DİNAMİK DERS NOTLARI. Doç.Dr. Cesim ATAŞ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DİNAMİK DERS NOTLARI. Doç.Dr. Cesim ATAŞ"

Transkript

1 DİNMİK DERS NOTLRI Kaynaklar: Engineering Mechanics: Dynamics,, SI Version, 6th Edition, J. L. Meriam,, L. G. Kraige Vector Mechanics for Engineers: : Dynamics, Sith Edition, Beer and Johnston Doç.Dr. Cesim TŞ

2 1. MDDESEL NOKTNIN (PRÇCIK) KİNEMTİĞİ (KINEMTICS OF PRTICLES) 1.1 Doğrusal Hareket (rectilinear motion) O P - Parçacığın hızı; v = d dt Bir parçacığın düz bir çizgi boyunca hareketi doğrusal hareket olarak adlandırılır. ivme a hızın (v) zamana (t) göre türevi ile bulunur; a = dv dt + veya a = d 2 dt 2 İvme (a) zamandan bağımsız olarak da ifade edilebilir: a = v dv d

3 Hız (v) ve ivme (a) vektörel büyüklüklerdir. Burada; doğrultusu belli olan bir çizgi boyunca hareket söz konusudur. İşlemler de hız için bulunan pozitif ve negatif değerler hareket yönünü temsil ederken, pozitif ivme değerleri hızlanmaya negatif değerler ise parçacığın yavaşlamasına işaret eder. Düzgün Doğrusal Hareket: = o + vt v= sabit a= 0 Düzgün Değişen Doğrusal Hareket: v = v o + at 1 = o + v o t + at 2 v 2 2 = v o + 2a( - o ) 2 (a= sabit)

4 Bağıl Hareket: B/ B nin ya göre bağıl konumu (aslında konum vektörü) olmak üzere; O B B B/ B = + B/ ; v B = v + v B/ ; a B = a + a B/

5 Problem çözümlerinde grafik yöntemler de kullanılabilir.grafik çözümler genellikle - t, v - t, ve a - t eğrileri kullanılarak yapılır. a Herhangi bir t anında, v v 2 v t 1 t 2 t 1 t 2 t 1 t 2 t t 2 v 2 - v 1 = a dt t1 t t t = v dt t1 v = ( t) eğrisinin eğimi Ortalama hız ; Δ Δt a = (v - t) eğrisinin eğimi Ortalama ivme ; Δv Herhangi bir zaman aralığında t 1 - t 2, v 2 - v 1 = (a t) eğrisinin altında kalan alan 2-1 = (v - t ) eğrisinin altında kalan alan v = a = Δt

6 y O 1.2 Eğrisel Hareket (curvilinear motion) r P o s P v r: göz önüne alınan parçacığın herhangi bir andaki konum vektörü Parçacığın hızı; v = dr dt Hız vektörü daima parçacığın hareket yörüngesine teğettir ve şiddeti (v), parçacığın aldığı yolun (s)zamana göre türevi ile bulunur. v = ds dt y O r P o a s P Fakat, genellikle, ivme hareket yörüngesine teğet değildir. Hız vektörlerinin yörüngesine teğettir. a = dv dt

7 1.3 Hız ve İvmenin Dik Bileşenleri y v y y a y v z P v P a z r=i+yj+zk k j v = dr a = dv dt dt... v = v y = y v z = z a = a y = y a z = z r i yj i zk z k a z j r i

8 Örnek; Bir mermin 2-Boyutlu hareketi

9 1.4 Öteleme Yapan Bir Eksen Takımına Göre Bağıl Hareket -y-z; sabit eksen takımı -y -z ; hareketli eksen takımı v B/ : B nin ya göre bağıl hızı; a B/ : B nin ya göre bağıl ivmesi r B = r + r B/ v B = v + v B/ a B = a + a B/ 1.5 Normal ve Teğetsel Koordinatlar (n-t) Bazen, hız ve ivme bileşenlerini kartezyen koordinatlardan (, y, ve z ) daha farklı bir sistemde tanımlamak daha kolaydır. Örneğin eğrisel bir yörüngede hareket eden bir P parçacığını yörüngeye teğet ve yörüngeye normal bileşenler şeklinde ifade edebiliriz. Bu durumda; v 2 dv v = ve t ; a = e + t e dt ρ n y O C a n = e ρ n P v 2 dv a t = dt e t

10 1.6 Kutupsal (Polar) Koordinatlar (r ve θ) Düzlemdeki eğrisel bir yörüngede hareket eden bir parçacığın konumunu r ve θ ile ifade etmek mümkün ise hız ve ivmeyi de radyal ve ona dik doğrultudaki bileşenlerine ayırmak mümkün olmaktadır. e r ve e θ birim vektörlerdir. Hız ve ivme bileşenleri;.. v = re r + rθe θ a = (r - rθ 2 )e r + (rθ + 2rθ)e θ O e θ r = r e r θ P e r Burada noktalar zamana göre türevi temsil etmektedir. Bu durumda skaler bileşenler şu şekilde ifade edilebilir:.. v r = r v θ = rθ a r = r - rθ 2 a θ = rθ + 2rθ

11 2. MDDESEL NOKTNIN (PRÇCIK) KİNETİĞİ: NEWTON UN İKİNCİ KNUNU (KINETICS OF PRTICLES:NEWTON S SECOND LW) 2.1 Giriş m:kütle, Newton un ikinci kanunu Σ F: bileşke kuvvet vektörü a: ivme vektörü Σ F = ma Bir parçacığın lineer momentumu, L = mv ile ifade edildiğinde Newton un ikinci kanunu aşağıdaki gibi yazılabilir. Σ F = L. Bu bağıntı; bir parçacığa etkiyen bileşke kuvvetin, parçacığın lineer momentumu nun değişim hızına eşit olduğu anlamına gelir.

