FİZİK DERS NOTLARI. Doç. Dr. Bahadır BOYACIOĞLU. Ankara Üniversitesi Sağlık Hizmetleri MYO

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "FİZİK DERS NOTLARI. Doç. Dr. Bahadır BOYACIOĞLU. Ankara Üniversitesi Sağlık Hizmetleri MYO"

Transkript

1 FİZİK DERS NOTLARI Doç. Dr. Bahadır BOYACIOĞLU Ankara Üniversitesi Sağlık Hizmetleri MYO ANKARA 010

2 İÇİNDEKİLER Sayfa No I. VEKTÖRLER 1.1. Vektörel ve Skaler Nicelikler Vektörlerin Toplanması Vektörlerin Çıkarılması Bir Vektörün Bileşenleri Birim Vektörler Vektörlerin Grafiksel Toplamı Vektörlerin Paralelkenar Yöntemi ile Toplanması Vektörlerin Bileşen Yöntemi ile Toplanması 8 II. DÜZGÜN İVMELİ HAREKET.1. Yerdeğiştirme ve Ortalama Hız 9.. Ani Hız İvme Sabit İvmeli Doğrusal Hareket Sabit İvmeli Hareket için Türetilen İki denklem. 11 III. NEWTON UN HAREKET YASALARI 3.1. Kuvvet Kavramı ve Newton un I. Kanunu (Eylemsizlik Yasası) Newton un II. Kanunu (Temel Yasa) Newton un III. Kanunu (Etki-Tepki) Sürtünme Kuvvetleri Newton un II. Kanununun Uygulamaları.. 16 IV. İŞ, GÜÇ ve ENERJİ 4.1. İşin Tanımı Güç Kinetik Enerji Net Kuvvet için İş-Enerji Teoremi Enerjinin Korunumu Yasası. 0 V. ISI, SICAKLIK ve TERMODİNAMİK 5.1. Termal (Isıl) Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin. Yasası. 30 VI. ELEKTRİK ALANLARI 6.1. Elektrik Yüklerinin Özellikleri Coulomb Kanunu Elektrik Alanı Düzgün Bir EA da Yüklü Parçacıkların Hareketi.. 33

3 Sayfa No VII. ELEKTRİKSEL POTANSİYEL 7.1. Elektriksel Potansiyel Enerji Potansiyel Farkı Kondansatörler Seri ve Paralel Bağlı Kondansatörler Kondansatörlerde Depolanan Enerji. 37 VIII. DOĞRU AKIM DEVRELERİ 8.1. Elektrik Akımı Direnç ve Ohm Yasası Kirchoff un Eklem Kuralı Kirchoff un İlmek Kuralı Seri ve Paralel Bağlı Dirençler Ampermetre ve Voltmetreler. 41 KAYNAKLAR

4 BÖLÜM 1 VEKTÖRLER Vektörel ve Skaler Nicelikler Vektörlerin Toplanması Vektörlerin Çıkarılması Bir Vektörün Bileşenleri Birim Vektörler 1.1. Vektörel ve Skaler Nicelikler Vektörlerin Grafiksel Toplamı Vektörlerin Paralelkenar Yöntemi ile Toplanması Vektörlerin Bileşen Yöntemi ile Toplanması Büyüklüğü ve yönü olan niceliklere vektörel nicelikler diyoruz. Yerdeğiştirme, hız, ivme ve kuvvet niceliklerini örnek olarak verebiliriz. Yön özelliğine sahip olmayan nicelikler ise, skaler nicelikler adını alır. Uzunluk, zaman, sıcaklık, kütle, yoğunluk ve hacım gibi birçok nicelikler skaler niceliklerdir. Vektörel nicelikler, kalın yazı tipinde ( F gibi ) veya niceliğin üzerine vektör işareti (F v gibi) konularak gösterilir. Burada her iki gösterim de kullanılacaktır. 1.. Vektörlerin Toplanması Bir A noktasından bir B noktasına olan yerdeğiştirme vektörel bir niceliktir. Vektörün boyu A-B arasındaki uzunluk, yönü ise A dan B ye ok yönüdür A + B = R Şekil-1. Vektörlerin toplanması 4

5 İki vektör toplandığında sonuç, toplamın sırasından bağımsızdır. Buna toplamın değişme özelliği denir. r r r r r R = A + B = B + A ya da R=A+B=B+A (1) 1.3. Vektörlerin Çıkarılması Bİr vektörün başka bir vektörden çıkarılması ile, aynı vektörün tersinin toplanması aynı sonucu verir. Yani, A vektöründen B vektörününü çıkarmak için B nin yönü terslenerek A ya eklenir. r r A - B = r r A + (-B) A - B = R = Şekil-. Vektörlerin çıkarılması 1.4. Bir Vektörün Bileşenleri Bir vektörün bileşenlerini tanımlamadan önce, trigonometrik fonksiyonlar arasındaki temel bağıntıları vermeliyiz. Trigonomrtik fonksiyonlar, bir dik açıyla bağlantılı olarak tanımlanır. Şekil-1 de gösterilen dik üçgen için bağıntılar aşağıdaki gibidir: sin q = Karsi K. Hipotenüs = B C cosq = Komsu K. = Hipotenüs A C Karsi K. B tanq = = () Komsu K. A Şekil-3. Dik üçgen 5

6 Bir vektörün bileşeni, verilen bir yöndeki etkin değeridir. Örneğin, bir yerdeğiştirmenin x- bileşeni, verilen yerdeğiştirmenin neden olduğu x-eksenine paralel yerdeğiştirmedir. Üç boyutta bir vektör, birbirine dik herhangi üç doğrultu boyunca ayrışan vektör bileşenlerinin bileşkesi olarak düşünülebilir (Şekil-). Benzer şekilde, iki boyutta bir vektör, herhangi birbirine dik iki doğrultu boyunca yer alan iki vektör bileşenine ayrılabilir. Yani, herhangi bir F vektörü, onun F x ( F nin x-ekseni boyunca izdüşümü) ve F y ( F nin y-ekseni boyunca izdüşümü) dik bileşenleri ile temsil edilebilir (Şekil-3): F x = Fcosq ve F y =Fsinq (3) y F z F y F F x x z Şekil-4. Üç boyutta bileşke vektörün gösterimi Sekil-5. İki boyutta bileşke vektörü (F) ve onun bileşenlerinin gösterimi Birim Vektörler Vektörel nicelikler genelde birim vektörler cinsinden ifade edilirler. Birim vektör, verilen bir yönü belirlemek için kullanılan, birim uzunluklu, boyutsuz bir vektördür. x, y ve z doğrultularını gösteren birim vektörler, sırasıyla iˆ, ˆj ve kˆ (ya da i, j, k) harfleriyle gösterilirler. Örneğin, A vektörü 3i ye eşit olsun. Bunun anlamı,+x doğrultusunda 3 birimlik bir vektörü göstermektedir. Benzer şekilde, -5k ise eksi z-doğrultusunda 5 birimlik vektör demektir. Böylece, üç boyutta F vektörü, aşağıdaki gibi yazılabilir: 6

7 F=F x i +F y j +F z k (4) y j k z i x Şekil-6. Üç boyutta birim vektörlerin gösterimi 1.6. Vektörlerin Grafiksel Toplamı (Çokgen Metodu) Birçok vektörün bileşkesini bulmaya yarayan bir metoddur. Şekil-3 deki gibi O noktasından başlayan ve P noktasında sonlanan uc uca eklenmiş vektörlerin bileşkesi, R=A+B+C (5) şeklinde olur. P R C B O A Şekil-7. Üç vektörün toplanması için geometric çizim 7

8 1.7. Vektörlerin Paralelkenar Yöntemi ile toplanması Örneğin, aralarında belli bir açı olan iki vektörün toplanması (şekil-4) aşağıdaki formül ile büyüklüğü hesaplanabilmektedir. Başlangıç noktaları aynı olan vektörler, bitiş noktalarından birbirlerine paraleller çizilerek paralelkenar elde edilir. Başlangıç ile yeni köşe arasındaki uzaklık toplam (bileşke) vektörü verir. r r r r r R = A + B = B + A = A + B + ABcosq (6) R=A+B A A q B Şekil-8. Bileşke R vektörü, kenarları A ve B olan bir paralelkenar köşegenidir 1.8. Vektörlerin Bileşen Yöntemi ile toplanması A=A x i+a y j+a z k ve B=B x i+b y j+b z k gibi iki vektörün toplanması, aynı yöndeki bileşenlerin toplanması ile bilşeke vektör elde edilir: R=A+B =( A x i+a y j+a z k)+( B x i+b y j+b z k) =(A x +B x )i+(a y +B y )j+(a z +B z )k =R x i+r y j+r z k (7) Bileşke vektörün büyüklüğü ise, R = R + R + R (8) x y z olur. 8

9 BÖLÜM DÜZGÜN İVMELİ HAREKET.1. Yerdeğiştirme ve Ortalama Hız Yerdeğiştirme ve Ortalama Hız Ani Hız İvme Sabit İvmeli Doğrusal Hareket Sabit İvmeli Hareket için Türetilen İki denklem İki nokta arasındaki yerdeğiştirme, bir noktadan diğerine yönelen bir vektördür, ve bu vektörün büyüklüğü, bu iki nokta arasındaki doğrusal uzaklıktır. Ortalama hız ise, x i s x s A B Şekil-9. İki nokta arasındaki yerdeğiştirme v s t Dx Dt x s i = = = (9) t s - x - t i dir. Birimi m/s (SI birim sisteminde) olarak verilir... Ani Hız Keyfi bir noktadaki hız, ani hız olarak adlandırılır ve ile verilir. dx v = (10) dt 9

