Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr."

Transkript

1 Zaman Serileri-1 If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören

2 Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere sahip değișkenlere zaman serisi adı verilmektedir. Genel olarak zaman serisi, T örneklem büyüklüğü olmak üzere z t, t= 1, 2,, T biçiminde gösterilir. Buna göre ilk gözlemlenen veri Z 1 ; ikinci gözlemlenen veri Z 2 ; son gözlemlenen veri Z T ile ifade edilir. 2

3 Zaman içinde sürekli olarak kaydedilebilen verilere sahip serilere sürekli zaman serileri, sadece belli aralıklarda elde edilebilen verilere sahip serilere de kesikli zaman serileri adı verilmektedir. Elektrik sinyalleri, voltaj, ses titreșimleri gibi mühendislik alanlarına ait seriler sürekli zaman serileri iken; Faiz oranı, satıș hacmi, üretim miktarı gibi iktisadi seriler kesikli zaman serileridir. 3

4 Zaman Serileri Geçmiș dönemlerde verilerin göstermiș olduğu eğilimin, gelecekte de aynı șekilde gelișeceği kabul edilerek tahmin yapılmaktadır. Durağanlık kavramı 4

5 Zaman Serileri Durağan zaman serisi: Zaman serisinin ortalaması ve varyansı simetrik bir değișme göstermiyorsa veya seri periyodik dalgalanmalardan arınmıș ise 5

6 6

7 Farklı yapıdaki zaman serisi örnekleri 1. Ekonomik ve finansal zaman serileri: İktisadi verilerin önemli bir bölümü zaman serilerinden ibarettir. Örneğin, günlük hisse senedi fiyatları, yıllık ișsizlik oranları gibi dönemler itibariyle farklı alanlarda çok sayıda zaman serileri derlenir ve toplanır. 7

8 yıllarına ait istihdam oranı verileri :01 08:04 08:07 08:10 09:01 09:04 ISTIHDAM 8

9 2. Fiziksel zaman serileri: Zaman serileri fen bilimlerinde, özellikle meteorolojide, denizcilik bilimlerinde ve coğrafyada çok sık gözlenir. Fen bilimlerinde gözlemlerin kayıtları daha çok sürekli bir yapıdadır. Örneğin, bir laboratuvarda belirli bir sıcaklığın muhafaza edilmesi için nem oranı gibi bazı değișkenlerin sürekli ölçümleri birer zaman serisi olușturur. 9

10 1955:1-1960:12 yıllarına ait sıcaklık verileri SICAKLIK 10

11 3. İșletme zaman serileri: Değișik dönemlerde ișletmelerin satıș analizleri önemli yararlar sağlar. Bu tür veriler daha çok pazarlama verileri olarak bilinir. İșletme veya pazarlama verileri ileriye yönelik ișletme politikalarının belirlenmesinde ve satıș ön raporlarının hazırlanmasında etkin bir șekilde kullanılır. 11

12 1965:1-1970:12 yıllarına ait x firmasının soğutucu satış verileri SATIS 12

13 4. Demografik zaman serileri: Genellikle nüfus çalıșmalarında ortaya çıkan zaman serileridir. Örneğin, yıllık ortalama nüfus artıșı, yıllık ölüm ve doğum oranları bu sınıfa dahil edilebilir. Hükümetler orta ve uzun vadeli planlamalarında demografik verilerdeki değișmeleri dikkate alarak çeșitli ekonomik göstergeler için tahminlerde bulunabilir. 13

14 yıllarına ait evlenme oranı verileri EVLILIK 14

15 5. Süreç kontrol verileri: Süreç kontrolünde ele alınan bir problem, sürecin kalitesini gösteren bir ölçüm yardımıyla bir üretim sürecinin çalıșmalarındaki değișimlerin incelenmesi olarak alınabilir. Bu değișkenin ölçümleri belirlenen bir hedeften ne kadar ve hangi yönde sapma gösterdiğinin incelenmesi için zamana karșı bir grafik çizilir. Belirlenen bu hedeften sapmalar incelenerek gerekli düzeltmeler yapılmaya çalıșılır. Bu tür zaman serisi problemlerinin çözümü istatistiksel kalite kontrol teknikleri adı altında ele alınır. 15

16 Süreç kontrol grafiği 16

17 6. İkili süreç verileri: Bu tür verilerde gözlemler 0 veya 1 gibi yalnızca iki değerden birini alır. Bu özelliğinden dolayı bu veriler ikili süreç olarak adlandırılır. İkili süreç verilerinde, örneğin herhangi bir elektronik cihazın açma/kapama düğmesinin açık veya kapalı olma durumuna göre bir ölçeklendirme yapılır. 17

18 İkili süreç grafiği 18

19 7. Nokta süreç verileri: Zaman serilerinin farklı bir türü de belirli bir dönem içerisinde rassal olarak ortaya çıkan bir olaylar dizisi biçiminde olușur. Örneğin havayolu ulașımında bir yolcu uçağının bir yıllık bir dönem içerisinde arızalandığı ve bakım/onarıma alındığı aylar bir nokta süreç olarak gösterilebilir. Nokta süreç grafiği 19

20 Zaman serileri 20

21 Zaman Serisi Bileșenleri Trend (L) Konjonktürel Değișimler (K) Mevsimlik Değișimler (S) Düzensiz Değișimler (R) 21

22 Zaman Serisi Bileșenleri Y t: t dönemindeki gözlem değeri L t: Trendin t dönemindeki etkisi S t: Mevsimlik değișmelerin t dönemindeki etkisi K t : Konjonktürel değișmelerin t dönemindeki etkisi R t : Düzensiz değișmelerin t dönemindeki etkisi 22

23 10 Zaman Serisi Bileșenleri -Trend Zaman serilerindeki büyümenin ya da düșüșün altında yatan, belirli bir yönde gösterdiği ilerlemedir. Trend, iki șekilde ifade edilebilir: Doğrusal Trend Doğrusal Olmayan Trend Doğrusal Trend 10 Doğrusal Olmayan Trend