12 z y P a z a y a Bir parçacığın hareketiyle ilgili bir problemi çözerken; Σ F = ma yerine skaler bileşenleri içeren bağıntılar da kullanılabilir. Kartezyen koordinatlarda; Σ F = ma Σ F y = ma y Σ F z = ma z y O a n P a t Teğetsel ve Normal koordinatlarda, Σ F t = ma t = m dv dt Σ F n = ma n = m v 2 ρ O a θ r θ P a r Kutupsal koordinatlarda,... Σ F r = ma r = m(r - rθ 2 ).... Σ F θ = ma θ = m(rθ + 2rθ)

13 H O z 2.2 çısal Momentum y O r P φ mv Bir parçacığın O noktasına göre açısal momentumu (angular momentum) (H O ); parçacığın lineer momentumu nun (mv) O noktasına göre momenti olarak tanımlanabilir. H O = r mv Burada H O ; r and mv vektörlerini içeren düzleme dik bir vektördür. Şiddeti; H O = rmv sin φ H O = i j k y z mv mv y mv z

14 z H O O y r mv φ P H O = i j k y z mv mv y mv z y düzleminde hareket eden bir parçacık için; z = v z = 0. çısal momentum y düzlemine her zaman diktir. Bu durumda açısal momentum sadece şiddeti ile de tanımlanabilir: H O = H z = m(v y - yv ) çısal momentum (H O ) daki değişim hızını Newton un ikinci kanununu uygularsak;. Σ M O = H O. H O hesaplayıp Bu bağıntıya göre; bir parçacığa etki eden kuvvetlerin O noktası etrafındaki bileşke momentlerinin, parçacığın O etrafındaki açısal momentumundaki değişim oranına/hızına eşittir.

15 3. MDDESEL NOKTNIN (PRÇCIK) KİNETİĞİ: ENERJİ VE MOMENTUM METOTLRI (KINETICS OF PRTICLES: ENERGY ND MOMENTUM METHODS ) Kinetik analizde ivme kullanılmadan analiz yapma imkanı veren iki yöntem vardır: iş-enerji ve impuls-momentum. Her iki yönteme ait bağıntılar Newton un 2. kanunundan yararlanılarak elde edilebilir. Bir kuvvetin işi: s 1 1 s 2 s ds dr α F 2 Parçacığa etki eden F kuvvetinin küçük dr deplasmanına karşılık gelen işi; du = F dr = Fdscos α Böylece, 1 den 2 ye yapılan iş; 1 2 U 1 2 = F dr 1 2 = (F d + F y dy + F z dz)

16 Doğrusal harekette sabit bir kuvvetin işi: F α 2 1 Δ U 1 2 = (F cos a) Δ ğırlığın işi: 1 y 1 W y dy 2 y 2 ğırlığı W olan bir cismin işi (y 1 den y 2 ye çıkarıldığında); F = F z = 0 and F y = - W. y2 U 1 2 = - Wdy = Wy 1 -Wy 2 y 1

17 B Yay kuvvetinin işi: spring undeformed O Bir yayın uyguladığı F kuvvetinin yaptığı iş ( 1 den 2 ye) du = -Fd = -k d B 1 1 F U 1 2 = k d = k 1 - k 2 Yayı şekil değiştirmemiş konumuna dönmeye zorlayan yay kuvvetlerinin işi pozitif (+) tir. B 2 2.

18 iş-enerji prensibi Bir parçacığın kinetik enerjisi; T = mv 2 Newton un 2. kanunu kullanılarak iş-enerji prensibi 1 2 çıkarılabilir: T 1 + U 1 2 = T 2 Eğer bir F kuvvetinin yaptığı iş parçacığın takip ettiği yoldan bağımsız ise; F kuvvetine konservatif kuvvet denir. Yay kuvveti ve ağırlık konservatif kuvvetlerdir. Bu durumda enerjinin korunumundan söz edilebilir. T 1 + V 1 = T 2 + V 2 Buna göre; sadece konservatif kuvvetler etkisinde hareket eden bir parçacığın, potansiyel enerjisinin ve kinetik enerjisinin toplamı hareket boyunca sabit kalır.

19 İmpuls-momentum prensibi Bir parçacığın lineer momentumu; parçacık kütlesi ( m) ile hızının (v) çarpımına eşittir. Newton un ikinci kanunundan, F = ma, impuls-momentum t 2 bağıntısı şu şekilde çıkarılabilir: mv 1 + F dt = mv 2 t 1 mv 1 + Imp 1 2 = mv 2 Eğer parçacık birden fazla kuvvetin etkisinde ise; mv 1 + ΣImp 1 2 = mv 2 Burada yer alan vektörel büyüklükler bileşenlerine ayrılarak (ör; ve y ), impuls-momentum bağıntısı skaler bağıntılar şeklinde de ifade edilebilir.

20 Eğer çok büyük impulsif kuvvetler çok küçük bir zaman aralığında (Δt) etki ediyorsa; impulsif olmayan kuvvetlerin impulsları ihmal edilebilir: mv 1 + ΣFΔt = mv 2 Birden fazla parçacığın impulsif hareketinde; Σmv 1 + ΣFΔt = Σmv 2 Burada ikinci terim sadece impulsif dış kuvvetleri içermektedir. Eğer dış kuvvetlerin impulslarının toplamı 0 ise, parçacıkların toplam momentumları korunur; Σmv 1 = Σmv 2

21 Çarpışma: Doğru Merkezsel Çarpışma Çarpışma doğrultusu v B v B Çarpışma öncesi v B and B parçacıklarının doğru merkezsel çarpışma dan sonraki hızlarını bulmak için iki denklem kullanılabilir: Birinci denklem, iki cismin toplam momentumlarının korunumu; m v + m B v B = m v + m B v B..(I) İkinci denklem,çarpışma öncesi ve sonrası hız ilişkisini ifade eder (çarpışma katsayısını içerir) ; v B - v = e (v - v B )....(II) v B Çarpışma sonrası Çarpışan malzemelerin özelliklerine bağlı olarak, çarpışma katsayısı (e), 0 ile 1 arasında değerler alır. e = 0, tam plastik çarpışma. e = 1, tam elastik çarpışma.

