İlk mikrodalga enerjiyi üreten elektrik tüpleri İngiltere'de Sir John Randall ve Dr. H. A. Boot tarafından 1940 yılında icat edildi.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İlk mikrodalga enerjiyi üreten elektrik tüpleri İngiltere'de Sir John Randall ve Dr. H. A. Boot tarafından 1940 yılında icat edildi."
  • Su Ocak
  • 1 yıl önce
  • İzleme sayısı:

Transkript

1

2 İlk mikrodalga enerjiyi üreten elektrik tüpleri İngiltere'de Sir John Randall ve Dr. H. A. Boot tarafından 1940 yılında icat edildi. Bundan 6 yıl sonra Percy Spencer adındaki Raytheon Şirketi adına radar parçaları üreten Amerikalı bir mühendis, mikrodalga laboratuarına giderken yanında götürdüğü çikolatasını laboratuardaki bir aygıtın yanına bıraktığında çikolatanın kendiliğinden çorba gibi olduğunu gördü.peki şans eseri bulunan bu yöntem yemek pişirmek için kullanılamaz mıydı?

3 Araştırmalar bu yönde sürdürüldü ve bir yıl içinde Raytheon, sanayi mutfakları için tasarlanmış ilk mikrodalga fırını tanıttı: 340 kiloluk, hantal ve pişirdiklerini yakmaması için sürekli dik tutulması gereken bir fırındı bu.1952 yılında üretilen ilk ev modeli ise yüksek fiyatları nedeniyle o zamanlar fazla yaygınlaşmamıştı. Amana firmasının evlere yönelik ilk mikrodalga fırın modelini üretmesi için aradan tam yirmi yıl geçti O güne dek tüketiciler, fırında pişen yemeklerin steril olmadığını veya fırının beyin hasarına yol açtığı gibi birçok konuda endişe duymuştu.

4

5 Ne var ki, 1975 yılına gelindiğinde, mikrodalga fırınlar gazla çalışan fırınları çoktan geride bırakmıştı. Günümüz gıda endüstrisinde mikrodalga enerji uygulamaları yeni bir teknoloji olmasına karşın,çok yaygın bir kullanım alanı bulmakta ve bugün kullanılmakta olan birçok ısısal işlemin yerini alacak bir başarı ve potansiyel göstermektedir. İlk uygulamalar gıda sanayide görülmüş çeşitli endüstrilerde ve laboratuarlarda son on yıldır yaygın olarak mikrodalga kullanılmıştır. Örneğin gıda,kağıt,inşaat malzemeleri,metalürji sanayi,çevre ile ilgili radyoaktif atık ve hastane artıklarının zararsız hale getirilmesinde kullanım ve uygulama alanı bulmuştur.

6 Yaklaşık yarım yüzyılı aşkın bir süredir süregelen araştırmalar sonucunda,mikrodalga kullanımı insan hayatına teknolojik ekipmanlar sayesinde yaygın bir biçime girmiştir. Bu ekipmanlardan televizyon radyo,telsiz,telefon ve uydu, haberleşme alanında osiloskopu tıpta, mikrodalga fırını gıda teknolojisi alanında ve birçok gelişmiş aleti bilimsel araştırmalarda insanlık kullanmaktadır.

7

8 Mikrodalgalar elektronik devrelerde elektronların hızlandırılmaları ile elde edilir. Yüksek güçteki mikrodalgalar vakum tüpleri ile üretilmektedir. Elektronik devrelerde,elektrik enerjisinin elektromanyetik yayılmaya dönüşüm veriminin yüksek olması ve bu devrelerin kolay kontrol edilebilmesi nedeniyle,mikrodalga ısıtma uygulamalarında magnetron veya klystron sürekli mikrodalga üreticisi olarak kullanılırlar.

9 Mikrodalgalar temas ettikleri madde ile etkileşime girerler. Örneğin,absorbe edilir,yansıtılır veya hiçbir değişikliğe uğramadan yollarına devam ederler. Mikrodalgalar gıda maddeleri tarafından absorbe edildiği zaman mikrodalga ışının pozitif ve negatif merkezlerinin yön değiştirmelerine paralel olarak,üründe bulunan polar moleküller yön değiştirirler. Saniyede milyonlarca kez oluşan bu hareket sonucu moleküler sürtünme ısısı açığa çıkar ve madde ısınır.yani mikrodalga enerjinin ısı enerjisine dönüşümü bu dalgaların bazı mikroskobik emme sistemleri tarafından emilmesi ve daha sonra emici madde moleküllerinin ısı titreşimlerine değişimi şeklindedir.

10 İşlemin süresi pişirilecek gıdanın su içeriğine yoğunluğuna,dielektrik kayıp faktörüne,kütlesine bağlıdır. Mikrodalga enerji ile gıda maddesinin ısıtılmasında gıdanın bu özellikleri dışında, mikrodalganın çalışma frekansı,gücü,gıdanın kütlesi başlangıç sıcaklığı,fiziksel geometrisi,ısıl iletkenlik özellikleri,spesifik ısısı gibi birçok parametrede etkili olmaktadır.

11

12 Hamur halindeki gıdalar Taneli gıdalar Ufalanmış gıdalar Yaprak halindeki gıdalar Sulu gıdalar ve sairleri METALLURJİ ALANINDA KULLANIM ALANLARI Kalıplar Kokiller Kurutma

13 Tuzlar Boyalar Seramik ve porselen Mermer Deri Elyaf Boyanmış kumaş

14

15 Geleneksel ısıtma metotlarında ısı,gıda maddesine kondüksiyon,konveksiyon ve/veya radyasyon ile transfer olur.tersine mikrodalga ısıtmada ısı direkt olarak gıda maddesinin içine girer. Bu yüzden mikrodalga ısıtmada geleneksel ısıtmaya göre daha hızlı bir ısı artışı gözlenmektedir. Mikrodalga fırının ısıtma etkisi aynı süre içinde elektrikli ısıtıcıya göre daha fazladır. Konveksiyonel ısıtmada gıdanın dış yüzü ısıtma ortamı içerisindeki sıcak hava ile konveksiyon yoluyla ısıtılmakta daha sonra ısı,ısıtılmış dış yüzeyden gıdanın iç kısmına kondüksiyon yoluyla iletilmektedir. Gıda maddesi içerisinde mikrodalga enerji alanının dağılımı,gıdanın su içeriği ve tuz miktarı ile doğrudan ilişkili olan dielektrik özelliklerine de bağlıdır.

16 Mikrodalga ısıtma sisteminin geleneksel ısıtma sistemlerine göre çok pahalı olması nedeniyle Türk gıda işletmeleri genelde bu yöntemi kullanmamaktadırlar. Ancak mikrodalga ısıtma ile pişirme,haşlama kurutma,pastörizasyon, buz çözme,sterilizasyon ve temperleme gibi işlemler yüksek verimle kısa zamanda yapılabilmektedirler. Bulunan mikrodalga verimi elektrikli ısıtıcıların verimi ile karşılaştırıldığında oldukça yüksek bir değer olarak gözlemlenmektedir. Verimin yüksek olması işletmeye,proses süresi ve proseste harcanan enerji açısından avantaj kazandırmaktadır. Kısaca mikrodalga işleminin daha ekonomik olduğu belirlenmiştir.

17

18 Mikrodalga hastalığının en temel belirtileri baş ağrısı, uyku bozuklukları, yorgunluk, baş dönmesi, göz yorgunluğu, konsantrasyon bozukluğu, kan dolaşımı ve sinir sisteminde değişiklikler olarak sıralanmaktadır. Fırının kapağının gereğinden fazla açılıp kapanması, kapak menteşesi ve tutmaçları, radyasyon birikimine neden olarak tehlikeyi artırabilecek diğer faktörlerdir. Mikrodalgalar vücut tarafından emildiği için göz ve beyin gibi hassasiyeti fazla olan organlarda fazlasıyla etkili olabiliyor. Deri kanseri riski de, mikrodalga etkisi altında artıyor.

19 Kalp atisini düzenleyen cihaz takılı olan kişiler, mikrodalga riskini daha fazla taşımakta. Elektronik aygıtlardan etkilenen bu cihaz, kalp atisi dengesinin bozulmasına neden olabileceğinden, bu kişilerin fırından uzak durmalarında yarar var. Mikrodalga fırında ısıtma yapılmak istendiğinde, gönderilen elektromanyetik dalgaları yansıtan malzeme(metal) kullanılmamalıdır. Yansıyan dalgalar elektrik arkı oluşturabilmekte ve patlamaya sebep verebilmektedir. Fazla pişirme ise mikrodalga kullanımında yapılan çok genel bir hatadır. Bu yüzden ısıtma zamanlaması iyi yapılmalıdır. Zira yüksek enerji seviyelerindeki ısıtma küçük miktarları çok kısa sürede pişirebilir. Hızlı pişirme yüzünden bazı dokuların kırılması sağlanamaz;bu ise,örneğin ette sert yapı oluşumuna neden olur.

