceleyeceğimiz özellikler: tutarlılık (consistency) ve asimptotik normallik OLS tahmincilerinin asimptotik özelliklerini ortaya koyarken MLR varsayımlarından bazılarını yumuşatabileceğiz. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 3

14 Asimptotik Özellikler: Tutarlılık Tanım W n bilinmeyen parametre vektörü θ nın {Y 1, Y 2,..., Y n } örneklemine dayanan bir tahmincisi olsun. İstediğimiz kadar küçük seçebileceğimiz herhangi bir ɛ > 0 için, n sınırsız büyürken P ( W n θ > ɛ) 0, n koşulu sağlanıyorsa, W n, θ nın tutarlı (consistent) bir tahmin edicisidir: plim(w n ) = θ Örnek: Popülasyon ortalaması µ nun tahmin edicisi: x, aritmetik ortalama. Popülasyondan rassal örnekleme yoluyla çekilmiş (iid) örnekleme dayanılarak hesaplanan x, µ nun tutarlı bir tahmin edicisidir. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 4

15 Asimptotik Özellikler: Tutarlılık Tanım W n bilinmeyen parametre vektörü θ nın {Y 1, Y 2,..., Y n } örneklemine dayanan bir tahmincisi olsun. İstediğimiz kadar küçük seçebileceğimiz herhangi bir ɛ > 0 için, n sınırsız büyürken P ( W n θ > ɛ) 0, n koşulu sağlanıyorsa, W n, θ nın tutarlı (consistent) bir tahmin edicisidir: plim(w n ) = θ Örnek: Popülasyon ortalaması µ nun tahmin edicisi: x, aritmetik ortalama. Popülasyondan rassal örnekleme yoluyla çekilmiş (iid) örnekleme dayanılarak hesaplanan x, µ nun tutarlı bir tahmin edicisidir. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 4

16 Asimptotik Özellikler: Tutarlılık Tanım W n bilinmeyen parametre vektörü θ nın {Y 1, Y 2,..., Y n } örneklemine dayanan bir tahmincisi olsun. İstediğimiz kadar küçük seçebileceğimiz herhangi bir ɛ > 0 için, n sınırsız büyürken P ( W n θ > ɛ) 0, n koşulu sağlanıyorsa, W n, θ nın tutarlı (consistent) bir tahmin edicisidir: plim(w n ) = θ Örnek: Popülasyon ortalaması µ nun tahmin edicisi: x, aritmetik ortalama. Popülasyondan rassal örnekleme yoluyla çekilmiş (iid) örnekleme dayanılarak hesaplanan x, µ nun tutarlı bir tahmin edicisidir. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 4

17 Farklı Örneklem Büyüklükleri ve Örnekleme Dağılımları: n 1 < n 2 < n 3

18 Asimptotik Özellikler: Tutarlılık Her bir örnek hacmi n için ˆβ j bir olasılık dağılımına sahiptir. Bu dağılım, hepsi n hacimli farklı yinelenen örneklerde ˆβ j nın alabileceği mümkün değerleri gösterir. Sapmasızlık özelliği gereği bu dağılımların ortalaması β j ye eşittir. Eğer tahmin edici ˆβ j tutarlı ise, n arttıkça bu dağılımlar β j etrafında daha dar olarak dağılır. n iken, ˆβ j nin dağılımı tek bir nokta üzerine, β j, düşer. Yani, ne kadar çok büyük örnek alabilirsek, bilinmeyen kitle parametresi β j yi o kadar az hata ile tahmin edebiliriz. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 6

19 Asimptotik Özellikler: Tutarlılık Her bir örnek hacmi n için ˆβ j bir olasılık dağılımına sahiptir. Bu dağılım, hepsi n hacimli farklı yinelenen örneklerde ˆβ j nın alabileceği mümkün değerleri gösterir. Sapmasızlık özelliği gereği bu dağılımların ortalaması β j ye eşittir. Eğer tahmin edici ˆβ j tutarlı ise, n arttıkça bu dağılımlar β j etrafında daha dar olarak dağılır. n iken, ˆβ j nin dağılımı tek bir nokta üzerine, β j, düşer. Yani, ne kadar çok büyük örnek alabilirsek, bilinmeyen kitle parametresi β j yi o kadar az hata ile tahmin edebiliriz. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 6

20 Asimptotik Özellikler: Tutarlılık Her bir örnek hacmi n için ˆβ j bir olasılık dağılımına sahiptir. Bu dağılım, hepsi n hacimli farklı yinelenen örneklerde ˆβ j nın alabileceği mümkün değerleri gösterir. Sapmasızlık özelliği gereği bu dağılımların ortalaması β j ye eşittir. Eğer tahmin edici ˆβ j tutarlı ise, n arttıkça bu dağılımlar β j etrafında daha dar olarak dağılır. n iken, ˆβ j nin dağılımı tek bir nokta üzerine, β j, düşer. Yani, ne kadar çok büyük örnek alabilirsek, bilinmeyen kitle parametresi β j yi o kadar az hata ile tahmin edebiliriz. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 6

21 Asimptotik Özellikler: Tutarlılık Her bir örnek hacmi n için ˆβ j bir olasılık dağılımına sahiptir. Bu dağılım, hepsi n hacimli farklı yinelenen örneklerde ˆβ j nın alabileceği mümkün değerleri gösterir. Sapmasızlık özelliği gereği bu dağılımların ortalaması β j ye eşittir. Eğer tahmin edici ˆβ j tutarlı ise, n arttıkça bu dağılımlar β j etrafında daha dar olarak dağılır. n iken, ˆβ j nin dağılımı tek bir nokta üzerine, β j, düşer. Yani, ne kadar çok büyük örnek alabilirsek, bilinmeyen kitle parametresi β j yi o kadar az hata ile tahmin edebiliriz. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 6