24 Zaman Serisi Bileșenleri Konjonktürel Değișimler Uzun bir zaman periyodunda olușan ekonomide büyüme ve daralma dönemlerinde yașanan iniș çıkıșlara bağlı olarak olușan dalgalanmalardır. Büyük çaplı ekonomik değișimler sırasında olușmaktadır. Devirli olan değișmelerdir. 24

25 25

26 Zaman Serisi Bileșenleri Mevsimlik Değișimler Düzenli olarak tekrarlanan değișimlerdir. 26

27 Zaman Serisi Bileșenleri Düzensiz Değișimler Rastlantısal olarak meydana gelen, sistematik değișim göstermeyen ve önceden tahmin edilmeleri çok zor olan değișmelerdir. Deprem, sel vb 27

28 Zaman Serisi Analizi Belirli zaman aralıklarında gözlenen bir olay hakkında, gözlenen serinin yapısını veren stokastik süreci modellemeyi ve zaman serisi bileșenlerinden hangilerinin etkili olduğunun belirlenmesini sağlayan ve zaman serisi değișkenlerinin gelecekteki değerlerinin doğru bir șekilde tahmininin yapılmasını sağlayan metot. 28

29 Mevsimsel Veriyi Modelleyebilmek Toplam Modeli Çarpım Modeli Introduction to Time Series Analysis and Forecasting 2E, 2015 MJK 29

30 Toplam Modeli Introduction to Time Series Analysis and Forecasting 2E, 2015 MJK 30

31 Toplam Modeli Introduction to Time Series Analysis and Forecasting 2E, 2015 MJK 31

32 Introduction to Time Series Analysis and Forecasting 2E, 2015 MJK 32

33 Çarpım Modeli Introduction to Time Series Analysis and Forecasting 2E, 2015 MJK 33

34 Çarpım Modeli Introduction to Time Series Analysis and Forecasting 2E, 2015 MJK 34

35 Introduction to Time Series Analysis and Forecasting 2E, 2015 MJK 35

36 Toplam mı Çarpım mı? Introduction to Time Series Analysis and Forecasting 2E, 2015 MJK 36

37 Introduction to Time Series Analysis and Forecasting 2E, 2015 MJK 37

38 Zaman Serisi Tahmin Yöntemleri Zaman Serileri Analizi Basit Grafik Yöntem Ortalama Yöntemleri Üstel Düzeltme Yöntemleri Trend Analizi Box-Jenkins Yöntemi 38

39 Veriyi düzgünleștirmek 39

40 Basit Grafik Yöntemi Zaman serisi, gözlem sayısı itibari ile iki eșit kısma ayrılır. Seri, çift sayılı ise eșit olarak, tek sayılı ise tam ortada kalan eleman alınmadan iki eșit kısma ayrılır. Ayrılan her kısmın aritmetik ortalaması hesaplanır ve ortalama değerleri grafiğe ișlendikten sonra araları bir doğru ile birleștirilerek bir doğru elde edilir. 40

41 Basit Grafik Yöntemi Sakıncaları: Trendin doğrusal olduğunu kabul etmektedir. Serinin her iki kısmında konjonktürel dalgalanmaların etkisinin aynı olduğu varsayılmaktadır. 41

42 Örnek Yıllar Üretim (10000 Adet)

43 Ortalama Yöntemleri Basit Ortalama Yöntemi Trend, konjonktürel, mevsimsel değișmelerin olmadığı ve az sayıdaki veriler için uygulanabilmekte ve geçmiș dönemlere ilișkin hesaplanan aritmetik ortalama hesabına dayanmaktadır. 43

44 Hareketli Ortalamalar Yöntemi Zaman içinde durağan yapıya sahip ortamlara uygundur. n dönemlik hareketli ortalama; yalnızca en son n adet geçmiș dönem verisinin ortalamasını hesaplar ve bunu bir sonraki dönemin tahmini olarak kullanır. Hareketli Ortalama = (1/n) Σ(önceki n dönemin değeri) 44

45 Örnek ABD deki yılları arasındaki cinayetlerin sayısı (bin olarak) aşağıda verilmiştir. a) 5 yıllık hareketli ortalamayı b)4 yıllık hareketli ortalamayı bulunuz. Yıl Cinayet (1000) 19,0 20,6 20,1 20,7 21,5 23,4 24,7 23,8 24,5 23,3 21,6 «Schaum s Outlines:İstatistik» kitabından alınmıştır. 45

46 Örnek Yıl Veri 5 yıllık hareketli toplam 5 yıll117,9ık hareketli ortalama Yıl Veri 4 yıllık hareketli toplam 4 yı93,2llık hareketli ortalama , , , , , , , , , ,4 101,9 20, ,7 106,3 21, ,8 110,4 22, ,5 114,1 22, ,3 117,9 23, ,6 119,7 23,94 117,9 23, ,5 80,4 20, ,4 82,9 20, ,7 85,7 21, ,8 90,3 22, ,5 93,4 23, ,3 96,4 24, ,6 96,3 24,075 93,2 23,3 «Schaum s Outlines:İstatistik» kitabından alınmıştır. 46

47 Introduction to Time Series Analysis and Forecasting 2E, 2015 MJK 47

48 Ağırlıklı Hareketli Ortalama Yöntemi Geçmiș verilerin daha az önemli olduğu durumlarda, ağırlıkları 0-1 arasında toplamı 1 olacak șekilde, ağırlıkların deneyime bağlı olarak belirlendiği, en yakın veriye en büyük ağırlığın verilmesi ile hesaplanan değerdir. 48