20

21 Her şeye rağmen, doğru kullanıldığı müddetçe mikrodalganın en güvenli mutfak aletlerinden birisidir. Ancak aşırı ısınma ve diğer problemlere karşı bazı tedbirler almak gerekiyor. Pişirme süresinin ortasında yemeği karıştırarak ısının ve sıcaklık derecesinin homojen biçimde dağılmasını sağlayın. Normal fırınların aksine mikrodalgalar yiyecekleri dıştan içe doğru değil, içerden dışarıya doğru ısıtırlar. Bu yüzden kap soğuk olduğu halde içindeki yiyecek kaynama noktasını asmış olabilir. Yiyeceği mikrodalgadan çıkarır çıkarmaz dokunmayıp biraz zaman tanıyın. Uzmanlar, kural olarak her bir bardaklık ölçü için 1-2 dakika kadar beklenmesini tavsiye ediyor. Böylece sıvının ılınması ve yeniden kaynama derecesine düşmesi için vakit tanınmış oluyor.

22 Mikrodalgayı kullanırken yiyeceklere plastik koruyucuların dokunmasına izin vermeyin. Mikrodalgaya uygun plastik kapaklar kullandığınızdan emin olun. Plastik örtüyü bir kösesinden gevşetin. Böylece içindeki buharın dışarı çıkmasına imkan tanırsınız. Plastik örtüyü ya da kapağı açarken yüzünüzden uzak tutun. kapağı kaldırırken kabin arka tarafından başlayın ve bakmayın. Sıcak bir yiyecek veya içecek çıkarırken çocukları mikrodalgadan uzak tutun. Biberonları mikrodalgada ısıtmak yerine biberon ısıtıcısı kullanın Köpüklü kaplarda yiyecekleri mikrodalgaya koymayın.

23 Fırının çalıştırılmadan önce kapağının kapalı olduğu kontrol edilmelidir Fırın boş iken çalıştırılmamalıdır. Fırının içi sık sık temizlenmelidir Fırın çalışırken yüzünüzü fırın kapağına yaklaştırmayınız. Fırınlar yetkili teknik elemanlar tarafından tamir edilmelidir

24

25 Sterilizasyon ve ürün maliyetini düşürme Mikrodalga sistemleri, konvansiyonel kurutma sistemlerine göre daha az yer kaplarlar. Daha küçük yer kullanımı ardışık olarak yapılmak istenen kurutma işlemlerinde otomasyona geçilmesini zorunlu hale getirir. Daha az enerji sarfiyatı Mikrodalga ile ısıtma ve kurutma işlemlerinde,konvansiyonel metotlardan değişik olarak, ürünün bulunduğu sistemin ısıtılmasına gerek kalmadan verilen enerji sadece ürünün ısıtılmasına sarf edildiğinden büyük bir enerji tasarrufu sağlanmaktadır. Mikrodalga ile ısıtma ve kurutma işlemlerinde,verilen enerji başlıca ürünün içerdiği nem tarafından yutulmaktadır. Ürün doğrudan bir enerji yutmamaktadır. Ürünün içerdiği su ısındığı için ürün de ısınmaktadır.bu sebeple mikrodalga ile ısıtma konvansiyonel ısıtma metotlarına göre çok daha düşük güç seviyelerinde kalmaktadır. Bu oran % 50 ler mertebesindedir.

26 Isıtma kolaylığı Sadece gıdayı ısıtarak paketli gıdaları ısıtabilme olanağını sağlanabilmektedir. Homojen ısıtma Belli bir kalınlığa kadar homojen bir ısı dağılımı sağlanabilmektedir.

27

28 Mikrodalga tasarımlarının canlılar üzerindeki olumsuz etkilerinin düşünülmesi ve güvenlik önlemlerinin alınması gerekliliğinden maliyetler yüksek olmaktadır. Bununla birlikte ülkemizde fazla bilinen ve kullanılan bir teknoloji olmadığından mikrodalga ekipmanlarının yurt dışından getirtilme zorunluluğu bulunmaktadır. Ayrıca tasarımlar sırasında gerekli ölçüm ve hesaplamaların yapılması, test cihazlarının alımı, kurulumu ve mühendislik hizmet bedelinin yüksek olması, mikrodalga konusunda çalışma yapan kuruluşları oldukça zorlamakta dolayısıyla ürünlerin maliyetlerini yüksek oranlarda etkilemektedir.

29 Mikrodalga konusunda Türkçe doküman sayısının kısıtlı ve içeriklerinin yetersiz olması bu alanda çalışma yapacakların önüne çıkan ilk engeldir. Türkiye de mikrodalgada kullanılan malzemelerin üretilmemesi nedeni ile yurtdışından malzeme temin etmek ve özellikle deneme amacıyla almak imkansızdır. Bu durumda tasarımcılar, evlerde kullanılan mikrodalga fırınları bozarak testlerini yapmak zorunda kalmaktadırlar. Bilginin bir yerde toplanmasını ve öğrendiklerimizin bizden sonra bu konuda çalışma yapacak kişi ere aktarılmasını sağlayabilirsek tasarımcıların mikrodalganın çalışma prensiplerini öğrenmesine ve bilinçli tasarımcılar ile yetişmiş personele kısa zamanda sahip olunacaktır.

30 GÜLSEN YARALI MİKRODALGA FIRIN ELEMANLARI

31 1. Yüksek Gerilim Transformatörü Diğer transformatörler gibi primer ve sekonder sargıdan oluşur. Sekonder sargısı iki adettir. Primer sargıya 220 V gerilim uygulanır. Sekonder sargının birisinden yaklaşık 4000 V diğerinden 3. 3 V elde edilir. Sekonder, primer ve flaman sarım terminalleri arasından ölçüm yapılır. YÜKSEK GERİLİM TRANSFORMATÖRÜ

32 2. Yüksek Gerilim Diyotu Yüksek gerilim trafosundan çıkan 4000 V gerilimi doğru gerilime çevirerek magnetronun anot ucuna verilmesini sağlar. Uçlarından iki yönlü ölçüm yapılır. YÜKSEK GERİLİM DİYOTU

33 3. Yüksek Gerilim Kondansatörü Yüksek gerilim diyotu ile birlikte gerilim doğrultulması için kullanılır. Terminaller arası ve gövde arası ölçüm yapılır. YÜKSEK GERİLİM KONDANSATÖRÜ

34 4. Magnetron Fanı Magnetron üzerinde yüksek ısı oluşmasını engeller. Bir fazlı gölge kutuplu motordur. Terminaller arası ölçüm yapılır MAGNETRON FANI

35 5. Döner Tabla Motoru Fırının içindeki döner tablanın dönmesini sağlayan küçük senkron bir motordur. Terminaller arası ölçüm yapılır DÖNER TABLA MOTORU

36 6. Termostad Fırın ve magnetron sıcaklığını kontrol eder. 7. Zamanlayıcı Motoru Fırının çalışma süresi 60 dakikaya kadar ayarlar. Terminaller arası ölçüm yapılır. ZAMANLAYICI MOTORU

37 8.MAGNETRON Magnetron katot ve anottan oluşan bir metalik vakum tüptür. Yüksek frekans üreten elemandır. Yüksek gerilim transformatorunun primerine 220 V alternatif akım uygulanır. Sekonder sargının birinden 3. 3 V diğerinden 4000 V gerilim çıkar V gerilim magnetron bakırdan yapılmış katod uçlarına bağlanır. Katod üzerinden geçen akım katodu akkor hale getirir. Katodun çevresinde dilimli anot vardır. Anodun etrafı kalıcı bir manyetik çerçeve ile sarılmıştır. Transformatorun 4000 V luk sargısının bir ucu diyotdan geçirilerek doğrultulur. (+) ucu anoda bağlanır V luk sargının diğer ucu ise katoda bağlanır. Anot-katod arasında bir çekim oluşur. Akkor hele gelen katottaki fırlamaya hazır elektronlar elektrostatik çekim alanına uyarak katottan anoda hava boşluğundan geçerek ulaşır. Elektronların bu hareketi anot dilimleri arasında kutuplaşmaya ve alternatif akımın meydana gelmesine neden olur. Bunun sonucunda yüksek frekanslı yoğun elektron hareketi başlar

38 Yüksek frekanslı (2450MHz) elektron hücresi anoda bağlanmış antenle fırın içine gönderilir. Fırın içindeki metal yüzeylere çarpan mikrodalgalar yansıyarak fırın içine yayılır. Fırın içindeki yiyecekler yüksek frekans etkisinde kalması ile molekülleri titreşmesi sonucu ısınırlar veya pişer.flaman terminalleri arasından magnetronun ölçümü yapılır. MAGNETRON ŞEKİL

39 Magnetron bir anot olarak anahtarlanan büyük bir bakır bloktan meydana gelmiştir. Anot bloğunun orta deliğinde ısıtıcı flaman iletkenleri ile taşınan bir silindirik katot yer alır. Bu katot, yüksek salım (emisyon) yeteneği olan dolaylı olarak ısıtılan bir oksit katottur. Flaman iletkenlerini, flaman yapısını ve katodu istenen konumda tutabilecek kadar büyük ve sağlam olmalıdır. Anot bloğu çevresinde frekansı tayin edici 8 ila 20 adet kadar kovuk çınlayıcısı (cavity resonator) yer alır.bu çınlayıcılarda anot ile katot arasında bağlantıyı sağlayan küçük bir oluk vardır Çınlayıcı (Rezonatör) Anot bloğu Katot Isıtma Kapma hattı Magnetronun slindirik yapısı