22 Asimptotik Özellikler: Tutarlılık Her bir örnek hacmi n için ˆβ j bir olasılık dağılımına sahiptir. Bu dağılım, hepsi n hacimli farklı yinelenen örneklerde ˆβ j nın alabileceği mümkün değerleri gösterir. Sapmasızlık özelliği gereği bu dağılımların ortalaması β j ye eşittir. Eğer tahmin edici ˆβ j tutarlı ise, n arttıkça bu dağılımlar β j etrafında daha dar olarak dağılır. n iken, ˆβ j nin dağılımı tek bir nokta üzerine, β j, düşer. Yani, ne kadar çok büyük örnek alabilirsek, bilinmeyen kitle parametresi β j yi o kadar az hata ile tahmin edebiliriz. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 6

23 Asimptotik Özellikler: Tutarlılık Eğer n büyürken, kitle parametresi β j ye daha yakın bir noktaya gelmiyorsak o tahmin edici tutarsız (inconsistent) bir tahmin edicidir. Sapmasızlık (unbiasedness) için gereken varsayımlar tutarlılık için de yeterlidir : MLR.1-MLR.4 varsayımları altında OLS tahmin edicileri tutarlıdır. Ancak tutarlılık için MLR.3 varsayımından daha zayıf bir varsayım olan hata terimi ile açıklayıcı değişkenlerin ilişkisiz olma koşulu yeterlidir. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 7

24 Asimptotik Özellikler: Tutarlılık Eğer n büyürken, kitle parametresi β j ye daha yakın bir noktaya gelmiyorsak o tahmin edici tutarsız (inconsistent) bir tahmin edicidir. Sapmasızlık (unbiasedness) için gereken varsayımlar tutarlılık için de yeterlidir : MLR.1-MLR.4 varsayımları altında OLS tahmin edicileri tutarlıdır. Ancak tutarlılık için MLR.3 varsayımından daha zayıf bir varsayım olan hata terimi ile açıklayıcı değişkenlerin ilişkisiz olma koşulu yeterlidir. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 7

25 Asimptotik Özellikler: Tutarlılık Eğer n büyürken, kitle parametresi β j ye daha yakın bir noktaya gelmiyorsak o tahmin edici tutarsız (inconsistent) bir tahmin edicidir. Sapmasızlık (unbiasedness) için gereken varsayımlar tutarlılık için de yeterlidir : MLR.1-MLR.4 varsayımları altında OLS tahmin edicileri tutarlıdır. Ancak tutarlılık için MLR.3 varsayımından daha zayıf bir varsayım olan hata terimi ile açıklayıcı değişkenlerin ilişkisiz olma koşulu yeterlidir. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 7

26 Asimptotik Özellikler: Tutarlılık Varsayım MLR.3 : Sıfır Ortalama ve Sıfır Korelasyon E(u) = 0 Cov(x j, u) = 0, j = 1, 2,..., k MLR.3 yerine MLR.3 varsayımı yapılırsa OLS tahmincilerinin tutarlı olduğu gösterilebilir. Bu varsayım her bir x açıklayıcı değişkeniyle hata teriminin ilişkisiz (sıfır korelasyonlu) olduğu anlamına gelir. MLR.3 varsayımı MLR.3 varsayımına göre daha zayıf bir varsayımdır. Sapmasızlığın sağlanması için yeterli değildir. MLR.3 varsayımının sağlanması MLR.3 ün sağlandığı anlamına gelmez. Ancak MLR.3 sağlanıyorsa MLR.3 otomatik olarak sağlanır. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 8

27 Asimptotik Özellikler: Tutarlılık Varsayım MLR.3 : Sıfır Ortalama ve Sıfır Korelasyon E(u) = 0 Cov(x j, u) = 0, j = 1, 2,..., k MLR.3 yerine MLR.3 varsayımı yapılırsa OLS tahmincilerinin tutarlı olduğu gösterilebilir. Bu varsayım her bir x açıklayıcı değişkeniyle hata teriminin ilişkisiz (sıfır korelasyonlu) olduğu anlamına gelir. MLR.3 varsayımı MLR.3 varsayımına göre daha zayıf bir varsayımdır. Sapmasızlığın sağlanması için yeterli değildir. MLR.3 varsayımının sağlanması MLR.3 ün sağlandığı anlamına gelmez. Ancak MLR.3 sağlanıyorsa MLR.3 otomatik olarak sağlanır. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 8

28 Asimptotik Özellikler: Tutarlılık Varsayım MLR.3 : Sıfır Ortalama ve Sıfır Korelasyon E(u) = 0 Cov(x j, u) = 0, j = 1, 2,..., k MLR.3 yerine MLR.3 varsayımı yapılırsa OLS tahmincilerinin tutarlı olduğu gösterilebilir. Bu varsayım her bir x açıklayıcı değişkeniyle hata teriminin ilişkisiz (sıfır korelasyonlu) olduğu anlamına gelir. MLR.3 varsayımı MLR.3 varsayımına göre daha zayıf bir varsayımdır. Sapmasızlığın sağlanması için yeterli değildir. MLR.3 varsayımının sağlanması MLR.3 ün sağlandığı anlamına gelmez. Ancak MLR.3 sağlanıyorsa MLR.3 otomatik olarak sağlanır. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 8

29 Asimptotik Özellikler: Tutarlılık Varsayım MLR.3 : Sıfır Ortalama ve Sıfır Korelasyon E(u) = 0 Cov(x j, u) = 0, j = 1, 2,..., k MLR.3 yerine MLR.3 varsayımı yapılırsa OLS tahmincilerinin tutarlı olduğu gösterilebilir. Bu varsayım her bir x açıklayıcı değişkeniyle hata teriminin ilişkisiz (sıfır korelasyonlu) olduğu anlamına gelir. MLR.3 varsayımı MLR.3 varsayımına göre daha zayıf bir varsayımdır. Sapmasızlığın sağlanması için yeterli değildir. MLR.3 varsayımının sağlanması MLR.3 ün sağlandığı anlamına gelmez. Ancak MLR.3 sağlanıyorsa MLR.3 otomatik olarak sağlanır. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 8

