Mantıksal Operatörlerin Semantiği (Anlambilimi)

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Mantıksal Operatörlerin Semantiği (Anlambilimi)"

Transkript

1 Mantıksal Operatörlerin Semantiği (Anlambilimi) Şimdi bu beş mantıksal operatörün nasıl yorumlanması gerektiğine (semantiğine) ilişkin kesin ve net kuralları belirleyeceğiz. Bir deyimin semantiği (anlambilimi), bu deyimin içinde geçtiği cümlelerin doğruluk ve yanlışlığına yaptığı katkıdır. Bir yargının doğruluk veya yanlışlığına o yargının doğruluk değeri denir. Yani bir mantıksal operatörün semantiği, bu operatörü içeren bileşik yargının doğruluk değerini tayin eden kural ile verilir. Semantik kuralları betimlerken ikideğerlilik ilkesini kabul edeceğiz. Yani sadece iki doğruluk değeri vardır: Doğru ve Yanlış. Her durumda, her yargı bu değerlerden yalnız birine sahip olabilir: ya doğrudur veya yanlış. Klasik mantık (burada sunulan mantık) iki değerli bir mantıktır. Değillemenin semantiği basittir. ɸ yargısının değillemesi, yargının kendisi yanlış ise doğru, doğru ise yanlıştır. Bu yargı ister basit isterse bileşik olabilir. Bundan böyle doğru için D ve yanlış için Y kullanacağız. Değillemenin semantiği şu şekilde özetlenir: ɸ D Y ɸ Y D Bu gösterime doğruluk tablosu denir. Birlikte evetlemenin semantiği de benzer şekilde basit ve dolambaçsızdır: φ ψ ɸɅψ D Y Y Y D Y Y Y Y Birlikte evetleme iki yargıyı işleme soktuğu için burada olası dört durum vardır.

2 Seçenekli evetlemede ise seçeneklerden birinin doğru olması durumunda biçimsel ifade doğru, diğer durumlarda yanlıştır: φ ψ ɸVψ D Y D Y D D Y Y Y Koşul operatörü, diğerleri içinde günlük dildeki anlamına en az benzerlik gösterenidir. Önbileşen ile ardbileşen arasındaki ilişkinin farklı olduğu birden çok türde koşullunun bulunduğu kabul edilmektedir. Bizim burada kullandığımız ve işaretiyle gösterdiğimiz koşulluya maddi koşul denir. P Q ile tam olarak ifade edilen şudur: P-olduğu ve Q-olmadığı doğru değildir. Dolayısıyla bir kişi Eğer Özlem giderse, Olcay da gidecek cümlesini maddi koşul anlamında söylüyorsa, Özlem in gittiği halde Olcay ın gitmeyeceği bir durumun söz konusu olmadığını demek istemektedir. Bu yargı (PɅ Q) biçimine sahiptir ve P Q ile aynı anlama sahip olduğu için ikisi de tamamen aynı doğruluk koşullarına sahiptir.o halde, P Q için olan doğruluk tablosunu, (PɅ Q) için olan doğruluk tablosunu bularak oluşturabiliriz. Bunu, ~ ve Ʌ için olan doğruluk tablolarını kullanarak yapabiliriz. Bileşik/karmaşık bir ikb için bir doğruluk tablosu oluştururken, önce onun en küçük altikb lerinin doğruluk değerlerini hesaplarız ve sonra mantıksal operatörleri kullanarak daha uzun altikb lerin doğruluk değerlerini hesaplarız ve bu işlemi başlangıçtaki ikb nin tam halinin değerlerini elde edene kadar tekrarlarız. (PɅ Q) nin en küçük altikb leri P ve Q dur ve dolayısıyla bu cümle harfleri için olan sütunları, bu harflerin biçim içinde her tekrar edildikleri yerin altına kopyalarız: P Q (P Ʌ Q) D D Y D Y Y D Y D Y Y Y Y Bundan sonraki en küçük al kb Q dur. Q nun doğruluk değerleri Q nun tam tersidir bunları Q daki, ~ in altına yazarız:

3 P Q (P Ʌ Q) Y D D Y D D Y Y Y Y Y D Y Y Y D Y Aslında Q sütununun değilini alıp doğrudan Q nun altına yazmak suretiyle zaman kazanabilirdik. Şimdi PɅ Q biçimi bir birlikte evetleme olduğu için her iki müşterek de doğru olduğunda doğrudur. Bunun sağlandığı tek durum tablonun ikinci satırıdır. Bu biçim tablonun ikinci satırında doğru diğer satırlarda yanlıştır: P Q (P Ʌ Q) Y Y D D Y Y Y Y Y Y Y D Y Y Y Y D Y Son olarak, (PɅ Q) biçimi, PɅ Q biçiminin değilidir bunlardan ilkinin doğruluk değerleri Ʌ nin altındaki sütundur ve bunların tersini ~ in altına yazarız. Bu son yazdığımız değerlerin, biçimin bütününün doğruluk değerleri olduğunu belirtmek için onları çember içine alırız: P Q ( P Ʌ Q ) D D D D Y Y D D Y Y Y Y Y D Y Y Y D Y Y D Y Y D Y

4 Demek ki maddi koşullunun doğruluk tablosu şudur: φ ψ ɸ ψ D Y Y Y D D Y Y D Maddi koşullu önbileşen doğru ve ardbileşen yanlışken yanlıştır, diğer hallerde doğrudur. Demek ki önbileşenin yanlış olduğu her durumda doğrudur. Ardbileşenin doğru olduğu her durumda da doğrudur. Sonuç olarak maddi koşullu bizde biraz çelişik bir sezgi yaratır. Mesela Eğer sen ölü isen, sen hayattasın cümlesi, buradaki sen size ve Eğer ise deyimi de maddi koşulluya işaret ediyorsa doğru olmaktadır. Siz gerçekten hayatta olduğunuz için önbileşen yanlış ve ardbileşen de doğru olmaktadır ki bu da koşullunun bütününü doğru yapmaktadır. Böyle acayiplikler, maddi koşullu ile, günlük dilde olağan anlamda kullanılan koşullu cümleler arasındaki orantısızlığı açığa çıkarmaktadır. Yine de maddi koşullu şimdilik bilinen ve anlamı bir doğruluk tablosu ile gösterilebilen en basit koşulludur. Ayrıca, edinilen tecrübeler, maddi koşullunun pek çok mantıksal ve matematiksel maslahatlara uygun geldiğini göstermiştir, bu yüzden mantık ve matematikte standart koşullu olarak benimsenmiştir. Yeterli Koşulun Anlambilimi Yeterli koşulun anlamı şöyle bir cümle ile dile getirilebilir: Bir insanın abi olması, erkek kardeş olması için yeterlidir. Bu cümle şunları içeriyor: Bir insan abi ise erkek kardeştir. Bir insan abi değilse erkek kardeş olabilir. Sonuç olarak: 1. Yeterli koşul (abi olmak) sağlanıyorsa (doğru ise), sonuç (erkek kardeş olmak) oluşmak (doğru olmak) zorundadır. 2. Yeterli koşul (abi olmak) sağlanmıyorsa (yanlış ise), sonuç (erkek kardeş olmak) oluşabilir de oluşmayabilir de(doğru da olabilir yanlış da olabilir).