40 Anot ve katot arasında kalan bölge etkileşim bölgesi olarak adlandırılır. Burada elektrostatik ve manyetik alanlar elektronlar üzerinde kuvvet uygularlar. Katoda paralel olarak bir sabit mıknatısın kuvvetli manyetik alanı yer alır. Resim1de çınlayıcıların (rezonatörlerin) muhtelif biçimleri gösterilmiştir. Bu çınlayıcılarca üretilen yüksek frekanslı güç ya kapma hattından eşeksenel (koaksiyel) bir hat ile ile yada bir kapma çıkışı ve dalga kılavuzu vasıtasıyla alınır. a) Yarık tipi b) Daire sektörü tipi c) Doğan güneş tipi d) Delik tipi Resim1

41 MAGNETRONUN ÇALIŞMA ŞEKLİ Tüm hız modülasyon tüplerinde olduğu gibi, bir magnetronda, yüksek frekanslı salınımların elde edilmesinde geçen elektronik olaylar yine dört evrede toplanabilir: 1.Evre: Elektron akımının elde edilmesi ve hızlandırılması 2.Evre: Elektronların hız modülasyonu 3.Evre: Elektron akımının yoğunluk modülasyonu 4.Evre: AC alana enerji aktarılması

42 1. evre: Elektron Akımının Elde Edilmesi ve Hızlandırılması Magnetronda, eğer hiç manyetik alan bulunmuyorsa katodun ısıtılması sonucunda elektronlar anoda doğru merkezden düzgün ve doğrudan varacak bir biçimde yayılarak hareket ederler. Resim2de tek bir elektronun mavi renkli hatta bu hareketi gösterilmektedir. Farkı manyetik akı değerlerine sahip manyetik alan ve elektrostatik alanların etkisi altında bir elektronun hareket yolu Resim2 Daimi manyetik alan, elektronların yolunda bir bükme yaratır. Eğer elektronlar anoda varırsa, burada bir büyük anot akımı meydana gelir. Eğer manyetik alanının şiddeti arttırılırsa bu büküm daha keskinleşir. Benzeri şekilde elektronun hızı arttıkça etrafındaki alanda büyür ve sapma daha da keskinleşir. Bununla beraber kritik alan değerine varıldığında, elektronlar resimde kırmızı renkle gösterilen hattı takip ederler, elektronlar artık anottan uzaklaşmıştır ve anot akımı aniden çok küçük bir değere düşer

43 2. Evre: Elektronların hız modülasyonu Kovuk çınlayıcısı yarığından geçen elektronlar salınıma girerler. Geciktirme hatları üzerinde bir dönen manyetik alan oluşur. Manyetik alan, çınlayıcıların iç bölümlerinde etkili olduğundan, sadece çınlayıcı yarığında yoğunlaşan elektrik alanı etkileşim hacminde etkin olur ve elektronların hareketlerini etkiler. Anot bölümlerinde, Resim3 de dönen dalganın yüksek frekanslı elektrik alanı ve buna ait yük dağılımı belli bir zaman noktasına kadar dikkate alınır. İlaveten yüksek frekanslı alan ve yükler sürekli mevcut elektrostatik alanı etkiler. Dönen dalganın elektrik alan hatları Resim3 Sonuçta; dönen dalgalar, anot bölümlerinin, anot DC gerilim değerlerinden bir miktar büyük (pozitif) yada bir miktar küçük (negatif) olan gerilim değerlerini değiştirir.

44 Katottan, o anki pozitif yüklü bulunan anot bölümlerine yol alan elektronlar aynı zamanda hızlanırlar. Bu nedenle manyetik sağa sapma daha kuvvetlenir ve elektronlar daha yüksek değerlerde teğetsel hızlara çıkarlar. Diğer yandan, o anki negatif yüklü anot bölümlerine yol alan elektronlar yavaşlarlar. Bunlar sağa öyle çok sapma yapmazlar ve bunun sonucu olarak daha düşük teğetsel hızlarda hareket ederler. Bir magnetron osilatörde bulunan elektrik alanı AC ve DC bileşenlerden oluşur. DC alan merkezden yanındaki anot bölümlerine doğru yayılır. Resimde bitişik anot bölümleri arasında ki kovuklarda oluşan radyo frekanslı salınımların bir çevriminde ki maksimum büyükleri gösterilmiştir. Bunlar sadece yüksek frekanslı AC elektrik alanıdır. Bu AC alan ayrıca DC alanı da etkiler. Her bir kovuğun AC alanı resim3de gösterildiği gibi DC alanı azaltır yada çoğaltır

45 3. Evre: Elektron akımının yoğunluk modülasyonu Değişik elektron gruplarının farklı hızlara sahip olmaları nedeniyle, elektronlar dönüşleri sırasında çalışma zamanı etkileri ortaya çıkar Daha hızlı elektronlar daha yavaş elektronları yakalar ve elektronların kümelenmeleri sonucu jant telli bisiklet tekerinin dönmesi sırasında meydana gelen bir görüntüye benzer bir çark görüntüsü ortaya çıkar. Bu görüntüye İngilizce de Space-Charge-Wheel denilmektedir. Bu çark AC alanın her bir çevrimi için 2 kutupluk açısal bir hızda dönmektedir. Bu faz ilişkisi elektron kümelerinin enerjilerini sürekli aktararak yüksek frekanslı salınımın sürmesini sağlar.

46 Resim4 de betimlenen an, bu çarkın anot DC gerilimi bindirilmiş (superimposed) yüksek frekanslı dönen alanının biraz negatif yüklü iken olan ki halidir. Elektronlar frenlenmiş olup, enerjileri yüksek frekanslı aktarılır. Negatif yüklü anot bölümü yakınında ki bir çark kolunda ki bir miktar elektron artık yavaşlamıştır ve enerjisini AC alana aktarırlar. Hem dalgalar (ve sonucunda çınlayıcılarda ki alan dağılımı) hem de çark sürekli döndüğünden bu durum statik değildir; elektron hatlarının teğetsel hızlarının ve dalgaların dönme hızları birbiriyle bağdaştırılması gerekir. Elektron akımının yoğunluk modülasyonu Resim4

47 4. Evre: AC alana enerji aktarılması Elektrik alanına karşı hareket eden bir elektronun bu alan tarafından ivmelendirildiğini ve bu alandan enerji aldığını hatırlayınız. Keza, bir elektronun alana aynı yöne (pozitif veya negatif) hareket ederken yavaşladığında enerjisini bu alana aktardığını da hatırlayınız. Elektron kovuk önünden geçerken enerjisini bırakır ve enerjisi tükenince anoda varır. Yani elektronlar DC alandan enerji alıp bunu AC alana aktararak salınımın sürmesini sağlarlar.

48 Karşılık gelen anot bölümüne varmadan önce, katot ve anot arasında ki çark kolu üzerindeki elektronlar çok daha fazla frenlerler. Bu frenleme onların enerjilerini yüksek frekanslı salınıma bırakmalarını sağlar. Resim5 de bir elektronun uzun bir zaman dilimi içerisinde takip ettiği yol görülmektedir. Elektronları çok sayıda frenlemeleri sayesinde enerjileri en optimal biçimde alınır ve % 80 e kadar olan verimliliğe ulaşılır. Bir elektronun güzergahı Resim5

49 Magnetrondan Enerjinin Sağılması (out-coupling) Yüksek frekanslı enerji magnetrondan bir halka vasıtasıyla sağılır. 10 GHz altında ki frekanslarda bu halka bir eşeksenel (koaksiyel) kablonun ortasında ki iletken bükülerek ve ardından dış iletkene lehimlenerek yapılır. Bu şekilde oluşturulan halka (Görüntü A) kovuğun içine yerleştirilir. Daha yüksek frekanslarda ise (Görüntü B) bu halka çınlayıcının dışına doğru alındığında daha verimli olmaktadır A B

50 Görüntü C de yüksek frekanslı enerjinin bir bölümden beslenerek sağılması görülmektedir. İletken, benzeri şekilde, çınlayıcılar arasında meydana gelen manyetik alanı kapar. Yine Görüntü D de görüldüğü gibi, kısa devre halkalarına bağlantı yapıldığı bir yöntem daha vardır. Enerjiyi bir eşeksenel kablo ile sağlama yöntemi, işlemin hava sızdırmaz (vakum tüp oluşu nedeniyle!) tarzda anot bloğu vasıtasıyla yapılması gerektiğinden ötürü çok uygun bir yöntemdir. Bu eşeksenel kablolar doğrudan dalga kılavuzunu besleyebilir. Yüksek frekanslarda (küçük boyutlu dalga kılavuzu kullanılan) bir yarık vasıtasıyla enerji sağılması yöntemi keza çok yaygındır (Görüntü E) C D E