30 Asimptotik Özellikler: Tutarlılık Varsayım MLR.3 : Sıfır Ortalama ve Sıfır Korelasyon E(u) = 0 Cov(x j, u) = 0, j = 1, 2,..., k MLR.3 yerine MLR.3 varsayımı yapılırsa OLS tahmincilerinin tutarlı olduğu gösterilebilir. Bu varsayım her bir x açıklayıcı değişkeniyle hata teriminin ilişkisiz (sıfır korelasyonlu) olduğu anlamına gelir. MLR.3 varsayımı MLR.3 varsayımına göre daha zayıf bir varsayımdır. Sapmasızlığın sağlanması için yeterli değildir. MLR.3 varsayımının sağlanması MLR.3 ün sağlandığı anlamına gelmez. Ancak MLR.3 sağlanıyorsa MLR.3 otomatik olarak sağlanır. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 8

31 Asimptotik Özellikler: Tutarlılık Basit regresyon modelinde eğim katsayısının OLS tahmin edicisinin aşağıdaki gibi yazılabildiğini biliyoruz: ˆβ 1 = n i=1 (x i1 x 1 )y i n i=1 (x i1 x 1 ) 2 Burada y = β 0 + β 1 x 1 + u yerine yazılıp yeniden düzenlenirse: ˆβ 1 = β 1 + n 1 n i=1 (x i1 x 1 )u i n 1 n i=1 (x i1 x 1 ) 2 Bu ifadenin olasılık limiti (plim) alınırsa plim( ˆβ 1 ) = β 1 + Cov(x 1, u) Var(x 1 ) MLR.3 varsayımı gereği Cov(x 1, u) = 0 olduğundan plim( ˆβ 1 ) = β 1 Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 9

32 Asimptotik Özellikler: Tutarlılık Basit regresyon modelinde eğim katsayısının OLS tahmin edicisinin aşağıdaki gibi yazılabildiğini biliyoruz: ˆβ 1 = n i=1 (x i1 x 1 )y i n i=1 (x i1 x 1 ) 2 Burada y = β 0 + β 1 x 1 + u yerine yazılıp yeniden düzenlenirse: ˆβ 1 = β 1 + n 1 n i=1 (x i1 x 1 )u i n 1 n i=1 (x i1 x 1 ) 2 Bu ifadenin olasılık limiti (plim) alınırsa plim( ˆβ 1 ) = β 1 + Cov(x 1, u) Var(x 1 ) MLR.3 varsayımı gereği Cov(x 1, u) = 0 olduğundan plim( ˆβ 1 ) = β 1 Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 9

33 Asimptotik Özellikler: Tutarlılık Basit regresyon modelinde eğim katsayısının OLS tahmin edicisinin aşağıdaki gibi yazılabildiğini biliyoruz: ˆβ 1 = n i=1 (x i1 x 1 )y i n i=1 (x i1 x 1 ) 2 Burada y = β 0 + β 1 x 1 + u yerine yazılıp yeniden düzenlenirse: ˆβ 1 = β 1 + n 1 n i=1 (x i1 x 1 )u i n 1 n i=1 (x i1 x 1 ) 2 Bu ifadenin olasılık limiti (plim) alınırsa plim( ˆβ 1 ) = β 1 + Cov(x 1, u) Var(x 1 ) MLR.3 varsayımı gereği Cov(x 1, u) = 0 olduğundan plim( ˆβ 1 ) = β 1 Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 9

34 Asimptotik Özellikler: Tutarlılık Basit regresyon modelinde eğim katsayısının OLS tahmin edicisinin aşağıdaki gibi yazılabildiğini biliyoruz: ˆβ 1 = n i=1 (x i1 x 1 )y i n i=1 (x i1 x 1 ) 2 Burada y = β 0 + β 1 x 1 + u yerine yazılıp yeniden düzenlenirse: ˆβ 1 = β 1 + n 1 n i=1 (x i1 x 1 )u i n 1 n i=1 (x i1 x 1 ) 2 Bu ifadenin olasılık limiti (plim) alınırsa plim( ˆβ 1 ) = β 1 + Cov(x 1, u) Var(x 1 ) MLR.3 varsayımı gereği Cov(x 1, u) = 0 olduğundan plim( ˆβ 1 ) = β 1 Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 9

35 Asimptotik Özellikler: Tutarlılık Asimptotik sapma: plim( ˆβ 1 ) β 1 = Cov(x 1, u) Var(x 1 ) Asimptotik sapmanın işareti x 1 ile u arasındaki kovaryansın işaretine bağlıdır. Cov(x 1, u) nun tahmin edilmesi, u gözlemlenemez olduğundan, mümkün değildir. Gerekli bir değişkenin model dışında bırakılması tutarsızlık yaratır. Örneğin gerçek popülasyon modeli aşağıdaki gibi olsun. İlk dört MLR varsayımı sağlanıyor olsun. y = β 0 + β 1 x 1 + β 2 x 2 + ν x 2 model dışında bırakılırsa hata terimi u = β 2 x 2 + ν olur. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 10

36 Asimptotik Özellikler: Tutarlılık Asimptotik sapma: plim( ˆβ 1 ) β 1 = Cov(x 1, u) Var(x 1 ) Asimptotik sapmanın işareti x 1 ile u arasındaki kovaryansın işaretine bağlıdır. Cov(x 1, u) nun tahmin edilmesi, u gözlemlenemez olduğundan, mümkün değildir. Gerekli bir değişkenin model dışında bırakılması tutarsızlık yaratır. Örneğin gerçek popülasyon modeli aşağıdaki gibi olsun. İlk dört MLR varsayımı sağlanıyor olsun. y = β 0 + β 1 x 1 + β 2 x 2 + ν x 2 model dışında bırakılırsa hata terimi u = β 2 x 2 + ν olur. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 10