10 .3. İvme Bir cismin ortalama ve ani ivmesi, a v s i = ve t s - v - t i dv d x a = = (11) dt dt olur. Birimi m/s (SI) dir..4. Sabit İvmeli doğrusal Hareket (Düzgün Doğrusal Hareket) Hareketlinin hızı eşit zaman aralıklarında düzgün artıyorsa düzgün hızlanan, düzgün azalıyorsa düzgün yavaşlayan doğrusal hareket olarak belirlenir. x i =0, t x s =x A v i B v s Şekil-10. Hareket eden bir cismin t zaman sonunda katettiği yol. Bir cisim A noktasını v 0 hızı ile, B noktasını da daha sonraki bir t anında v s hızı ile geçiyor. A dan B ye yerdeğiştirme x dir. A dan B ye gidiş için aşağıdaki sonuçları ifade edebiliriz. 1- Bu yolculuk için ortalama hız, dir. - İvme sabit olduğundan ortalama ve ani ivmeler aynıdır, ve olur. 3- Cisim sabit ivmeli olduğundan, ortalama hız, ile verilir. x v = (1) t v s = v 0 + at (13) v0 + vs v = (14) 10

11 .5. Sabit İvmeli Hareket için Türetilen İki Denklem v 0 ilk hızı ile hareket eden sabit ivmeli hareketin t zaman sonundaki hızı, denklem.(13) ve bu hareket süresince ortalama hız ise denklem.(14) ile ifade edilir. Bu denklemleri denklem.(1) de yerine yazarsak düzgün hızlanan hareketlinin yol denklemini türetmiş oluruz: 1 x + at - x 0 = v 0 t (15) Benzer şekilde denklem.(13) ü denklem.(15) yerine koyarsak düzgün hızlanan hareketlinin zaman içermeyen hız ifadesini elde ederiz: v - v = a( x x ) (16) s i - 0 Düzgün hızlanan hareketlinin grafikleri ise aşağıdaki gibi olur. Konum Hız İvme v 0 a x 0 zaman zaman zaman Şekil-11. Düzgün hızlanan hareketlinin grafikleri Düzgün yavaşlayan hareketin grafikleri ise Konum Hız İvme v 0 x 0 a zaman zaman zaman Şekil-1. Düzgün hızlanan hareketlinin grafikleri şeklinde olur. Sonuç olarak, düzgün hızlanan hareket için ivme pozitif olur. Eğer düzgün yavaşlayan harekette ise, ivme negatif olur. Bu kinematik denklemleri, serbest düşme 11

12 hareketi için de geçerlidir. x yerine y, a yerine g ( yerçekim ivmesinin değeri 9,8 m/s ) ve v 0 =0 konulursa kinematik denklemler serbest düşme için elde edilmiş olur. Serbest düşme hareketine ait denklemler aşağıdaki gibi elde edilir: v = gt v = gh (17) 1 h = gt Şekil-13. h yüksekliğinden serbest bırakılan m kütleli cisim 1

13 BÖLÜM 3 NEWTON UN HAREKET YASALARI Kuvvet Kavramı ve Newton un I. Kanunu Newton un II. Kanunu Newton un III. Kanunu (Etki-Tepki) Sürtünme Kuvvetleri Newton un II. Kanununun Uygulamaları 3.1. Kuvvet Kavramı ve Newton un I. Kanunu (Eylemsizlik Yasası) Newton un I. hareket kanunu, bir cisme etki eden sıfır bileşke kuvvet ile ilgilidir. Bu cisme, etkiyen bir çok kuvvet olsa bile bunların vektörel toplamının sıfır olduğu anlamına gelir. Cisim durgun halde ise Newton un I. hareket kanunu ifadesi, Bir cisim, üzerine sıfır bileşke kuvvet etkidiğinde durgun halde kalır veya sabit hıza sahipse sabit hızla hareketine devam eder. A 10 m/s B 10 m/s Şekil-14. Sabit hızla hareket eden cisim 13

14 3.. Newton un II. Kanunu (Temel Yasa) Bir cisme etki eden net kuvvetin meydana getirdiği ivmeye oranı sabittir. Bu sabit orana cismin kütlesi denir ve r F = a m veya olarak verilen eşitlik Newton un II. Hareket kanunu olarak bilinir. Kuvvetin birimi N (Newton) dur. r F = ma (18) v 0 =0 v F net F net Şekil-15. F net ile harekete geçen cisim 3.3. Newton un III. Kanunu (Etki Tepki) Eğer bir A cismi B cismine bir F r kuvveti uygularsa, B cismi de A cismine F r nin büyüklüğüne eşit fakat zıt yönlü bir kuvvet uygular. Üçüncü kanun, tepki kuvvetinin etki kuvvetine büyüklükçe eşit ve zıt yönde olacağını söyler, Yani; r r F AB = -F BA (19) olur. m A m B F A F B F A F B Şekil-16. Etkileşen iki cisim 14

15 Benzer şekilde, yatay düzlemde durmakta olan bir cisim, düzlem tarafından ağırlığı kadarlık bir kuvvetle ters yönde itilir. N, Normal Kuvvet N=W=mg W=mg, Ağırlık Şekil-17. Cismin ağırlığından kaynaklanan etki-tepki kuvvetleri 3.4. Sürtünme Kuvvetleri Sürtünme kuvveti, cismi kaydırmak isteyen etkiye karşı koyar ve temas halindeki yüzeylere paralel yönelir. Bu kuvvetler, statik ve kinetik sürtünme kuvvetleridir ve f s = sn ve f k = kn (0) ile verilir. Burada s statik, k ise kinetik sürtünme katsayısıdır. f Hareket Yönü (+) F Şekil-18. Sürtünmeli bir yüzeyde F kuvveti ile çekilen cisim F<f s :Cisim duruyorsa, harekete geçemez, hareket halinde ise düzgün yavaşlayarak durur. F=f s :Bileşke kuvvet sıfır olduğundan düzgün doğrusal hareket yapar. Başlangıçta durgun ise harekete geçemez. F>f s :Bileşke kuvvet sıfırdan büyük olduğu için cisim F yönünde düzgün hızlanma hareketi yapar Burada f, cisim durgun haldeyse f s, hareketli ise f k olarak alınır. 15

16 f f s,max Hareket başlıyor Statik Bölge Kinetik Bölge F Şekil-19. f (sürtünme) kuvvetinin F (uygulanan) kuvvetine göre grafiği 3.5. Newton un II. Kanununun Uygulamaları İzlenmesi gereken yol; 1- Problemin kaba bir şeklini çizin. r - F = ma ifadesini yazmak istediğiniz cismi yalıtın. 3- Yalıtılan cisim üzerine etkiyen tüm kuvvetleri gösteren bir diyagram çizin. 4- Diyagram için uygun bir koordinat sistemi seçin ve kuvvetlerin bileşenlerini gösterin. r 5- Diyagramdaki kuvvetler için F = ma eşitliğini bileşenleri cinsinden yazın. 6- Bileşen eşitlikleri, bilinmeyenler için çözün. Aşağıda iki farklı örnekte bu uygulamayı inceleyelim: Düzlemde hareket için Newton nun II. Kanununun uygulaması; y N x f F Hareket Yönü W=mg Şekil-0. Sürtünmeli bir yüzeyde F kuvveti ile çekilen cisme etkiyen kuvvetler 16

17 F net =ma bağıntısına gore; X yönündeki net kuvvet; F-f=ma (hareket var) Y yönündeki net kuvvet; N-W=0 (hareket yok) olur. Sürtünmeli eğik düzlemde hareket için Newton nun II. Kanununun uygulaması; a x-yönünde hareket: Hareket Yönü y N x F-f-Wsinq=ma N F F y-yönünde hareket: Wsinq N-Wcosq=0 W f q Wcosq f q W=mg Şekil-1. Eğik düzlem üzerinde yukarı doğru F kuvveti ile çekilen cisim 17

18 BÖLÜM 4 İŞ, GÜÇ ve ENERJİ İşin Tanımı Güç Kinetik Enerji Net Kuvvet için İş-Enerji Teoremi Enerjinin Korunumu Yasası 4.1. İşin Tanımı Bir F kuvvetinin bir cismi A dan B ye bir s değiştirmesi kadar çektiğini varsayın. F q Fcosq Şekil-. F net ile harekete geçen cisim s F nin s doğrultusundaki bileşeninin F s ile gösterelim. O zaman s yerdeğiştirmesi süresinde F tarafından yapılan iş; W= F s cosq (1) olur. F kuvveti s ye dik ise yani q=90 0 ise cos90 0 =0 olduğundan bu durumda yapılan iş sıfır, F kuvveti s ye paralel ise yani q=0 0 ise cos0 0 =1 olduğundan yapılan iş Fs eşit olur. 18

19 4.. Güç Güç, iş yapılma hızının bir ölçüsüdür. Tanımın denklemi, olur. W P = () t F W=mg h M Şekil-3. F kuvveti ile h yüksekliğine çekilen M kütleli cisim Şekil-1 deki durum için yapılan iş mgh olacaktır. Buna potansiyel enerji denir. Yani cismin ya konumlarından ya da şekillenimlerinden dolayı iş yapabilirlerse böyle cisimlerin potansiyel enerjiye sahip olduğunu söyleriz. Dolayısıyle t süre sonunda harcanan güç mgh/t olur Kinetik Enerji Bir cisim iş yapabiliyorsa, cismin enerjiye sahip olduğunu söyleriz. Hareketinden dolayı bir cisim sahip olduğu enerjiye Kinetik enerji diyoruz. Bir v hızı ile hareket eden m kütleli bir cismin kinetik enerjisi, v Hareket Yönü Şekil-4. v hızı ile hareket eden cisim dir. 1 mv KE = (3) 19

20 4.4. Net Kuvvet için İş-Enerji Teoremi F net in cisim üzerinde yaptığı iş, cismin kinetik enerjideki değişimine eşittir: W = F net 1 1. x = mvs - mi = DKE (4) Şekil-5. F kuvveti ile çekilen bir el arabası 4.5. Enerjinin Korunumu Yasası Enerji ne yaratılabilir ne de yok edilebilir. Enerjinin bir biçimde bir azalma olursa, başka biçimlerinde eşit bir artış olur. Bu ifadeye enerjinin korunumu yasası denir. Bir sisteme dışardan etkiyen korunumsuz kuvvetler tarafından yapılan iş, kinetik enerjideki değişim artı potansiyel enerjideki değişim artı ısıl enerjideki değişime eşittir: DKE + DPE + DIE=0 (5) Eğer sürtünme de ihmal edilirse DKE + DPE=0 (6) olur. Yani sürtünme olmadığı için ısıya dönüşen enerji olmadığından mekanik enerji toplam enerjiye eşittir. 0

21 v 0 =0 E P =max. E K =0 h v 1 E P =E K h/ v E P =0 E K = max. Şekil-6. Serbest düşen cisim için enerjinin korunumu E top = E k + E p = sabit (7) Kinetik enerjideki artış, potansiyel enerjideki azalışa ya da, kinetik enerjideki azalış, potansiyel enerjideki artışa eşittir. 1

22 BÖLÜM 5 ISI, SICAKLIK ve TERMODİNAMİK Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin. Yasası 5.1. Termal (Isıl) Genleşme Sıcaklık, bir gaz molekülünün kütle merkezi hareketinin ortalama kinetic enerjisinin bir ölçüsüdür. Sıcaklık, termometre ile ölçülür. Çeşitli sıcaklık eşellerinde ayarlanabilen birçok termometre vardır. Bunlardan üçü aşağıdaki şekilde gösterilmektedir. Bu üç sıcaklık eşeli arasındaki bağıntı, 0 C 100 = 0 F = 0 K (8) şeklinde olur.