51 MİKRODALGA ISITMA SİSTEMLERİ

52 Mikrodalga sistemlerinde ısıtma,enerji emen dielektirik bir yalıtkandan meydana gelir.md radyosyonu,elektromanyetik spektrumda radyo frekansı ile komşudur.örneğin 900 Mhz civarındaki dalgalar bazı uygulamalarda radyo frekansı bazı uygulamalarda da MD(dielektirik ısıtma)dalgaları olarak kabul edilir. Mikrodalga ısıtma sistemleri dört ana bölümden oluşur 1)Güç kaynağı 3)Düzenleyici sistem Magnetron ve Güç kaynağı Sirkülatör 2)Güç dönüşüm ortamı 4)Uygulayıcı Dalga klavuzu Rezanatör ısıtılacak yük IIIE Tuner Su yükü Döner platform TİPİK BİR MİKRODALGA FIRIN

53 Cihazın güç kaynağı genelde bir magnetrondur.500w-2kw arasında çıkış gücüne sahiptir. MD uygulayıcılarının en yaygınları metal bir kutu ya da boşluktur.isıtılacak malzemeler bu boşluğa yerleştirilir. Mikrodalgalar bir malzemeye doğru uygulandığında 3 seçenek söz konusudur. 1)Malzeme,hava,kuvars camı gibi şeffafsa dalgaları geçirir. 2)Malzeme grafit ve metaller gibi yansıtıcı ise dalgaların kendilerine cidar kalınlığından fazla nüfuz etmelerine izin vermezler ve onları boşluğa geri yansıtırlar. 3)Malzeme yiyecekler,seramikler, yaş ağaçlar gibi enerjinin içerisine nüfus etmesine imkan sağlayacak şekilde ise mikrodalga enerjisini emerler ve bunu ısıya çevirebilirler.dalgaların madde içine ne kadar nüfuz edeceği ise malzemeye ve malzemenin dielektrik özelliklerine göre değişir.

54 (a) (b) (a)şeffaf malzemeler dalgaları geçirmesi (b)yansıtıcı malzemelerde dalgaların yansıması (c) Mikrodalga enerjisinin emilmesi ve ısıya çevrilmesi (c)

55 Mikrodalga ısıtmanın temel prensibi bir dielektrik malzemenin yüksek frekanslı elektrik alanı altına yerleştirilmesiyle enerji yutmasına dayanır. Mikrodalgalar dielektrik bir malzemeye nüfuz ettiklerinde ve ilerlediklerinde serbest ya da bağlı yüklerin veya dönen dipollerin hareketine neden olan bir iç elektrik alanı oluştururlar.malzeme içindeki harekete karşı gösterilen direnç,kayıplara sebep olur ve içsel elastik ve sürtünme kuvvetleri nedeniyle elektrik alan zayıflar.sonuç olarak kütlesel ısınma gözlenir.

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma Dielektrik malzeme DİELEKTRİK ÖZELLİKLER Dielektrik malzemeler; serbest elektron yoktur, yalıtkan malzemelerdir, uygulanan elektriksel alandan etkilenebilirler. 1 2 Dielektrik malzemeler Elektriksel alan

Detaylı

TÜBİTAK-BİDEB LİSE ÖĞRETMENLERİ (FİZİK, KİMYA, BİYOLOJİ VE MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYI LİSE-1 (ÇALIŞTAY 2011) GRUP ADI: IŞIK HIZI

TÜBİTAK-BİDEB LİSE ÖĞRETMENLERİ (FİZİK, KİMYA, BİYOLOJİ VE MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYI LİSE-1 (ÇALIŞTAY 2011) GRUP ADI: IŞIK HIZI TÜBİTAK-BİDEB LİSE ÖĞRETMENLERİ (FİZİK, KİMYA, BİYOLOJİ VE MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYI LİSE-1 (ÇALIŞTAY 2011) GRUP ADI: IŞIK HIZI PROJE ADI IŞIK HIZININ HESAPLANMASI PROJE EKİBİ Erhan

Detaylı

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison Sensörler Öğr. Gör. Erhan CEMÜNAL Sıkı bir çalışmanın yerini hiç bir şey alamaz. Deha yüzde bir ilham ve yüzde doksandokuz terdir. Thomas Alva Edison İçerik TEMEL ELEKTRONİK KAVRAMLARI Transdüser ve Sensör

Detaylı

Alternatif Akım Devre Analizi

Alternatif Akım Devre Analizi Alternatif Akım Devre Analizi Öğr.Gör. Emre ÖZER Alternatif Akımın Tanımı Zamaniçerisindeyönüveşiddeti belli bir düzen içerisinde (periyodik) değişen akıma alternatif akımdenir. En bilinen alternatif akım

Detaylı

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işını oluşumu Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI TÜPÜ X-IŞINI TÜPÜ PARÇALARI 1. Metal korunak (hausing) 2. Havası alınmış cam veya metal tüp 3. Katot 4. Anot X-ışın

Detaylı

Isı ve sıcaklık arasındaki fark : Isı ve sıcaklık birbiriyle bağlantılı fakat aynı olmayan iki kavramdır.

Isı ve sıcaklık arasındaki fark : Isı ve sıcaklık birbiriyle bağlantılı fakat aynı olmayan iki kavramdır. MADDE VE ISI Madde : Belli bir kütlesi, hacmi ve tanecikli yapısı olan her şeye madde denir. Maddeler ısıtıldıkları zaman tanecikleri arasındaki mesafe, hacmi ve hareket enerjisi artar, soğutulduklarında

Detaylı

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB)

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB) ÖĞENME ALANI : FZKSEL OLAYLA ÜNTE 3 : YAŞAMIMIZDAK ELEKTK (MEB) B ELEKTK AKIMI (5 SAAT) (ELEKTK AKIMI NED?) 1 Elektrik Akımının Oluşması 2 Elektrik Yüklerinin Hareketi ve Yönü 3 ler ve Özellikleri 4 Basit

Detaylı

ÖLÇME VE ÖLÇÜ ALETLERİ

ÖLÇME VE ÖLÇÜ ALETLERİ ÖLÇME VE ÖLÇÜ ALETLERİ 1. KISA DEVRE Kısa devre; kırmızı, sarı, mavi, nötr ve toprak hatlarının en az ikisinin birbirine temas ederek elektriksel akımın bu yolla devresini tamamlamasıdır. Kısa devre olduğunda

Detaylı

Elektron ışını ile şekil verme. Prof. Dr. Akgün ALSARAN

Elektron ışını ile şekil verme. Prof. Dr. Akgün ALSARAN Elektron ışını ile şekil verme Prof. Dr. Akgün ALSARAN Elektron ışını Elektron ışını, bir ışın kaynağından yaklaşık aynı hızla aynı doğrultuda hareket eden elektronların akımıdır. Yüksek vakum içinde katod

Detaylı

Doğru Akım (DC) Makinaları

Doğru Akım (DC) Makinaları Doğru Akım (DC) Makinaları Doğru akım makinaları motor veya jeneratör olarak kullanılabilir. Genellikle DC makinalar motor olarak kullanılır. En büyük avantajları hız ve tork ayarının kolay yapılabilmesidir.

Detaylı

MOTOR KORUMA RÖLELERİ. Motorların şebekeden aşırı akım çekme nedenleri

MOTOR KORUMA RÖLELERİ. Motorların şebekeden aşırı akım çekme nedenleri MOTOR KORUMA RÖLELERİ Motorlar herhangi bir nedenle normal değerlerinin üzerinde akım çektiğinde sargılarının ve devre elemanlarının zarar görmemesi için en kısa sürede enerjilerinin kesilmesi gerekir.

Detaylı

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini alçaltmaya veya yükseltmeye yarayan elektro manyetik indüksiyon

Detaylı

ELEKTRİKSEL EYLEYİCİLER

ELEKTRİKSEL EYLEYİCİLER ELEKTRİKSEL EYLEYİCİLER Eyleyiciler (Aktuatörler) Bir cismi hareket ettiren veya kontrol eden mekanik cihazlara denir. Elektrik motorları ve elektrikli sürücüler Hidrolik sürücüler Pinomatik sürücüler

Detaylı

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? Temel Kavramlar Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? 1 Elektriksel Yük Elektrik yükü bu dış yörüngede dolanan elektron sayısının çekirdekteki proton

Detaylı

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak.

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri kullanarak elektrik alan çizgilerinin

Detaylı

BÖLÜM 2. Gauss s Law. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

BÖLÜM 2. Gauss s Law. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley BÖLÜM 2 Gauss s Law Hedef Öğretiler Elektrik akı nedir? Gauss Kanunu ve Elektrik Akı Farklı yük dağılımları için Elektrik Alan hesaplamaları Giriş Statik Elektrik, tabiatta birbirinden farklı veya aynı,

Detaylı

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU Güneş ışınımı değişik dalga boylarında yayılır. Yayılan bu dalga boylarının sıralı görünümü de güneş spektrumu olarak isimlendirilir. Tam olarak ifade edilecek olursa;

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II DOĞRUSAL ISI İLETİMİ DENEYİ 1.Deneyin Adı: Doğrusal ısı iletimi deneyi..