37 Asimptotik Özellikler: Tutarlılık Asimptotik sapma: plim( ˆβ 1 ) β 1 = Cov(x 1, u) Var(x 1 ) Asimptotik sapmanın işareti x 1 ile u arasındaki kovaryansın işaretine bağlıdır. Cov(x 1, u) nun tahmin edilmesi, u gözlemlenemez olduğundan, mümkün değildir. Gerekli bir değişkenin model dışında bırakılması tutarsızlık yaratır. Örneğin gerçek popülasyon modeli aşağıdaki gibi olsun. İlk dört MLR varsayımı sağlanıyor olsun. y = β 0 + β 1 x 1 + β 2 x 2 + ν x 2 model dışında bırakılırsa hata terimi u = β 2 x 2 + ν olur. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 10

38 Asimptotik Özellikler: Tutarlılık Asimptotik sapma: plim( ˆβ 1 ) β 1 = Cov(x 1, u) Var(x 1 ) Asimptotik sapmanın işareti x 1 ile u arasındaki kovaryansın işaretine bağlıdır. Cov(x 1, u) nun tahmin edilmesi, u gözlemlenemez olduğundan, mümkün değildir. Gerekli bir değişkenin model dışında bırakılması tutarsızlık yaratır. Örneğin gerçek popülasyon modeli aşağıdaki gibi olsun. İlk dört MLR varsayımı sağlanıyor olsun. y = β 0 + β 1 x 1 + β 2 x 2 + ν x 2 model dışında bırakılırsa hata terimi u = β 2 x 2 + ν olur. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 10

39 Asimptotik Özellikler: Tutarlılık Bu durumda olasılık limiti plim( ˆβ 1 ) = β 1 + β 2 δ 1 δ 1 = Cov(x 1, x 2 ) Var(x 1 ) Bu sonuca aşağıdaki ifadenin olasılık limitini alarak ulaştık: ( n 1 ) (x i1 x 1 )x i2 ˆβ 1 = β 1 + β 2 n 1 (x i1 x 1 ) 2 plim ˆβ 1 = β 1 + β 2 plim n 1 (x i1 x 1 )x i2 plim n 1 (x i1 x 1 ) 2 } {{ } =δ 1 Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 11

40 Asimptotik Özellikler: Tutarlılık Bu durumda olasılık limiti plim( ˆβ 1 ) = β 1 + β 2 δ 1 δ 1 = Cov(x 1, x 2 ) Var(x 1 ) Bu sonuca aşağıdaki ifadenin olasılık limitini alarak ulaştık: ( n 1 ) (x i1 x 1 )x i2 ˆβ 1 = β 1 + β 2 n 1 (x i1 x 1 ) 2 plim ˆβ 1 = β 1 + β 2 plim n 1 (x i1 x 1 )x i2 plim n 1 (x i1 x 1 ) 2 } {{ } =δ 1 Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 11

41 OLS tahmincilerinin tutarlılığı Bir tahmin edici tutarsız ise gözlem sayısı n arttırılarak sorun çözülemez. n sınırsız arttıkça OLS tahmin edicisi β 1 e değil β 1 + β 2 δ 1 e yaklaşır. x lerden sadece birisinin (x 1 diyelim) u ile ilişkili olması genellikle (eğer x 1 diğer tüm x lerle ilişkili ise) tüm OLS tahmin edicilerinin tutarsız olmasına yol açar. x 1 ile ilişkisiz olan x ler varsa onların katsayıları tutarlıdır. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 12

42 OLS tahmincilerinin tutarlılığı Bir tahmin edici tutarsız ise gözlem sayısı n arttırılarak sorun çözülemez. n sınırsız arttıkça OLS tahmin edicisi β 1 e değil β 1 + β 2 δ 1 e yaklaşır. x lerden sadece birisinin (x 1 diyelim) u ile ilişkili olması genellikle (eğer x 1 diğer tüm x lerle ilişkili ise) tüm OLS tahmin edicilerinin tutarsız olmasına yol açar. x 1 ile ilişkisiz olan x ler varsa onların katsayıları tutarlıdır. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 12

43 OLS tahmincilerinin tutarlılığı Bir tahmin edici tutarsız ise gözlem sayısı n arttırılarak sorun çözülemez. n sınırsız arttıkça OLS tahmin edicisi β 1 e değil β 1 + β 2 δ 1 e yaklaşır. x lerden sadece birisinin (x 1 diyelim) u ile ilişkili olması genellikle (eğer x 1 diğer tüm x lerle ilişkili ise) tüm OLS tahmin edicilerinin tutarsız olmasına yol açar. x 1 ile ilişkisiz olan x ler varsa onların katsayıları tutarlıdır. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 12

44 Tutarsızlık: Örnek y: ev fiyatları x 1 : evlerin çöp arıtma tesislerine uzaklığı x 2 : evin kalitesi (büyüklük, oda sayısı, bulunduğu semtin çekiciliği, ulaşım kolaylığı vs. gibi tüm faktörler) Bu modelde x 2 nin model dışında bırakıldığını düşünelim. β 1 > 0, β 2 > 0 Eğer ortalamada kaliteli evler çöp arıtma tesislerinin uzağındaysa bu iki değişken (pozitif) ilişkili olur: δ 1 > 0 Bu durumda β 1 + β 2 δ 1 > β 1 β 1 in OLS tahmincisi ˆβ 1, limitte β 1 + β 2 δ 1 değerine yaklaşır. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 13