49 Örnek Aylar Gerçekleșen Talep (y i ) 3 Aylık Ağırlıklı Hareketli Ortalama Aralık 3 Ocak 5 Șubat 4 Mart 7 3*0,2+5*0,3+4*0,5=4,1 Nisan 11 5*0,2+4*0,3+7*0,5=5,7 Mayıs????? 4*0,2+7*0,3+11*0,5=8,4 49

50 Karșılaștırma 50

51 Üstel Düzeltme Yöntemleri Geçmiș dönem verilerine eșit değil farklı ağırlıkların verildiği yöntemler. Üstel terimi, verilen ağırlıkların veriler eskidikçe, üstel șekilde azalması anlamını tașımaktadır. 51

52 Basit Üstel Düzeltme Yöntemi F t = αdt 1 + ( 1 α ) Ft 1 = Ft 1 α et 1 Yeni Tahmin = Geçen Dönemin Tahmini- α(geçen Dönemin Tahmin Hatası) Tahmin Hatası = (Talep Tahmini Gerçek Talep) 0 α 1 α Üstel düzeltme sabitidir ve α nın yüksek olması güncel verilere daha fazla ağırlık verildiği anlamına gelir. 52

53 Farklı α değerleri 53

54 Basit Üstel Düzeltme Yöntemi X t = µ + N t Durağan süreçler için uygundur. Trend ve mevsimselliğin olmadığı durumlarda kullanılabilir. 54

55 Örnek Yıl Tașınan Yük Miktarı Ton- Km (Milyon)

56 Doğrusal trende basit üstel düzeltme Doğrusal trend Basit Üstel Düzeltme Introduction to Time Series Analysis and Forecasting 2E, MJK

57 Dow Jones Index ( ) Introduction to Time Series Analysis and Forecasting 2E, 2015 MJK 57

58 Çift Üstel Düzeltme Yöntemi Eğer veriler doğrusal bir trende sahipse, Introduction to Time Series Analysis and Forecasting 2E, 2015 MJK 58

59 Çift Üstel Düzeltme Yöntemi Introduction to Time Series Analysis and Forecasting 2E, 2015 MJK 59

60 Introduction to Time Series Analysis and Forecasting 2E, 2015 MJK 60

61 Örnek Introduction to Time Series Analysis and Forecasting 2E, 2015 MJK 61

62 Örnek Introduction to Time Series Analysis and Forecasting 2E, 2015 MJK 62

63 Örnek Introduction to Time Series Analysis and Forecasting 2E, 2015 MJK 63

64 Örnek Introduction to Time Series Analysis and Forecasting 2E, 2015 MJK 64

65 Introduction to Time Series Analysis and Forecasting 2E, 2015 MJK 65

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serileri IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere sahip değișkenlere zaman serisi adı verilmektedir. Genel olarak zaman serisi,

Detaylı

Tahminleme Yöntemleri

Tahminleme Yöntemleri PAU ENDÜSTRİ MÜHENDİSLİĞİ IENG 318 - Üretim Planlama ve Kontrolü Tahminleme Yöntemleri 2012-2013 Bahar Yarıyılı 1 İçerik 1. Talep Tahmini Kavramı 2. Talep Tahminlerinin Kullanım Yeri 3. Talep Tahmin Modelleri

Detaylı

Sürelerine Göre Tahmin Tipleri

Sürelerine Göre Tahmin Tipleri Girişimcilik Bölüm 5: Talep Tahmini scebi@ktu.edu.tr 5.1. Talep Tahmini Tahmin: Gelecek olayları önceden kestirme bilim ve sanatı. İstatistiksel Tahmin: Geçmiş verileri matematiksel modellerde kullanarak

Detaylı

ÜSTEL DÜZLEŞTİRME YÖNTEMİ

ÜSTEL DÜZLEŞTİRME YÖNTEMİ ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik

Detaylı

ZAMAN SERİ ANALİZİNDE TEMEL KAVRAMLAR

ZAMAN SERİ ANALİZİNDE TEMEL KAVRAMLAR ZAMAN SERİ ANALİZİNDE TEMEL KAVRAMLAR 1 KAVRAMLAR Öngörü: Gelecek olayları ya da koşulları tahmin etmeye öngörü denir. Karar verme sürecinde vazgeçilmez bir unsurdur. Nitel(kalitatif) Yöntemler: Öngörü

Detaylı

Tahminleme Yöntemleri-2

Tahminleme Yöntemleri-2 PAU ENDÜSTRİ MÜHENDİSLİĞİ IENG 318 - Üretim Planlama ve Kontrolü 1 Tahminleme Yöntemleri-2 İçerik 1. Mevsimsel Değişim Bazlı Teknik 2. Box-Jenkins Modelleri 3. Tahmin Yöntemlerini Uygulamada Dikkat Edilmesi

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

ZAMAN SERİLERİNDE REGRESYON ANALİZİ

ZAMAN SERİLERİNDE REGRESYON ANALİZİ ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip

Detaylı

Endüstri Mühendisliğine Giriş

Endüstri Mühendisliğine Giriş Endüstri Mühendisliğine Giriş 5 ve 19 Aralık 2012, Şişli-Ayazağa, İstanbul, Türkiye. Yard. Doç. Dr. Kamil Erkan Kabak Endüstri Mühendisliği Bölümü,, Şişli-Ayazağa, İstanbul, Türkiye erkankabak@beykent.edu.tr

Detaylı

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ 1 A. GİRİŞ Gözlemlerin belirli bir dönem için gün, hafta, ay, üç ay, altı ay, yıl gibi birbirini izleyen eşit aralıklarla yapılması ile elde edilen seriler zaman

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Nedensel Modeller Y X X X

Nedensel Modeller Y X X X Tahmin Yöntemleri Nedensel Modeller X 1, X 2,...,X n şeklinde tanımlanan n değişkenin Y ile ilgili olmakta; Y=f(X 1, X 2,...,X n ) şeklinde bir Y fonksiyonu tanımlanmaktadır. Fonksiyon genellikle aşağıdaki