Detaylı

Elektrik Dağıtım Şebekesi: İletim hattından gelen ve şalt merkezlerinde gerilim seviyesi düşürülen elektriği, ev ve işyerlerine getiren şebekedir.

Elektrik Dağıtım Şebekesi: İletim hattından gelen ve şalt merkezlerinde gerilim seviyesi düşürülen elektriği, ev ve işyerlerine getiren şebekedir. DAĞITIM TRAFOLARI Genel Tanımlar Elektrik Dağıtım Şebekesi: İletim hattından gelen ve şalt merkezlerinde gerilim seviyesi düşürülen elektriği, ev ve işyerlerine getiren şebekedir. EEM13423 ELEKTRİK ENERJİSİ

Detaylı

Elektrik Yük ve Elektrik Alan

Elektrik Yük ve Elektrik Alan Bölüm 1 Elektrik Yük ve Elektrik Alan Bölüm 1 Hedef Öğretiler Elektrik yükler ve bunların iletken ve yalıtkanlar daki davranışları. Coulomb s Yasası hesaplaması Test yük kavramı ve elektrik alan tanımı.

Detaylı

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ MALZEME LABORATUARI II DERSİ AKIMLI VE AKIMSIZ KAPLAMALAR DENEY FÖYÜ

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ MALZEME LABORATUARI II DERSİ AKIMLI VE AKIMSIZ KAPLAMALAR DENEY FÖYÜ BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ MALZEME LABORATUARI II DERSİ AKIMLI VE AKIMSIZ KAPLAMALAR DENEY FÖYÜ Gelişen teknoloji ile beraber birçok endüstri alanında kullanılabilecek

Detaylı

TEMEL BİLGİLER. İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir.

TEMEL BİLGİLER. İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir. TEMEL BİLGİLER İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir. Yalıtkan : Elektrik yüklerinin kolayca taşınamadığı ortamlardır.

Detaylı

MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI

MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI KONDANSATÖR Kondansatör iki iletken plaka arasına bir yalıtkan malzeme konarak elde edilen ve elektrik enerjisini elektrostatik enerji olarak depolamaya

Detaylı

2- Tristör ile yük akımı değiştirilerek ayarlı yükkontrolü yapılabilir.

2- Tristör ile yük akımı değiştirilerek ayarlı yükkontrolü yapılabilir. Tristörlü Redresörler ( Doğrultmaçlar ) : Alternatif akımı doğru akıma çeviren sistemlere redresör denir. Redresörler sanayi için gerekli olan DC gerilimin elde edilmesini sağlar. Büyük akım ve gerilimlerin

Detaylı

1. Kristal Diyot 2. Zener Diyot 3. Tünel Diyot 4. Iºýk Yayan Diyot (Led) 5. Foto Diyot 6. Ayarlanabilir Kapasiteli Diyot (Varaktör - Varikap)

1. Kristal Diyot 2. Zener Diyot 3. Tünel Diyot 4. Iºýk Yayan Diyot (Led) 5. Foto Diyot 6. Ayarlanabilir Kapasiteli Diyot (Varaktör - Varikap) Diyot Çeºitleri Otomotiv Elektroniði-Diyot lar, Ders sorumlusu Yrd.Doç.Dr.Hilmi KUªÇU Diðer Diyotlar 1. Kristal Diyot 2. Zener Diyot 3. Tünel Diyot 4. Iºýk Yayan Diyot (Led) 5. Foto Diyot 6. Ayarlanabilir

Detaylı

Fotovoltaik Teknoloji

Fotovoltaik Teknoloji Fotovoltaik Teknoloji Bölüm 3: Güneş Enerjisi Güneşin Yapısı Güneş Işınımı Güneş Spektrumu Toplam Güneş Işınımı Güneş Işınımının Ölçülmesi Dr. Osman Turan Makine ve İmalat Mühendisliği Bilecik Şeyh Edebali

Detaylı

YAKLAŞIM SENSÖRLERİ (PROXIMITY) Endüktif, Kapasitif ve Optik Yaklaşım Sensörleri

YAKLAŞIM SENSÖRLERİ (PROXIMITY) Endüktif, Kapasitif ve Optik Yaklaşım Sensörleri YAKLAŞIM SENSÖRLERİ (PROXIMITY) Endüktif, Kapasitif ve Optik Yaklaşım Sensörleri Sanayi fabrika otomasyonunda proximity (yaklasım) sensorler kullanılır. Porximity sensorler profesyonel yapıda cevre sartlarından

Detaylı

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 05

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 05 EELP212 DERS 05 Özer ŞENYURT Mayıs 10 1 BĐR FAZLI MOTORLAR Bir fazlı motorların çeşitleri Yardımcı sargılı motorlar Ek kutuplu motorlar Relüktans motorlar Repülsiyon motorlar Üniversal motorlar Özer ŞENYURT

Detaylı

Enerji Verimliliği ve İndüksiyon Ocaklarının Değerlendirilmesi. Yrd. Doç. Dr. Halil Murat Ünver Kırıkkale Üniversitesi

Enerji Verimliliği ve İndüksiyon Ocaklarının Değerlendirilmesi. Yrd. Doç. Dr. Halil Murat Ünver Kırıkkale Üniversitesi Enerji Verimliliği ve İndüksiyon Ocaklarının Değerlendirilmesi Yrd. Doç. Dr. Halil Murat Ünver Kırıkkale Üniversitesi Giriş İndüksiyonla Isıtma Prensipleri Bilindiği üzere, iletken malzemenin değişken

Detaylı

ZIMPARA TAŞ MOTORU MODEL RTM415A RTM417A RTM420A TANITMA VE KULLANIM KILAVUZU

ZIMPARA TAŞ MOTORU MODEL RTM415A RTM417A RTM420A TANITMA VE KULLANIM KILAVUZU ZIMPARA TAŞ MOTORU MODEL RTM415A RTM417A RTM420A TANITMA VE KULLANIM KILAVUZU CİHAZIN ÜNİTELERİ 1. AÇMA /KAPAMA ŞALTERİ 2. İŞ PARÇASI TABLASI 3. KIVILCIM/ÇAPAK KORUYUCU 4. ZIMPARA TAŞI 5. ZIMPARA TAŞI

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 7

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 7 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 7 TERMOELEKTRİK MODÜLLER ÜZERİNDE ISI GEÇİŞİNİN İNCELENMESİ VE TERMOELEKTRİKSEL ETKİNİN DEĞERLENDİRİLMESİ

Detaylı

MIRA INFRA NANO ENDÜSTRİYEL

MIRA INFRA NANO ENDÜSTRİYEL MIRA INFRA NANO ENDÜSTRİYEL ELEKTRİKLİ RADYANT ISITICI Yanı başınızdaki güneş YENİ NANO TEKNOLOJİ, ÜSTÜN PERFORMANS MİRA INFRA Nano Elektrikli radyant ısıtıcılar, paslanmaz çelik boru içerisindeki yüksek

Detaylı

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV) BÖLÜM 2. FOTOOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (P) Fotovoltaik Etki: Fotovoltaik etki birbirinden farklı iki malzemenin ortak temas bölgesinin (common junction) foton radyasyonu ile aydınlatılması durumunda

Detaylı

RÖLELER Ufak güçteki elektromanyetik anahtarlara röle adı verilir. Röleler elektromıknatıs, palet ve kontaklar olmak üzere üç kısımdan oluşur.

RÖLELER Ufak güçteki elektromanyetik anahtarlara röle adı verilir. Röleler elektromıknatıs, palet ve kontaklar olmak üzere üç kısımdan oluşur. BÖLÜM-5 RÖLELER 1 RÖLELER Ufak güçteki elektromanyetik anahtarlara röle adı verilir. Röleler elektromıknatıs, palet ve kontaklar olmak üzere üç kısımdan oluşur. Elektromıknatıs, demir nüve ve üzerine sarılmış

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Elektriksel olaylarla ilgili buraya kadar yaptığımız, tartışmalarımız, durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik

Detaylı

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ Yrd. Doç. Dr. Özhan ÖZKAN MOSFET: Metal-Oksit Yarıiletken Alan Etkili Transistor (Geçidi Yalıtılmış

Detaylı

Farklı malzemelerin dielektrik sabiti LEP 4.2.06_00

Farklı malzemelerin dielektrik sabiti LEP 4.2.06_00 PHYWE Farklı malzemelerin dielektrik sabiti LEP 4.2.06_00 İlgili başlıklar Maxwell in eşitlikleri, elektrik sabiti, plaka kapasitörün kapasitesi, gerçek yükler, serbest yükler, dielektrik deplasmanı, dielektrik

Detaylı

AŞIRI AKIM KORUMA RÖLELERİ Trafolarda Meydana Gelen Aşırı Akımların Nedenleri

AŞIRI AKIM KORUMA RÖLELERİ Trafolarda Meydana Gelen Aşırı Akımların Nedenleri Koruma Röleleri AŞIRI AKIM KORUMA RÖLELERİ Trafolarda Meydana Gelen Aşırı Akımların Nedenleri Trafolarda meydana gelen arızaların başlıca nedenleri şunlardır: >Transformatör sargılarında aşırı yüklenme