45 Tutarsızlık: Örnek y: ev fiyatları x 1 : evlerin çöp arıtma tesislerine uzaklığı x 2 : evin kalitesi (büyüklük, oda sayısı, bulunduğu semtin çekiciliği, ulaşım kolaylığı vs. gibi tüm faktörler) Bu modelde x 2 nin model dışında bırakıldığını düşünelim. β 1 > 0, β 2 > 0 Eğer ortalamada kaliteli evler çöp arıtma tesislerinin uzağındaysa bu iki değişken (pozitif) ilişkili olur: δ 1 > 0 Bu durumda β 1 + β 2 δ 1 > β 1 β 1 in OLS tahmincisi ˆβ 1, limitte β 1 + β 2 δ 1 değerine yaklaşır. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 13

46 Tutarsızlık: Örnek y: ev fiyatları x 1 : evlerin çöp arıtma tesislerine uzaklığı x 2 : evin kalitesi (büyüklük, oda sayısı, bulunduğu semtin çekiciliği, ulaşım kolaylığı vs. gibi tüm faktörler) Bu modelde x 2 nin model dışında bırakıldığını düşünelim. β 1 > 0, β 2 > 0 Eğer ortalamada kaliteli evler çöp arıtma tesislerinin uzağındaysa bu iki değişken (pozitif) ilişkili olur: δ 1 > 0 Bu durumda β 1 + β 2 δ 1 > β 1 β 1 in OLS tahmincisi ˆβ 1, limitte β 1 + β 2 δ 1 değerine yaklaşır. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 13

47 Tutarsızlık: Örnek y: ev fiyatları x 1 : evlerin çöp arıtma tesislerine uzaklığı x 2 : evin kalitesi (büyüklük, oda sayısı, bulunduğu semtin çekiciliği, ulaşım kolaylığı vs. gibi tüm faktörler) Bu modelde x 2 nin model dışında bırakıldığını düşünelim. β 1 > 0, β 2 > 0 Eğer ortalamada kaliteli evler çöp arıtma tesislerinin uzağındaysa bu iki değişken (pozitif) ilişkili olur: δ 1 > 0 Bu durumda β 1 + β 2 δ 1 > β 1 β 1 in OLS tahmincisi ˆβ 1, limitte β 1 + β 2 δ 1 değerine yaklaşır. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 13

48 Tutarsızlık: Örnek y: ev fiyatları x 1 : evlerin çöp arıtma tesislerine uzaklığı x 2 : evin kalitesi (büyüklük, oda sayısı, bulunduğu semtin çekiciliği, ulaşım kolaylığı vs. gibi tüm faktörler) Bu modelde x 2 nin model dışında bırakıldığını düşünelim. β 1 > 0, β 2 > 0 Eğer ortalamada kaliteli evler çöp arıtma tesislerinin uzağındaysa bu iki değişken (pozitif) ilişkili olur: δ 1 > 0 Bu durumda β 1 + β 2 δ 1 > β 1 β 1 in OLS tahmincisi ˆβ 1, limitte β 1 + β 2 δ 1 değerine yaklaşır. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 13

49 Tutarsızlık: Örnek y: ev fiyatları x 1 : evlerin çöp arıtma tesislerine uzaklığı x 2 : evin kalitesi (büyüklük, oda sayısı, bulunduğu semtin çekiciliği, ulaşım kolaylığı vs. gibi tüm faktörler) Bu modelde x 2 nin model dışında bırakıldığını düşünelim. β 1 > 0, β 2 > 0 Eğer ortalamada kaliteli evler çöp arıtma tesislerinin uzağındaysa bu iki değişken (pozitif) ilişkili olur: δ 1 > 0 Bu durumda β 1 + β 2 δ 1 > β 1 β 1 in OLS tahmincisi ˆβ 1, limitte β 1 + β 2 δ 1 değerine yaklaşır. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 13

50 Tutarsızlık: Örnek y: ev fiyatları x 1 : evlerin çöp arıtma tesislerine uzaklığı x 2 : evin kalitesi (büyüklük, oda sayısı, bulunduğu semtin çekiciliği, ulaşım kolaylığı vs. gibi tüm faktörler) Bu modelde x 2 nin model dışında bırakıldığını düşünelim. β 1 > 0, β 2 > 0 Eğer ortalamada kaliteli evler çöp arıtma tesislerinin uzağındaysa bu iki değişken (pozitif) ilişkili olur: δ 1 > 0 Bu durumda β 1 + β 2 δ 1 > β 1 β 1 in OLS tahmincisi ˆβ 1, limitte β 1 + β 2 δ 1 değerine yaklaşır. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 13

51 Tutarsızlık: Örnek y: ev fiyatları x 1 : evlerin çöp arıtma tesislerine uzaklığı x 2 : evin kalitesi (büyüklük, oda sayısı, bulunduğu semtin çekiciliği, ulaşım kolaylığı vs. gibi tüm faktörler) Bu modelde x 2 nin model dışında bırakıldığını düşünelim. β 1 > 0, β 2 > 0 Eğer ortalamada kaliteli evler çöp arıtma tesislerinin uzağındaysa bu iki değişken (pozitif) ilişkili olur: δ 1 > 0 Bu durumda β 1 + β 2 δ 1 > β 1 β 1 in OLS tahmincisi ˆβ 1, limitte β 1 + β 2 δ 1 değerine yaklaşır. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 13

52 Asimptotik Normallik MLR.6 hata teriminin x lere koşullu dağılımının normal olduğunu söylüyordu. Bu varsayım sonucunda y nin x lere koşullu dağılımı da normaldir. OLS tahmincilerinin sapmasızlığı için normallik varsayımına gerek yoktu. Normallik varsayımı betaşapkaların örnekleme dağılımlarının elde edilmesi ve istatistiksel çıkarsama yapılabilmesi için gerekliydi. Normal dağılım varsayımının sağlanmadığı durumda t ve F testlerini ve diğer istatistiksel çıkarsamaları yapamayacak mıyız? Eğer yeterince büyük bir örneklem varsa Merkezi Limit Teoreminden hareketle hata teriminin asimptotik normal dağılıma sahip olduğu varsayılarak testler yapılabilir. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 14