22 Eğik Merkezsel Çarpışma t Line of Impact B v B n Eğik merkezsel çarpışmada, çarpışan cisimlerin hızları; çarpışma doğrultusundaki (n) ve temas yüzeyine teğet doğrultudaki (t) bileşenlerine ayrılır. Bu durumda bilinmeyenleri bulmak şu 4 bağıntıdan yararlanılır: t doğrultusunda; Before Impact (v ) t = (v ) t (v B ) t = (v B ) t v v B n n doğrultusunda; t m (v ) n + m B (v B ) n = m (v ) n + m B (v B ) n v B v B (v B ) n -(v ) n = e [(v ) n -(v B ) n ] v fter Impact Bu bağıntılar, çarpışma öncesi ve sonrası serbest hareket eden cisimler için çıkarılmış olmakla beraber, hareketleri sınırlanmış cisimlerin çarpışmasında da kullanılabilir.

23 4. RİJİT CİSİMLERİN KİNEMTİĞİ (KINEMTICS OF RIGID BODIES) Rijit cisimlerin düzlemdeki hareketi genel olarak 3 e ayrılır: Ötelenme, Sabit bir eksen etrafında dönme ve Genel düzlemsel hareket. Ötelenme Ötelenmede cisim üzerindeki tüm noktalar aynı hız ve aynı ivme ile hareket ederler. Sabit bir eksen etrafında dönme Genel düzlemsel hareket

24 Sabit bir eksen etrafında dönme: θ O B φ r z P Yani P nin hızının şiddeti; y v = Z ekseni etrafında dönen P noktasını göz önüne alırsak; θ nın gördüğü açı Δs ise; Δs = BP Δθ = r sin Φ Δθ lim Δt 0 θ & Δs Δt = = w = lim r sin Φ Δt 0 açısal hız Δθ Δt ds. v = = rθ sin φ dt ; v ds = = r & θ sin dt Φ

25 P noktasının hız, vektörel çarpımla; şeklinde ifade edilir ve; dr v = = ω r dt ω = ωk = θk. Burada ω sabit eksen etrafındaki açısal hıza karşılık gelmektedir. α = dω dt... = αk = ωk = θk = açısal ivme P nin sabit eksen etrafındaki ivmesi; a dv d( ω r) = = dt dt = α r + ω v = a = α r + ω (ω r) dω dr = r + ω dt dt α r + ω ( ω r)

26 y O r ω = ωk y O α = αk v = ωk r P a t = αk r P a n = -ω 2 r ω = ωk Düzlemde O noktasından geçen eksen etrafında dönme; v = ωk r İvme; a = α r + ω (ω r) r=r i +r y j yazılırsa a = α r ω 2 r= a t + a n a t = αk r a t = rα a n = -ω 2 r a n = rω 2

27 İki özel durum: Düzgün Dönme (α=0): α = dω dt =sbt ω = dθ dt θ= θ 0 + ωt Düzgün Değişen Dönme (α=sbt): ω= ω 0 + αt ω 2 = ω α (θ θ 0 ) θ= θ 0 + ω 0 t αt2

28 Genel düzlemsel hareket: hız analizi v vb v v y (fied) ωk r B/ B B B v B/ Düzlem hareket = ya göre öteleme + ya göre dönme v B = v + v B/ = v + ωk r B/ v B/ = ωk r B/ ; v B/ = (r B/ )ω = rω a B = a + α r + ω (ω r) v v B/ v B

29 ni Dönme Merkezi (DM): C B v v B Bir plakanın düzlemsel hareketinde, hızla ilgili çözüm yaklaşımlarından birisi de ani dönme merkezi (DM) ni kullanmaktır. ncak C noktasının ivmesi her zaman 0 olmayabilir. Bu nedenle İvme analizinde DM yaklaşımı kullanılmaz. C v B v

30 Genel düzlemsel hareket: ivme analizi a ab a ωk y αk B B B Düzlem hareket = ya göre öteleme + ya göre dönme (a B/ ) n a (a B/ ) n a B/ (a B/ ) t a B = a + a B/ a B = a + α r + ω (ω r) a B a a B/ (a B/ ) t a B = a + α r ω 2 r Vektör diyagramı

31 Dönen bir eksene göre bağıl hareket Y y r ω α B P Bir P parçacığının, sabit bir eksen etrafında ω açısal hızı ile dönen -y eksen takımına göre hareketi (düzlemde) incelenirse; P nin mutlak hızı: v B = v + v B/ v P = v B + v P/B = v + v B/ + v P/B v P = v + ω r B/ + v bağ P nin mutlak ivmesi: X a B = a + a B/ =a + α r B/ + ω (ω r B/ ) a P = a B + a P/B + a cor = a + α r B/ + ω (ω r B/ )+2(ω v bağ )+ a cor Not: Hız ve ivme için yazılan bağıntılar 3-boyutlu problemler için de kullanılabilir. Bu durumda, bağıntılardaki vektörel büyüklükleri 3-boyutlu olarak yazmak gerekir.

32 5. RİJİT CİSİMLERİN KİNETİĞİ (RİJİT CİSİMLERİN DÜZLEMSEL HREKETİ) F 1 F 2 (PLNE MOTION OF RIGID BODIES:FORCES ND CCELERTIONS) Kuvvet ve İvme G F 4 F 3 G m: cismin kütlesi a: kütle merkezinin (G ) ivmesi... H G ma H G : cismin G noktasına göre açısal momentumun türevi. I: rijit plakanın/cismin G noktasından geçen eksene göre kütle atalet momenti. ω: açısal hız Rijit cisimlerin kinetiğinde kullanılan iki temel bağıntı vardır: ΣF = ma. ΣM G = H G H G = Iω.. H G = Iω = Iα

33 F 1 F 2 G F 4 F 3 G Iα ma Referans düzlemine göre simetrik olan rijit bir cismin hareketini ifade eden bağıntılar skaler olarak da yazılabilir: ΣF = ma ΣF y = ma y ΣM G = Iα