Detaylı

Harici Fotoelektrik etki ve Planck sabiti deney seti

Harici Fotoelektrik etki ve Planck sabiti deney seti Deneyin Temeli Harici Fotoelektrik etki ve Planck sabiti deney seti Fotoelektrik etki modern fiziğin gelişimindeki anahtar deneylerden birisidir. Filaman lambadan çıkan beyaz ışık ızgaralı spektrometre

Detaylı

Endüstriyel Sensörler ve Uygulama Alanları Kalite kontrol amaçlı ölçme sistemleri, üretim ve montaj hatlarında imalat sürecinin en önemli aşamalarındandır. Günümüz teknolojisi mükemmelliği ve üretimdeki

Detaylı

EĞİTİM PROGRAMI ÇERÇEVESİ BİRİNCİ EĞİTİM MODÜLÜ

EĞİTİM PROGRAMI ÇERÇEVESİ BİRİNCİ EĞİTİM MODÜLÜ EK-2 PROGRAMI ÇERÇEVESİ BİRİNCİ MODÜLÜ MÜFREDAT KONUSU MODÜL GENEL Enerji verimliliği mevzuatı, M1 Teorik Enerjide arz ve talep tarafındaki gelişmeler, M1 Teorik Enerji tasarrufunun ve verimliliğin önemi

Detaylı

ELEKTRİKLE ÇALIŞMALARDA GÜVENLİK. Tanımlar

ELEKTRİKLE ÇALIŞMALARDA GÜVENLİK. Tanımlar ELEKTRİKLE ÇALIŞMALARDA GÜVENLİK Tanımlar 1 İçerik 1. Giriş Temel tanım ve kavramlar Enerji şebekesi (Üretim, iletim ve dağıtım aşamaları) Temel bileşenler (İletkenler, elektrik tesisat ekipmanları, anahtarlama

Detaylı

ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1

ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

Elektrokimyasal İşleme

Elektrokimyasal İşleme Elektrokimyasal İşleme Prof. Dr. Akgün ALSARAN Bu notların bir kısmı Prof. Dr. Can COGUN un ders notlarından alınmıştır. Anot, katot ve elektrolit ile malzemeye şekil verme işlemidir. İlk olarak 19. yüzyılda

Detaylı

2 MALZEME ÖZELLİKLERİ

2 MALZEME ÖZELLİKLERİ ÖNSÖZ İÇİNDEKİLER III Bölüm 1 TEMEL KAVRAMLAR 11 1.1. Fizik 12 1.2. Fiziksel Büyüklükler 12 1.3. Ölçme ve Birim Sistemleri 13 1.4. Çevirmeler 15 1.5. Üstel İfadeler ve İşlemler 18 1.6. Boyut Denklemleri

Detaylı

Geleneksel sıcaklık ayarı: Önce emniyet Elektronik kontrollü termostat Daha fazla verimlilik için güvenli bir seçim

Geleneksel sıcaklık ayarı: Önce emniyet Elektronik kontrollü termostat Daha fazla verimlilik için güvenli bir seçim MAHLE Aftermarket ürün tanıtımı Elektronik kontrollü termostatlar Geleneksel sıcaklık ayarı: Önce emniyet Bir binek araç motorundaki yanma işlemi, yaklaşık 110 C lik çalışma sıcaklığı seviyesinde mükemmel

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 0 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY İÇİNDE SABİT SICAKLIKTA SİLİNDİRİK ISITICI BULUNAN DİKDÖRTGEN PRİZMATİK SAC KUTU YÜZEYLERİNDEN ZORLANMIŞ TAŞINIM

Detaylı

CLMD Alçak gerilim güç kondansatörleri Güç faktörü düzeltmede güvenilirlik

CLMD Alçak gerilim güç kondansatörleri Güç faktörü düzeltmede güvenilirlik CLMD Alçak gerilim güç kondansatörleri Güç faktörü düzeltmede güvenilirlik Güç faktörü düzeltmede güvenilirlik CLMD yapısı CLMD kondansatör belirli sayıdaki dielektrik metalize polipropilen film bobinlerinden

Detaylı

DC Motor ve Parçaları

DC Motor ve Parçaları DC Motor ve Parçaları DC Motor ve Parçaları Doğru akım motorları, doğru akım elektrik enerjisini dairesel mekanik enerjiye dönüştüren elektrik makineleridir. Yapıları DC generatörlere çok benzer. 1.7.1.

Detaylı

11.1. ELEKTRONİK ATEŞLEME SİSTEMLERİ ( ELECTRONIC IGNATION )

11.1. ELEKTRONİK ATEŞLEME SİSTEMLERİ ( ELECTRONIC IGNATION ) 11. DİĞER ELEKTRONİK SİSTEMLER 11.1. ELEKTRONİK ATEŞLEME SİSTEMLERİ ( ELECTRONIC IGNATION ) Elektronik ateşlemenin diğerlerinden farkı, motorun her durumda ateşleme zamanlamasının hassas olarak hesaplanabilmesidir.

Detaylı

DOĞRUSAL YANGIN ALGILAMA SĐSTEMLERĐ

DOĞRUSAL YANGIN ALGILAMA SĐSTEMLERĐ DOĞRUSAL YANGIN ALGILAMA SĐSTEMLERĐ Mehmet Yavuz ALKAN yavuz.alkan@absalarm.com.tr ABS Alarm ve Bilgisayar Sistemleri San. ve Tic. A.Ş. 1203 / 11 Sokak No:3 Ömer Atlı Đş Merkezi Kat:5-505 Yenişehir ĐZMĐR

Detaylı

DENEY 1: DİYOT KARAKTERİSTİKLERİ

DENEY 1: DİYOT KARAKTERİSTİKLERİ DENEY 1: DİYOT KARAKTERİSTİKLERİ Diyot, yalnızca bir yönde akım geçiren devre elemanıdır. Bir yöndeki direnci ihmal edilebilecek kadar küçük, öbür yöndeki dirençleri ise çok büyük olan elemanlardır. Direncin

Detaylı

RADYASYON VE RADYASYONDAN KORUNMA

RADYASYON VE RADYASYONDAN KORUNMA RADYASYON VE RADYASYONDAN KORUNMA Mehmet YÜKSEL Çukurova Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı MADDENİN YAPISI (ATOM) Çekirdek Elektronlar RADYASYON NEDİR? Radyasyon; iç dönüşüm geçiren

Detaylı

Kullanım kılavuzu MWE 22 EGL MWE 22 EGR

Kullanım kılavuzu MWE 22 EGL MWE 22 EGR Kullanım kılavuzu TR MWE 22 EGL MWE 22 EGR Fırınınızın açıklaması 6 1 2 3 4 5 1. Kilit mangalları 4. Seramik taban 2. Kapı pencere camı 5. Kontrol paneli 3. Açılır ızgara 6. Raf 1. Start/Stop düğmesi 5.

Detaylı

ELEKTRİK DEVRE TEMELLERİ

ELEKTRİK DEVRE TEMELLERİ ELEKTRİK DEVRE TEMELLERİ Dr. Cemile BARDAK Ders Gün ve Saatleri: Çarşamba (09:55-12.30) Ofis Gün ve Saatleri: Pazartesi / Çarşamba (13:00-14:00) 1 TEMEL KAVRAMLAR Bir atom, proton (+), elektron (-) ve

Detaylı

Şekilde görüldüğü gibi Gerilim/akım yoğunluğu karakteristik eğrisi dört nedenden dolayi meydana gelir.

Şekilde görüldüğü gibi Gerilim/akım yoğunluğu karakteristik eğrisi dört nedenden dolayi meydana gelir. Bir fuel cell in teorik açık devre gerilimi: Formülüne göre 100 oc altinda yaklaşık 1.2 V dur. Fakat gerçekte bu değere hiçbir zaman ulaşılamaz. Şekil 3.1 de normal hava basıncında ve yaklaşık 70 oc da

Detaylı

ECOMFORT 3 YIL. Avantajları. Fonksiyonu. Enerji Ekonomisi. Modeller

ECOMFORT 3 YIL. Avantajları. Fonksiyonu. Enerji Ekonomisi. Modeller ECOMFORT Fonksiyonu Küçük ve orta büyüklükteki iklimlendirme uygulamalarında iç ortamın ısıtılması/soğutulması ve filtrelenmesi için kullanılmaktadır. Asma tavana montaj imkanı vardır, hava dağıtımı asma

Detaylı

ECOFLOOR Elektrikli Yerden Isıtma Sistemleri

ECOFLOOR Elektrikli Yerden Isıtma Sistemleri ECOFLOOR Elektrikli Yerden Isıtma Sistemleri ECOFLOOR elektrikli yerden ısıtma sistemleri, ideal ısı dağılımı sağlıyor ve istenmeyen hava akımlarını azaltarak tozlanmayı engelliyor. Bu sistemler; büyük