53 Asimptotik Normallik MLR.6 hata teriminin x lere koşullu dağılımının normal olduğunu söylüyordu. Bu varsayım sonucunda y nin x lere koşullu dağılımı da normaldir. OLS tahmincilerinin sapmasızlığı için normallik varsayımına gerek yoktu. Normallik varsayımı betaşapkaların örnekleme dağılımlarının elde edilmesi ve istatistiksel çıkarsama yapılabilmesi için gerekliydi. Normal dağılım varsayımının sağlanmadığı durumda t ve F testlerini ve diğer istatistiksel çıkarsamaları yapamayacak mıyız? Eğer yeterince büyük bir örneklem varsa Merkezi Limit Teoreminden hareketle hata teriminin asimptotik normal dağılıma sahip olduğu varsayılarak testler yapılabilir. Ekonometri I: OLS nin Asimptotik Özellikleri - H. Taştan 14

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler 1 SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

Detaylı

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama Doç.

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

Değişen Varyans (Heteroscedasticity) Sabit Varyans (Homoscedasticity) Varsayımı Altında Basit Regresyon Modeli

Değişen Varyans (Heteroscedasticity) Sabit Varyans (Homoscedasticity) Varsayımı Altında Basit Regresyon Modeli 1 2 Değişen Varyans (Heteroscedasticity) DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

Çok Değişkenli Regresyon Analizi: Çıkarsama. OLS Tahmincilerinin Örnekleme Dağılımları (Sampling Distributions) Distributions)

Çok Değişkenli Regresyon Analizi: Çıkarsama. OLS Tahmincilerinin Örnekleme Dağılımları (Sampling Distributions) Distributions) Normallik varsayımı önceki varsayımlardan daha kuvvetli bir varsayımdır. MLR.6 varsayımı, MLR.3, Sıfır Koşullu Ortalama ve MLR.5 Sabit Varyans varsayımlarının yapıldığı anlamına gelir. 1 ÇOK DEĞİŞKENLİ

Detaylı

BASİT REGRESYON MODELİ

BASİT REGRESYON MODELİ BASİT REGRESYON MODELİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri I: Basit Regresyon

Detaylı

27 Mart Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

27 Mart Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ZAMAN SERİLERİ VERİLERİYLE REGRESYON ANALİZİNDE EK KONULAR Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge

Detaylı

Çıkarsama, Tahmin, Hipotez Testi

Çıkarsama, Tahmin, Hipotez Testi İSTATİSTİK II: Çıkarsama, Tahmin, Hipotez Testi Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü 23 Eylül 2012 Ekonometri: İstatistiksel Çıkarsama - H. Taştan 1 İstatistik Biliminin Uğraşı

Detaylı

altında ilerde ele alınacaktır.

altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini

Detaylı

17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: TAHMİN Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 17 Ekim 2012 Ekonometri

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 4: Çok Değişkenli Regresyon Analizi:

Detaylı

KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOKLU REGRESYON ANALİZİNDE EK KONULAR Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

Zaman Serileri Verileriyle Regresyon Analizinde Ardışık ZAMAN SERİSİ REGRESYONLARINDA

Zaman Serileri Verileriyle Regresyon Analizinde Ardışık ZAMAN SERİSİ REGRESYONLARINDA 1 ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK BAĞINTI ve DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge

Detaylı

Ch. 4: Çok Değişkenli Regresyon Analizi: Çıkarsama

Ch. 4: Çok Değişkenli Regresyon Analizi: Çıkarsama Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 4: Çok Değişkenli Regresyon

Detaylı

ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK

ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK BAĞINTI ve DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 4: Çok Değişkenli Regresyon Analizi:

Detaylı

Zaman Serisi Verileriyle Regresyon Analizi

Zaman Serisi Verileriyle Regresyon Analizi Zaman Serisi Verileriyle Regresyon Analizi Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi Iktisat Bölümü Textbook: Introductory Econometrics (4th ed.) J. Wooldridge 13 Mart 2013 Ekonometri II: Zaman Serisi

Detaylı

DİNAMİK PANEL VERİ MODELLERİ. FYT Panel Veri Ekonometrisi 1

DİNAMİK PANEL VERİ MODELLERİ. FYT Panel Veri Ekonometrisi 1 DİNAMİK PANEL VERİ MODELLERİ FYT Panel Veri Ekonometrisi 1 Dinamik panel veri modeli (tek gecikme için) aşağıdaki gibi gösterilebilir; y it y it 1 x v it ' it i Gecikmeli bağımlı değişkenden başka açıklayıcı

Detaylı

İki Değişkenli Bağlanım Çıkarsama Sorunu

İki Değişkenli Bağlanım Çıkarsama Sorunu İki Değişkenli Bağlanım Çıkarsama Sorunu Aralık Tahmini Ekonometri 1 Konu 15 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 Prof. Dr. Ali ŞEN İki Populasyonun Karşılaştırılması: Eşleştirilmiş Örnekler için Wilcoxon İşaretli Mertebe Testi -BÜYÜK ÖRNEK Bağımsız populasyonlara uygulanan

Detaylı

Basit Regresyon Modeli BASİT REGRESYON MODELİ. Basit Regresyon Modeli. Basit Regresyon Modeli: y = β 0 + β 1 x + u

Basit Regresyon Modeli BASİT REGRESYON MODELİ. Basit Regresyon Modeli. Basit Regresyon Modeli: y = β 0 + β 1 x + u 1 2 Basit Regresyon Modeli BASİT REGRESYON MODELİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

Zaman Serileri Verileriyle Regresyon Analizinde Ek Konular. Durağan (Stationary) ve Durağan Olmayan (Nonstationary) Zaman Serileri

Zaman Serileri Verileriyle Regresyon Analizinde Ek Konular. Durağan (Stationary) ve Durağan Olmayan (Nonstationary) Zaman Serileri 1 ZAMAN SERİLERİ VERİLERİYLE REGRESYON ANALİZİNDE EK KONULAR Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