5 O halde, yeterli koşulun anlambiliminin maddi koşullu ile aynı olduğunu söyleyebiliriz: φ ψ ɸ ψ D Y Y Y D D Y Y D Yeterli koşul bildiren başka örnek cümleler: a) Fiziksel nesneler varsa mekan olmalıdır. b) Güneş doğmuşsa ışık olmalıdır. Zorunlu Koşulun Anlambilimi Zorunlu koşulun anlamı şöyle bir cümle ile dile getirilebilir: Bir insanın abi olması için, erkek kardeş olması zorunludur. Bu cümle şunları içeriyor: Bir insan erkek kardeş değilse abi olamaz. Bir insan erkek kardeş ise abi olabilir. Sonuç olarak: 1. Zorunlu koşul (erkek kardeş olmak) sağlanmıyorsa (yanlış ise), sonuç (abi olmak) oluşamaz (yanlış olmalıdır). 2. Zorunlu koşul (erkek kardeş olmak) sağlanıyorsa (doğru ise), sonuç (abi olmak) oluşabilir de oluşmayabilir de(doğru da olabilir yanlış da olabilir). O halde, zorunlu koşulun anlambiliminin maddi koşulludan farklı olduğu ortaya çıkıyor. Bu yüzden zorunlu koşullu için farklı bir sembol ( ) kullanmak gerekir: φ ψ ɸ ψ D Y D Y D Y Y Y D Zorunlu koşul bildiren başka örnek cümleler: a) Mekan varsa fiziksel nesneler var olabilir. b) Işık varsa Güneş doğmuş olabilir.

6 Daha önce gördüğümüz üzere P Q biçimindeki yargı (P Q) (Q P) ile aynı anlama gelmektedir ve buradaki maddi koşullunun sembolüdür. Bununla uygun şekilde sembolüne maddi karşılıklı koşullu denilir. O halde P Q için doğruluk tablosu, maddi koşullu ve birlikte evetlemenin tablolarından hareketle (P Q) (Q P) için doğruluk tablosu oluşturarak elde edilebilir. P ve Q harflerinin altındaki sütunları bu harflerin her geçtiği yere aynen yazarız: P Q (P Q) (Q P) D Y D Y Y D Y D Y D D Y Y Y Y Y Y Y Şimdi P Q ve Q P için doğruluk değerleri, maddi koşullu için mevcut olan doğruluk tablosuna bakılarak hesaplanabilir. Bir maddi koşullu, önbileşeni doğru ve ardbileşeni yanlış iken yanlıştır diğer hallerde doğrudur. Demek ki P Q ikinci satırda ve Q P üçüncü satırda yanlıştır ve her iki ifade de diğer satırlarda doğrudur. Bu doğruluk değerlerini sembolünün geçtiği yerlerin altına yazarız: P Q (P Q) (Q P) D D D Y D Y Y Y Y D Y D Y D Y Y Y Y D Y Y D Y Tabloyu tamamlamak için bütün bir birlikte evetlemenin doğruluk değerlerini P Q ve Q P nin değerlerini kullanarak hesaplarız. Bunları da sembolünün altına yazarız: P Q (P Q) (Q P) D Y D Y Y Y Y Y D Y D Y D D Y D D Y Y Y Y D Y D Y D Y Çember içine alınmış değerler karşılıklı koşullunun doğruluk tablosunu gösterirler. Demek ki karşılıklı koşullu, eğer her iki bileşeni de aynı doğruluk değerine sahipse doğru, bunun dışında yanlıştır: φ ψ ɸ ψ D Y Y Y D Y Y Y D Aslında, semantik kuralları bu şekilde tanımlanmış olan bütün bu operatörleri kullanmak zorunlu değildir sadece, ile kullanarak diğer bütün mantıksal operatörleri ifade etmek mümkündür. Bu beş tane operatörü muhafaza etmemiz ve kullanmaya devam etmemiz açıklık ve notasyonda kolaylık sağlamak içindir. Hatta sembolünün yanında ile sembollerinden tek başına bir tanesi bile yeterlidir. Zira P Q ifadesi P-değil ve Q-değil olduğu doğru değildir anlamına

7 gelmektedir ki bu da ( P Q) olarak gösterilebilir. Aynı şekilde P Q ifadesi de P-değil veya Q- değil olduğu doğru değildir demektir ve ( P Q) olarak gösterilebilir. Değillemenin yanında birlikte evetleme veya seçenekli evetlemeye sahip olduğumuzda bütün diğer mantıksal operatörleri (en azından, anlamı bir doğruluk tablosu ile dile getirilebilen her mantıksal operatörü) ifade etmenin mümkün olduğu gösterilebilir. Söz konusu operatörlerin bu durumuna, bu mantıksal operatörler kümesinin işlevsel tamlığı denilmektedir. LÜ ÖRNEK 3.8 Türkçe deki ne ne de deyimine ayrı bir mantıksal operatörün gerekli olmadığını, çünkü, ne P ne de Q ifadesinin elde mevcut operatörler kullanılarak biçimselleştirilebilir olduğunu gösteriniz. ne P ne de Q şeklindeki bir cümle hem P hem Q yanlış olduğunda doğru olmaktadır. Demek ki P ve Q doğru iseler, yani ( P Q) doğru ise bu cümle doğru olmaktadır. Dolayısıyla bu deyim için fazladan özel bir operatör gerekli değildir: değilleme ve birlikte evetleme yeterlidir. ne P ne de Q için bir diğer olası gösterim de (P Q) biçimindedir ki sadece değilleme ile seçenekli evetlemeyi kullanır. İKB ler için doğruluk tabloları Şimdi karmaşık ikb ler için doğruluk tabloları oluşturma işini daha sistemli bir şekilde ele alacağız. Bir doğruluk tablosundaki satırların sayısını ilgili biçimde geçen birbirinden farklı harflerin sayısı belirlemektedir. Tek bir harf varsa ilgili biçim için sadece iki ihtimal vardır: doğru ve yanlış. Bu durumda doğruluk tablosunda sadece iki satır olabilir. Eğer ilgili biçimde iki harf varsa doğruluk ve yanlışlık için dört olası durum var demektir ve tablo da dört satırlı olacaktır. Genel kural olarak, cümle harflerinin sayısı n ise doğruluk tablosundaki satırların sayısı da 2 n olacaktır denebilir. Bir biçim üç farklı cümle harfi içeriyorsa bu içimin doğruluk tablosunda 2 3 = 8 satır bulunacak demektir: P Q R D D Y D Y D D Y Y Y D D Y D Y Y Y D Y Y Y

8 Mantıksal operatörler için mevcut olan doğruluk tablolarından faydalanarak önce en küçük altikb ler için ve sonra her adımda daha büyük altikb ler için doğruluk değerleri hesaplanır, böylece biçimin bütününün doğruluk değerleri elde edilene kadar devam edilir. Her ikb veya altikb için olan sütun daima ana operatörün altına yazılır. Biçimin bütününe ait ana operatörün altındaki sütun çember içine alınarak tüm biçimin doğruluk değerleri belirtilmiş olur. LÜ ÖRNEKLER 3.9 Aşağıdaki biçim için bir doğruluk tablosu oluşturunuz. P P P D D Y D Y Y D Y Demek ki, P daima P ile aynı doğruluk değerlerine sahiptir Aşağıdaki biçim için bir doğruluk tablosu oluşturunuz. P Q P Q P Q D D Y D D D Y Y Y Y Y D Y Y D D Y Demek ki, P Q daima P Q ile (veya P Q) ile) aynı doğruluk değerlerine sahiptir ve birbirlerinin yerine geçebilirler Aşağıdaki biçim için bir doğruluk tablosu oluşturunuz. P Q) (P Q)