Detaylı

İletim Hatları ve Elektromanyetik Alan. Mustafa KOMUT Gökhan GÜNER

İletim Hatları ve Elektromanyetik Alan. Mustafa KOMUT Gökhan GÜNER İletim Hatları ve Elektromanyetik Alan Mustafa KOMUT Gökhan GÜNER 1 Elektrik Alanı Elektrik alanı, durağan bir yüke etki eden kuvvet (itme-çekme) olarak tanımlanabilir. F parçacık tarafından hissedilen

Detaylı

ROTATERM HIZLI PRATİK ve SORUNSUZ

ROTATERM HIZLI PRATİK ve SORUNSUZ RT HIZLI PRATİK ve SORUNSUZ Özköseoğlu Döner Arabalı Ekmek Fırınları endirekt ısıtmalı, cebri hava sirkülasyon sistemiyle çalışan ve buhar sistemi ile donatılmış, unlu mamul için en iyi pişirme şartlarını

Detaylı

: Bilgisayar Mühendisliği. Genel Fizik II

: Bilgisayar Mühendisliği. Genel Fizik II Ad Soyadı Şube No : Fahri Dönmez : TBIL-104-03 Öğrenci No : 122132151 Bölüm : Bilgisayar Mühendisliği Genel Fizik II HIZLI TRENLERİN YAVAŞLAMASINI VE DURMASINI SAĞLAYAN FREN SİSTEMİNDE MANYETİK KUVVETLERİN

Detaylı

Elektrik Motorları ve Sürücüleri

Elektrik Motorları ve Sürücüleri Elektrik Motorları ve Sürücüleri Genel Kavramlar Motor sarımı görüntüleri Sağ el kuralı bobine uygulanırsa: 4 parmak akım yönünü Başparmak N kutbunu gösterir N ve S kutbunun oluşumu Manyetik alan yönü

Detaylı

326 ELEKTRİK MAKİNALARI LABORATUVARI II ÜÇ-FAZ SİNCAP KAFESLİ ASENKRON (İNDÜKSİYON) MOTOR DENEY 326-04

326 ELEKTRİK MAKİNALARI LABORATUVARI II ÜÇ-FAZ SİNCAP KAFESLİ ASENKRON (İNDÜKSİYON) MOTOR DENEY 326-04 İNÖNÜ ÜNİERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜH. BÖL. 26 ELEKTRİK MAKİNALARI LABORATUARI II ÜÇ-FAZ SİNCAP KAFESLİ ASENKRON (İNDÜKSİYON) MOTOR DENEY 26-04. AMAÇ: Üç-faz sincap kafesli asenkron

Detaylı

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI I

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI I T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI I DENEY 7: MOSFET Lİ KUVVETLENDİRİCİLER Ortak Kaynaklı MOSFET li kuvvetlendirici

Detaylı

AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM 108 Elektrik Devreleri I Laboratuarı Deneyin Adı: Kırchoff un Akımlar Ve Gerilimler Yasası Devre Elemanlarının Akım-Gerilim

Detaylı

Elektrikli Vibratör Sürücüleri

Elektrikli Vibratör Sürücüleri Elektrikli Vibratör Sürücüleri Tünkers elektrikli vibratör kazık çakıcıları self senkronizasyon prensibi ve doğru hizalanmış titreşimleri yaratmak ilkesine göre çalışır. Balanssız yük milli vibratör, zıt

Detaylı

9. Güç ve Enerji Ölçümü

9. Güç ve Enerji Ölçümü 9. Güç ve Enerji Ölçümü Güç ve Güç Ölçümü: Doğru akım devrelerinde, sürekli halde sadece direnç etkisi mevcuttur. Bu yüzden doğru akım devrelerinde sadece dirence ait olan güçten bahsedilir. Sürekli halde

Detaylı

DÖKÜM İMALAT PROSESLERİ İÇİN İLERİ DÜZEY SİMÜLASYON YAZILIMI: VULCAN

DÖKÜM İMALAT PROSESLERİ İÇİN İLERİ DÜZEY SİMÜLASYON YAZILIMI: VULCAN DÖKÜM İMALAT PROSESLERİ İÇİN İLERİ DÜZEY SİMÜLASYON YAZILIMI: VULCAN VULCAN döküm simülasyon yazılımı ile imalat öncesi döküm kusurlarının tespiti ve iyileştirilmesi ÖZET Makalede uygulama yapılan model

Detaylı

Sensörler. Yrd.Doç.Dr. İlker ÜNAL

Sensörler. Yrd.Doç.Dr. İlker ÜNAL Sensörler Yrd.Doç.Dr. İlker ÜNAL Optik Sensörler Üzerine düşen ışığa bağlı olarak üstünden geçen akımı değiştiren elemanlara optik eleman denir. Optik transdüserler ışık miktarındaki değişmeleri elektriksel

Detaylı

Kasetin arka yüzeyi filmin yerleştirildiği kapaktır. Bu kapakların farklı farklı kapanma mekanizmaları vardır. Bu taraf ön yüzeyin tersine atom

Kasetin arka yüzeyi filmin yerleştirildiği kapaktır. Bu kapakların farklı farklı kapanma mekanizmaları vardır. Bu taraf ön yüzeyin tersine atom KASET Röntgen filmi kasetleri; radyografi işlemi sırasında filmin ışık almasını önleyen ve ranforsatör-film temasını sağlayan metal kutulardır. Özel kilitli kapakları vardır. Kasetin röntgen tüpüne bakan

Detaylı

Motor, rulman, dönen parçaların yağlanmamasından kaynaklanan sürtünme ve oluşturduğu yerlerin tespiti,

Motor, rulman, dönen parçaların yağlanmamasından kaynaklanan sürtünme ve oluşturduğu yerlerin tespiti, TERMAL KAMERA NEDİR? Hemen hemen güç kullanan veya ileten tüm ekipmanlar arızalanmadan önce ısınırlar ve infrared enerji (ısı) yayarlar. Temassız ölçüm cihazları olan termal kameralar nesnelerin yaymış

Detaylı

AC-DC Dönüştürücülerin Genel Özellikleri

AC-DC Dönüştürücülerin Genel Özellikleri AC-DC Dönüştürücülerin Genel Özellikleri U : AC girişteki efektif faz gerilimi f : Frekans q : Faz sayısı I d, I y : DC çıkış veya yük akımı (ortalama değer) U d U d : DC çıkış gerilimi, U d = f() : Maksimum

Detaylı

Doğru Akım (DC) Makinaları

Doğru Akım (DC) Makinaları Doğru Akım (DC) Makinaları Doğru akım makinaları motor veya jeneratör olarak kullanılabilir. Genellikle DC makinalar motor olarak kullanılır. En büyük avantajları hız ve tork ayarının kolay yapılabilmesidir.

Detaylı

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. El Yapımı Basit Elektrik Motoru 3

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. El Yapımı Basit Elektrik Motoru 3 YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ El Yapımı Basit Elektrik Motoru 3 Proje Raporu Ozan GÜNGÖR 12068010 16.01.2013 İstanbul

Detaylı

Hızlandırıcı Fiziği-1. Veli YILDIZ (Veliko Dimov) 03.02.2016

Hızlandırıcı Fiziği-1. Veli YILDIZ (Veliko Dimov) 03.02.2016 Hızlandırıcı Fiziği-1 Veli YILDIZ (Veliko Dimov) 03.02.2016 1 2 İçerik Rutherford ve çekirdeğin keşfi, İlk defa yapay yollar ile atom çekirdeğinin parçalanması, Elektrostatik hızlandırıcılar, Hızlandırıcılarda

Detaylı

AA Motorlarında Yol Verme, Motor Seçimi Yrd. Doç. Dr. Aytaç Gören

AA Motorlarında Yol Verme, Motor Seçimi Yrd. Doç. Dr. Aytaç Gören 04.12.2011 AA Motorlarında Yol Verme, Motor Seçimi Yrd. Doç. Dr. Aytaç Gören İçerik AA Motorlarının Kumanda Teknikleri Kumanda Elemanları na Yol Verme Uygulama Soruları 25.11.2011 2 http://people.deu.edu.tr/aytac.goren

Detaylı

Rulman ısıtma cihazları

Rulman ısıtma cihazları Rulman ısıtma cihazları Mikro işlemci Karakter LCD Demagnetizasyon 5 kademe güç seçimi Turbo ısıtma Neden? indüksiyon ısıtıcı Rulman arızalarının %16 sından fazlası rulman montajında uygun olmayan yöntemlerin

Detaylı

DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ

DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ 1- Kırpıcı Devreler: Girişine uygulanan sinyalin bir bölümünü kırpan devrelere denir. En basit kırpıcı devre, şekil 1 'de görüldüğü gibi yarım

Detaylı

Şekil1. Geri besleme eleman türleri

Şekil1. Geri besleme eleman türleri HIZ / KONUM GERİBESLEME ELEMANLARI Geribesleme elemanları bir servo sistemin, hızını, motor milinin bulunduğu konumu ve yükün bulunduğu konumu ölçmek ve belirlemek için kullanılır. Uygulamalarda kullanılan