ARALIK TAHMİNİ (INTERVAL ESTIMATION):

ARALIK TAHMİNİ (INTERVAL ESTIMATION): YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Ch. 11: Zaman Serileri Verileriyle Regresyon Analizinde Ek Konular

Ch. 11: Zaman Serileri Verileriyle Regresyon Analizinde Ek Konular Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri II Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 11: Zaman Serileri

Detaylı

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ 1. ÇOKLU REGRESYON ANALİZİ VE VARSAYIMALARDAN SAPMALAR 1.1. Çoklu Regresyon modeli Varsayımları 1.2. Tahmincilerin anlamlılığının sınanması

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

Ch. 8: Değişen Varyans

Ch. 8: Değişen Varyans Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri II Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 8: Değişen Varyans

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

Ch. 3: Çok Değişkenli Regresyon Analizi: Tahmin

Ch. 3: Çok Değişkenli Regresyon Analizi: Tahmin Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 3: Çok Değişkenli Regresyon

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

İstatistiksel Kavramların Gözden Geçirilmesi

İstatistiksel Kavramların Gözden Geçirilmesi İstatistiksel Kavramların Gözden Geçirilmesi İstatistiksel Çıkarsama Ekonometri 1 Konu 3 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike

Detaylı

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini

Detaylı

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi Normallik Varsayımı ve Ençok Olabilirlik Yöntemi EO Açıklayıcı Örnekler Ekonometri 1 Konu 14 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci DOĞRUSAL ZAMAN SERİSİ MODELLERİ Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci Tek Değişkenli Zaman Serisi Modelleri Ekonomik verilerin analizi ile ekonomik değişkenlerin gelecekte alabilecekleri

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Ch. 3: Çok Değişkenli Regresyon Analizi: Tahmin Doç. Dr. Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi, İktisat Bölümü, Yıldız Kampüsü H Blok, Oda no. 124, Beşiktaş, İstanbul. Email: tastan@yildiz.edu.tr

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

İÇİNDEKİLER 1. GİRİŞ...

İÇİNDEKİLER 1. GİRİŞ... İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel

Detaylı

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir?

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? 9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? Ardışık bağımlılık sorunu, hata terimleri arasında ilişki olmadığı (E(u i,u j ) = 0, i j) varsayımının geçerli olmamasıdır.

Detaylı

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0 YTÜ-İktisat İstatistik II Hipotez Testi 1 HİPOTEZ TESTİ: AMAÇ: Örneklem bilgisinden hareketle anakütleye ilişkin olarak kurulan bir hipotezin (önsavın) geçerliliğinin test edilmesi Genel notasyon: anakütleye

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar

15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar 15.433 YATIRIM Ders 7: CAPM ve APT Bölüm 2: Uygulamalar ve Sınamalar Bahar 2003 Öngörüler ve Uygulamalar Öngörüler: - CAPM: Piyasa dengesinde yatırımcılar sadece piyasa riski taşıdıklarında ödüllendirilir.

Detaylı

7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar

7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar 7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar Y = X β + ε Lineer Modeli pekçok özel hallere sahiptir. Bunlar, ε nun dağılımına, Cov( ε ) kovaryans

Detaylı

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08 1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel

Detaylı

Eşanlı Denklem Modelleri

Eşanlı Denklem Modelleri Eşanlı Denklem Modelleri Eşanlı Denklem Yöntemleri Ekonometri 2 Konu 23 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported (CC

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ ÖRNEKLEME TEORİSİ 1 Bir popülasyonu istatistiksel açıdan incelemek ve işlemler yapabilmek için popülasyon içerisinden seçilen örneklemlerden yararlandığımızı söylemiştik. Peki popülasyonun istatistiksel

Detaylı

Çoklu Bağlanım Çıkarsama Sorunu

Çoklu Bağlanım Çıkarsama Sorunu Çoklu Bağlanım Çıkarsama Sorunu Diğer Sınama ve Konular Ekonometri 1 Konu 27 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported

Detaylı

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1 İÇİNDEKİLER ÖNSÖZ... v 1. BÖLÜM Örneklem Genişliğinin Elde edilmesi... 1 1.1. Kitle ve Parametre... 1 1.2. Örneklem ve Tahmin Edici... 2 1.3. Basit Rastgele Örnekleme... 3 1.4. Tabakalı Rastgele Örnekleme...

Detaylı

Örneklem Dağılımları ve Merkezi Limit Teoremi

Örneklem Dağılımları ve Merkezi Limit Teoremi Örneklem Dağılımları ve Merkezi Limit Teoremi Çıkarımsal İstatistik (Inferential Statistics) : Örneklemden yola çıkarak ana kütleyle (popülasyonla) ilgili çıkarımlarda bulunmak (Smidt, 2001) İstatistiksel

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Marmara Üniversitesi U.B.F. Dergisi YIL 2005, CİLT XX, SAyı 1 YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Yrd. Doç. Dr. Ebru ÇACLAYAN' Arş. Gör. Burak GÜRİş" Büyüme modelleri,

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 2: Basit Regresyon Modeli Doç. Dr.