34 Enerji ve Momentum Metotları İş-enerji prensibi: T 1 + U 1 2 = T 2 ω s1 s 2 U 1 2 = (F cos α) ds G v θ açısı ile dönen rijit bir cisme etkiyen bir kuvvet çiftinin veya momentin işi: Düzlem harekette bir T 1 ve T 2 : cismin 1 ve 2 konumlarındaki kinetik enerjisi U 1 2 : cisme etki eden dış kuvvetlerin işi (Bir kuvvetin işi) θ 2 U 1 2 = M ds θ 1 cismin kinetik enerjisi: T = mv 2 + Iω O ω Sabit bir eksen etrafında dönen rijit bir cismin kinetik enerjisi: T = I O ω 2 Göz önüne alınan rijit cisme sadece konservatif kuvvetler etki ediyorsa; enerjinin korunumu ilkesi: T 1 + V 1 = T 2 + V 2 1 2

35 Parçacığın hareketi için çıkarılan İmpuls ve momentum prensibi rijit cismin hareketi için de kullanılabilir: Sist. Momentumu 1 + Sist. Dış Imp 1 2 = Sist. Mom. 2 y mv 1 y Fdt y mv 2 G G Iω 1 Iω 2 O O O

36 n Çarpışmada da benzer bir yaklaşım kullanılabilir, ancak; çarpışan cisimlerin kütle merkezleri çarpışma doğrultusu üzerinde değilse buna eksantrik çarpma (eccentric impact ) denir. Bu durumda; çarpışma boyunca temasta olan ve B noktalarının hızları göz önüne alınır. B v Çarpışma öncesi n v B n B n v v B Çarpışma sonrası (v B ) n -(v ) n = e[(v ) n -(v B ) n ]

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ Bu bölümde, düzlemsel kinematik, veya bir rijit cismin düzlemsel hareketinin geometrisi incelenecektir. Bu inceleme, dişli, kam ve makinelerin yaptığı birçok işlemde

Detaylı

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 7 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 7. HAFTA Kapsam: Parçacık Kinetiği, Kuvvet İvme Yöntemi Newton hareket

Detaylı

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji)

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) Partikülün kinetiği bahsinde, hız ve yer değiştirme içeren problemlerin iş ve enerji prensibini kullanarak kolayca çözülebildiği söylenmişti. Ayrıca, kuvvet

Detaylı

Doç.Dr. Cesim ATAŞ MEKANİK ŞEKİL DEĞİŞTİREN CİSİMLER MEKANİĞİ DİNAMİK

Doç.Dr. Cesim ATAŞ MEKANİK ŞEKİL DEĞİŞTİREN CİSİMLER MEKANİĞİ DİNAMİK STATİK (Ders Notları) Kaynak: Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige, Wiley Yardımcı Kaynak: Mühendislik Mekaniği: Statik, R.C Hibbeler & S.C. Fan, Literatür

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

MADDESEL NOKTANIN EĞRİSEL HAREKETİ

MADDESEL NOKTANIN EĞRİSEL HAREKETİ Silindirik Koordinatlar: Bazı mühendislik problemlerinde, parçacığın hareketinin yörüngesi silindirik koordinatlarda r, θ ve z tanımlanması uygun olacaktır. Eğer parçacığın hareketi iki eksende oluşmaktaysa

Detaylı

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK STATİK Ders Notları Kaynaklar: 1.Engineering Mechanics: Statics, 9e, Hibbeler, Prentice Hall 2.Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige 1. STATİĞE GİRİŞ 1.1 TANIMLAR

Detaylı

RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU

RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU Amaçlar: a) Korunumlu kuvvetlerin potansiyel enerjisinin hesabı. b) Enerjinin korunumu prensibinin uygulanması. ENERJİNİN KORUNUMU Enerjinin korunumu

Detaylı

Mekanik. Mühendislik Matematik

Mekanik. Mühendislik Matematik Mekanik Kuvvetlerin etkisi altında cisimlerin denge ve hareket şartlarını anlatan ve inceleyen bir bilim dalıdır. Amacı fiziksel olayları açıklamak, önceden tahmin etmek ve böylece mühendislik uygulamalarına

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLE 1. GİİŞ - Skalerler ve ektörler - Newton Kanunları 2. KUET SİSTEMLEİ - İki Boyutlu

Detaylı

MADDESEL NOKTALARIN DİNAMİĞİ

MADDESEL NOKTALARIN DİNAMİĞİ MÜHENDİSLİK MEKANİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ İÇİNDEKİLER 1. GİRİŞ - Konum, Hız ve İvme - Newton Kanunları 2. MADDESEL NOKTALARIN KİNEMATİĞİ - Doğrusal

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 15 Parçacık Kinetiği: İmpuls ve Momentum Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 15 Parçacık

Detaylı

Dinamik. Fatih ALİBEYOĞLU -10-

Dinamik. Fatih ALİBEYOĞLU -10- 1 Dinamik Fatih ALİBEYOĞLU -10- Giriş & Hareketler 2 Rijit cismi oluşturan çeşitli parçacıkların zaman, konum, hız ve ivmeleri arasında olan ilişkiler incelenecektir. Rijit Cisimlerin hareketleri Ötelenme(Doğrusal,

Detaylı

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ Amaçlar 1. Kuvvet ve kuvvet çiftlerinin yaptığı işlerin tanımlanması, 2. Rijit cisme iş ve enerji prensiplerinin uygulanması. UYGULAMALAR Beton mikserinin iki motoru

Detaylı

Bölüm 9: Doğrusal momentum ve çarpışmalar

Bölüm 9: Doğrusal momentum ve çarpışmalar Bölüm 9: Doğrusal momentum ve çarpışmalar v hızıyla hareket eden m kütleli bir parçacığın doğrusal momentumu kütle ve hızın çarpımına eşittir; p = mv Momentum vektörel bir niceliktir, yönü hız vektörü

Detaylı

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine etkiyenf r kuvvetini göstermektedir. Parçacık A noktasından r r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve d r A dan A ne