Detaylı

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri Yrd. Doç. Dr. Safa KARAMAN 1 2 Giriş Veri kümesi Verileri betimlemenin ve özetlemenin bir diğer yolu da verilerin bir

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

ZAMAN SERİSİ SÜREÇLERİ Durağan ve Durağan Olmayan Zaman Serileri

ZAMAN SERİSİ SÜREÇLERİ Durağan ve Durağan Olmayan Zaman Serileri ZAMAN SERİSİ SÜREÇLERİ Durağan ve Durağan Olmayan Zaman Serileri 1 Zaman Serileri Analizi Zaman Serisi Modelleri Veri Üretme Süreci(DGP) Stokastik Süreçler Durağan Stokastik Süreçler Durağan Stokastik

Detaylı

SANAYİDE GELİŞMELER VE İSTİHDAM EĞİLİMLERİ. Esra DOĞAN, Misafir Araştırmacı. Mehmet Furkan KARACA, Yardımcı Araştırmacı

SANAYİDE GELİŞMELER VE İSTİHDAM EĞİLİMLERİ. Esra DOĞAN, Misafir Araştırmacı. Mehmet Furkan KARACA, Yardımcı Araştırmacı 15 Mayıs 2014 SANAYİDE GELİŞMELER VE İSTİHDAM EĞİLİMLERİ Esra DOĞAN, Misafir Araştırmacı Mehmet Furkan KARACA, Yardımcı Araştırmacı Hanehalkı İşgücü Anketinde Yeni Düzenlemeler Avrupa Birliğine tam uyum

Detaylı

Vahap Tolga KOTAN Murat İNCE Doruk ERGUN Fon Toplam Değeri 877.247,49 Fonun Yatırım Amacı, Stratejisi ve Riskleri

Vahap Tolga KOTAN Murat İNCE Doruk ERGUN Fon Toplam Değeri 877.247,49 Fonun Yatırım Amacı, Stratejisi ve Riskleri A. TANITICI BİLGİLER PORTFÖY BİLGİLERİ YATIRIM VE YÖNETİME İLİŞKİN BİLGİLER Halka Arz Tarihi 07/11/2008 Portföy Yöneticileri 31.03.2010 tarihi itibariyle Vahap Tolga KOTAN Murat İNCE Doruk ERGUN Fon Toplam

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

Ekonometrinin Konusu ve Yöntembilimi. Ekonometri Nedir? Ekonometrinin Konusu ve Yöntembilimi. Ekonometri 1 Konu 4 Sürüm 2,0 (Ekim 2011)

Ekonometrinin Konusu ve Yöntembilimi. Ekonometri Nedir? Ekonometrinin Konusu ve Yöntembilimi. Ekonometri 1 Konu 4 Sürüm 2,0 (Ekim 2011) Ekonometri Nedir? ve Yöntembilimi Ekonometri 1 Konu 4 Sürüm 2,0 (Ekim 2011) Ders Planı ve Yöntembilimi 1 ve Yöntembilimi Sözcük Anlamı ile Ekonometri Ekonometri Sözcük anlamı ile ekonometri, ekonomik ölçüm

Detaylı

MESLEK KOMİTELERİ DURUM TESPİT ANKETİ

MESLEK KOMİTELERİ DURUM TESPİT ANKETİ SONUÇLARI DURUM TESPİT ANKETİ MESLEK KOMİTELERİ Temmuz 15 Ekonomik Araştırmalar Şubesi 1 1 1 s 8 6 97,6 SANAYİ GELİŞİM ENDEKSİ 66,3 81,4 18, 15,2 SANAYİ GELİŞİM ENDEKSİ (SGE) (Üretim, İç Satışlar, İhracat,

Detaylı

Hareketli Ortalama ile Mevsimsel Ayrıştırma (Yöntem-2)

Hareketli Ortalama ile Mevsimsel Ayrıştırma (Yöntem-2) Tahmin Yöntemleri Hareketli Ortalama ile Mevsimsel Ayrıştırma (Yöntem-2) Mevsimsel etkenin tahmininde kullanılan diğer bir yöntem de N dönemlik hareketli ortalamaların alınmasıdır. Burada N değeri aynı

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH ORTALAMA ÖLÇÜLERİ Ünite 6 Öğr. Gör. Ali Onur CERRAH Araştırma sonucunda elde edilen nitelik değişkenler hakkında tablo ve grafikle bilgi sahibi olunurken, sayısal değişkenler hakkında bilgi sahibi olmanın

Detaylı

18 Ocak 2016 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi

18 Ocak 2016 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi 18 Ocak 2016 HİSSE ÖNERİ VE TEKNİK ANALİZ SEVGÜL DÜZGÜN sduzgun@ziraatyatirim.com.tr TURGUT USLU tuslu@ziraatyatirim.com.tr BIST-100 VIOP-30 DOW JONES XBANK / XUSIN Günlük Fiyat Hareketi Beklentilerimiz

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

FİNANSAL YÖNETİM. Finansal Planlama Nedir?

FİNANSAL YÖNETİM. Finansal Planlama Nedir? FİNANSAL YÖNETİM FİNANSAL PLANLAMA Yrd.Doç.Dr. Serkan ÇANKAYA Finansal analiz işletmenin geçmişe dönük verilerine dayanmaktaydı ancak finansal planlama ise geleceğe yönelik hareket biçimini belirlemeyi

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

21 Ekim 2015 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi

21 Ekim 2015 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi Ekim 05 HİSSE ÖNERİ VE TEKNİK ANALİZ SEVGÜL DÜZGÜN sduzgun@ziraatyatirim.com.tr TURGUT USLU tuslu@ziraatyatirim.com.tr BIST-00 VIOP-30 DOW JONES XBANK / XUSIN Günlük Fiyat Hareketi Beklentilerimiz İndikatör

Detaylı

TÜRKİYE EKONOMİSİ MAKRO EKONOMİK GÖSTERGELER (NİSAN 2015)