Detaylı

DENEY 12 SCR ile İki yönlü DC Motor Kontrolü

DENEY 12 SCR ile İki yönlü DC Motor Kontrolü DENEY 12 SCR ile İki yönlü DC Motor Kontrolü DENEYİN AMACI 1. Elektromanyetik rölelerin çalışmasını ve yapısını öğrenmek 2. SCR kesime görüme yöntemlerini öğrenmek 3. Bir dc motorun dönme yönünü kontrol

Detaylı

AKTÜATÖRLER Elektromekanik Aktüatörler

AKTÜATÖRLER Elektromekanik Aktüatörler AKTÜATÖRLER Bir sitemi kontrol için, elektriksel, termal yada hidrolik, pnömatik gibi mekanik büyüklükleri harekete dönüştüren elemanlardır. Elektromekanik aktüatörler, Hidromekanik aktüatörler ve pnömatik

Detaylı

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 01

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 01 DERS 01 Özer ŞENYURT Mart 10 1 DA ELEKTRĐK MAKĐNALARI Doğru akım makineleri mekanik enerjiyi doğru akım elektrik enerjisine çeviren (dinamo) ve doğru akım elektrik enerjisini mekanik enerjiye çeviren (motor)

Detaylı

ENERJİ TASARRUFUNDA CAM FAKTÖRÜ

ENERJİ TASARRUFUNDA CAM FAKTÖRÜ GÜNDEM ENERJİ NEDİR KÜRESEL ISINMA ve KYOTO PROTOKOLÜ TÜRKİYE DE NELER YAPILIYOR? ENERJİ KİMLİK BELGESİ ve LEED SERTİFİKASI YALITIM MALZEMESİ OLARAK CAM ISI, GÜNEŞ VE IŞIK SÖZ KONUSU OLDUĞUNDA CAM İLE

Detaylı

ÖLÇÜ TRANSFORMATÖRLERİ

ÖLÇÜ TRANSFORMATÖRLERİ 1 ÖLÇÜ TRANSFORMATÖRLERİ Normalde voltmetrelerle en fazla 1000V a kadar gerilimler ölçülebilir. Daha yüksek gerilimlerde; Voltmetrenin çekeceği güç artar. Yüksek gerilimden kaynaklanan kaçak akımların

Detaylı

mikroc Dili ile Mikrodenetleyici Programlama Ders Notları / Dr. Serkan DİŞLİTAŞ

mikroc Dili ile Mikrodenetleyici Programlama Ders Notları / Dr. Serkan DİŞLİTAŞ 12. Motor Kontrolü Motorlar, elektrik enerjisini hareket enerjisine çeviren elektromekanik sistemlerdir. Motorlar temel olarak 2 kısımdan oluşur: Stator: Hareketsiz dış gövde kısmı Rotor: Stator içerisinde

Detaylı

ALAN ETKİLİ TRANSİSTÖR

ALAN ETKİLİ TRANSİSTÖR ALAN ETKİLİ TRANİTÖR Y.oç.r.A.Faruk BAKAN FET (Alan Etkili Transistör) gerilim kontrollu ve üç uçlu bir elemandır. FET in uçları G (Kapı), (rain) ve (Kaynak) olarak tanımlanır. FET in yapısı ve sembolü

Detaylı

DHR - ISI GERİ KAZANIM CİHAZLARI

DHR - ISI GERİ KAZANIM CİHAZLARI DHR - ISI GERİ KAZANIM CİHAZLARI Hem enerji ekonomisinin sağlanması, hem de iç hava kalitesinin arttırılabilmesi için ısı geri kazanımlı havalandırma cihazları yüksek verimli ve yıllarca sorunsuz çalışabilecek

Detaylı

Dr. Fatih AY. Tel: 0 388 225 22 55 ayfatih@nigde.edu.tr

Dr. Fatih AY. Tel: 0 388 225 22 55 ayfatih@nigde.edu.tr Dr. Fatih AY Tel: 0 388 225 22 55 ayfatih@nigde.edu.tr Düzlemsel Güneş Toplayıcıları Vakumlu Güneş Toplayıcıları Yoğunlaştırıcı Sistemler Düz Toplayıcının Isıl Analizi 2 Yapı olarak havası boşaltılmış

Detaylı

ÖĞRENME FAALİYETİ-5 5. AYDINLATMA VE PRİZ DEVRE ELEMANLARI

ÖĞRENME FAALİYETİ-5 5. AYDINLATMA VE PRİZ DEVRE ELEMANLARI ÖĞRENME FAALİYETİ-5 AMAÇ ÖĞRENME FAALİYETİ-5 Bu faaliyette verilecek bilgiler doğrultusunda, uygun atölye ortamında, standartlara ve elektrik iç tesisleri yönetmeliğine uygun olarak, aydınlatma ve priz

Detaylı

OTOMOTİV TEKNOLOJİLERİ

OTOMOTİV TEKNOLOJİLERİ OTOMOTİV TEKNOLOJİLERİ Prof. Dr. Atatürk Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Erzurum Otomotivde Isıtma, Havalandırma ve Amaç; - Tüm yolcular için gerekli konforun sağlanması,

Detaylı

Hızlandırıcı Fiziği-1. Veli YILDIZ (Veliko Dimov) 29.07.2014

Hızlandırıcı Fiziği-1. Veli YILDIZ (Veliko Dimov) 29.07.2014 Hızlandırıcı Fiziği-1 Veli YILDIZ (Veliko Dimov) 29.07.2014 1 İçerik Hızlandırıcı Çeşitleri Rutherford ve çekirdeğin keşfi, İlk defa yapay yollar ile atom çekirdeğinin parçalanması, Elektrostatik hızlandırıcılar,

Detaylı

Robotik AKTUATÖRLER Motorlar: Çalışma prensibi

Robotik AKTUATÖRLER Motorlar: Çalışma prensibi Robotik AKTUATÖRLER Motorlar: Çalışma prensibi 1 Motorlar: Çalışma prensibi Motorlar: Çalışma prensibi 2 Motorlar: Çalışma prensibi AC sinyal kutupları ters çevirir + - AC Motor AC motorun hızı üç değişkene

Detaylı

ELEKTRİK ELEKTRONİK TEKNOLOJİSİ

ELEKTRİK ELEKTRONİK TEKNOLOJİSİ T.C. MİLLÎ EĞİTİM BAKANLIĞI ELEKTRİK ELEKTRONİK TEKNOLOJİSİ MİKRODALGA FIRINLAR 522EE0102 Ankara, 2011 Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer

Detaylı

OFF-GRID veya STAND-ALONE INVERTER NEDİR?

OFF-GRID veya STAND-ALONE INVERTER NEDİR? ON-GRID veya GRID-TIE INVERTER NEDİR? On-Grid solar fotovoltaik sistem, şebekeye bağlı (paralel) bir sistem anlamına gelir. Güneş enerjisi kullanılabilir olduğu zaman, sistem şebekeye güneş tarafından

Detaylı

SICAKLIK ALGILAYICILAR

SICAKLIK ALGILAYICILAR SICAKLIK ALGILAYICILAR AVANTAJLARI Kendisi güç üretir Oldukça kararlı çıkış Yüksek çıkış Doğrusal çıkış verir Basit yapıda Doğru çıkış verir Hızlı Yüksek çıkış Sağlam Termokupldan (ısıl İki hatlı direnç

Detaylı

1000 V a kadar Çıkış Voltaj. 500 V a kadar İzolasyon Sınıfı. F 140C İzolasyon Malzemesi IEC EN 60641-2 Çalışma Frekansı. 50-60 Hz.

1000 V a kadar Çıkış Voltaj. 500 V a kadar İzolasyon Sınıfı. F 140C İzolasyon Malzemesi IEC EN 60641-2 Çalışma Frekansı. 50-60 Hz. BİR ve İKİ FAZLI İZOLASYON TRANSFORMATÖR Bir ve İki fazlı olarak üretilen emniyet izolasyon transformatör leri insan sağlığı ile sistem ve cihazlara yüksek güvenliğin istenildiği yerlerde kullanılır. İzolasyon

Detaylı

Anten Tasarımı. HFSS Anten Benzetimi

Anten Tasarımı. HFSS Anten Benzetimi Bu dokümanda, antene ait temel bilgiler verilmiş ve HFSS programında anten tasarımının nasıl yapıldığı gösterilmiştir. Anten Tasarımı HFSS Anten Benzetimi KAZIM EVECAN Dumlupınar Üniversitesi Elektrik-Elektronik

Detaylı

METALİK MALZEMELERİN GENEL KARAKTERİSTİKLERİ BAHAR 2010

METALİK MALZEMELERİN GENEL KARAKTERİSTİKLERİ BAHAR 2010 METALİK MALZEMELERİN GENEL KARAKTERİSTİKLERİ BAHAR 2010 WEBSİTE www2.aku.edu.tr/~hitit Dersler İÇERİK Metalik Malzemelerin Genel Karakteristiklerİ Denge diyagramları Ergitme ve döküm Dökme demir ve çelikler

Detaylı