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ÖLÇME VE BİRİM SİSTEMLERİ

İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ÖLÇME VE BİRİM SİSTEMLERİ İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ÖLÇME VE BİRİM SİSTEMLERİ 1.1. FİZİKTE ÖLÇME VE BİRİMLERİN ÖNEMİ... 2 1.2. BİRİMLER VE BİRİM SİSTEMLERİ... 2 1.3. TEMEL BİRİMLERİN TANIMLARI... 3 1.3.1. Uzunluğun

Detaylı

Karadeniz Teknik Üniversitesi

Karadeniz Teknik Üniversitesi Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Maden Mühendisliği Bölümü MDM 240 Dinamik Dersi 2013-2014 Güz Yarıyılı Dersi Veren: Ömer Necati Cora (Yrd.Doç.Dr.) K.T.Ü Makine Müh. Bölümü, Oda No:

Detaylı

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine etkiyen F kuvveti görülmektedir. Parçacık A noktasından r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve A dan A ne diferansiyel

Detaylı

2. POTANSİYEL VE KİNETİK ENERJİ 2.1. CİSİMLERİN POTANSİYEL ENERJİSİ. Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir.

2. POTANSİYEL VE KİNETİK ENERJİ 2.1. CİSİMLERİN POTANSİYEL ENERJİSİ. Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir. BÖLÜM POTANSİYEL VE KİNETİK ENERJİ. POTANSİYEL VE KİNETİK ENERJİ.1. CİSİMLERİN POTANSİYEL ENERJİSİ Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir. Mesela Şekil.1 de görülen

Detaylı

Karadeniz Teknik Üniversitesi

Karadeniz Teknik Üniversitesi Karadeniz Teknik Üniversitesi MHN 243 Sürmene Deniz Bilimleri Fakültesi Gemi İnşaatı ve Gemi Makineleri Mühendisliği Bölümü, Dinamik Dersi 2013-2014 Güz Yarıyılı Dersi Veren: Ömer Necati Cora (Yrd.Doç.Dr.)

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 16 Rijit Cismin Düzlemsel Kinematiği Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 16 Rijit

Detaylı

Düzgün olmayan dairesel hareket

Düzgün olmayan dairesel hareket Düzgün olmayan dairesel hareket Dairesel harekette cisim üzerine etki eden net kuvvet merkeze doğru yönelmişse cismin hızı sabit kalır. Eğer net kuvvet merkeze doğru yönelmemişse, kuvvet teğetsel ve radyal

Detaylı

MEKANİZMA TEKNİĞİ (3. Hafta)

MEKANİZMA TEKNİĞİ (3. Hafta) MEKANİZMALARIN KİNEMATİK ANALİZİ Temel Kavramlar MEKANİZMA TEKNİĞİ (3. Hafta) Bir mekanizmanın Kinematik Analizinden bahsettiğimizde, onun üzerindeki tüm uzuvların yada istenilen herhangi bir noktanın

Detaylı

O xyz OXYZ. Düzgün Doğrusal Öteleme. O 1 in yörüngesi bir Doğru olacak

O xyz OXYZ. Düzgün Doğrusal Öteleme. O 1 in yörüngesi bir Doğru olacak 3.14 Bağıl Hareket Bu ana kadar Newton un ikinci kanununu, enerji-iş eşitliklerini ve impuls-momentum eşitliklerini, sait ir eksen takımına göre uyguladık. Gerçekte hiç ir eksen takımı ise gerçekte sait

Detaylı

MIM 210 DİNAMİK DERSİ DERS NOTU

MIM 210 DİNAMİK DERSİ DERS NOTU BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ MIM 210 DİNAMİK DERSİ DERS NOTU Hazırlayan Dr. Osman TURAN Kaynaklar 1. J.L. MERIAM ve L.G. KRAIGE, Mühendislik Mekaniği:

Detaylı

Sistem Dinamiği. Bölüm 3- Rijit Gövdeli Mekanik Sistemlerin Modellenmesi. Doç.Dr. Erhan AKDOĞAN

Sistem Dinamiği. Bölüm 3- Rijit Gövdeli Mekanik Sistemlerin Modellenmesi. Doç.Dr. Erhan AKDOĞAN Sistem Dinamiği Bölüm 3- Rijit Gövdeli Mekanik Sistemlerin Modellenmesi Doç. Sunumlarda kullanılan semboller: El notlarına bkz. Yorum Soru MATLAB Bolum No.Alt Başlık No.Denklem Sıra No Denklem numarası

Detaylı

Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ

Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ Akışkanlar Mekaniği Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ Doç. Dr. İ. Gökhan AKSOY Denizanasının (Aurelia aurita) düzenli yüzme hareketi. Denizanası gövdesini kasıp akışkanı ittikten sonra süzülerek

Detaylı

HARRAN ÜNİVERSİTESİ 2016 YILI ZİRAAT FAKÜLTESİ FİNAL SINAVI SORU ÖRNEKLERİ

HARRAN ÜNİVERSİTESİ 2016 YILI ZİRAAT FAKÜLTESİ FİNAL SINAVI SORU ÖRNEKLERİ HARRAN ÜNİVERSİTESİ 016 YILI ZİRAAT FAKÜLTESİ FİNAL SINAVI SORU ÖRNEKLERİ Soru 1 - Bir tekerlek, 3.5 rad/ s ' lik sabit bir açısal ivmeyle dönüyor. t=0'da tekerleğin açısal hızı rad/s ise, (a) saniyede

Detaylı

1 Rijit Cisimlerin Düzlemsel Kinematiği

1 Rijit Cisimlerin Düzlemsel Kinematiği Şekil 1: Şekil 2: Katı (rijid) cismin düzlemsel hareket tipleri 1 Rijit Cisimlerin Düzlemsel Kinematiği 1.1 Giriş Dersin 2. bölümünde noktasal cismin kinematik bağıntılarını elde etmiştik. Aynı bağıntıları

Detaylı

Fizik Dr. Murat Aydemir

Fizik Dr. Murat Aydemir Fizik-1 2017-2018 Dr. Murat Aydemir Ankara University, Physics Engineering, Bsc Durham University, Physics, PhD University of Oxford, Researcher, Post-Doc Ofis No: 35 Merkezi Derslikler Binasi murat.aydemir@erzurum.edu.tr

Detaylı

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır.