TÜRKİYE EKONOMİSİ MAKRO EKONOMİK GÖSTERGELER (NİSAN 2015) TÜRKİYE EKONOMİSİ MAKRO EKONOMİK GÖSTERGELER (NİSAN 2015) Hane Halkı İşgücü İstatistikleri 2014 te Türkiye de toplam işsizlik %10,1, tarım dışı işsizlik ise %12 olarak gerçekleşti. Genç nüfusta ise işsizlik

Detaylı

İSTATİSTİK I KISA ÖZET KOLAYAOF

İSTATİSTİK I KISA ÖZET KOLAYAOF DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ. İSTATİSTİK I KISA ÖZET KOLAYAOF 2 Kolayaof.com

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci DOĞRUSAL ZAMAN SERİSİ MODELLERİ Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci Tek Değişkenli Zaman Serisi Modelleri Ekonomik verilerin analizi ile ekonomik değişkenlerin gelecekte alabilecekleri

Detaylı

Ders Planı: - Talep Yapıları. - Tahmin Etmede Önemli Kararlar. - Yargısal Yöntemler. - Nedensel Yöntemler: Doğrusal Regresyon

Ders Planı: - Talep Yapıları. - Tahmin Etmede Önemli Kararlar. - Yargısal Yöntemler. - Nedensel Yöntemler: Doğrusal Regresyon Ders Planı: - Talep Yapıları - Tahmin Etmede Önemli Kararlar - Yargısal Yöntemler - Nedensel Yöntemler: Doğrusal Regresyon - Zaman Serisi Yöntemleri - Zaman Serisi Yönteminin Seçimi - Çoklu Tekniklerin

Detaylı

Güncel Ekonomik Yorum

Güncel Ekonomik Yorum TEMMUZ 16 Güncel Ekonomik Yorum Finansal piyasalarda bir önceki ay başbakanlıkta meydana gelen değişikliğin etkilerini atlatmak üzereyken İngiltere nin AB den ayrılması, yurtiçi ve yurtdışında meydana

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

Mevsimlik Çalışma Arttı, İşsizlik Azaldı: Nisan, Mayıs, Haziran Dönemi

Mevsimlik Çalışma Arttı, İşsizlik Azaldı: Nisan, Mayıs, Haziran Dönemi Mevsimlik Çalışma Arttı, İşsizlik Azaldı: Nisan, Mayıs, Haziran Dönemi HAZIRLAYAN.0. Prof. Dr. Mustafa DELİCAN İnsan Kaynakları Araştırma Merkezi Doç. Dr. Levent ŞAHİN - İnsan Kaynakları Araştırma Merkezi

Detaylı

HALK HAYAT VE EMEKLİLİK A.Ş. BÜYÜME AMAÇLI HİSSE SENEDİ EMEKLİLİK YATIRIM FONU A. TANITICI BİLGİLER

HALK HAYAT VE EMEKLİLİK A.Ş. BÜYÜME AMAÇLI HİSSE SENEDİ EMEKLİLİK YATIRIM FONU A. TANITICI BİLGİLER A. TANITICI BİLGİLER Portföy Bilgileri Halka Arz Tarihi 13.06.2012 2 Temmuz 2012 tarihi itibariyle (*) Fon Toplam Değeri 2.155.647 Yatırım Ve Yönetime İlişkin Bilgiler Portföy Yöneticileri Murat Zaman,

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

Merkezi Yığılma ve Dağılım Ölçüleri

Merkezi Yığılma ve Dağılım Ölçüleri 1.11.013 Merkezi Yığılma ve Dağılım Ölçüleri 4.-5. hafta Merkezi eğilim ölçüleri, belli bir özelliğe ya da değişkene ilişkin ölçme sonuçlarının, hangi değer etrafında toplandığını gösteren ve veri grubunu

Detaylı

14 Mart 2016 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi

14 Mart 2016 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi 14 Mart 2016 HİSSE ÖNERİ VE TEKNİK ANALİZ SEVGÜL DÜZGÜN sduzgun@ziraatyatirim.com.tr TURGUT USLU tuslu@ziraatyatirim.com.tr BIST-100 VIOP-30 DOW JONES XBANK / XUSIN Günlük Fiyat Hareketi Beklentilerimiz

Detaylı

Ekonometrinin Konusu ve Yöntembilimi. Ekonometri Nedir? Ekonometrinin Konusu ve Yöntembilimi. Ekonometri 1 Konu 4 Sürüm 2,0 (Ekim 2011)

Ekonometrinin Konusu ve Yöntembilimi. Ekonometri Nedir? Ekonometrinin Konusu ve Yöntembilimi. Ekonometri 1 Konu 4 Sürüm 2,0 (Ekim 2011) Ekonometri Nedir? ve Yöntembilimi Ekonometri 1 Konu 4 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) lisansı

Detaylı

Kantitatif Tahmin Yöntemleri. Yrd.Doç.Dr. S.Kerem AYTULUN

Kantitatif Tahmin Yöntemleri. Yrd.Doç.Dr. S.Kerem AYTULUN Kantitatif Tahmin Yöntemleri Yrd.Doç.Dr. S.Kerem AYTULUN Tahmin Nedir? Günlük hayatta bilinçli veya bilinçsiz birçok tahminde bulunuruz. Hava durumu, trafik, sınav soruları, kişisel ilişkiler... Peki Firmalar???