9 P Q (P Q) (P Q) D D Y Y D Y D D Y Y Y Y D Y D Y Y D Y Y Y Y Y Y D Y Y Y Bu biçim, dışlayıcı seçeneklilik veya bağdaşmaz seçeneklilik (exclusive or) olarak bilinir ve Ya P veya Q fakat ikisi birlikte değil anlamına gelir. Bu durumda karşılıklı koşulluya, kapsayıcı seçeneklilik de (inclusive or)denebilir Aşağıdaki biçim için bir doğruluk tablosu oluşturunuz. P P P P P Y Y Y D D Tabloya göre bu bir totolojidir. Totoloji: Her olası durumda doğru olan ifadeler veya doğruluk tablosunda her satırın doğru değeri aldığı ifadeler. Bunların bir tür mantıksal zorunluluk oldukları söylenebilir. Önermeler mantığının operatörlerine has anlambilimin ürettiği bir mantıksal zorunluluktur bu Aşağıdaki biçim için bir doğruluk tablosu oluşturunuz. P P P P P D D Y Y Y Y Y D Tabloya göre bu bir çelişkidir. Çelişki, doğruluk-işlevsel türden bir tutarsızlıktır. Bütün tutarsızlık türlerinin doğruluk-işlevsel türden olmadıkları ve buradaki çelişkinin önermeler mantığının operatörlerine has bir tutarsızlık olduğu unutulmamalıdır. Örneğin Cemil kendi kendisine özdeş değil önermesi de tutarsızdır. Ancak buradaki tutarsızlık, özdeştir deyiminin semantiğine özgü bir tutarsızlıktır ve doğruluk-işlevsel türden değildir.

10 Doğruluk tablosundaki satırlardan kimisi doğru olan biçimlerin doğruluk-işlevsel açıdan olumsal (contingent) oldukları söylenir. Olumsal yargı, doğru veya yanlış olabilen yargı demektir. Örneğin Cem bir bekardır ve Cem evlidir yargısı B E biçimine sahiptir ve doğruluk tablosu aşağıdaki gibidir: B E B E D D D Y D Y Y Y D Y Y D Y Y Y Y Y Yani doğruluk-işlevsel açıdan olumsaldır. Oysa bu yargı tutarsızdır, dile getirdiği şey mantıksal veya kuramsal olarak imkansızıdır, bununla birlikte bu bir doğruluk-işlevsel tutarsızlık değildir, yani bir bekardır, evlidir deyimleri ve ve mantıksal operatörü ile kurulan semantiğe (anlambilime) göre tutarsız değildir. LÜ ÖRNEKLER 3.14 Aşağıdaki ikb için bir doğruluk tablosu oluşturarak bunun bir totoloji mi, tutarsız mı ya da doğruluk-işlevsel açıdan olumsal mı olduğunu gösteriniz: ( P Q) (P Q) P Q ( P Q) (P Q) D D Y Y Y Y D Y Y D D Y D Y Y Y Y Y Y Y D Y Y Y Y Y Y Bu ikb, ana operatör olan altındaki sütun tamamen Y lerden oluştuğu için tutarsızdır Aşağıdaki ikb için bir doğruluk tablosu oluşturarak bunun bir totoloji mi, tutarsız mı ya da doğruluk-işlevsel açıdan olumsal mı olduğunu gösteriniz: P (Q R)

11 P Q R P (Q R) D Y D D Y D D D Y D D Y Y Y Y D Y Y D D Y D D Y D D Y Y Y D Y Y D Y Y D Y D Y Y Y Y Y Y Y D Y D D Bu ikb, ana operatör olan altındaki sütun hem Y lerden hem D lerden oluştuğu için doğruluk-işlevsel olumsaldır Aşağıdaki ikb için bir doğruluk tablosu oluşturarak bunun bir totoloji mi, tutarsız mı ya da doğruluk-işlevsel açıdan olumsal mı olduğunu gösteriniz: ((P Q) (R S)) P P Q R S ((P Q) (R S)) P D Y Y D Y Y D D D D Y D Y Y Y D D Y Y Y Y Y Y D D D Y Y Y Y D D D Y D Y D Y Y Y D Y Y D D D Y Y D D Y Y Y Y Y D Y Y Y D Y Y Y Y Y Y D D Y Y Y D Y D Y Y D D Y Y Y D Y D Y Y D Y Y D Y D Y Y D Y Y Y D D Y Y D Y Y Y Y D Y Y Y Y D Y Y Y D D Y Y Y Y D Y Y Y D Y Y Y Y Y D Y Y D Y Y Y Y D Y Y Y Y Y Y D D Y Y Y Y Y Y Y Y Y Y Y Y D Y Bu ikb bir totolojidir.

Çözümleyici Çizelgeler (Çürütme Ağaçları)

Çözümleyici Çizelgeler (Çürütme Ağaçları) Çözümleyici Çizelgeler (Çürütme Ağaçları) İki veya üçten fazla cümle harfi içeren ikb ler söz konusu olduğunda doğruluk tablosu, denetleme yapmak için hantal ve yetersiz bir yöntem haline gelmektedir.

Detaylı

MODERN MANTIK ARASINAVI (SOSYOLOJİ) ÇÖZÜMLERİ B GRUBU

MODERN MANTIK ARASINAVI (SOSYOLOJİ) ÇÖZÜMLERİ B GRUBU MODERN MANTIK ARASINAVI (SOSYOLOJİ) ÇÖZÜMLERİ B GRUBU 1. Aşağıdaki kanıtlamaların çıkarım belirticilerini, öncül ve sonuç önermelerini, tümdengelimli mi (geçersiz, geçerli veya sağlam), tümevarımlı mı

Detaylı

ÇÖZÜMLÜ ÖRNEK 3.5 ÇÖZÜM

ÇÖZÜMLÜ ÖRNEK 3.5 ÇÖZÜM Biçimselleştirme Burada sunulan haliyle bu sembolik gösterim diline önermeler mantığı dili denir. Şimdi günlük dilden çeşitli cümlelerin sembolik biçimler şeklinde nasıl ifadelendirilebileceğini (yani

Detaylı

B. ÇOK DEĞERLİ MANTIK

B. ÇOK DEĞERLİ MANTIK B. ÇOK DEĞERLİ MANTIK İki değerli mantıkta önermeler, doğru ve yanlış olmak üzere iki değer alabilir. Çünkü özdeşlik, çelişmezlik ve üçüncü hâlin olanaksızlığı ilkelerine göre, önermeler başka bir değer

Detaylı

Yüklemler Mantığında Çözümleyici Çizelgeler (Çürütme Ağaçları)

Yüklemler Mantığında Çözümleyici Çizelgeler (Çürütme Ağaçları) Yüklemler Mantığında Çözümleyici Çizelgeler (Çürütme Ağaçları) Daha önce kanıtlamaların geçerliliği üzerine söylenenlerden hatırlanacağı gibi, bir kanıtlamanın geçerli olabilmesi için o kanıtlamadaki öncüller

Detaylı

Sunum ve Sistematik 1. BÖLÜM: ÖNERMELER

Sunum ve Sistematik 1. BÖLÜM: ÖNERMELER Sunum ve Sistematik. ÜNİTE: MANTIK KONU ÖZETİ Bu başlık altında, ünitenin en can alıcı bilgileri, kazanım sırasına göre en alt başlıklara ayrılarak hap bilgi niteliğinde konu özeti olarak sunulmuştur..

Detaylı

LİSE 1 MANTIK KONU ANLATIM FASİKÜLÜ

LİSE 1 MANTIK KONU ANLATIM FASİKÜLÜ LİSE 1 MANTIK KONU ANLATIM FASİKÜLÜ 1 ÖNERMELER Kesin olarak doğru ya da yanlış hüküm bildiren ifadelere önerme denir. Önermeler p ve q gibi harflerle ifade edilirler.bir önerme doğru ise, doğruluk değeri

Detaylı

A Tüm S ler P dir. Tümel olumlu. E Hiçbir S, P değildir. Tümel olumsuz. I Bazı S ler P dir. Tikel olumlu. O Bazı S ler P değildir.