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır. PO.D. MUAT DEMİ AYDIN ***Bu ders notları bir sonraki slatta verilen kanak kitaplardan alıntılar apılarak hazırlanmıştır. Mühendisler için Vektör Mekaniği: STATİK.P. Beer, E.. Johnston Çeviri Editörü: Ömer

Detaylı

Fizik 101: Ders 17 Ajanda

Fizik 101: Ders 17 Ajanda izik 101: Ders 17 Ajanda Dönme hareketi Yön ve sağ el kuralı Rotasyon dinamiği ve tork Örneklerle iş ve enerji Dönme ve Lineer Kinematik Karşılaştırma açısal α sabit 0 t 1 0 0t t lineer a sabit v v at

Detaylı

DİNAMİK - 6. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK - 6. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 6 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 6. HAFTA Kapsam: Bağımlı hareket, Analiz prosedürü, Örnek problem

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 4 Kuvvet Sistemi Bileşkeleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 4. Kuvvet Sitemi Bileşkeleri

Detaylı

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü MM 2023 Dinamik Dersi 2016 Güz Yarıyılı Dersi Veren: Ömer Necati Cora (Yrd.Doç.Dr.) K.T.Ü Makine Müh. Bölümü, Oda No: 320

Detaylı

RÖLATİF HAREKET ANALİZİ: İVME

RÖLATİF HAREKET ANALİZİ: İVME RÖLATİF HAREKET ANALİZİ: İVME AMAÇLAR: 1. Rijit bir cisim üzerindeki noktanın ivmesini ötelenme ve dönme birleşenlerine ayırmak, 2. Rijit cisim üzerindeki bir noktanın ivmesini rölatif ivme analizi ile

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

DİNAMİK. Ders_10. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ

DİNAMİK. Ders_10. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ DİNAMİK Ders_10 Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü Ders notları için: http://kisi.deu.edu.tr/serkan.misir/ 2016-2017 GÜZ KÜTLE ATALET MOMENTİ Bugünün Hedefleri: 1. Rijit bir cismin

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

Prof.Dr. Mehmet Zor DEU Muh.Fak. Makine Muh. Bölümü

Prof.Dr. Mehmet Zor DEU Muh.Fak. Makine Muh. Bölümü Prof.Dr. Mehmet Zor DEU Muh.Fak. Makine Muh. Bölümü Ders Kitabı : Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige, Wiley Yardımcı Kaynak: Mühendislik Mekaniği: Statik,

Detaylı

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ):

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ): Tanışma ve İletişim... Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta (e-mail): mcerit@sakarya.edu.tr Öğrenci Başarısı Değerlendirme... Öğrencinin

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

STATİK YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

STATİK YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU STATİK YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU http://kisi.deu.edu.tr/kamile.tosun/ 2011-2012 BAHAR - ÇEVRE KT 1 KİTAPLAR Mühendislik Mekaniği - Statik, R.C. Hibbeler, S.C. Fan, Literatür Yayıncılık, ISBN:

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi 1 Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

STATİK DOÇ.DR. KAMİLE TOSUN FELEKOĞLU. Ders notları için: GÜZ JEOLOJİ MÜH.

STATİK DOÇ.DR. KAMİLE TOSUN FELEKOĞLU. Ders notları için: GÜZ JEOLOJİ MÜH. STATİK STATİK DOÇ.DR. KAMİLE TOSUN FELEKOĞLU Ders notları için: http://kisi.deu.edu.tr/kamile.tosun/ 2014-2015 GÜZ JEOLOJİ MÜH. ÖÖ/İÖ 54-58 2 Değerlendirme 1. Ara sınav (%25) 2. Ara sınav (%25) Final (%50)

Detaylı

Bağıl hız ve bağıl ivme..

Bağıl hız ve bağıl ivme.. Bağıl hız ve bağıl ivme.. Bağıl hareket, farklı referans sistemlerindeki farklı gözlemciler tarafından hareketlerin nasıl gözlemlendiğini ifade eder. Aynı hızla giden iki otomobilden birisinde bulunan

Detaylı

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır. Manyetik Alanlar Manyetik Alanlar Duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alanın sardığı biliyoruz. Hatta elektrik alan konusunda şu sonuç oraya konulmuştur. Durgun bir deneme yükü

Detaylı

BİLGİ TAMAMLAMA VEKTÖRLER

BİLGİ TAMAMLAMA VEKTÖRLER DİNAMİK BİLGİ TAMAMLAMA VEKTÖRLER Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü VEKTÖRLER Kapsam Büyüklük yanında ayrıca yön

Detaylı

elde ederiz. Bu son ifade yeniden düzenlenirse,

elde ederiz. Bu son ifade yeniden düzenlenirse, Deney No : M2 Deneyin Adı : İKİ BOYUTTA ESNEK ÇARPIŞMA Deneyin Amacı : İki boyutta esnek çarpışmada, enerji ve momentum korunum bağıntılarını incelemek, momentumun vektörel, enerjini skaler bir büyüklük

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ

TEKNOLOJİNİN BİLİMSEL İLKELERİ TEKNOLOJİNİN BİLİMSEL İLKELERİ Öğr. Gör. Fatih KURTULUŞ 4.BÖLÜM: STATİK MOMENT - MOMENT (TORK) Moment (Tork): Kuvvetin döndürücü etkisidir. F 3 M ile gösterilir. Vektörel büyüklüktür. F 4 F 3. O. O F 4

Detaylı

TEMEL MEKANİK 6. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 6. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 6 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

DOÇ.DR. İBRAHİM SERKAN MISIR GÜZ

DOÇ.DR. İBRAHİM SERKAN MISIR GÜZ DİNAMİK 1 DİNAMİK DOÇ.DR. İBRAHİM SERKAN MISIR Ders notları için: http://kisi.deu.edu.tr/serkan.misir/ 2016-2017 GÜZ 2 Değerlendirme 1. Ara sınav (%25) 2. Ara sınav (%25) Final (%50) Dönem:26 Eylül 2016