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

ortalama ve ˆ ˆ, j 0,1,..., k

ortalama ve ˆ ˆ, j 0,1,..., k ÇOKLU REGRESYONDA GÜVEN ARALIKLARI Regresyon Katsayılarının Güven Aralıkları y ( i,,..., n) gözlemlerinin, xi ortalama ve i k ve normal dağıldığı varsayılsın. Herhangi bir ortalamalı ve C varyanslı normal

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ Katsayıların Yorumu

4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ Katsayıların Yorumu 4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ 4.1. Katsayıların Yorumu Y i = β 0 + β 1 X 1i + β X i + + β k X ki + u i gibi çok açıklayıcı değişkene sahip bir modelde, anakütle regresyon fonksiyonu, E(Y i X

Detaylı

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK Soru 1 X rassal değişkeninin olasılık yoğunluk fonksiyonu x x, x> f ( x) = 0, dy. 1 werilmiş ve Y = rassal değişkeni tanımlamış ise, Y değişkenin 0< 1 X 1 y için olasılık yoğunluk fonksiyonu aşağıdaki

Detaylı

UYGULAMALAR. Normal Dağılımlılık

UYGULAMALAR. Normal Dağılımlılık UYGULAMALAR EKONOMETRİYE GİRİŞ 0.01.008 1 Normal Dağılımlılık Amerika da 195-1941 yılları arasında sığır eti fiyatı ile kişi başı sığır eti tüketimi arasındaki ilişki incelenmiş ve aşağıdaki sonuç bulunmuştur.

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 3: Çok Değişkenli Regresyon Analizi:

Detaylı

Biyoistatistik (Ders 4: Bağımsız Gruplarda İki Örneklem Testleri)

Biyoistatistik (Ders 4: Bağımsız Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ BAĞIMSIZ GRUPLARDA İKİ ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr İKİ ÖRNEKLEM TESTLERİ

Detaylı

Hipotez. Hipotez Testleri. Y. Doç. Dr. İbrahim Turan Nisan 2011

Hipotez. Hipotez Testleri. Y. Doç. Dr. İbrahim Turan Nisan 2011 Hipotez Hipotez Testleri Y. Doç. Dr. İbrahim Turan Nisan 2011 Hipotez Nedir? Gözlemlenebilir (araştırılabilir) bir olay, olgu veya fikri mantıklı ve bilimsel olarak açıklamaya yönelik yapılan tahminlerdir.

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI aysecagli@beykent.edu.tr 1 Güven aralığı ve Hipotez testi Güven aralığı µ? µ? Veriler, bir değer aralığında hangi değeri gösteriyor? (Parametrenin gerçek

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon Korelasyon- (lineer korelasyon) Açıklayıcı (Bağımsız) Değişken x çalışma zamanı ayakkabı numarası İki değişken arasındaki ilişkidir. Günlük sigara sayısı SAT puanı boy Yanıt (Bağımlı)

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr. Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sınav toplam 100 puan değerinde 4 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm soruların

Detaylı

T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ. Yrd. Doç. Dr. C. Deha DOĞAN

T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ. Yrd. Doç. Dr. C. Deha DOĞAN T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ Yrd. Doç. Dr. C. Deha DOĞAN Gruplara ait ortalamalar elde edildiğinde, farklı olup olmadıkları ilk bakışta belirlenemez. Ortalamalar arsında bulunan

Detaylı

Olasılık ve İstatistiğe Giriş-II (STAT 202) Ders Detayları

Olasılık ve İstatistiğe Giriş-II (STAT 202) Ders Detayları Olasılık ve İstatistiğe Giriş-II (STAT 202) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistiğe Giriş-II STAT 202 Bahar 3 0 0 3 5 Ön Koşul

Detaylı

15.433 YATIRIM. Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş. Bahar 2003

15.433 YATIRIM. Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş. Bahar 2003 15.433 YATIRIM Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş Bahar 2003 İçerik Olasılık Teorisi Olasılık dağılımlarının kısa bir gözden geçirmesi Rassal olayları normal olaylarla değerlendirmek

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 2: Basit Regresyon Modeli Doç. Dr.

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

İSTATİSTİK VE OLASILIK SORULARI

İSTATİSTİK VE OLASILIK SORULARI İSTATİSTİK VE OLASILIK SORULARI SORU 1 Meryem, 7 arkadaşı ile bir voleybol maçına katılmayı planlamaktadır. Davet ettiği arkadaşlarından herhangi bir tanesinin EVET deme olasılığı 0,8 ise, en az 3 arkadaşının

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı

Detaylı

Zaman Serisi Verileriyle Regresyon Analizi. Zaman Serisi Verileriyle Regresyon Analizi. İşsizlik Oranlarına Dair Kısmi Zaman

Zaman Serisi Verileriyle Regresyon Analizi. Zaman Serisi Verileriyle Regresyon Analizi. İşsizlik Oranlarına Dair Kısmi Zaman 1 Zaman Serisi Verileriyle Regresyon Analizi Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi Iktisat Bölümü Textbook: Introductory Econometrics (4th ed.) J. Wooldridge 2 Zaman Serisi Verileriyle Regresyon

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

Ch. 1: Giriş, Temel Tanımlar ve Kavramlar

Ch. 1: Giriş, Temel Tanımlar ve Kavramlar Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Ch. 1: Giriş, Temel Tanımlar

Detaylı

Sıralı Verilerle Yapılan Testler Mann-Whitney U Testi

Sıralı Verilerle Yapılan Testler Mann-Whitney U Testi Sıralı Verilerle Yapılan Testler Mann-Whitney U Testi Parametrik testlerin, normal dağılım varsayımına dayandığını, normal dağılıma sahip olmayan veriler üzerinde kullanıldığında, elde edilen sonuçların

Detaylı

Ch. 2: Basit Regresyon Modeli

Ch. 2: Basit Regresyon Modeli Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 2: Basit Regresyon Modeli

Detaylı

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI)

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) 1 BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) Hipotez testi konusunda görüldüğü üzere temel betimleme, sayma ve sınıflama işlemlerine dayalı yöntemlerin ötesinde normal dağılım

Detaylı

Popülasyon Ortalamasının Tahmin Edilmesi

Popülasyon Ortalamasının Tahmin Edilmesi Güven Aralıkları Popülasyon Ortalamasının Tahmin Edilmesi Tanımlar: Nokta Tahmini Popülasyon parametresi hakkında tek bir rakamdan oluşan tahmindir. Popülasyon ortalaması ile ilgili en iyi nokta tahmini

Detaylı