A Tüm S ler P dir. Tümel olumlu. E Hiçbir S, P değildir. Tümel olumsuz. I Bazı S ler P dir. Tikel olumlu. O Bazı S ler P değildir. Yargı cümlelerinde sınıf terimler birbirlerine tüm ve bazı gibi deyimlerle bağlanırlar. Bunlara niceleyiciler denir. Niceleyiciler de aynen doğruluk fonksiyonu operatörleri (önerme eklemleri) gibi mantıksal

Detaylı

6.8 Aşağıdaki biçimlerin neden birer ikb olmadıklarını açıklayınız.

6.8 Aşağıdaki biçimlerin neden birer ikb olmadıklarını açıklayınız. 6.7 x ( Fx zgzx) biçiminin bir ikb olduğunu gösteriniz. Kural 1 gereği Fa ve Gba birer ikb dir. Bu durumda, kural 2 ve 4 gereği, sırasıyla Fa ve zgza birer ikb dir. Bu iki biçime kural 3 ün uygulanması

Detaylı

BM202 AYRIK İŞLEMSEL YAPILAR. Yrd. Doç. Dr. Mehmet ŞİMŞEK

BM202 AYRIK İŞLEMSEL YAPILAR. Yrd. Doç. Dr. Mehmet ŞİMŞEK BM202 AYRIK İŞLEMSEL YAPILAR Yrd. Doç. Dr. Mehmet ŞİMŞEK Derse Genel Bakış Dersin Web Sayfası http://www.mehmetsimsek.net/bm202.htm Ders kaynakları Ödevler, duyurular, notlandırma İletişim bilgileri Akademik

Detaylı

DOĞRULUK TABLOSU / ÇİZELGESİ İLE DENETLEME

DOĞRULUK TABLOSU / ÇİZELGESİ İLE DENETLEME DOĞRULUK TABLOSU / ÇİZELGESİ İLE DENETLEME (, q...) gibi basit bir önerme doğru veya yanlış yorumlanabileceğinden, (D) veya (Y) değerine sahi olabilir. Buna karşılık herhangi bir önerme eklemiyle kurulan

Detaylı

SEMBOLİK MANTIK MNT102U

SEMBOLİK MANTIK MNT102U DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ. SEMBOLİK MANTIK MNT102U KISA ÖZET KOLAY

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 1.KONU Sembolik Mantık; Önermeler, Niceyiciler, Olumsuzluk, İspat yöntemleri KAYNAKLAR 1. Akkaş, S., Hacısalihoğlu, H.H., Özel, Z., Sabuncuoğlu, A.,

Detaylı

(2) Mona Lisa tablosunu yapan ya Rembrandt tı veya Michelangelo ydu. O tabloyu Rembrandt yapmadı. Michelangelo yaptı.

(2) Mona Lisa tablosunu yapan ya Rembrandt tı veya Michelangelo ydu. O tabloyu Rembrandt yapmadı. Michelangelo yaptı. Kanıtlama Biçimleri Buradan itibaren biçimsel mantığı ele almaya başlıyoruz. Biçimsel mantık kanıtlamaların biçimini inceler, pek çok kanıtlamanın ortaklaşa paylaştığı akıl yürütmelere dair kimi soyut

Detaylı

MODERN (SEMBOLİK) MANTIK

MODERN (SEMBOLİK) MANTIK MODERN (SEMBOLİK) MANTIK A. ÖNERMELER MANTIĞI 1. Önermelerin Sembolleştirilmesi Önermeler mantığında her bir yargı, q, r... gibi sembollerle ifade edilir. Örnek: Dünya gezegendir. Dünya nın şekli elistir.

Detaylı

BM202 AYRIK İŞLEMSEL YAPILAR. Yrd. Doç. Dr. Mehmet ŞİMŞEK

BM202 AYRIK İŞLEMSEL YAPILAR. Yrd. Doç. Dr. Mehmet ŞİMŞEK BM202 AYRIK İŞLEMSEL YAPILAR Yrd. Doç. Dr. Mehmet ŞİMŞEK Önermelerin Eşdeğerlikleri Section 1.3 Totoloji, Çelişkiler, ve Tesadüf Bir totoloji her zaman doğru olan bir önermedir. Örnek: p p Bir çelişki

Detaylı

Bir önermenin anlamlı olması onun belli bir doğruluk değeri taşıması demektir. Doğru bir önerme de yanlış bir önerme de anlamlıdır.

Bir önermenin anlamlı olması onun belli bir doğruluk değeri taşıması demektir. Doğru bir önerme de yanlış bir önerme de anlamlıdır. 1 FEL 201: KLAİK MANTIK DER NOTLARI-2 KONU: ÖNERME ÖNERMENİN DOĞAI Önerme, yargı bildiren/belirten cümledir. Yargı bildirmeyen/belirtmeyen cümle örnekleri: oru cümleleri, emir cümleleri, ünlem cümleleri

Detaylı

1 MATEMATİKSEL MANTIK

1 MATEMATİKSEL MANTIK 1 MATEMATİKSEL MANTIK Bu bölümde ilk olarak önerne tanımıverilip ispatlarda kullanılan düşünce biçimi incelenecektir. Tanım 1 Bir hüküm bildiren ve hakkında doğru veya yanlış denilmesi anlamlı olan ifadelere

Detaylı

Veritabanı. SQL (Structured Query Language)

Veritabanı. SQL (Structured Query Language) Veritabanı SQL (Structured Query Language) SQL (Structured Query Language) SQL, ilişkisel veritabanlarındaki bilgileri sorgulamak için kullanılan dildir. SQL, bütün kullanıcıların ve uygulamaların veritabanına

Detaylı

1. ÜNİTE: MANTIK. Bölüm 1.1. Önermeler ve Bileşik Önermeler

1. ÜNİTE: MANTIK. Bölüm 1.1. Önermeler ve Bileşik Önermeler . ÜNİTE: MANTIK . ÜNİTE: MANTIK... Önerme Tanım (Önerme) BÖLÜM.. - Doğru ya da yanlış kesin bir hüküm bildiren ifadelere önerme adı veriler. Örneğin Bir hafta 7 gündür. (Doğru) Eskişehir Türkiye'nin başkentidir.

Detaylı

Russell ın Belirli Betimlemeler Kuramı

Russell ın Belirli Betimlemeler Kuramı Russell ın Belirli Betimlemeler Kuramı Russell ın dil felsefesi Frege nin anlam kuramına eleştirileri ile başlamaktadır. Frege nin kuramında bilindiği üzere adların hem göndergelerinden hem de duyumlarından

Detaylı

C PROGRAMLAMA YRD.DOÇ.DR. BUKET DOĞAN PROGRAM - ALGORİTMA AKIŞ ŞEMASI

C PROGRAMLAMA YRD.DOÇ.DR. BUKET DOĞAN PROGRAM - ALGORİTMA AKIŞ ŞEMASI C PROGRAMLAMA DİLİ YRD.DOÇ.DR. BUKET DOĞAN 1 PROGRAM - ALGORİTMA AKIŞ ŞEMASI Program : Belirli bir problemi çözmek için bir bilgisayar dili kullanılarak yazılmış deyimler dizisi. Algoritma bir sorunun

Detaylı

Mantıksal (Logic) Operatörler

Mantıksal (Logic) Operatörler Mantıksal (Logic) Operatörler Bilgisayar dillerinin hemen hepsinde, program akışını kontrol edebilmek ve yönlendirebilmek için mantıksal operatörler kullanılır. Java dilinde kullanılan mantıksal operatörler

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Asal sayılar. II denklem. I denklem

Asal sayılar. II denklem. I denklem Asal sayılar I denklem II denklem 5 ( n+1 ) + n 5.1+0 = 5 5.2+1 = 11 5.3+2 = 17 5.4+3 = 23 5.5+4 = 29 *5.6+5 =35= 5.7 5.7+6 = 41 5.8+7 =47 5.9+8 =53 5.10+9 =59 * 5.11+10 =65=5.13 5.12+11 =71 * 5.13+12

Detaylı

mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar

mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar Algoritma ve Programlamaya Giriş mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar İçerik Algoritma Akış Diyagramları Programlamada İşlemler o o o Matematiksel Karşılaştırma Mantıksal Programlama

Detaylı

Bilgisayar Teknolojileri Bölümü Bilgisayar Programcılığı Programı. Öğr. Gör. Cansu AYVAZ GÜVEN

Bilgisayar Teknolojileri Bölümü Bilgisayar Programcılığı Programı. Öğr. Gör. Cansu AYVAZ GÜVEN Bilgisayar Teknolojileri Bölümü Bilgisayar Programcılığı Programı Öğr. Gör. Cansu AYVAZ GÜVEN VERITABANI-I SQL Tek Tablo İçinde Sorgulamalar Tekrarlı Satırların Engellenmesi Aynı değerlere sahip satırlar

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

Veri Tabanı Tasarım ve Yönetimi

Veri Tabanı Tasarım ve Yönetimi SAKARYA ÜNİVERSİTESİ Veri Tabanı Tasarım ve Yönetimi Hafta 5 Prof. Dr. Ümit KOCABIÇAK Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan Öğretim" tekniğine uygun

Detaylı

Veri Tabanı Yönetim Sistemleri Bölüm - 4

Veri Tabanı Yönetim Sistemleri Bölüm - 4 Veri Tabanı Yönetim Sistemleri Bölüm - 4 İçerik SQL e Giriş. SQL Yapısal Sorgulama Dili. Temel SQL Komutları: Sorgulama İşlemleri SELECT deyiminin temel yapısı Seçme İşlemi Atma İşlemi Aritmetik İfadelerin

Detaylı

Toplama işlemi için bir ikili operatör olan artı işareti aynı zamanda tekli operatör olarak da kullanılabilir.

Toplama işlemi için bir ikili operatör olan artı işareti aynı zamanda tekli operatör olarak da kullanılabilir. www.csharpturk.net Türkiye nin C# Okulu Yazar Yunus Özen Eposta yunus@yunus.gen.tr Tarih 08.04.2006 Web http://www.yunusgen.tr ARİTMETİK OPERATÖRLER VE KULLANIM ŞEKİLLERİ Bilgisayarlar yapıları gereği,

Detaylı

Word 2007 - Otomatik Düzelt

Word 2007 - Otomatik Düzelt Word 2007 - Otomatik Düzelt Otomatik düzelt penceresinin anlatılması OTOMATİK DÜZELT PENCERESİ OTOMATİK DÜZELT Otomatik Düzelt penceresine iki yoldan ulaşabiliriz. 1. Microsoft Office Düğmesi > Word Seçenekleri

Detaylı

Önermeler. Önermeler

Önermeler. Önermeler Önermeler ers 1 1-1 Önermeler 1-2 1 Önerme Mantığı ve İspatlar Mantık önermelerin doğruluğunu kanıtlamak için kullanılır. Önermenin ne olduğu ile ilgilenmek yerine bazı kurallar koyar ve böylece önermenin

Detaylı

BİLGİSAYAR PROGRAMLAMA

BİLGİSAYAR PROGRAMLAMA BİLGİSAYAR PROGRAMLAMA Yrd. Doç. Dr. Beytullah EREN beren@sakarya.edu.tr 0264 295 5642 BAĞ_DEĞ_SAY ve BAĞ_DEĞ_DOLU_SAY İŞLEVİ BAĞ_DEĞ_SAY İşlevi: :Belirlenen aralıkta sayı içeren hücrelerin kaç tane olduğunu

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI 1.KURUMUN ADI 2.KURUMUN ADRESİ 3.KURUCUNUN ADI :Tercih Özel Öğretim Kursu : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA : ARTI ÖZEL EĞİTİM ÖĞRETİM

Detaylı

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması Ağaç, verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen hiyararşik yapıya sahip

Detaylı

Bilimsel Yasa Kavramı. Yrd.Doç.Dr. Hasan Said TORTOP Kdz.Ereğli-2014

Bilimsel Yasa Kavramı. Yrd.Doç.Dr. Hasan Said TORTOP Kdz.Ereğli-2014 Bilimsel Yasa Kavramı Yrd.Doç.Dr. Hasan Said TORTOP Kdz.Ereğli-2014 Bilimsel yasa her şeyden önce genellemedir. Ama nasıl bir genelleme? 1.Bekarla evli değildir. 2. Bahçedeki elmalar kırmızıdır 3. Serbest

Detaylı

KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR

KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR Kümeler Koşullu ve Mantıksal Denklik Kümeler Kümeler Ayrık Kümeler De-Morgan Kuralı Z (Zahlen; alm.) tamsayılar kümesi Z negatif tamsayılar kümesi, Z nonneg

Detaylı

11. RASYONEL SAYILARIN SIRALANMASI

11. RASYONEL SAYILARIN SIRALANMASI 11. RASYONEL SAYILARIN SIRALANMASI SIRALAMA SEMBOLLERİ Sıralama sembolleri, sayıların sıralanma şeklini gösterirler. Yani, sıralama sembolleri sayıların küçükten büyüğe veya büyükten küçüğe doğru sıralanmasını

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

TEMEL SAYMA. Bill Gates

TEMEL SAYMA. Bill Gates Bölüm 1 TEMEL SAYMA YÖNTEMLERİ Firmamızın sahip olduğu tek şey insan düş gücüdür. Bill Gates Bu bölümde fazla kuramsal bilgi gerektirmeyen sayma problemleri üzerinde duracağız. Bu tür problemlerde sayma;

Detaylı

İLİŞKİSEL VERİ MODELİ

İLİŞKİSEL VERİ MODELİ İLİŞKİSEL VERİ MODELİ Tablolar ile Gösterim Her İlişki iki boyutlu bir tablo olarak gösterilir. Tablonun her sütununa bir nitelik atanır. Tablonun her satırı ise bir kaydı gösterir. Bilimsel kesimde daha

Detaylı

Elektronların Dağılımı ve Kimyasal Özellikleri

Elektronların Dağılımı ve Kimyasal Özellikleri Elektronların Dağılımı ve Kimyasal Özellikleri Helyum (2), neon (10), argon (18)in elektron dağılımları incelendiğinde Eğer bu üç elementin birer elektronu daha olsaydı, her birinde yeni bir katman oluşacaktı.

Detaylı

BİLGİSAYAR PROGRAMLAMA

BİLGİSAYAR PROGRAMLAMA BİLGİSAYAR PROGRAMLAMA Yrd. Doç. Dr. Beytullah EREN beren@sakarya.edu.tr 0264 295 5642 1 MİCROSOFT EXCEL Elektronik tablolama veya hesaplama programı olarak da adlandırılan Excel, girilen veriler üzerinde

Detaylı

1. MİCROSOFT EXCEL 2010 A GİRİŞ

1. MİCROSOFT EXCEL 2010 A GİRİŞ 1. MİCROSOFT EXCEL 2010 A GİRİŞ 1.1. Microsoft Excel Penceresi ve Temel Kavramlar Excel, Microsoft firması tarafından yazılmış elektronik hesaplama, tablolama ve grafik programıdır. Excel de çalışılan

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

TEMEL SAYMA KURALLARI

TEMEL SAYMA KURALLARI TEMEL SAYMA KURALLARI SAYMA Toplama Yoluyla Sayma A ve B sonlu ve ayrık kümeler olmak üzere, bu iki kümenin birleşiminin eleman sayısı; s(a,b) = s(a) + s(b) dir. Sonlu ve ayrık iki kümenin birleşiminin

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar

Detaylı

Office 2007 Otomatik Düzelt Seçenekleri

Office 2007 Otomatik Düzelt Seçenekleri Sırasıyla öncelikle; Microsoft Office Düğmesi, Word, Yazım Denetleme, Otomatik Düzeltme ne gireriz. Otomatik Düzelt penceresine girdiğimizde karşımıza aşağıdaki pencere gelecektir. 1.)Otomatik Düzeltme

Detaylı

GÖRSEL PROGRALAMA HAFTA 3 ALGORİTMA VE AKIŞ DİYAGRAMLARI

GÖRSEL PROGRALAMA HAFTA 3 ALGORİTMA VE AKIŞ DİYAGRAMLARI GÖRSEL PROGRALAMA HAFTA 3 ALGORİTMA VE AKIŞ DİYAGRAMLARI DERS İÇERİĞİ Algoritma nedir? Akış Diyagramı nedir? Örnek Uygulama ALGORİTMA Algoritma sözcüğü Ebu Abdullah Muhammed İbn Musa el Harezmi adındaki

Detaylı

HİDROLİK VE PNÖMATİK SİSTEMLERDE DEVRE ÇİZİMİ. Öğr. Gör. Adem ÇALIŞKAN

HİDROLİK VE PNÖMATİK SİSTEMLERDE DEVRE ÇİZİMİ. Öğr. Gör. Adem ÇALIŞKAN HİDROLİK VE PNÖMATİK SİSTEMLERDE DEVRE ÇİZİMİ Öğr. Gör. Adem ÇALIŞKAN SİSTEM: Enerji kullanarak iş yapılmasına olanak sağlayan elemanlar bütününe denir. Sistem üç ana gruptan oluşur. Güç ünitesi Kontrol

Detaylı

VERİ TABANI SİSTEMLERİ

VERİ TABANI SİSTEMLERİ VERİ TABANI SİSTEMLERİ 1- Günümüzde bilgi sistemleri Teknoloji ve bilgi. 2- Bilgi sistemlerinin Geliştirilmesi İşlevsel Gereksinimleri 1.AŞAMA Gereksinim Belirleme ve Analiz Veri Gereksinimleri Gereksinimler

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ

LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ Sayısal tasarımcılar tasarladıkları devrelerde çoğu zaman VE-Değil yada VEYA-Değil kapılarını, VE yada VEYA kapılarından daha

Detaylı

MATEMATİK-AKIL OYUNLARI -ÖRNEK SORULAR-

MATEMATİK-AKIL OYUNLARI -ÖRNEK SORULAR- MATEMATİK-AKIL OYUNLARI -ÖRNEK SORULAR- SORU1) 67 sayısından 9 sayısını 6 defa çıkartırsanız sonuç kaç olur? SORU2) 3,3,3,3,3 rakamlarını kullanarak (her rakam bir defa kullanılacak) ve dört işlemi yaparak

Detaylı

Sunum İçeriği. Programlamaya Giriş 22.03.2011

Sunum İçeriği. Programlamaya Giriş 22.03.2011 Programlamaya Giriş Nesne Tabanlı Programlamaya Giriş ve FONKSİYONLAR Sunum İçeriği Nesne Tabanlı Programlama Kavramı Fonksiyon tanımlama ve kullanma Formal Parametre nedir? Gerçel Parametre nedir? Fonksiyon

Detaylı

Bilgisayar Programlama MATLAB

Bilgisayar Programlama MATLAB What is a computer??? Bilgisayar Programlama MATLAB Prof. Dr. İrfan KAYMAZ What Konular is a computer??? MATLAB ortamının tanıtımı Matlab sistemi (ara yüzey tanıtımı) a) Geliştirme ortamı b) Komut penceresi

Detaylı

Türkçe. Cümlede Anlam 19.02.2015. Cümlenin Yorumu. Metinde Kazandıkları Anlamlara Göre Cümleler

Türkçe. Cümlede Anlam 19.02.2015. Cümlenin Yorumu. Metinde Kazandıkları Anlamlara Göre Cümleler Metinde Kazandıkları Anlamlara Göre Cümleler 16-20 MART 3. HAFTA Cümledeki sözcük sayısı, anlatmak istediğimiz duygu ya da düşünceye göre değişir. Cümledeki sözcük sayısı arttıkça, anlatılmak istenen daha

Detaylı

Temel Bilgisayar Programlama

Temel Bilgisayar Programlama Temel Bilgisayar Programlama C Programlamaya Giriş Dr. Tahir Emre Kalaycı 2012 Dr. Tahir Emre Kalaycı () Temel Bilgisayar Programlama 2012 1 / 16 İçerik 1 Geçtiğimiz hafta 2 Yapısal Program Geliştirme

Detaylı

BİLGİSAYAR PROGRAMLAMA

BİLGİSAYAR PROGRAMLAMA BİLGİSAYAR PROGRAMLAMA Yrd. Doç. Dr. Beytullah EREN beren@sakarya.edu.tr 0264 295 5642 Excel - Hücreler Excel de hücrelere hangi değerler girilebilir? Metin Rakam Tarih ve Saat Formül 1 HÜCRE SEÇİMİ Matematikteki

Detaylı

1- ELEMENTLER: 2. BÖLÜM SAF MADDELER. saf madde denir.

1- ELEMENTLER: 2. BÖLÜM SAF MADDELER. saf madde denir. 2. BÖLÜM SAF MADDELER Saf madde: Aynı cins taneciklerden oluşan ( yani aynı cins atomlardan ya da aynı cins moleküllerden oluşan ) maddelere saf madde denir. SAF MADDELER - Elementler - Bileşikler olmak

Detaylı

BÖLÜM 3 OPERAT A ÖRLER - 19 -

BÖLÜM 3 OPERAT A ÖRLER - 19 - BÖLÜM 3 OPERATÖRLER - 19 - 3.1 Operatörler Hakkında Yukarıdaki örnekleri birlikte yaptıysak = işaretini bol bol kullandık ve böylece PHP'nin birçok operatöründen biriyle tanıştık. Buna PHP dilinde "atama

Detaylı

SQL e Giriş. Uzm. Murat YAZICI

SQL e Giriş. Uzm. Murat YAZICI SQL e Giriş Uzm. Murat YAZICI SQL (Structured Query Language) - SQL Türkçe de Yapısal Sorgulama Dili anlamına gelmektedir ve ilişkisel veritabanlarında çok geniş bir kullanım alanına sahiptir. - SQL ile

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-I

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-I HEDEFLER İÇİNDEKİLER TÜREV UYGULAMALARI-I Artan ve Azalan Fonksiyonlar Fonksiyonların Maksimum ve Minimumu Birinci Türev Testi İkinci Türev Testi Türevin Geometrik Yorumu Türevin Fiziksel Yorumu MATEMATİK-1

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

MATEMATİK I Ders Notları

MATEMATİK I Ders Notları MATEMATİK I Ders Notları Gazi Üniversitesi Gazi Eğitim Fakültesi Bilgisayar ve Öğretim Teknolojileri Eğitimi Bölümü, ANKARA 2009 2010 1. ÖNBİLGİLER 1 İÇİNDEKİLER 1.1. ÖNERMELER MANTIĞI... 2 1.2. KÜMELER...

Detaylı

Excel Formüller ve Fonksiyonlar. Yusuf MANSUROĞLU Mühendislik Hizmetleri Müdür Yardımcısı 11.02.2015

Excel Formüller ve Fonksiyonlar. Yusuf MANSUROĞLU Mühendislik Hizmetleri Müdür Yardımcısı 11.02.2015 Excel Formüller ve Fonksiyonlar Yusuf MANSUROĞLU Mühendislik Hizmetleri Müdür Yardımcısı 11.02.2015 Excel de Yapabileceklerimiz Temel aritmetik işlemler (4 işlem) Mantıksal karşılaştırma işlemleri (>,>=,

Detaylı

Programın Akışının Denetimi. Bir arada yürütülmesi istenen deyimleri içeren bir yapıdır. Söz dizimi şöyledir:

Programın Akışının Denetimi. Bir arada yürütülmesi istenen deyimleri içeren bir yapıdır. Söz dizimi şöyledir: Programın Akışının Denetimi Bir program komutların yazıldığı sırada akar. Ama çoğunlukla, bu akışı yönlendirmek gerekir. Bu iş için denetim yapılarını kullanırız. Bunlar iki gruba ayrılabilir: Yönlendiriciler

Detaylı

MICROSOFT OFFİCE WORD PROGRAMI DOSYA İŞLEMLERİ

MICROSOFT OFFİCE WORD PROGRAMI DOSYA İŞLEMLERİ MICROSOFT OFFİCE WORD PROGRAMI Ms Word bir kelime işlemci programıdır. İçinde bulunan detaylı metin biçimlendirme seçenekleri, ayrıntılı tablo, şekil ve grafik oluşturma başarıları nedeniyle, kendi türünde

Detaylı

Öğr. Gör. Cansu AYVAZ GÜVEN VERİTABANI-II. Değişken Tanımlama Ve Akış Kontrol Deyimleri

Öğr. Gör. Cansu AYVAZ GÜVEN VERİTABANI-II. Değişken Tanımlama Ve Akış Kontrol Deyimleri Öğr. Gör. Cansu AYVAZ GÜVEN VERİTABANI-II Değişken Tanımlama Ve Akış Kontrol Deyimleri Değişken Tanımlama Değişken isimlerinin başında @ sembolü bulunur. @ad, @soyad, @tarih değişken isimlerine birer örnektir.

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

denklemler Kazanım :Gerçek yaşam durumlarına uygun birinci dereceden bir bilinmeyenli denklemleri kurar.

denklemler Kazanım :Gerçek yaşam durumlarına uygun birinci dereceden bir bilinmeyenli denklemleri kurar. denklemler Kazanım :Gerçek yaşam durumlarına uygun birinci dereceden bir bilinmeyenli denklemleri kurar. Denklem: İçinde bilinmeyen bulunan ve bilinmeyenin bazı değerleri için doğru olan eşitliklere denklem

Detaylı

BİLİŞİM TEKNOLOJİLERİ 6. SINIF DERS NOTLARI 2

BİLİŞİM TEKNOLOJİLERİ 6. SINIF DERS NOTLARI 2 PROGRAMLAMA Bir problemin çözümü için belirli kurallar ve adımlar çerçevesinde bilgisayar ortamında hazırlanan komutlar dizisine programlama denir. Programlama Dili: Bir programın yazılabilmesi için kendine

Detaylı

Mantık fonksiyonlarından devre çizimi 6 Çizilmiş bir devrenin mantık fonksiyonunun bulunması

Mantık fonksiyonlarından devre çizimi 6 Çizilmiş bir devrenin mantık fonksiyonunun bulunması DERSİN ADI BÖLÜM PROGRAM DÖNEMİ DERSİN DİLİ DERS KATEGORİSİ ÖN ŞARTLAR SÜRE VE DAĞILIMI KREDİ DERSİN AMACI ÖĞRENME ÇIKTILARI VE YETERLİKLER DERSİN İÇERİĞİ VE DAĞILIMI (MODÜLLER VE HAFTALARA GÖRE DAĞILIMI)

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

Öğr. Gör. Cansu AYVAZ GÜVEN VERİTABANI-II. Değişken Tanımlama Ve Akış Kontrol Deyimleri

Öğr. Gör. Cansu AYVAZ GÜVEN VERİTABANI-II. Değişken Tanımlama Ve Akış Kontrol Deyimleri Öğr. Gör. Cansu AYVAZ GÜVEN VERİTABANI-II Değişken Tanımlama Ve Akış Kontrol Deyimleri Değişken Nedir? Değişkenler, programın veya kodların icra süresince belirli bir değer tutan ve istenilirse bu değer

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method)

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method) Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method) Konular Düğüm Gerilimleri Yöntemi o Temel Kavramlar o Yönteme Giriş o Yöntemin Uygulanışı o Yöntemin Uygulanması o Örnekler

Detaylı

Grup 2 12091601 Selin Bozkurtlar Ödev 4 16.04.2014 BİLİŞİM TEKNOLOJİLERİ EĞİTİM PLANI

Grup 2 12091601 Selin Bozkurtlar Ödev 4 16.04.2014 BİLİŞİM TEKNOLOJİLERİ EĞİTİM PLANI Grup 2 12091601 Selin Bozkurtlar Ödev 4 16.04.2014 A. Biçimsel Bölüm Dersin Adı Sınıf Konunun Adı Süre Öğrenme-Öğretme Strateji ve Yöntemi Araç Gereçler Kazanım BİLİŞİM TEKNOLOJİLERİ EĞİTİM PLANI Bilişim

Detaylı

IV.Ünite: SEMBOLİK MANTIK: D - Çok Değerli Mantık Özet

IV.Ünite: SEMBOLİK MANTIK: D - Çok Değerli Mantık Özet ÇOK DEĞERLİ MANTIK Klasik mantık sistemleri, sadece belirli koşullarda oluşan, kesin doğruluk değerleri doğru ya da yanlış olan önermelerle ilgilenirler. Belirsizlikle ilgilenmezler. İki değerlikli bu

Detaylı

KÜMELER 05/12/2011 0

KÜMELER 05/12/2011 0 KÜMELER 05/12/2011 0 KÜME NEDİR?... 2 KÜMELERİN ÖZELLİKLERİ... 2 KÜMELERİN GÖSTERİLİŞİ... 2 EŞİT KÜME, DENK KÜME... 3 EŞİT OLMAYAN (FARKLI) KÜMELER... 3 BOŞ KÜME... 3 ALT KÜME - ÖZALT KÜME... 4 KÜMELERDE

Detaylı

PROGRAMLAMAYA GİRİŞ. Öğr. Gör. Ayhan KOÇ. Kaynak: Algoritma Geliştirme ve Programlamaya Giriş, Dr. Fahri VATANSEVER, Seçkin Yay.