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

TORK VE DENGE 01 Torkun Tanımı ve Yönü

TORK VE DENGE 01 Torkun Tanımı ve Yönü TORK VE DENGE 01 Torkun Tanımı ve Yönü Kuvvetin döndürme etkisine tork ya da moment denir. Bir kuvvetin bir noktaya göre torku; kuvvet ile dönme noktasının kuvvete dik uzaklığının çarpımına eşittir. Moment

Detaylı

STATİK KUVVET ANALİZİ (2.HAFTA)

STATİK KUVVET ANALİZİ (2.HAFTA) STATİK KUVVET ANALİZİ (2.HAFTA) Mekanik sistemler üzerindeki kuvvetler denge halindeyse sistem hareket etmeyecektir. Sistemin denge hali için gerekli kuvvetlerin hesaplanması statik hesaplamalarla yapılır.

Detaylı

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi MKM 308 Eşdeğer Noktasal Kütleler Teorisi Eşdeğer Noktasal Kütleler Teorisi Maddesel Nokta (Noktasal Kütleler) : Mekanikte her cisim zihnen maddesel noktalara ayrılabilir yani noktasal kütlelerden meydana

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 13 Parçacık Kinetiği: Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 13 Parçacık

Detaylı

TEKNOLOJĐNĐN BĐLĐMSEL ĐLKELERĐ DERS NOTLARI

TEKNOLOJĐNĐN BĐLĐMSEL ĐLKELERĐ DERS NOTLARI TEKNOLOJĐNĐN BĐLĐMSEL ĐLKELERĐ DERS NOTLARI BĐLEŞKE VE BĐLEŞENLER Zaman, kuvvet, kütle. vs. gibi büyüklükleri skaler büyüklükler yada vektörel büyüklükler olarak ifade ederiz. Eğer sadece sayısal değeri

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

Yazanlar: Prof. FERDİN AND P. BEER Lehigh Üniversitesi, Mekanik Bölümü Başkanı

Yazanlar: Prof. FERDİN AND P. BEER Lehigh Üniversitesi, Mekanik Bölümü Başkanı Mühendisler için Mekanik Cilt II DİNAMİK Yazanlar: Prof. FERDİN AND P. BEER Lehigh Üniversitesi, Mekanik Bölümü Başkanı Prof. E. RUSSELL JOHNSTON, Worcester Politeknik Enstitüsü İnşaat Mühendisliği Bölümü

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Akışkan Statiğine Giriş Akışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

İtme Momentum Açısal Momentum. Futbol da Şut (LAB 7) V = 8 m/s. m = 75 kg. P = 75x8 = 600 kg.m/s. Çarpışma öncesindeki toplam momentum

İtme Momentum Açısal Momentum. Futbol da Şut (LAB 7) V = 8 m/s. m = 75 kg. P = 75x8 = 600 kg.m/s. Çarpışma öncesindeki toplam momentum İtme Momentum Momentum Futbol da Şut (LAB 7) Doğrusal Momentum Doğru boyunca hareket eden bir cismin hareket miktarının (taşıdığı hareketin) ölçüsüdür Momentum bir cismin çarpma gücüdür Momentum un miktarı

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

MADDESEL NOKTALARIN DİNAMİĞİ

MADDESEL NOKTALARIN DİNAMİĞİ MÜHENDİSLİK MEKNİĞİ DİNMİK MDDESEL NOKTLRIN DİNMİĞİ DİNMİK MDDESEL NOKTLRIN DİNMİĞİ İÇİNDEKİLER 1. GİRİŞ - Konum, Hız e İme - Newton Knunlrı 2. MDDESEL NOKTLRIN KİNEMTİĞİ - Doğrusl Hreket - Düzlemde Eğrisel

Detaylı

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır.

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Newton un II. yasası Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Bir cisme F A, F B ve F C gibi çok sayıda kuvvet etkiyorsa, net kuvvet bunların

Detaylı

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ 1-STATİĞİN TEMEL İLKELERİ 1- BİRİMLER 2-TRİGONOMETRİ 3-VEKTÖRLER 3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması 3.3 Vektörlerin uç-uca eklenerek toplanması 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile

Detaylı

4. İKİ BOYUTLU UZAYDA ÇARPIŞMA

4. İKİ BOYUTLU UZAYDA ÇARPIŞMA 4. İKİ BOYUTLU UZAYDA ÇARPIŞMA AMAÇ. İki cismin çarpışması olayında momentumun korunumu ilkesinin incelenmesi,. Çarpışmada mekanik enerjinin korunumu ilkesinin incelenmesi, 3.Ölçü sonuçlarından yararlanarak

Detaylı

DİNAMİK. Ders_6. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ

DİNAMİK. Ders_6. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ DİNAMİK Ders_6 Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü Ders notları için: http://kisi.deu.edu.tr/serkan.misir/ 2017-2018 GÜZ LİNEER İMPULS VE MOMENTUM PRENSİBİ Bugünün Hedefleri: 1.