23 Şekil-7. Üç farklı termometre Bir termometreyi bir cisme değdirdiğimiz zaman, termometre kısa bir süre sonra cismin sıcaklığını veren sabit bir değere ulaşır. Bu durumda cismin ve termometrenin birbiriyle termal (ısıl) dengede olduğu söylenir. Yani aynı sıcaklıkta olan cisimler termal dengededir. Bu Termodinamiğin 0. (sıfırıncı) yasasını ifade eder: Bir üçüncü sistemle ayrı ayrı ısıl dengede olan iki sistem birbiriyle ısıl dengededir Yalıtılmış A B C Şekil-8. Birbirinden yalıtılmış olan iki sistemin üçüncü bir sistemle ısıl dengede olması Şekil-18 e bakarak şu sonucu çıkarabiliriz: T(A)=T(C) ve T(B)=T(C) T(A)=T(B) (9) 3

24 Isıl denge durumundaki iki isitemin sıcaklıkları aynıdır. Katıların Boyuna Genleşmesi Bütün maddeler, ısıtıldığı zaman genişler soğutulduğu zaman ise büzüşür. Katı bir maddenin sıcaklığı DT kadar değişirse, DL uzunluğundaki artış yani yeni boyunda meydana gelen artış ilk boyu L 0 ile DT nin çarpımıyla orantılıdır: DL=a L 0 DT (30) a, boyca genleşme katsayısıdır. L 0 DL T 1 0 C T 0 C Şekil-9. Isıtılan bir çubuğun boyca genleşmesi Yüzeyce Genleşme Sıcaklığı DT kadar değiştiği zaman bir A 0 alanı, A 0 +DA ya genişlerse, o zaman şeklinde olur. DA=g A 0 DT (31) Burada g yüzey genleşme katsayısıdır. İzotropik katılar için g=a dır. DA A 0 Şekil-30. Yüzeyce genleşme 4

25 Hacimce Genleşme Bir maddenin sıcaklığını DT kadar değiştiği zaman bir V 0 hacmi DV kadar değişirse, o zaman DV=b V 0 DT (3) olur. b, hacimce genleşme katsayısıdır. İzotropik katılar için b=3a dır. DV V 0 Şekil-31. Hacimce genleşme 5.. İdeal Gazlar İdeal gaz, karşılıklı etkileşmeleri hemen hemen önemsenmeyecek kadar küçük olan moleküllerin gazıdır. Bir V hacmindeki bir gazın mol sayısı (n) nın mutlak basıncı, mutlak sıcaklık ile ilişkilidir: PV=nRT (33) Burada R=8,31 J/mol.K olan evrensel gaz sabitidir. Sıcaklık ise T(Kelvin)=T C +73 ile verilmektedir. n ise mol sayısı olup bir maddenin kütlesinin (m) molar ağırlığına (M) oranıdır. Bütün şartlar altında PV=nRT hal denklemine uyan bir gaza ideal gaz denir. P, V ve T niceliklerine bir sistemin termodinamik değişkenleri denir. İdeal Gaz yasasının özel durumları Eğer, n, T = sabit PV=sabit (Boyle Yasası) n, P = sabit V/T=sabit (Charles Yasası) (34) n, V = sabit P/T=sabit (Guy-Lussac Yasası) olur. 5

26 Dalton Yasası Bir kap içindeki bir gaz karışımının basıncının, gazların yalnız başlarına kabı doldurdukları zaman yapacakları basınç toplamına eşittir: P=P A +P B +P C +...=(n A +n B +n C +...)RT/V (35) Şekil-3. Dalton yasasına örnek 5.3. ISI Termal (ısıl) enerji, parçacıklardan(elektron, iyon, atom ve moleküller) oluşanbir sistemin rastgele kinetik enerjisidir. Isı, maddenin tüm atom veya moleküllerinin potansiyel ve kinetic enerjilerinin toplamıdır. Isı ile ilgili bir takım özellikleri şöyle sıralayabiliriz: Isı bir enerji (iç enerji) şeklidir. İç enerji, kinetic ve potansiyel enerjinin toplamıdır ve Q harfi ile gösterilir. Birimi, daha çok kalori ile ölçülür. 1 Cal=4,18 joule Isı enerjisinin mekanik enerjiye dönüşüm değeri, mekanik enerjinin ısı enerjisine dönüşüm değerine eşittir. Isı, sıcaklığı yüksek olan sistemden daha düşük olan sisteme doğru akar. Sıcaklıkları farklı olan ve etkileşen iki system arasındaki ısı alış verişi iki system ortak sıcaklığa gelinceye kadar surer. Enerji korunumundan, alınan ısı verilen ısıya eşittir. 6

27 Öz Isı Cisme verilen veya cisimden alınan ısı miktarını işlem sonucunda meydana gelen sıcaklık değişimine bağlar: DQ=mcDT veya c=dq/mdt (36) c nin birimi J/kg dır. Isı Aktarımı Isı aktarımı işleminde enerji, maddenin rastgele hareket eden moleküllerinin çarpışmasıyla aktarılır. Yüksek sıcaklıktaki uçta bulunan moleküller düşük sıcaklıktaki moleküllere gore daha hızlı hareket ederler. Çarpışmayla birlikte, yavaş moleküller enerji kazanacak ve hızlı moleküller enerji kaybedeceklerdir. Bu çarpışmaların ortalaması alındığında bu sıcaklık farkından dolayı net bir ısı aktarımı vardır. Isı aktarımı üç şekilde gerçekleşir: İletim, Dolaşım ve Işınım. İletim: İki sistem arasındaki ısı aktarımı bağlayıcı bir ortam aracılığıyla olur. Isınan madde taneciklerinin titreşimleriyle birbirlerine iletilmesidir. Örneğin, yalıtılmış bir ortamda birbirine dokundurulan farklı sıcaklıktaki iki metalin zamanla aynı denge sıcaklığına gelmesi. Şekil-33. İletime örnek: Çubuğun ısıtılması. 7

28 Dolaşım: Enerji, maddenin makroskopik hareketiyle dolaşım akımı şeklinde olur. Örneğin, bir odada yanan bir sobadan çıkan ısının tüm odayı ısıtması. Şekil-34. Dolaşıma örnek: Suyun ısıtılması Işınım: Isının elektromanyetik dalgalar halinde yayılmasıdır. Örneğin, güneşin dünyamızı ısıtması. Şekil-35. Işınıma örnek: Güneşin Dünyamızı ısıtması. Hâl Değiştirme Katı bir cismin ısı alarak sıvı hâle geçmesine erime, sıvı bir cismin ısı vererek katı hâle geçmesine donma denir. Diğer hâller ile ilgili durumlar şekil-0 de görülmektedir. 8

29 Isı Verme Isı Alma P(kPa) Erime SIVI Buharlaşma Üçlü nokta KATI GAZ Uçunum (Süblimasyon) T( 0 C) Şekil-36. P-T grafiği Erime noktası, donma noktası, kaynama noktası ve yoğunlaşma noktası katı sıvı ve gazlar için ayırtedici özelliklerdir Termodinamiğin Birinci Yasası Bir sistemden içeri veya dışarı ısı aktarımını içeren enerjinin korunumunun bir ifadesidir: Q=DU+W=DU+PDV (37) Q pozitifse sisteme ısı verilir W pozitifse sistem tarafından iş yapılır Pozitif W, her zaman hacimde bir genleşmeyi gösterir, negative iş ise sıkışma ve system üzerinde bir dış kuvvtin iş yaptığı anlamına gelir. 9

30 Termodinamik İşlemler Bir nicelik sabit kalırken meydana gelir. Bu değişimler, İzobarik (sabit basınç) Q=DU+PDV İzovolumetrik (sabit hacim) Q=DU (W=0) İzotermal (sabit sıcaklık) Q=W (DU =0) (38) Adyabatik (sistem ve çevresinde DU=-W ısı transferi yok) 5.5. Entropi ve Termodinamiğin İkinci Yasası Entropi (s) Bir termodinamik durum fonksiyonudur ve herhangi bir durumun olma olasılığı W cinsinden s=k ln W (39) olur. Burada k Boltzman sabitidir. Sisteme ısı verildikçe entropi artar, sistemden ısı alındıkça entropi azalır. Eş sıcaklıklı bir işlemde entropi değişimi Ds=Q / T (40) ile verilir. Entropi, düzensizliğin bir ölçüsüdür. Termodinamiğin İkinci Yasası Isı transferi, daima yüksek sıcaklıktan düşük sıcaklığa doğru akar. Yalıtılmış bir sistem, maksimum düzensizliğe sahip olan bir durumu tercih eder. Bu aynı zamanda olasılığın maksimum olduğu durumdur. Yalıtılmış bir system değişime uğradığında, sistemin entropisindeki değişim sıfırdan büyük ya da sıfır olur. Bir ısı makinesinin ısıl enerjiyi %100 verimle işe çevirmesi mümkün değildir 30

31 BÖLÜM 6 ELEKTRİK ALANLARI Elektrik Yüklerinin Özellikleri Coulomb Kanunu Elektrik Alanı Düzgün Bir EA da Yüklü Parçacıkların Hareketi 6.1. Elektrik Yüklerinin Özellikleri Elektrik yükünün aşağıdaki önemli özelliklere sahip olduğunu söyleyebiliriz. 1- Doğada iki tür yük bulunmaktadır. Benzer olanlar birbirlerini iterler, farklı olanlar ise çekerler. + - Farklı yükler Çeker Benzer yükler İter - - Şekil-37. Benzer yükler birbirlerini iterler, farklı olanlar ise çekerler. 31

32 - Yükler arasındaki kuvvet, aralarındaki uzaklığın karesiyle ters orantılı olarak değişir. 3- Yük korunumludur. 4- Yük kuantumludur. Yükün SI sistemindeki birimi Coulomb (C) dir. 6.. Coulomb Kanunu Yüklü iki parçacık arasındaki elektrik kuvvetinin büyüklüğü, q1 q F = k (Boşlukta) (41) r şeklinde ifade edebiliriz. SI sistemindeki birimi Newton (N) dur. Burada k, Coulomb sabiti olup 9x10 9 N.m /C dir. q 1 (+) F 1 r F 1 q (-) Şekil-38 Yüklü iki parçacık arasındaki elektrik kuvveti 6.3. Elektrik Alanı Elektriksel kuvvetleri elektrik alan kavramı yardımı ile tartışmak daha uygundur. Elektriksel alan, durgun bir yükün maruz kaldığı elektriksel kuvveti temsil eder. Bir noktadaki elektrik alanının yönü, o noktaya konulan pozitif deneme yüküne etkiyen kuvvetin yönü ile aynı alınır. Buna gore pozitif bir yükün elektrik alan çizgileri radyal olarak dışa doğru, negative bir yük için de içe doğru olarak yönelir. (a) (b) Şekil-39. Pozitif (a) ve negative (b) yüklerin elektrik alan çizgileri 3

33 Uzayda bir noktadaki (P noktası) E elektrik alan vektörü o noktaya konulan artı bir deneme yüküne etkiyen F elektrik kuvvetinin q 0 deneme yüküne bölümü olarak tanımlanır: F E = (4) q 0 q 0 ın bulunduğu konumda q yükünden ileri gelen elektrik alanı ile verilir. q E = k rˆ (43) r P E +q r q 0 E -q r q 0 Şekil-40. q 0 yükünün bulunduğu noktada q yükünden ileri gelen elektrik alanı 6.4 Düzgün bir Elektrik Alanında Yüklü Parçacıkların Hareketi Yüklü bir parçacığın düzgün bir elektrik alanındaki hareketini anlatacağız. Q yüklü parçacığın bir E elektrik alanına konulduğunda, yüke etkiyen elektrik kuvveti qe dir. Newton un II. Yasasına göre, F r = qe r = ma (44) 33

34 elde edilir. Buna göre parçacığın ivmesi, ile verilir. qe a = (45) m + E - q Şekil-41. Düzgün bir E alan içinde + q yükünün hareketi 34

35 BÖLÜM 7 ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Potansiyel Farkı Kondansatörler Seri ve Paralel Bağlı Kondansatörler Kondansatörlerde Depolanan Enerji 7.1. Elektriksel Potansiyel Enerji Sabit bir elektrik alanda, A dan B ye gitmekle F kuvveti tarafından yapılan iş, W AB =F.d=qEd (46) olur. A dan B ye götürmek için elektriksel kuvvetlere karşı yapılan işe eşittir: W AB =DE P =EPE B - EPE A (47) E A B d Şekil-4. Sabit bir E alanı içinde yüklü bir parçacığın hareketi 35

36 7.. Potansiyel Farkı Potansiyel, elektrik alan yönünde azalır. A ve B arasındaki potansiyel farkına, coğu kez voltaj farkı veya voltaj denir. O halde, olur. Birimi Volt (V) tur. V=V B -V A =Ed (E alanı sabit) (48) 7.3. Kondansatörler Elektrik yükü ve enerji depolayan iki zıt yüklü paralel levhalara kondansatör denir. Sığa (kapasitans) C, levhalarda depolanan yükün levhalar arasındaki potansiyele bölünmesi ile ifade edilir: Paralel plakalı kondansatörler için, olur. Birimi Farad (F) tir. q C = (49) V q e 0 A C = = (50) V d Şekil-43. İki zıt yüklü paralel levha 7.4. Seri ve Paralel Bağlı Kondansatörler Paralel bağlı kondansatörlerde eşdeğer sığa, ve seri bağlı kondansatörlerde eşdeğer sığa, C=C 1 + C + C 3 + (51) 36

37 1 C 1 = C C 1 + C (5) olur. Şekil-44. Paralel (a) ve Seri (b) bağlı kondansatörler 7.5. Kondansatörde Depolanan Enerji Yüklü bir kondansatörde depolanan enerji, olur. 1 q 1 E = C = qv = CV (53) 37

38 BÖLÜM 8 DOĞRU AKIM DEVRELERİ Elektrik Akımı Direnç ve Ohm Yasası Kirchoff un Kavşak Kuralı Kirchoff un İlmek Kuralı Seri ve Paralel Bağlı Dirençler 8.1. Elektrik Akımı Dt süresince Dq yükü taşıyan bir demet belli bir noktadan geçmişse demetin taşıdığı akım Dq I = (54) Dt olur. Birimi ise Amper (A) dir. Şekil-45. Dt süresince demetten geçen yük miktarı 38

39 8.. Direnç ve Ohm Yasası Dirençten geçen akımın yönü, her zaman direncin yüksek potansiyelli ucundan düşük potansiyelli ucuna doğrudur. Direnci R ile gösteririz. Direncin uçları arasındaki V potansiyel farkı dirençte I akımına neden oluyorsa, direnç V R = veya V=IR (55) I olarak tanımlanır. Bu bağıntıya Ohm Yasası denir. Direncin birimi Ohm (W) dur. Bu yasa, I nın V ile orantılı olduğu dirençlerde geçerlidir. Bu dirençlere omik dirençler denir. V (eğim=r) I Şekil-46. V-I grafiği Elektriksel güç ifadesini ise aşağıdaki gibi ifade edebiliriz: Birimi ise Watt (W) tır. V P = VI = I R = (56) R 8.3. Kirchoff un Eklem Kuralı Elektrik devreleri Kirchoff kuralları olarak bilinen iki temel kural ile analiz edilmektedir. İlki, Kirchoff un Düğüm (bağlantı noktası) kuralıdır ve bir bağlantı noktasına giren bütün akımların toplamı, bağlantı noktasından çıkan tüm akımların toplamına eşit olmalıdır. I= I 1 + I + I 3 + (57) 39

40 I I 1 Bağlantı Noktası I I 3 Şekil-47. Kirchoff un Bağlantı Noktası kuralı 8.4. Kirchoff un İlmek Kuralı Devrenin her noktasında Dq yükünün belirli bir elektriksel potansiyel enerji değeri vardır. Sonuçta, her noktanın başlangıç noktasına göre sabit bir potansiyel değeri vardır. Devrede belli bir noktadan başlar, aynı noktada son bulursanız, potansiyel değeri aynı olan noktaya geri dönmüş olursunuz. Bu gerçek Kirchoff un ilmek kuralı ile özetlenebilir: Kapalı bir ilmek boyunca, potansiyel değişmelerinin cebirsel toplamı sıfıra eşit olmalıdır. R 1 e I R Şekil-48. Kirchoff un ilmek kuralı 8.5. Seri ve Paralel Bağlı Dirençler Seri bağlı dirençlerde eşdeğer direnç, R eş = R 1 + R + R 3 + (58) ile verilir. Paralel bağlı dirençlerde ise eşdeğer direnç, 40

41 = (59) R eş R R R 1 3 olur. Şekil-49. Seri (a) ve paralel (b) bağlı dirençler 8.6. Ampermetre ve Voltmetreler Elektrik ölçü aletleri elektrikle ilgili ölçümler yaparlar. Akım miktarı veya şiddeti amper cinsinden bir ampermetre ile ölçülür. Voltmetre ise volt cinsinden potansiyel farkını ölçer. Ampermetre ve voltmetrenin temel yapım esasları aynıdır. Herbirisi bir magnetik alan içerisinde bulunan bir bobin bulundurur. Bir ampermetre veya voltmetre bir devreye bağlandığında, bobinden bir akım geçer. Akım bobinden geçerken bir göstergeyi hareket ettirir ve ölçek üzerinde bir yere getirir. Ölçekli göstergede amper ve volt cinsinden sayılar vardır. Sivri uçlu göstergede devreden geçen akımı veya devrenin iki noktası arasındaki potansiyel farkını gösterir. Ampermetre ve voltmetre arasındaki en büyük fark, bunların dirençleridir. Ampermetre bobinini teşkil eden tellerin direnci çok düşüktür. Böylece, ampermetre içinde geçen devre akımının tamamı buradan geçer. Voltmetre için bunun tersi geçerlidir.voltmetrenin yüksek bir direnci vardır. Bir devreye bağlandığı takdirde, voltmetreden çok az bir akım geçer. Voltmetre bobininden geçen akım miktarı gerilim (voltaj) ile orantılıdır. Voltaj artarken, bobindeki akım da artar. Ayrıca, bir ampermetre ilgili ölçüm yerine seri bağlanır. Voltmetre ise ölçüm yerine paralel bağlanmak zorundadır (Şekil. 49). 41

42 V e R 1 A I I R Şekil-49. Bir ampermetre ve voltmetrenin bir devreye bağlanışı. 4

43 KAYNAKLAR Frederick J. Bueche. College Physics, McGraw-Hill Professional Book Group, Raymond A. Serway, Fen ve Mühendislik için Fizik, Çeviri editörü Kemal Çolakoğlu, 3. Cilt, Palme Yayıncılık, Ankara, Frederick J. Bueche ve David A. Jerde, Fizik İlkeleri, Çeviri editörü Kemal Çolakoğlu,. Cilt, Palme Yayıncılık, Ankara, 000. Arthur Beiser, Applied Physics, McGraw-Hill Trade,

Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası

Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası Sıcaklık, bir gaz molekülünün kütle merkezi hareketinin ortalama kinetic enerjisinin bir ölçüsüdür. Sıcaklık,

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Elektriksel olaylarla ilgili buraya kadar yaptığımız, tartışmalarımız, durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik

Detaylı

I FİZİĞE ÖN HAZIRLIKLAR

I FİZİĞE ÖN HAZIRLIKLAR İÇİNDEKİLER Önsöz. III Bölüm I FİZİĞE ÖN HAZIRLIKLAR 1 1 Ölçme ve Birim Sistemleri 1 2 Uzunluk, Kütle ve Zaman Büyüklükleri (Standartları) 1 3 Boyut Analizi 1 4 Birim Çevirme ve Dönüşüm Çarpanları 1 5

Detaylı

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? Temel Kavramlar Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? 1 Elektriksel Yük Elektrik yükü bu dış yörüngede dolanan elektron sayısının çekirdekteki proton

Detaylı

G = mg bağıntısı ile bulunur.

G = mg bağıntısı ile bulunur. ATIŞLAR Havada serbest bırakılan cisimlerin aşağı doğru düşmesi etrafımızda her zaman gördüğümüz bir olaydır. Bu düşme hareketleri, cisimleri yerin merkezine doğru çeken bir kuvvetin varlığını gösterir.

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

1. BÖLÜM FİZİĞİN DOĞASI - VEKTÖRLER DENGE - MOMENT - AĞIRLIK MERKEZİ

1. BÖLÜM FİZİĞİN DOĞASI - VEKTÖRLER DENGE - MOMENT - AĞIRLIK MERKEZİ 1. BÖLÜM FİZİĞİN DĞASI - VEKÖRLER DENGE - MMEN - AĞIRLIK MERKEZİ FİZİĞİN DĞASI - VEKÖRLER - DENGE - MMEN - AĞIRLIK MERKEZİ SRULAR 1. I. ork (x) II. Güç (P) III. Açısal momentum (L) Yukarıdakilerden hangisi

Detaylı

2: MALZEME ÖZELLİKLERİ

2: MALZEME ÖZELLİKLERİ İÇİNDEKİLER Önsöz III Bölüm 1: TEMEL KAVRAMLAR 11 1.1.Mekanik, Tanımlar 12 1.1.1.Madde ve Özellikleri 12 1.2.Sayılar, Çevirmeler 13 1.2.1.Üslü Sayılarla İşlemler 13 1.2.2.Köklü Sayılarla İşlemler 16 1.2.3.İkinci

Detaylı

3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Grv. M. ERYÜREK Arş. Grv. H. TAŞKIN

3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Grv. M. ERYÜREK Arş. Grv. H. TAŞKIN 3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Gr. M. ERYÜREK Arş. Gr. H. TAŞKIN AMAÇ Eğik düzlemdeki imeli hareketi gözlemek e bu hareket için yol-zaman, hız-zaman ilişkilerini incelemek, yerçekimi imesini

Detaylı

2 MALZEME ÖZELLİKLERİ

2 MALZEME ÖZELLİKLERİ ÖNSÖZ İÇİNDEKİLER III Bölüm 1 TEMEL KAVRAMLAR 11 1.1. Fizik 12 1.2. Fiziksel Büyüklükler 12 1.3. Ölçme ve Birim Sistemleri 13 1.4. Çevirmeler 15 1.5. Üstel İfadeler ve İşlemler 18 1.6. Boyut Denklemleri

Detaylı

5 kilolitre=..lt. 100 desilitre=.dekalitre. 150 gram=..dag. 1. 250 g= mg. 0,2 ton =..gram. 20 dam =.m. 2 km =.cm. 3,5 h = dakika. 20 m 3 =.

5 kilolitre=..lt. 100 desilitre=.dekalitre. 150 gram=..dag. 1. 250 g= mg. 0,2 ton =..gram. 20 dam =.m. 2 km =.cm. 3,5 h = dakika. 20 m 3 =. 2014 2015 Ödevin Veriliş Tarihi: 12.06.2015 Ödevin Teslim Tarihi: 21.09.2015 MEV KOLEJİ ÖZEL ANKARA OKULLARI 1. Aşağıda verilen boşluklarara ifadeler doğru ise (D), yanlış ise (Y) yazınız. A. Fiziğin ışıkla

Detaylı

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26 Elektrostatik Elektrik Alan Elektrik Akı Kondansatör Kaynak : Serway-Beichner Bölüm 23, 24, 26 İndüksiyon Nötr Maddenin indüksiyon yoluyla yüklenmesi (Bir yük türünün diğer yük türüne göre daha fazla olması)

Detaylı

BÖLÜM 1: TEMEL KAVRAMLAR

BÖLÜM 1: TEMEL KAVRAMLAR Sistem ve Hal Değişkenleri Üzerinde araştırma yapmak üzere sınırladığımız bir evren parçasına sistem, bu sistemi çevreleyen yere is ortam adı verilir. İzole sistem; Madde ve her türden enerji akışına karşı

Detaylı

HAREKET HAREKET KUVVET İLİŞKİSİ

HAREKET HAREKET KUVVET İLİŞKİSİ HAREKET HAREKET KUVVET İLİŞKİSİ Sabit kabul edilen bir noktaya göre bir cismin konumundaki değişikliğe hareket denir. Bu sabit noktaya referans noktası denir. Fizikte hareket üçe ayrılır Ötelenme Hareketi:

Detaylı

Yrd. Doç. Dr. Mustafa GÜNGÖRMÜŞ mgungormus@turgutozal.edu.tr. Ders asistanı: Fatih Kaya

Yrd. Doç. Dr. Mustafa GÜNGÖRMÜŞ mgungormus@turgutozal.edu.tr. Ders asistanı: Fatih Kaya Yrd. Doç. Dr. Mustafa GÜNGÖRMÜŞ mgungormus@turgutozal.edu.tr Ders asistanı: Fatih Kaya Hareket düzleminde etki ederse Veya hareket düzleminde bir bileşeni varsa F F d Cisme etki eden d Kuvvet F F Veya

Detaylı

Güç, enerji ve kuvvet kavramları, birimler, akım, gerilim, direnç, lineerlik nonlineerlik kavramları. Arş.Gör. Arda Güney

Güç, enerji ve kuvvet kavramları, birimler, akım, gerilim, direnç, lineerlik nonlineerlik kavramları. Arş.Gör. Arda Güney Güç, enerji ve kuvvet kavramları, birimler, akım, gerilim, direnç, lineerlik nonlineerlik kavramları Arş.Gör. Arda Güney İçerik Uluslararası Birim Sistemi Fiziksel Anlamda Bazı Tanımlamalar Elektriksel

Detaylı

Newton Kanunlarının Uygulaması

Newton Kanunlarının Uygulaması BÖLÜM 5 Newton Kanunlarının Uygulaması Hedef Öğretiler Newton Birinci Kanunu uygulaması Newtonİkinci Kanunu uygulaması Sürtünme ve akışkan direnci Dairesel harekette kuvvetler Giriş Newton Kanunlarını

Detaylı

İç direnç ve emk. Seri bağlı dirençler. BÖLÜM 28 Doğru Akım Devreleri. İç direnç ve emk. ve emk. Elektromotor kuvvet (emk) kaynakları.

İç direnç ve emk. Seri bağlı dirençler. BÖLÜM 28 Doğru Akım Devreleri. İç direnç ve emk. ve emk. Elektromotor kuvvet (emk) kaynakları. BÖLÜM 8 Doğru Akım Devreleri Elektromotor Kuvveti emk iç direnç Seri ve Paralel Bağlı Dirençler Eşdeğer direnç Kirchhoff Kuralları Düğüm kuralı İlmek kuralı Devreleri Kondansatörün yüklenmesi Kondansatörün

Detaylı

1)Aşağıdaki konum-zaman grafiğine göre bu hareketlinin 0-30 saniyeleri arasındaki ortalama hızı nedir?

1)Aşağıdaki konum-zaman grafiğine göre bu hareketlinin 0-30 saniyeleri arasındaki ortalama hızı nedir? 1)Aşağıdaki konum-zaman grafiğine göre bu hareketlinin 0-30 saniyeleri arasındaki ortalama hızı nedir? A) -1/6 B) 1 C) 1/2 D) 1/5 E) 3 2) Durgun halden harekete geçen bir cismin konum-zaman grafiği şekildeki

Detaylı

BALIKESİR KARESİ ADNAN MENDERES ANADOLU LİSESİ 2015 2016 DERS YILI 11. SINIFLAR FİZİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI

BALIKESİR KARESİ ADNAN MENDERES ANADOLU LİSESİ 2015 2016 DERS YILI 11. SINIFLAR FİZİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI EKİM EYLÜL EYLÜL EYLÜL AY HAFTA DERS SAATİ BALIKESİR KARESİ ADNAN MENDERES ANADOLU LİSESİ 2015 2016 DERS YILI 11. SINIFLAR FİZİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE KONULAR KAZANIMLAR ÖĞRENME-ÖĞRETME

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 DAİRESEL HAREKET Bölüm 2 İŞ, GÜÇ, ENERJİ ve MOMENTUM

İÇİNDEKİLER ÖNSÖZ Bölüm 1 DAİRESEL HAREKET Bölüm 2 İŞ, GÜÇ, ENERJİ ve MOMENTUM ÖNSÖZ İÇİNDEKİLER III Bölüm 1 DAİRESEL HAREKET 11 1.1. Dairesel Hareket 12 1.2. Açısal Yol 12 1.3. Açısal Hız 14 1.4. Açısal Hız ile Çizgisel Hız Arasındaki Bağıntı 15 1.5. Açısal İvme 16 1.6. Düzgün Dairesel

Detaylı

FİZİKOKİMYA I ARASINAV SORU VE CEVAPLARI 2013-14 GÜZ YARIYILI

FİZİKOKİMYA I ARASINAV SORU VE CEVAPLARI 2013-14 GÜZ YARIYILI Soru 1: Aşağıdaki ifadeleri tanımlayınız. a) Sistem b)adyabatik sistem c) Kapalı sistem c) Bileşen analizi Cevap 1: a) Sistem: Üzerinde araştırma yapmak üzere sınırladığımız bir evren parçasına verilen

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Bu bölüm, çeşitli şekillerde birbirlerine bağlanmış bataryalar, dirençlerden oluşan bazı basit devrelerin incelenmesi ile ilgilidir. Bu tür

Detaylı

3 VEKTÖRLER. Pilot uçağın kokpit inden havaalanını nasıl bulur?

3 VEKTÖRLER. Pilot uçağın kokpit inden havaalanını nasıl bulur? 3.1 Koordinat sistemleri 3.2 Kartezyen koordinatlar 3.3 Vektörler 3.4 Vektörlerin bileşenleri 3.5 Vektörlerin toplanması 3.6 Vektörlerin çıkarılması 37Bii 3.7 Birim vektör 3 VEKTÖRLER Pilot uçağın kokpit

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

Ders 3- Direnç Devreleri I

Ders 3- Direnç Devreleri I Ders 3- Direnç Devreleri I Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net İçerik 2. Direnç Devreleri Ohm kanunu Güç tüketimi Kirchoff Kanunları Seri ve paralel dirençler Elektriksel

Detaylı

9. SINIF FİZİK YAZ TATİLİ ÖDEV KİTAPÇIĞI. MEV Koleji Özel Ankara Okulları

9. SINIF FİZİK YAZ TATİLİ ÖDEV KİTAPÇIĞI. MEV Koleji Özel Ankara Okulları 9. SINIF FİZİK YAZ TATİLİ ÖDEV KİTAPÇIĞI MEV Koleji Özel Ankara Okulları Sevgili öğrenciler; yorucu bir çalışma döneminden sonra hepiniz tatili hak ettiniz. Fakat öğrendiklerimizi kalıcı hale getirmek

Detaylı

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB)

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB) ÖĞENME ALANI : FZKSEL OLAYLA ÜNTE 3 : YAŞAMIMIZDAK ELEKTK (MEB) B ELEKTK AKIMI (5 SAAT) (ELEKTK AKIMI NED?) 1 Elektrik Akımının Oluşması 2 Elektrik Yüklerinin Hareketi ve Yönü 3 ler ve Özellikleri 4 Basit

Detaylı

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak.

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri kullanarak elektrik alan çizgilerinin

Detaylı

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER ALTERNATİF AKIM DEVRELERİ A. DEVRE ELEMANLARI VE TEMEL DEVRELER Alternatif akım devrelerinde akımın geçişine karşı üç çeşit direnç (zorluk) gösterilir. Devre elamanları dediğimiz bu dirençler: () R omik

Detaylı

Ders 2- Temel Elektriksel Büyüklükler

Ders 2- Temel Elektriksel Büyüklükler Ders 2- Temel Elektriksel Büyüklükler Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net Yük Elektriksel yük maddelerin temel özelliklerinden biridir. Elektriksel yükün iki temel

Detaylı

Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar

Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar ÖLÜM 29 Manyetik alanlar Manyetik alan Akım taşıyan bir iletkene etkiyen manyetik kuvvet Düzgün bir manyetik alan içerisindeki akım ilmeğine etkiyen tork Yüklü bir parçacığın düzgün bir manyetik alan içerisindeki

Detaylı

Fizik 101-Fizik I 2013-2014. Statik Denge ve Esneklik

Fizik 101-Fizik I 2013-2014. Statik Denge ve Esneklik 1 -Fizik I 2013-2014 Statik Denge ve Esneklik Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 2 İçerik Denge Şartları Ağırlık Merkezi Statik Dengedeki Katı Cisimlere ler Katıların Esneklik Özellikleri 1

Detaylı

7. DİRENÇ SIĞA (RC) DEVRELERİ AMAÇ

7. DİRENÇ SIĞA (RC) DEVRELERİ AMAÇ 7. DİENÇ SIĞA (C) DEELEİ AMAÇ Seri bağlı direnç ve kondansatörden oluşan bir devrenin davranışını inceleyerek kondansatörün durulma ve yarı ömür zamanını bulmak. AAÇLA DC Güç kaynağı, kondansatör, direnç,

Detaylı

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi -Fizik I 2013-2014 Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi Nurdan Demirci Sankır Ofis: 325, Tel: 2924332 İçerik Açısal Yerdeğiştirme, Hız ve İvme Dönme Kinematiği Açısal ve Doğrusal Nicelikler

Detaylı

6.PROGRAMIN SEVİYESİ:

6.PROGRAMIN SEVİYESİ: ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU FİZİK 3 BİLİM GRUBU ÇERÇEVE PROGRAMI 1. KURUMUN ADI: Özel Çorum Ada Özel Öğretim Kursu 2. KURUMUN ADRESİ: Yavruturna Mah. Kavukçu Sok. No:46/A ÇORUM/MERKEZ 3. KURUCUNUN

Detaylı

Isı ve sıcaklık arasındaki fark : Isı ve sıcaklık birbiriyle bağlantılı fakat aynı olmayan iki kavramdır.

Isı ve sıcaklık arasındaki fark : Isı ve sıcaklık birbiriyle bağlantılı fakat aynı olmayan iki kavramdır. MADDE VE ISI Madde : Belli bir kütlesi, hacmi ve tanecikli yapısı olan her şeye madde denir. Maddeler ısıtıldıkları zaman tanecikleri arasındaki mesafe, hacmi ve hareket enerjisi artar, soğutulduklarında

Detaylı

Fizik 101: Ders 21 Gündem

Fizik 101: Ders 21 Gündem Fizik 101: Ders 21 Gündem Yer çekimi nedeninden dolayı tork Rotasyon (özet) Statik Bayırda bir araba Statik denge denklemleri Örnekler Asılı tahterevalli Asılı lamba Merdiven Ders 21, Soru 1 Rotasyon Kütleleri

Detaylı

CĠSMĠN Hacmi = Sıvının SON Hacmi - Sıvının ĠLK Hacmi. Sıvıların Kaldırma Kuvveti Nelere Bağlıdır? d = V

CĠSMĠN Hacmi = Sıvının SON Hacmi - Sıvının ĠLK Hacmi. Sıvıların Kaldırma Kuvveti Nelere Bağlıdır? d = V 8.SINIF KUVVET VE HAREKET ÜNİTE ÇALIŞMA YAPRAĞI /11/2013 KALDIRMA KUVVETİ Sıvıların cisimlere uyguladığı kaldırma kuvvetini bulmak için,n nı önce havada,sonra aynı n nı düzeneği bozmadan suda ölçeriz.daha

Detaylı

Bölüm 4: İki Boyutta Hareket

Bölüm 4: İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Kavrama Soruları 1- Yerden h yüksekliğinde, yere paralel tutulan bir silah ateşleniyor ve aynı anda silahın yanında başka bir kurşun aynı h yüksekliğinden serbest düşmeye bırakılıyor.

Detaylı

BÖLÜM 1: TEMEL KAVRAMLAR

BÖLÜM 1: TEMEL KAVRAMLAR BÖLÜM 1: TEMEL KAVRAMLAR Hal Değişkenleri Arasındaki Denklemler Aralarında sıfıra eşitlenebilen en az bir veya daha fazla denklem kurulabilen değişkenler birbirine bağımlıdır. Bu denklemlerden bilinen

Detaylı

10. SINIF FİZİK YAZ TATİLİ ÖDEV KİTAPÇIĞI

10. SINIF FİZİK YAZ TATİLİ ÖDEV KİTAPÇIĞI 10. SINIF FİZİ YAZ TATİİ ÖDEV İTAPÇIĞI Sevgili öğrenciler; yorucu bir çalışma döneminden sonra hepiniz tatili hak ettiniz. Fakat öğrendiklerimizi kalıcı hale getirmek için konu tekrarı yapmamız, soru çözerek

Detaylı

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ 4. ÜNİTE ALTERNATİF AKIMDA GÜÇ KONULAR 1. Ani Güç, Ortalama Güç 2. Dirençli Devrelerde Güç 3. Bobinli Devrelerde Güç 4. Kondansatörlü Devrelerde Güç 5. Güç Üçgeni 6. Güç Ölçme GİRİŞ Bir doğru akım devresinde

Detaylı

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET AMAÇ: DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET Bir nesnenin sabit hızda, net kuvvetin etkisi altında olmadan, düzgün bir hat üzerinde hareket etmesini doğrulamak ve bu hızı hesaplamaktır. GENEL BİLGİLER:

Detaylı

TOSYA ANADOLU İMAM-HATİP LİSESİ 2015-2016 DERS YILI 11. SINIFLAR FİZİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI

TOSYA ANADOLU İMAM-HATİP LİSESİ 2015-2016 DERS YILI 11. SINIFLAR FİZİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI EKİM EYLÜL EYLÜL EYLÜL 4 5 4 11.1. Kuvvet ve 11.1.1. Vektörler 11.1.1. Vektörler 11.1.2. Bağıl 11.1.1.1. Vektörlerin özelliklerini açıklar. 11.1.1.2. Vektörel büyüklükleri kartezyen koordinat sisteminde

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 8 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 14 Kasım 1999 Saat: 18.20 Problem 8.1 Bir sonraki hareket bir odağının merkezinde gezegenin

Detaylı

Fizik 101-Fizik I 2013-2014. Nurdan Demirci Sankır Enerji Araştırmaları Laboratuarı- YDB Bodrum Kat Ofis: 325, Tel:4332. İçerik

Fizik 101-Fizik I 2013-2014. Nurdan Demirci Sankır Enerji Araştırmaları Laboratuarı- YDB Bodrum Kat Ofis: 325, Tel:4332. İçerik Fizik 101-Fizik I 2013-2014 İki Boyutta Hareket Nurdan Demirci Sankır Enerji Araştırmaları Laboratuarı- YDB Bodrum Kat Ofis: 325, Tel:4332 İçerik Yerdeğiştirme, hız ve ivme vektörleri Sabit ivmeli iki-boyutlu

Detaylı

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki cisimlerle uğraşır. Statik, kuvvet etkisi altında cisimlerin

Detaylı

DENİZLİ ANADOLU LİSESİ 2006-2007 EĞİTİM ve ÖĞRETİM YILI FİZİK DERSİ YILLIK ÖDEVİ

DENİZLİ ANADOLU LİSESİ 2006-2007 EĞİTİM ve ÖĞRETİM YILI FİZİK DERSİ YILLIK ÖDEVİ DENİZLİ ANADOLU LİSESİ 2006-2007 EĞİTİM ve ÖĞRETİM YILI FİZİK DERSİ YILLIK ÖDEVİ Öğrencinin ; Adı : Özgür Soyadı : ATİK Numarası : 387 Sınıfı : 10F/J Ders Öğretmeninin ; Adı : Fahrettin Soyadı : KALE Ödevin

Detaylı

T.C. TÜBİTAK-BİDEB. YİBO ÖĞRETMENLERİ (FEN VE TEKNOLOJİ-FİZİK, KİMYA, BİYOLOJİ- ve MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİM ÇALIŞTAYLARI

T.C. TÜBİTAK-BİDEB. YİBO ÖĞRETMENLERİ (FEN VE TEKNOLOJİ-FİZİK, KİMYA, BİYOLOJİ- ve MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİM ÇALIŞTAYLARI T.C. TÜBİTAK-BİDEB YİBO ÖĞRETMENLERİ (FEN VE TEKNOLOJİ-FİZİK, KİMYA, BİYOLOJİ- ve MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİM ÇALIŞTAYLARI İKİ ELEKTROMIKNATIS ARASINDA BULUNAN BİR DEMİR PARÇACIĞIN HAREKETİ HAZIRLAYANLAR

Detaylı

Bir kuvvetin yaptığı işi bulmak için, kuvvetin büyüklüğü ile cismin yaptığı yer değiştirmeyi bilmek

Bir kuvvetin yaptığı işi bulmak için, kuvvetin büyüklüğü ile cismin yaptığı yer değiştirmeyi bilmek 1. İş Nedir? Bir cisim, bir kuvvet etkisiyle kuvvet doğrultusunda hareket ediyorsa, bu kuvvet cisim üzerinde iş yapmış olur. Günlük yaşantımızdan işe birçok örnek verebiliriz. Bir arabanın itilmesi, bir

Detaylı

DENEY 1 1.1. DC GERİLİM ÖLÇÜMÜ DENEYİN AMACI

DENEY 1 1.1. DC GERİLİM ÖLÇÜMÜ DENEYİN AMACI DENEY 1 1.1. DC GERİLİM ÖLÇÜMÜ 1. DC gerilimin nasıl ölçüldüğünü öğrenmek. 2. KL-21001 Deney Düzeneğini tanımak. 3. Voltmetrenin nasıl kullanıldığını öğrenmek. Devre elemanı üzerinden akım akmasını sağlayan

Detaylı

ELEKTROSTATİK. Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur.

ELEKTROSTATİK. Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur. ELEKTROSTATİK Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur. Elektrik yüklerinin kaynağı atomun yapısında bulunan elekton ve proton

Detaylı

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ Bu konular denge problemelerinden tamamen bağımsızdır. Alanların ağırlık merkezi ve atalet momenti ismi verilen geometrik

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II DOĞRUSAL ISI İLETİMİ DENEYİ 1.Deneyin Adı: Doğrusal ısı iletimi deneyi..

Detaylı

Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır.

Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır. Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır. Basıncın derinlikle değişimi Aynı derinlikteki bütün noktalar aynı basınçta y yönünde toplam kuvvet

Detaylı

Editörden... YGS FiZiK SORU - ÇÖZÜM

Editörden... YGS FiZiK SORU - ÇÖZÜM II YGS FiZiK SORU - ÇÖZÜM EDİTÖR Turgut MEŞE YAZAR Komisyon Katkıda Bulunanlar Yavuz KESKİN Tüm hakları Editör Yayınevi'ne aittir. Yayınevinin izni olmaksızın, kitabın tümünün veya bir kısmının elektronik,

Detaylı

ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç. Kaldırma Kuvveti

ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç. Kaldırma Kuvveti ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç Kaldırma Kuvveti - Dünya, üzerinde bulunan bütün cisimlere kendi merkezine doğru çekim kuvveti uygular. Bu kuvvete yer çekimi kuvveti

Detaylı

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Akışkanlar dinamiğinde, sürtünmesiz akışkanlar için Bernoulli prensibi akımın hız arttıkça aynı anda

Detaylı

Dinamik. Fatih ALİBEYOĞLU -10-

Dinamik. Fatih ALİBEYOĞLU -10- 1 Dinamik Fatih ALİBEYOĞLU -10- Giriş & Hareketler 2 Rijit cismi oluşturan çeşitli parçacıkların zaman, konum, hız ve ivmeleri arasında olan ilişkiler incelenecektir. Rijit Cisimlerin hareketleri Ötelenme(Doğrusal,

Detaylı

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma Dielektrik malzeme DİELEKTRİK ÖZELLİKLER Dielektrik malzemeler; serbest elektron yoktur, yalıtkan malzemelerdir, uygulanan elektriksel alandan etkilenebilirler. 1 2 Dielektrik malzemeler Elektriksel alan

Detaylı

KANUNLAR : Bir iletkenin iki ucu arasındaki potansiyel farkının,iletkenden geçen akım şiddetine oranı sabittir.

KANUNLAR : Bir iletkenin iki ucu arasındaki potansiyel farkının,iletkenden geçen akım şiddetine oranı sabittir. KANUNLAR : Elektrik ve elektronikle ilgili konuları daha iyi anlayabilmek için, biraz hesap biraz da kanun bilgisine ihtiyaç vardır. Tabii bunlar o kadar zor hasaplar değil, yalnızca Aritmetik düzeyinde

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ DENEY FÖYÜ DENEY ADI AC AKIM, GERİLİM VE GÜÇ DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEY SORUMLUSU DENEY GRUBU: DENEY TARİHİ : TESLİM

Detaylı

Fizik Terimler Sözlüğü - 2. Yönetici tarafından yazıldı Pazar, 08 Şubat 2009 09:34 - Son Güncelleme Pazar, 08 Şubat 2009 09:47 - K

Fizik Terimler Sözlüğü - 2. Yönetici tarafından yazıldı Pazar, 08 Şubat 2009 09:34 - Son Güncelleme Pazar, 08 Şubat 2009 09:47 - K - K - Kara delik: Kütlesel çekim kuvvetinin çok büyük olduğu hatta ışığı bile kendine çekebilen çok küçük kütleli sönmüş yıldızlardır. - Kalori:1 gram suyun sıcaklığını 1 Celcius artırmak için gerekli

Detaylı

dq I = (1) dt OHM YASASI ve OHM YASASI İLE DİRENÇ ÖLÇÜMÜ

dq I = (1) dt OHM YASASI ve OHM YASASI İLE DİRENÇ ÖLÇÜMÜ OHM YASASI ve OHM YASASI İLE DİRENÇ ÖLÇÜMÜ AMAÇLAR Ohm yasasına uyan (ohmik) malzemeler ile ohmik olmayan malzemelerin akım-gerilim karakteristiklerini elde etmek. Deneysel akım gerilim değerlerini kullanarak

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

TANIMLAR, STANDARTLAR, STEMĐ, HATALAR, BELĐRS YER DEĞĐŞ MLERĐ KUMPASLAR, MĐKROMETRELER, ÇÜMLER KOMPARATÖRLER. RLER BOYUTSAL ve ŞEK EN KÜÇÜK

TANIMLAR, STANDARTLAR, STEMĐ, HATALAR, BELĐRS YER DEĞĐŞ MLERĐ KUMPASLAR, MĐKROMETRELER, ÇÜMLER KOMPARATÖRLER. RLER BOYUTSAL ve ŞEK EN KÜÇÜK Metroloji ve SI Temel Birimleri TANIMLAR, STANDARTLAR, BOYUTLAR VE BĐRĐMLER, B GENELLEŞTĐRĐLM LMĐŞ ÖLÇME SĐSTEMS STEMĐ, HATALAR, BELĐRS RSĐZL ZLĐK K ANALĐZĐ, ĐSTAT STATĐKSEL ANALĐZ YER DEĞĐŞ ĞĐŞTĐRME ÖLÇÜ

Detaylı

YAYINA HAZIRLAYANLAR KURULU. Kurumsal Yayınlar Yönetmeni. Kurumsal Yayınlar Birimi Dizgi & Grafik. Mustafa Burak SANK & Ezgi GÜLER & Meltem TEMEL

YAYINA HAZIRLAYANLAR KURULU. Kurumsal Yayınlar Yönetmeni. Kurumsal Yayınlar Birimi Dizgi & Grafik. Mustafa Burak SANK & Ezgi GÜLER & Meltem TEMEL YAYIN KURULU Hazırlayanlar Gökay BAKAR, Gülçin HÜNERLI, F.Buket HIZARCI, Rıdvan MERIÇ, Merve DÜNDAR, Merve AKPINAR, Ezgi KALAY, Atalay ARSLAN Aydın BAK, Gülşen AKYOL, Melike TOMBAK YAYINA HAZIRLAYANLAR

Detaylı

Maddeye hareket veren kuvveti, Isaac Newton (1642-1727) aşağıdaki matematiksel ifadeyle tanımlamıştır.

Maddeye hareket veren kuvveti, Isaac Newton (1642-1727) aşağıdaki matematiksel ifadeyle tanımlamıştır. 1 1. TEMEL TARİF VE KAVRAMLAR (Ref. e_makaleleri) Kuvvet Maddeye hareket veren kuvveti, Isaac Newton (1642-1727) aşağıdaki matematiksel ifadeyle tanımlamıştır. F=ma Burada F bir madde parçacığına uygulanan

Detaylı

Fizik bilimi nedir? Fizik Bilimi nedir? Fizik biliminin uğraşı alanları nelerdir? On5yirmi5.com. Fizik Bilimi nedir?

Fizik bilimi nedir? Fizik Bilimi nedir? Fizik biliminin uğraşı alanları nelerdir? On5yirmi5.com. Fizik Bilimi nedir? On5yirmi5.com Fizik bilimi nedir? Fizik Bilimi nedir? Fizik biliminin uğraşı alanları nelerdir? Yayın Tarihi : 22 Ekim 2012 Pazartesi (oluşturma : 11/28/2015) Fizik Bilimi nedir? Fizik, deneysel gözlemler

Detaylı

9. SINIF FİZİK YAZ TATİLİ ÖDEV KİTAPÇIĞI

9. SINIF FİZİK YAZ TATİLİ ÖDEV KİTAPÇIĞI 9. SINIF FİZİK YAZ TATİLİ ÖDEV KİTAPÇIĞI Sevgili öğrenciler; yorucu bir çalışma döneminden sonra hepiniz tatili hak ettiniz. Fakat öğrendiklerimizi kalıcı hale getirmek için konu tekrarı yapmamız, soru

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Hareket ÜNİTE. Amaçlar. İçindekiler. Öneriler. Bu üniteyi çalıştıktan sonra,

Hareket ÜNİTE. Amaçlar. İçindekiler. Öneriler. Bu üniteyi çalıştıktan sonra, ÜNİTE 3 Hareket Bu üniteyi çalıştıktan sonra, Amaçlar hareket kavramını, hareketi doğuran kuvvetleri, hız kavramını, ivme kavramını, enerji kavramını, hareket ile enerji arasındaki ilişkiyi öğreneceksiniz.

Detaylı

TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET

TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET EBE-211, Ö.F.BAY 1 Temel Elektriksel Nicelikler Temel Nicelikler: Akım,Gerilim ve Güç Akım (I): Eletrik yükünün zamanla değişim oranıdır.

Detaylı

ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME DERSĐ GAZLAR KONU ANLATIMI

ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME DERSĐ GAZLAR KONU ANLATIMI 2008 ANKARA ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME DERSĐ GAZLAR KONU ANLATIMI DERS SORUMLUSU:Prof. Dr. Đnci MORGĐL HAZIRLAYAN:Derya ÇAKICI 20338451 GAZLAR Maddeler tabiatta katı, sıvı ve gaz olmak

Detaylı

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ Bölüm 3 SAF MADDENİN ÖZELLİKLERİ 1 Amaçlar Amaçlar Saf madde kavramının tanıtılması Faz değişimi işleminin fizik ilkelerinin incelenmesi Saf maddenin P-v-T yüzeylerinin ve P-v, T-v ve P-T özelik diyagramlarının

Detaylı

6. DİRENÇ ÖLÇME YÖNTEMLERİ VE WHEATSTONE KÖPRÜSÜ

6. DİRENÇ ÖLÇME YÖNTEMLERİ VE WHEATSTONE KÖPRÜSÜ AMAÇLAR 6. DİRENÇ ÖLÇME YÖNTEMLERİ VE WHEATSTONE KÖPRÜSÜ 1. Değeri bilinmeyen dirençleri voltmetreampermetre yöntemi ve Wheatstone Köprüsü yöntemi ile ölçmeyi öğrenmek 2. Hangi yöntemin hangi koşullar

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ

13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ 13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ KONULAR 1. Akım Ölçülmesi-Ampermetreler 2. Gerilim Ölçülmesi-Voltmetreler Ölçü Aleti Seçiminde Dikkat Edilecek Noktalar: Ölçü aletlerinin seçiminde yapılacak ölçmeye

Detaylı

X Y Z. 9 yatay. Şekil I. Şekil II. Kütlesi önemsenmeyen eşit bölmeli bir çubuk X, Y, Z cisimleriyle şekildeki gibi dengededir.

X Y Z. 9 yatay. Şekil I. Şekil II. Kütlesi önemsenmeyen eşit bölmeli bir çubuk X, Y, Z cisimleriyle şekildeki gibi dengededir. 6. 9 8. Şekil I Şekil II Z Eşit kollu bir terazinin kefelerinde Şekil I deki cisimler varken binici. bölmeye, Şekil II deki cisimler varken de 9. bölmeye getirilerek denge sağlanıyor. Binicinin bir bölme

Detaylı

ISI TRANSFER MEKANİZMALARI

ISI TRANSFER MEKANİZMALARI ISI TRANSFER MEKANİZMALARI ISI; sıcaklık farkından dolayı sistemden diğerine transfer olan bir enerji türüdür. Termodinamik bir sistemin hal değiştirirken geçen ısı transfer miktarıyla ilgilenir. Isı transferi

Detaylı

04 Kasım 2010 TÜBİTAK ikince kademe seviyesinde Deneme Sınavı (Prof.Dr.Ventsislav Dimitrov)

04 Kasım 2010 TÜBİTAK ikince kademe seviyesinde Deneme Sınavı (Prof.Dr.Ventsislav Dimitrov) 04 Kasım 010 TÜBİTAK ikince kademe seviyesinde Deneme Sınavı (Prof.Dr.Ventsislav Dimitrov) Soru 1. Şamandıra. Genç ama yetenekli fizikçi Ali bir yaz boyunca, Karabulak köyünde misafirdi. Bir gün isimi

Detaylı

Elektromanyetik Alan Kaynakları (1)

Elektromanyetik Alan Kaynakları (1) (4) Elektrostatik Giriş Elektrostatik zamana bağlı olarak değişen elektrik alanlar için temel oluşturur. Pek çok elektronik cihazın çalışması elektrostatik üzerine kuruludur. Bunlara örnek olarak osiloskop,

Detaylı

2. Işık Dalgalarında Kutuplanma:

2. Işık Dalgalarında Kutuplanma: KUTUPLANMA (POLARİZASYON). Giriş ve Temel ilgiler Işık, bir elektromanyetik dalgadır. Elektromanyetik dalgalar maddesel ortamlarda olduğu gibi boşlukta da yayılabilirler. Elektromanyetik dalgaların özellikleri

Detaylı

STATİK (1. Hafta) Giriş TEMEL KAVRAMLAR

STATİK (1. Hafta) Giriş TEMEL KAVRAMLAR Giriş STATİK (1. Hafta) Mühendislik öğrencilerine genellikle ilk yıllarda verilen temel derslerin başında gelir. Sabit sistemler üzerindeki kuvvet ve momentleri inceleyen bir bilim dalıdır. Kendisinden

Detaylı

1. BÖLÜM ELEKTROSTATİK. Yazar: Dr. Tayfun Demirtürk E-posta: tdemirturk@pau.edu.tr

1. BÖLÜM ELEKTROSTATİK. Yazar: Dr. Tayfun Demirtürk E-posta: tdemirturk@pau.edu.tr 1. BÖLÜM ELEKTROSTATİK Yazar: Dr. Tayfun Demirtürk Eposta: temirturk@pau.eu.tr 1 ELEKTROSTATİK: Durgun yüklerin etkilerini ve aralarınaki etkileşmeleri inceler. Doğaa iki çeşit elektrik yükü bulunur: ()

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

BÖLÜM 2. Gauss s Law. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

BÖLÜM 2. Gauss s Law. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley BÖLÜM 2 Gauss s Law Hedef Öğretiler Elektrik akı nedir? Gauss Kanunu ve Elektrik Akı Farklı yük dağılımları için Elektrik Alan hesaplamaları Giriş Statik Elektrik, tabiatta birbirinden farklı veya aynı,

Detaylı

DİRENÇLER, DİRENÇLERİN SERİ VE PARALEL BAĞLANMASI, OHM VE KIRCHOFF YASALARI

DİRENÇLER, DİRENÇLERİN SERİ VE PARALEL BAĞLANMASI, OHM VE KIRCHOFF YASALARI DİRENÇLER, DİRENÇLERİN SERİ VE PARALEL BAĞLANMASI, OHM VE KIRCHOFF YASALARI AMAÇ: Dirençleri tanıyıp renklerine göre değerlerini bulma, deneysel olarak tetkik etme Voltaj, direnç ve akım değişimlerini

Detaylı

Bölüm 2 ENERJİ DÖNÜŞÜMLERİ VE GENEL ENERJİ ÇÖZÜMLEMESİ 1

Bölüm 2 ENERJİ DÖNÜŞÜMLERİ VE GENEL ENERJİ ÇÖZÜMLEMESİ 1 Bölüm 2 ENERJİ DÖNÜŞÜMLERİ VE GENEL ENERJİ ÇÖZÜMLEMESİ 1 Amaçlar Enerji kavramının ve değişik biçimlerinin tanımlanması İç enerjinin tanımlanması Isı kavramının ve ısı yoluyla enerji geçişinin tanımlanması

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

Buna göre bir işlemde transfer edilen q ısısı, sistemde A dan B ye giderken yapılan adyabatik iş ile nonadyabatik bir iş arasındaki farka eşittir.

Buna göre bir işlemde transfer edilen q ısısı, sistemde A dan B ye giderken yapılan adyabatik iş ile nonadyabatik bir iş arasındaki farka eşittir. 1 1. TANIMLAR (Ref. e_makaleleri) Enerji, Isı, İş: Enerji: Enerji, iş yapabilme kapasitesidir; çeşitli şekillerde bulunabilir ve bir tipten diğer bir şekle dönüşebilir. Örneğin, yakıt kimyasal enerjiye

Detaylı

TEMEL KAVRAMLAR. Öğr. Gör. Adem ÇALIŞKAN

TEMEL KAVRAMLAR. Öğr. Gör. Adem ÇALIŞKAN KÜTLE: Yeryüzünde hacim kaplayan cisimlerin değişmez madde miktarıdır. ( sıcaklığa, basınca, çekim ivmesine bağlı olarak değişmez. ) Terazi ile ölçülür. Kütle birimi SI birim sisteminde Kg dır. Herhangi

Detaylı

1.36 hafta. 2.Cumartesi veya Pazar günü. 3. Günlük 4 saat. 4.Toplam 144 saat

1.36 hafta. 2.Cumartesi veya Pazar günü. 3. Günlük 4 saat. 4.Toplam 144 saat V : - V V: : : - 1.36 hafta 2.Cumartesi veya Pazar günü 3. Günlük 4 saat 4.Toplam 144 saat 1. Hafta 2. Hafta KONULAR MADDE VE a. Madde ve Özkütle b. d. Plazmalar KAZANIMLAR 1. 2. ve rasyonel olur. 3. 4.

Detaylı

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ FİZİK II LABORATUVARI DENEY 2 TRANSFORMATÖRLER

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ FİZİK II LABORATUVARI DENEY 2 TRANSFORMATÖRLER ELEKTRİK ELEKTROİK MÜHEDİSLİĞİ FİZİK LABORATUVAR DEEY TRASFORMATÖRLER . Amaç: Bu deneyde:. Transformatörler yüksüz durumdayken giriş ve çıkış gerilimleri gözlenecek,. Transformatörler yüklü durumdayken

Detaylı