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatistikler 1 Tanımlayıcı İstatistikler Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını

Detaylı

Rapor N o : SYMM 116 /1552-117

Rapor N o : SYMM 116 /1552-117 Rapor N o : SYMM 116 /1552-117 BÜYÜME AMAÇLI ULUSLAR ARASI KARMA EMEKLİLİK YATIRIM FONU NUN YATIRIM PERFORMANSI KONUSUNDA KAMUYA AÇIKLANAN BİLGİLERE İLİŞKİN 30.06.2009 TARİHİ İTİBARİYLE BİTEN HESAP DÖNEMİME

Detaylı

Türkiye ve Brezilya da Beklentilerin Enflasyon Tahminine Etkisi

Türkiye ve Brezilya da Beklentilerin Enflasyon Tahminine Etkisi Türkiye ve Brezilya da Beklentilerin Enflasyon Tahminine Etkisi CEM ÇAKMAKLI K O Ç Ü N İ V E R S İ T E S İ, A M S T E R D A M Ü N İ V E R S İ T E S İ, KU- T U S İ A D E A F Türkiye de Enflasyon Dinamikleri:

Detaylı

ARIMA MODELLERİ KULLANILARAK YAPILAN ENERJİ TÜKETİMİ TAHMİN ÇALIŞMASI

ARIMA MODELLERİ KULLANILARAK YAPILAN ENERJİ TÜKETİMİ TAHMİN ÇALIŞMASI ARIMA MODELLERİ KULLANILARAK YAPILAN ENERJİ TÜKETİMİ TAHMİN ÇALIŞMASI Mehmet KURBAN 1 Ümmühan BAŞARAN FİLİK 2 Sevil ŞENTÜRK 3 1,2 Elektrik ve Elektronik Mühendisliği Bölümü, Mühendislik-Mimarlık Fakültesi,

Detaylı

Zaman Serileri Ekonometrisine Giriş

Zaman Serileri Ekonometrisine Giriş Zaman Serileri Ekonometrisine Giriş Box-Jenkins Yöntemi Ekonometri 2 Konu 26 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ

BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ İŞTİRME Araştırma rma SüreciS 1.Gözlem Genel araştırma alanı 3.Sorunun Belirlenmesi Sorun taslağının hazırlanması 4.Kuramsal Çatı Değişkenlerin açıkça saptanması

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

Halka Arz Tarihi 07.11.2008 Portföy Yöneticileri

Halka Arz Tarihi 07.11.2008 Portföy Yöneticileri A. TANITICI BİLGİLER PORTFÖY BİLGİLERİ YATIRIM VE YÖNETİME İLİŞKİN BİLGİLER Halka Arz Tarihi 07.11.2008 Portföy Yöneticileri 31.12.2008 tarihi itibariyle Vahap Tolga KOTAN Murat İNCE Doruk ERGUN Fon Toplam

Detaylı

HANEHALKI İŞGÜCÜ ANKETİNDE YAPILAN YENİ DÜZENLEMELERE İLİŞKİN AÇIKLAMALAR

HANEHALKI İŞGÜCÜ ANKETİNDE YAPILAN YENİ DÜZENLEMELERE İLİŞKİN AÇIKLAMALAR HANEHALKI İŞGÜCÜ ANKETİNDE YAPILAN YENİ DÜZENLEMELERE İLİŞKİN AÇIKLAMALAR (1) Türkiye İstatistik Kurumu, işgücü piyasasının temel veri kaynağını oluşturan hanehalkı işgücü araştırmasını1988 yılından beri,

Detaylı

Fon Bülteni Ekim Önce Sen

Fon Bülteni Ekim Önce Sen Fon Bülteni Ekim 216 Önce Sen Fon Bülteni Ekim 216 NN Hayat ve Emeklilik Fonları Sektör Karşılaştırmaları Yüksek Getiri! Son 1 Yıl - 3/9/21-3/9/216 2 2 1 1-11,6 13,74 9,7 12,3 14,74 12,44 8,72 9,7 9,3

Detaylı

Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu

Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu Prof. Dr. Ahmet BurçinYERELİ Hacettepe Üniversitesi, İktisadi ve İdari Bilimler Fakültesi,

Detaylı

Ooo, bir dakika müsaade et... Geçen hafta 250 teker sattık... O zaman, bu hafta ne kadar satmalıyız... Tahmin Nedir?

Ooo, bir dakika müsaade et... Geçen hafta 250 teker sattık... O zaman, bu hafta ne kadar satmalıyız... Tahmin Nedir? Ooo, bir dakika müsaade et... Geçen hafta 250 teker sattık... O zaman, bu hafta ne kadar satmalıyız... Tahmin Nedir? IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Dersin amacı Tahmin, geleceğe hazır

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL PARAMETRİK OLMAYAN TESTLER Daha önce incelediğimiz testler, normal dağılmış ana kütleden örneklerin

Detaylı

16 Eylül 2015 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi

16 Eylül 2015 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi 16 Eylül 2015 HİSSE ÖNERİ VE TEKNİK ANALİZ SEVGÜL DÜZGÜN sduzgun@ziraatyatirim.com.tr TURGUT USLU tuslu@ziraatyatirim.com.tr BIST-100 VIOP-30 DOW JONES XBANK / XUSIN Günlük Fiyat Hareketi Beklentilerimiz

Detaylı

Yatırım Ve Yönetime İlişkin Bilgiler

Yatırım Ve Yönetime İlişkin Bilgiler A. TANITICI BİLGİLER Portföy Bilgileri Halka Arz Tarihi 13.06.2012 2 Temmuz 2012 tarihi itibariyle (*) Yatırım Ve Yönetime İlişkin Bilgiler Portföy Yöneticileri Murat Zaman, Kerem Yerebasmaz, Serkan Şevik,

Detaylı

Temel Ġstatistik. Tanımlayıcı Ġstatistik. Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri. Y.Doç.Dr. Ġbrahim Turan Mart 2011

Temel Ġstatistik. Tanımlayıcı Ġstatistik. Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri. Y.Doç.Dr. Ġbrahim Turan Mart 2011 Temel Ġstatistik Tanımlayıcı Ġstatistik Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri Y.Doç.Dr. Ġbrahim Turan Mart 2011 Yer / Konum Ölçüleri 1- Aritmetik Ortalama (Mean): Deneklerin aldıkları değerlerin

Detaylı

BAKANLAR KURULU SUNUMU

BAKANLAR KURULU SUNUMU BAKANLAR KURULU SUNUMU Murat Çetinkaya Başkan 12 Aralık 2016 Ankara Sunum Planı Küresel Gelişmeler İktisadi Faaliyet Dış Denge Parasal ve Finansal Koşullar Enflasyon 2 Genel Değerlendirme Yılın üçüncü

Detaylı

Parametrik Olmayan İstatistik

Parametrik Olmayan İstatistik Parametrik Olmayan İstatistik 2 Anakütlenin Karşılaştırılması İki Anakütlenin Karşılaştırılması Bağımsız Örnekler Eşleştirilmiş Örnekler Wilcoxon Mertebe Toplam Testi İşaret Testi Wilcoxon İşaretli Mertebe

Detaylı

FONLAR GETİRİ KIYASLAMASI FONLAR GETİRİ KIYASLAMASI

FONLAR GETİRİ KIYASLAMASI FONLAR GETİRİ KIYASLAMASI OCAK 15 Güncel Ekonomik Veriler Büyüme Oranı(Yıllık) 4,00% Cari Açık/GSYİH 6,61% İşsizlik oranı(yıllık) 10,10% Enflasyon(TÜFE/Yıllık) 8,17% GSMH(milyar USD) 819,9 Kişi Başı Milli Gelir (USD) 10.800 Güncel

Detaylı

Su Ürünlerinde Temel İstatistik. Ders 2: Tanımlar

Su Ürünlerinde Temel İstatistik. Ders 2: Tanımlar Su Ürünlerinde Temel İstatistik Ders 2: Tanımlar Karakter Araştırma yada istatistiksel analizde ele alınan ünitenin yapısal (morfolojik, fizyolojik, psikolojik, estetik, vb.) özellikleridir. Tüm karakterler

Detaylı

ÖĞRENCİNİN ADI SOYADI:. NO:

ÖĞRENCİNİN ADI SOYADI:. NO: ÖĞRENCİNİN ADI SOYADI:. NO: İMZA: 2011-2012 ÖĞRETİM YILI TIP 1. SINIF TEMEL BİYOİSTATİSTİK DERSİ ARA SINAVI (04.11.2011) Biyoistatistik ve Tıp Bilişimi Anabilim Dalı Başarılar Temel Biyoistatistik dersi

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

11 Nisan 2016 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi

11 Nisan 2016 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi 11 Nisan 2016 HİSSE ÖNERİ VE TEKNİK ANALİZ SEVGÜL DÜZGÜN sduzgun@ziraatyatirim.com.tr TURGUT USLU tuslu@ziraatyatirim.com.tr BIST-100 VIOP-30 DOW JONES XBANK / XUSIN Günlük Fiyat Hareketi Beklentilerimiz

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 9 VARYANS ANALİZİ Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Varyans analizi niçin yapılır? İkiden fazla veri grubunun ortalamalarının karşılaştırılması t veya Z testi

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR ANALİTİK OLMAYAN MERKEZİ. Aritmetik ortalama **Medyan(median)

KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR ANALİTİK OLMAYAN MERKEZİ. Aritmetik ortalama **Medyan(median) KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 MERKEZİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR Bir örneklemde mevcut olan tüm veriler hesaba katılır. ANALİTİK OLMAYAN MERKEZİ EĞİLİM ÖLÇÜLERİ Bir örneklemdeki verilerin bir

Detaylı

ALIŞTIRMA 1 ULUSAL SINAİ ENDEKS

ALIŞTIRMA 1 ULUSAL SINAİ ENDEKS ALIŞTIRMA 1 ULUSAL SINAİ ENDEKS Bu çalışmada Ulusal Sınai Endeks serisiyle ilgili analizler yapılacaktır. Öncelikle seri oluşturulur. Data dan Define Dates e girilir oradan weekly,days(5) işaretlenir ve

Detaylı

SDÜ MMF ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ ÜRETİM PLANLAMA VE KONTROL. 1. Uygulama: İhtiyaç Hesaplama. İçindekiler. Uygulamalar

SDÜ MMF ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ ÜRETİM PLANLAMA VE KONTROL. 1. Uygulama: İhtiyaç Hesaplama. İçindekiler. Uygulamalar SDÜ MMF ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ ÜRETİM PLANLAMA VE KONTROL 1. Uygulama: İhtiyaç Hesaplama Uygulamalar 1. İhtiyaç Hesaplama 2. Sipariş ve Parti Büyüklüğü Hesaplama 3. Dolaşım Akış Çizelgeleme/Terminleme

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

12 Ekim 2015 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi

12 Ekim 2015 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi 12 Ekim 2015 HİSSE ÖNERİ VE TEKNİK ANALİZ SEVGÜL DÜZGÜN sduzgun@ziraatyatirim.com.tr TURGUT USLU tuslu@ziraatyatirim.com.tr BIST-100 VIOP-30 DOW JONES XBANK / XUSIN Günlük Fiyat Hareketi Beklentilerimiz

Detaylı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı DENEY 0 Bölüm 1 - Ölçme ve Hata Hesabı Amaç: Ölçüm metodu ve cihazına bağlı hata ve belirsizlikleri anlamak, fiziksel bir niceliği ölçüp hata ve belirsizlikleri tespit etmek, nedenlerini açıklamak. Genel

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU. 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu. 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla Sunumu

VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU. 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu. 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla Sunumu SAÜ 3. BÖLÜM VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU PROF. DR. MUSTAFA AKAL İÇİNDEKİLER 3.2.Grafiksel Sunumlar 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla

Detaylı

KİMYASAL ANALİZ KALİTATİF ANALİZ (NİTEL) (NİCEL) KANTİTATİF ANALİZ

KİMYASAL ANALİZ KALİTATİF ANALİZ (NİTEL) (NİCEL) KANTİTATİF ANALİZ KİMYASAL ANALİZ KALİTATİF ANALİZ (NİTEL) KANTİTATİF ANALİZ (NİCEL) KANTİTATİF ANALİZ Bir numunedeki element veya bileşiğin bağıl miktarını belirlemek için yapılan analizlere denir. 1 ANALİTİK ANALİTİK

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

MAKROEKONOMİ - 2. HAFTA

MAKROEKONOMİ - 2. HAFTA MAKROEKONOMİ - 2. HAFTA Ekonomik Faaliyetlerin Döngüsü Mal ve Hizmetler C HANEHALKLARI Tüketim Harcamaları Faktör Ödemeleri B A FİRMALAR Üretim Faktörleri GSYH ÖLÇME YÖNTEMLERI Üretim Yöntemi: Firmaların

Detaylı

7. Orta Vadeli Öngörüler

7. Orta Vadeli Öngörüler 7. Orta Vadeli Öngörüler Bu bölümde tahminlere temel oluşturan varsayımlar özetlenmekte, bu çerçevede üretilen orta vadeli enflasyon ve çıktı açığı tahminleri ile para politikası görünümü önümüzdeki üç

Detaylı

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi 2010 S 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek t ablolar ve f ormüller bu kitapçığın sonunda verilmiştir. 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi yanlıstır? ) Maddesel

Detaylı

Ekonomi Bülteni. 08 Haziran 2015, Sayı: 14. Yurt Dışı Gelişmeler Yurt İçi Gelişmeler Finansal Göstergeler Haftalık Veri Akışı

Ekonomi Bülteni. 08 Haziran 2015, Sayı: 14. Yurt Dışı Gelişmeler Yurt İçi Gelişmeler Finansal Göstergeler Haftalık Veri Akışı Ekonomi Bülteni, Sayı: 14 Yurt Dışı Gelişmeler Yurt İçi Gelişmeler Finansal Göstergeler Haftalık Veri Akışı Ekonomik Araştırma ve Strateji Dr. Saruhan Özel Ezgi Gülbaş Orhan Kaya Çağlar Kuzlukluoğlu 1

Detaylı

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan 1 Ders Planı 1. Karar Problemleri i. Karar problemlerinin bileşenleri ii. Değerler, amaçlar, bağlam iii. Etki diagramları 2. Model Girdilerinde Belirsizlik

Detaylı

PERFORMANS SUNUŞ RAPORU HAZIRLANMA ESASLARI

PERFORMANS SUNUŞ RAPORU HAZIRLANMA ESASLARI VAKIF EMEKLİLİK A.Ş. ALTIN EMEKLİLİK YATIRIM FONU NA AİT PERFORMANS SUNUM RAPORU PERFORMANS SUNUŞ RAPORU HAZIRLANMA ESASLARI Vakıf Emeklilik A.Ş. Altın Emeklilik Yatırım Fonu na ( Fon ) ait Performans

Detaylı

TÜRKİYE İSTATİSTİK KURUMU BAŞKANLIĞI

TÜRKİYE İSTATİSTİK KURUMU BAŞKANLIĞI TÜRKİYE İSTATİSTİK KURUMU BAŞKANLIĞI Örnekleme ve Analiz Teknikleri Daire Başkanlığı MEVSİM ETKİLERİNDEN ARINDIRILMIŞ HANEHALKI İŞGÜCÜ ARAŞTIRMASI GÖSTERGELERİ METAVERİ Veri Analiz Teknikleri Grubu 2014

Detaylı

İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL oda no: 303 (T4 / EEM)

İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL oda no: 303 (T4 / EEM) İşaret ve Sistemler İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL aakgul@sakarya.edu.tr oda no: 303 (T4 / EEM) Kaynaklar: 1. Signals and Systems, Oppenheim. (Türkçe versiyonu: Akademi Yayıncılık)

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık - I Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kes1rim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmak7r. ü Bu anlamda, anakütleden çekilen

Detaylı

Beklenti Anketi ne İlişkin Yöntemsel Açıklama

Beklenti Anketi ne İlişkin Yöntemsel Açıklama Beklenti Anketi ne İlişkin Yöntemsel Açıklama İstatistik Genel Müdürlüğü Reel Sektör Verileri Müdürlüğü İçindekiler I- Amaç... 3 II- Kapsam... 3 III- Yöntem... 3 IV- Tanımlar ve Hesaplamalar... 3 V- Yayımlama...

Detaylı

KESİKLİ DÜZGÜN DAĞILIM

KESİKLİ DÜZGÜN DAĞILIM KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda

Detaylı

Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK

Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK Yazarlar Yrd.Doç.Dr.Nizamettin Erbaş Yrd.Doç.Dr.Tuğba Altıntaş Dr.Yeliz Sevimli Saitoğlu A. Zehra Çelenli Başaran Azize Sağır

Detaylı

Temel Kavramlar. Bağlanım Çözümlemesi. Temel Kavramlar. Ekonometri 1 Konu 6 Sürüm 2,0 (Ekim 2011)

Temel Kavramlar. Bağlanım Çözümlemesi. Temel Kavramlar. Ekonometri 1 Konu 6 Sürüm 2,0 (Ekim 2011) Bağlanım Çözümlemesi Temel Kavramlar Ekonometri 1 Konu 6 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

Detaylı

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Elektrik devrelerinde ölçülebilen büyüklükler olan; 5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Akım Gerilim Devrede bulunan kaynakların tiplerine göre değişik şekillerde olabilir. Zamana bağlı

Detaylı

Forex Göstergeler. www.ifcmarkets.com

Forex Göstergeler. www.ifcmarkets.com Forex Göstergeler Forex piyasasında teknik analiz yaparken trader lar için ana araçlardan biri trend göstergesidir. Ataletinin bir sonucu olarak bu gösterge seti eğilimli piyasa sırasında fiyat hareketinin

Detaylı