PROGRAMLAMAYA GİRİŞ. Öğr. Gör. Ayhan KOÇ. Kaynak: Algoritma Geliştirme ve Programlamaya Giriş, Dr. Fahri VATANSEVER, Seçkin Yay. PROGRAMLAMAYA GİRİŞ Öğr. Gör. Ayhan KOÇ Kaynak: Algoritma Geliştirme ve Programlamaya Giriş, Dr. Fahri VATANSEVER, Seçkin Yay., 2007 Algoritma ve Programlamaya Giriş, Ebubekir YAŞAR, Murathan Yay., 2011

Detaylı

13 Aralık 2007. Đlgili Versiyon/lar : ETA:SQL, ETA:V.8-SQL. Đlgili Modül/ler : Raporlar. Kullanıcı Tanımlı Raporlar Bölümünden Yapabildiklerimiz

13 Aralık 2007. Đlgili Versiyon/lar : ETA:SQL, ETA:V.8-SQL. Đlgili Modül/ler : Raporlar. Kullanıcı Tanımlı Raporlar Bölümünden Yapabildiklerimiz 13 Aralık 2007 Đlgili Versiyon/lar : ETA:SQL, ETA:V.8-SQL Đlgili Modül/ler : Raporlar KULLANICI TANIMLI RAPORLAR Kullanıcı Tanımlı Raporlar Bölümünden Yapabildiklerimiz Kendi isteklerinize özel rapor tasarımları

Detaylı

Excel de çalışma alanı satır ve sütunlardan oluşur. Satırları rakamlar, sütunları ise harfler temsil eder. Excel çalışma sayfası üzerinde toplam

Excel de çalışma alanı satır ve sütunlardan oluşur. Satırları rakamlar, sütunları ise harfler temsil eder. Excel çalışma sayfası üzerinde toplam Microsoft Excel Microsoft Office paket programı ile bizlere sunulan Excel programı bir hesap tablosu programıdır. her türlü veriyi tablolar yada listeler halinde tutmak ve bu veriler üzerinde hesaplamalar

Detaylı

SIKLIK VE ÇETELE TABLOSU

SIKLIK VE ÇETELE TABLOSU Adım:.. Soyadım: MATEMATİK DERSİ SIKLIK VE ÇETELE TABLOSU (EV ÖDEVİ)ETKİNLİĞİ SIKLIK VE ÇETELE TABLOSU 1. ETKİNLİK 3/C sınıfı öğrencilerine en çok hangi oyunu seviyorsun diye sorulduğunda; 3 kişi saklambaç,

Detaylı

SONUÇ YAYINLARI. 9. Sınıf Kümeler

SONUÇ YAYINLARI. 9. Sınıf Kümeler 9. SINIF SONUÇ YYINLRI 9. Sınıf Kümeler Bu kitabın tamamının ya da bir kısmının, kitabı yayımlayan şirketin önceden izni olmaksızın elektronik, mekanik, fotokopi ya da herhangi bir kayıt sistemiyle çoğaltılması,

Detaylı

Temel Bilgi Teknolojileri - II Ayrıntılı Ders İçerikleri

Temel Bilgi Teknolojileri - II Ayrıntılı Ders İçerikleri Temel Bilgi Teknolojileri - II Ayrıntılı Ders İçerikleri Hesap Tabloları(Excel 2007) HAFTA 1 1. Hesap Tablolarına Giriş 1.1. Hesap tablosu tanımı, kullanım amacı ve yerleri 1.2. MS Excel Uygulamasına giriş

Detaylı

(b) Bir kanıtlamadır. Burada (çünkü) bir öncül belirticidir ve kendisinden sonra gelen yargının öncül olduğunu gösterir.

(b) Bir kanıtlamadır. Burada (çünkü) bir öncül belirticidir ve kendisinden sonra gelen yargının öncül olduğunu gösterir. A-Grubu 1. Soru (B-Grubu 3. Soru ile aynı) Not: bu soruda öncül ve sonuçları sınavda istendiği gibi, verilen boş kağıda açıkça yazmayanlar ve soru kağıdı üzerinde altını çizmek vb. yöntemlerle gösterenlerin

Detaylı

ÜNİTE NESNE TABANLI PROGRAMLAMA I. Uzm. Orhan ÇELİKER VERİTABANI SORGULARI İÇİNDEKİLER HEDEFLER

ÜNİTE NESNE TABANLI PROGRAMLAMA I. Uzm. Orhan ÇELİKER VERİTABANI SORGULARI İÇİNDEKİLER HEDEFLER VERİTABANI SORGULARI İÇİNDEKİLER Select İfadesi Insert İfadesi Update İfadesi Delete İfadesi Verileri Sıralamak Verileri Gruplandırmak Veriler Üzerinde Arama Yapmak NESNE TABANLI PROGRAMLAMA I Uzm. Orhan

Detaylı

SQL (Structured Query Language)

SQL (Structured Query Language) SQL (Structured Query Language) Genel SQL SQL çok yüksek seviyeli bir dildir. Biraz ingilizce bilgisi gerektirir. Programlama dillerine göre öğrenilmesi çok daha kolaydır. Çünkü programlama dillerindeki

Detaylı

VERİ TABANI NEDİR A. TABLO OLUŞTURMA

VERİ TABANI NEDİR A. TABLO OLUŞTURMA VERİ TABANI NEDİR Belli bir amaca dayalı ortak alanlara (ad soyad, ürün adı, fiyatı gibi) sahip kişilerin ve nesnelerin bilgilerinin tutulduğu, istendiğinde bu bilgiler için arama, düzeltme, silme, kayıt

Detaylı

Üstel ve Logaritmik Fonksiyonlar

Üstel ve Logaritmik Fonksiyonlar Üstel ve Logaritmik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; üstel ve logaritmik fonksiyonları tanıyacak, üstel ve logaritmik fonksiyonların grafiklerini

Detaylı

Saygın KIRILMAZ, Tolga TANIŞ, Simay AYDIN

Saygın KIRILMAZ, Tolga TANIŞ, Simay AYDIN YAYIN KURULU Hazırlayanlar Saygın KIRILMAZ, Tolga TANIŞ, Simay AYDIN YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni Saime YILDIRIM Kurumsal Yayınlar Birimi Dizgi & Grafik Mustafa Burak SANK &

Detaylı

Örnek...1 : Örnek...2 : A = { a, {a}, b, c, {b, d}, d }, B = { {a}, {c, d}, c, d, x, Δ } k ümeleri için s( AUB) kaçtır?

Örnek...1 : Örnek...2 : A = { a, {a}, b, c, {b, d}, d }, B = { {a}, {c, d}, c, d, x, Δ } k ümeleri için s( AUB) kaçtır? KÜMELER 2 İKİ KÜMENİN BİRLEŞİMİ A ve B gibi iki kümeden, A' ya veya B' ye ait olan elemanlardan oluşan yeni kümeye A ile B' nin birleşimi denir ve AUB ile gösterilir. Bu gösterim A birleşim B di ye okunur.

Detaylı

V R. Devre 1 i normal pozisyonuna getirin. Şalter (yukarı) N konumuna alınmış olmalıdır. Böylece devrede herhangi bir hata bulunmayacaktır.

V R. Devre 1 i normal pozisyonuna getirin. Şalter (yukarı) N konumuna alınmış olmalıdır. Böylece devrede herhangi bir hata bulunmayacaktır. Ohm Kanunu Bir devreden geçen akımın şiddeti uygulanan gerilim ile doğru orantılı, devrenin elektrik direnci ile ters orantılıdır. Bunun matematiksel olarak ifadesi şöyledir: I V R Burada V = Gerilim (Birimi

Detaylı

Microsoft Excel 1.BÖLÜM

Microsoft Excel 1.BÖLÜM Microsoft Excel 1.BÖLÜM Dersin Amacı İş hayatını ve günlük yaşamı kolaylaştırmada yardımcı olan işlem tabloları hakkında bilgi vermek. Bu işlem tablolarından en yaygın olarak kullanılan Excel programını,

Detaylı