Detaylı

0.3 Sabit Nokta Etrafında Dönme (Düzlemsel)

0.3 Sabit Nokta Etrafında Dönme (Düzlemsel) Şekil 1: 0.1 Öteleme Öteleme hareketi yapan bir cismin her doğrusu her zaman kendine paralel kalır. Öteleme hareketi doğrusal ve eğrisel öteleme olmak üzere ikiye ayrılır. Her iki durumda da w ve α sıfıra

Detaylı

DİNAMİK MEKANİK. Şekil Değiştiren Cisimler Mekaniği. Mukavemet Elastisite Teorisi Sonlu Elemanlar Analizi PARÇACIĞIN KİNEMATİĞİ

DİNAMİK MEKANİK. Şekil Değiştiren Cisimler Mekaniği. Mukavemet Elastisite Teorisi Sonlu Elemanlar Analizi PARÇACIĞIN KİNEMATİĞİ DİNAMİK Dinamik mühendislik mekaniği alanının bir alt grubudur: Mekanik: Cisimlerin dış yükler altındaki davranışını inceleyen mühendislik alanıdır. Aşağıdaki alt gruplara ayrılır: MEKANİK Rijit-Cisim

Detaylı

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN Mukavemet-II PROF. DR. MURAT DEMİR AYDIN KAYNAK KİTAPLAR Cisimlerin Mukavemeti F.P. BEER, E.R. JOHNSTON Mukavemet-2 Prof.Dr. Onur SAYMAN, Prof.Dr. Ramazan Karakuzu Mukavemet Mehmet H. OMURTAG 1 SİMETRİK

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

Dinamik. Fatih ALİBEYOĞLU -8-

Dinamik. Fatih ALİBEYOĞLU -8- 1 Dinamik Fatih ALİBEYOĞLU -8- Giriş 2 Önceki bölümlerde F=m.a nın maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini kullandık. Hız değişimlerinin yapılan

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

İtme Momentum Açısal Momentum. Futbol da Şut

İtme Momentum Açısal Momentum. Futbol da Şut İtme Momentum Açısal Momentum Futbol da Şut SBA 206 Spor Biyomekaniği 22 Nisan 2010 Arif Mithat Amca 1 Kütle Çekim Kuvveti Kütle Ağırlık Moment Denge Ağırlık/Kütle Merkezi İnsanda Vücut Kütle/Ağırlık Merkezinin

Detaylı

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki cisimlerle uğraşır. Statik, kuvvet etkisi altında cisimlerin

Detaylı

0.1 Katı Cismin Üç Boyutlu Hareketinin Kinetiği

0.1 Katı Cismin Üç Boyutlu Hareketinin Kinetiği F = m rg = ma G Şekil 1: Şekil 2: 0.1 Katı Cismin Üç Boyutlu Hareketinin Kinetiği UYARI :Düzlemsel hareketin kinetiğinin iyi çalışılması önemlidir.. Zira, aynı kavramlar ve bağıntıların benzerleri ile

Detaylı

ĐŞ GÜÇ ENERJĐ. Zaman. 5. Uygulanan kuvvet cisme yol aldıramıyorsa iş yapılmaz. W = 0

ĐŞ GÜÇ ENERJĐ. Zaman. 5. Uygulanan kuvvet cisme yol aldıramıyorsa iş yapılmaz. W = 0 ĐŞ GÜÇ ENERJĐ Đş kelimesi, günlük hayatta çok kullanılan ve çok geniş kapsamlı bir kelimedir. Fiziksel anlamda işin tanımı tektir.. Yapılan iş, kuvvet ile kuvvetin etkisinde yapmış olduğu yerdeğiştirmenin

Detaylı

İNŞAAT MÜHENDİSLİĞİNE GİRİŞ

İNŞAAT MÜHENDİSLİĞİNE GİRİŞ İNŞAAT MÜHENDİSLİĞİNE GİRİŞ Yrd. Doç. Dr. Merve Sağıroğlu MEKANİK ANABİLİM DALI Kaynaklar: Yrd. Doç. Dr. Banu YAĞCI İnşaat Mühendisliğine Giriş Ders notları KTÜ 2011-2012 Güz dönemi İnşaat Mühendisliğine

Detaylı

Ders Öğretim Planı. Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS 507002132003 DİNAMİK Zorunlu 2 3 4

Ders Öğretim Planı. Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS 507002132003 DİNAMİK Zorunlu 2 3 4 Ders Öğretim Planı Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS 507002132003 DİNAMİK Zorunlu 2 3 4 Dersin Seviyesi Lisans Dersin Amacı Dersin amacı, cisimlerin ve sistemlerin hareketlerini tahmin

Detaylı

GÜZ YARIYILI FİZİK 1 DERSİ

GÜZ YARIYILI FİZİK 1 DERSİ 2015-2016 GÜZ YARIYILI FİZİK 1 DERSİ Yrd. Doç. Dr. Hakan YAKUT SAÜ Fen Edebiyat Fakültesi Fizik Bölümü Ofis: FEF A Blok, 812 nolu oda Tel.: +90 264 295 (6092) 1 Bölüm 3 İKİ BOYUTTA HAREKET 2 İçerik Yerdeğistirme,

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 2 Kuvvet Vektörleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö.Soyuçok. 2 Kuvvet Vektörleri Bu bölümde,

Detaylı

DİNAMİK 01 Giriş ve Temel Prensipler

DİNAMİK 01 Giriş ve Temel Prensipler DİNAMİK 01 Giriş ve Temel Prensipler Dinamik, kuvvet ile hareket arasındaki ilişkiyi inceler. Kuvvet Hareketsiz bir cismi harekete ettiren ve ya hareketini değiştiren etkiye kuvvet denir. Dinamiğin, Newton

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 14 Parçacık Kinetiği: İş ve Enerji Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 14 Parçacık

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Yrd. Doç. Dr. Beytullah EREN Çevre Mühendisliği Bölümü BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Atatürk Barajı (Şanlıurfa) BATMIŞ YÜZEYLERE ETKİYEN KUVVETLER

Detaylı

Statik Manyetik Alan

Statik Manyetik Alan Statik Manyetik Alan Noktasal Yüke Etki eden Manyetik Kuvvet Akım Elemanına Etki Eden Manyetik Kuvvet Biot-Savart Kanunu Statik Manyetik Alan Statik manyetik alan, sabit akımdan veya bir sürekli mıknatıstan

Detaylı

TEMEL MEKANİK 1. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 1. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 1 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 5 Rijit Cisim Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 5. Rijit Cisim Dengesi Denge,

Detaylı

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi Fizik-1 UYGULAMA-7 Katı bir cismin sabit bir eksen etrafında dönmesi 1) Bir tekerlek üzerinde bir noktanın açısal konumu olarak verilmektedir. a) t=0 ve t=3s için bu noktanın açısal konumunu, açısal hızını

Detaylı

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı