UĞUR DAN SİZE... Enver Yücel. Merhaba Gençler,

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "UĞUR DAN SİZE... Enver Yücel. Merhaba Gençler,"

Transkript

1 UĞUR DAN SİZE... Merhaba Gençler, Gençliðinizin gerektirdiði olumlu etkinliklerin hiçbirinden uzak kalmadan; spordan, sanattan, kültürel etkinliklerden kendinizi mahrum etmeden çalýþýnýz. Böylece doðru bir geliþim süreci içinde olacaksýnýz. Planlý ve disiplinli bir eðitim-öðrenim çizgisini yakalayýp sürdürdüðünüzde, farklýlaþacaksýnýz. Öne çýkacaksýnýz. Seçkin ve mutlu olacaksýnýz. Baþarý, bir anlamda budur. Biz eðitimcilerin temel görevi, size doðru yöntemleri öðretmek, doðru ve yararlý araçlarý sunmak, geliþim sürecinde sizi adým adým yönlendirerek hedefinize ulaþtýrmaktýr. Bugün Türkiye nin 80 noktasýnda öðretim yapan ve üniversiteye giriþ hazýrlýðýnýn çok saygýn bir adý olan Uður Dershanesi, 968 den beri bu görevi baþarýyla sürdürmektedir. Üniversiteye Uður kapýsýndan giren gençlerin bir kýsmý bugünlerde üniversiteli olmanýn heyecaný içindeyken, bir kýsmý da halen üniversitelerde öðrenim görmektedir. Öðrencilerimizin önemli bir bölümü ise ülkemizin; hatta dünyanýn saygýn aydýnlarý, baþarýlý iþadamlarý, yöneticileri, sanatçýlarý arasýnda çoktan yerlerini aldýlar. Uður Dershanesi nin de içinde yer aldýðý Bahçeþehir Uður Eðitim Kurumlarý nda, Uður dan yetiþen çok sayýda öðretmen, yönetici ve akademisyen öðretim üyesi görev yapmaktadýr. Uður Dershaneleri, ABD ve Çin de üniversiteye giriþ hazýrlýðý alanýnda hizmet vermekte ve dünyanýn öteki ülkelerine de ayný hizmeti taþýmaya hazýrlanmaktadýr. Bu, bir dünya markasý olmaktýr. Kendi alanýmýzda çaðdaþ uygarlýðý yakalamak ve geçmek konusundaki baþarýmýzdan duyduðumuz kývancý, sizinle paylaþýyorum. Elinizdeki dergi, Bahçeþehir Uður Eðitim Kurumlarý na dahil olan Uður Eðitim Pazarlama ve Yayýncýlýðýn bir ürünüdür. Yýl boyunca derginizin size sunacaðý bilgileri titizlikle öðreneceksiniz, Üniversiteye Giriþ Sýnavý sorularýyla örtüþen sorularýný çözeceksiniz, sýnavlarýný kendinize uygulayacaksýnýz. Tek baþýna bir okul olan Uður YGS-LYS Matematik Dergisi sizlere ikinci yýlýnda da baþarýlý ve mutlu bir hazýrlýk dönemi yaþatacaktýr. Gelecek yýllarda sizin baþarýlarýnýzdan da söz edebilmeyi umuyoruz. Amacýmýz ve dileðimiz, bunu saðlamaktýr. Uður a hoþ geldiniz. Enver Yücel Bahçeþehir Uður Eðitim Kurumlarý Kurucusu ve Yönetim Kurulu Baþkaný

2 MATEMATÝK DERGÝSÝ NDEN MERHABA Sevgili Öðrenciler, Matematik ve geometri konularý birbirleri ile baðlantýlýdýr. Bu nedenle ilk konulardan baþlayarak; sýrasýyla bütün konularý çok iyi öðrenmeniz gereklidir. Bir konu iyi kavranýlmadan bu konuya dayanan baþka konularýn anlaþýlmasý zorlaþacaktýr. Örneðin, üslü sayýlar iyi bilinmeden logaritma; özel üçgenler olmadan da dörtgenler ve çemberler tam olarak öðrenilemez. Bir konunun önemini sadece o konudan üniversite sýnavlarýndan çýkan soru sayýsýyla deðerlendirme-yiniz. Örneðin, trigonometri konusundan LYS sýnavýnda soru gelecektir. Ancak limit, türev, integral ve matris gibi konularýndan sorulacak soruda da trigonometri bilgisi gerekebilir. Konularý çok iyi kavramadan test sorularýný çözmeye baþlamayýnýz. Matematik dergisinde konular bol örneklerle açýklanmýþtýr. lü örnekleri okuyup anladýktan sonra kendiniz çözmeye çalýþýnýz. Çözemezseniz, çözümünü inceleyiniz. Bu þekilde konuyu pekiþtirdikten sonra testleri daha kolay çözebileceksiniz. Bu sayýdaki konulardan YGS de matematik, geometri; LYS de ise 9 matematik, geometri olmak üzere toplam 9 soru sorulmuþtur.. sayýdaki matematik ve geometri konularýnýn tümü YGS ve LYS nin ortak konularýdýr. Sevgili gençler, yaþamýnýzda mutluluklar ve gireceðiniz sýnavlarda baþarýlar dileriz. Ýçindekiler... Matematik (YGS ve LYS) Rasyonel ve Ondalýk Sayýlar Konu Testi Kartezyen Çarpým ve Baðýntý Konu Testi... - Fonksiyonlar... - Konu Testi Ýþlem ve Modüler Aritmetik Konu Testi... - Geometri (YGS ve LYS) Üçgende Benzerlik ve Eþlik Konu Testi Açýortay ve Kenarortay Kurallarý Konu Testi Üçgende Alan Konu Testi Uðurlu Sayfa

3 Matematik (YGS ve LYS) Rasyonel ve Ondalık Sayılar Kesir ve Rasyonel Sayý a, b tamsayý ve b 0 ise ifadesine kesir denir. Burada a kesrin payý, b de kesrin paydasýdýr. kesrinin ifade ettiði deðere rasyonel sayý denir. Her tamsayý ayný zamanda bir rasyonel sayýdýr. Örneðin,, 0,, rasyonel sayýlardýr. 7 Toplama ve Çýkarma Ýþlemi Rasyonel sayýlarda toplama ve çýkarma iþlemlerini yaparken paydalar eþit deðilse paydalar eþitlenir, paylar arasýnda toplama veya çýkarma iþlemi yapýlýr. Ortak payda da payda olarak yazýlýr. Örneðin, 0 () + () (6) Basit Kesir ve Bileþik Kesir Payý paydasýndan mutlak deðerce küçük olan kesirlere basit kesir, payý paydasýndan mutlak deðerce büyük ya da eþit olan kesirlere bileþik kesir denir. a, b Z ve b 0 olmak üzere, < < ise, basit kesirdir. Çarpma Ýþlemi Çarpma iþleminde; paylarýn çarpýmý pay, paydalarýn çarpýmý payda olarak yazýlýr. Örneðin, olur Örnek + x a a veya ise, bileþik kesirdir. b b kesri pozitif basit kesir ise x yerine kaç farklý tamsayý yazýlabilir? A) B) C) 0 D) 9 E) 8 + x + x kesri pozitif basit kesir ise 0 < < olur. + x 0 < < 0 < + x < < x < 8 olduðundan x yerine farklý tamsayý yazýlabilir. YANIT: A rasyonel sayýsýnýn; toplama iþlemine göre tersi a ve çarpma iþlemine göre tersi dýr. b Bölme Ýþlemi Bölme iþleminde; bölünen kesir olduðu gibi yazýlýr, bölen kesir ters çevrilerek çarpýlýr. Örneðin, 8 8. :. olur Ýþlemlerde tamsayýlarýn paydasý kabul edilir. Çarpma ve bölme iþlemlerinde tamsayýlý kesirler bileþik kesre çevrilir. Toplama ve çýkarma iþlemleri ise tamsayýlý kesri bileþik kesre çevirmeden de yapýlabilir. Tamsayýlý Kesir a, b, c tamsayý ve c 0 ifadesine tamsayýlý kesir denir. Tamsayýlý kesirler ayný zamanda bileþik kesirdir. Örneðin, dir ve olur. Örneðin, () ( + ) + 6 : 6 7 () :

4 Matematik(YGS ve LYS) Rasyonel ve Ondalık Sayılar Örnek 8. ( 6 iþleminin sonucu kaçtýr? ) Örnek 0 olduðuna göre, x kaçtýr? x A) B) C) D) E) A) B) 8. ( C) D) E) ). ( ) bulunur. YANIT: A 6 x x x olur. YANIT: E Rasyonel Sayýlarda Sýralama Pozitif rasyonel sayýlarýn sýralamasýnda; Paydalar eþit ise, payý büyük olan sayý daha büyüktür. a ve b sýfýrdan farklý tamsayýlar olmak üzere, Paylar eþit ise, paydasý küçük olan sayý daha büyüktür. a b Buradan b a n n a b a b,, olur. b a b a n a, a, a a n olduðu görülür. a a Örnek + : iþleminin sonucu kaçtýr? 7 8 A) B) C) () + () : 6 : D) olur. 8 E) YANIT: D Pay ve paydasý arasýndaki fark ayný olan basit kesirler-de pay ve paydasý büyük olan sayý daha büyüktür. 0 < < gibi Pay ve paydasý arasýndaki fark ayný olan bileþik kesirlerde pay ve paydasý küçük olan sayý daha büyüktür. Örneðin > > gibi 0 Negatif rasyonel sayýlarýn sýralanmasýnda; önce pozitif rasyonel sayý gibi sýralar, sonra sýralamayý ters çeviririz. 9 9 < ise > olur Matematik, sonu olmayan tek insan aktivitesidir. Ýnsanoðlu birgün fizik ve biyolojiye dair her þeyi çözebilir. Ancak matematik ile ilgili her þeyi asla bilemezler. Çünkü konunun kendisi sonsuz, sayýlar sonsuz. Paul Erdörs

5 Rasyonel ve Ondalık Sayılar Matematik(YGS ve LYS) Örnek 7 a, b, c 8 9 olduðuna göre, aþaðýdaki sýralamalardan hangisi doðrudur? A) a < b < c B) c < b < a C) b < a < c D) c < a < b E) a < c < b a () 6 olduðundan;, b 7 8 () 6 ve c 9 () 6 6 Ondalýk Sayýlar Paydasý 0 sayýsýnýn pozitif kuvvetleri ya da 0 sayýsýnýn kuvvetlerine geniþletilebilir olan kesirlerin ifade ettiði sayýlara, ondalýk sayý denir. Örneðin, 6 0,6 0 0,0 00, , ,0 olur. 6 6 < 6 < 6 ve c < a < b olur. YANIT: D Ondalýk sayýlarda, sayýnýn saðýna yazýlan sýfýrlar sayýnýn deðerini deðiþtirmez. Örnek 6 olduðuna göre, aþaðýdakilerden hangisi doðrudur? A) y < x < z B) x < y < z C) x < z < y D) z < y < x E) z < x < y Pay ile paydasý arasýndaki fark eþit olan basit kesirlerden payý büyük olaný daha büyük olduðundan x < y < z dir. YANIT: B 7 0 0,7 ; ,70 ve olduðundan, 0,7 0,70 0,700 olur. Örneðin, 0,0 0, ya da pay ve payda 000 ile çarpýlýrsa; 0,0 0,7 0,0 olur. 0, ,700 Örnek 7 Sayý doðrusu üzerinde ile sayýlarýna eþit uzaklýkta bulunan rasyonel sayý aþaðýdakilerden hangisidir? A) B) 0 a b ve O halde, c d C) ye eþit uzaklýktaki sayý 6 x. ( ).( ) + () () D) 0 0. a b E) c + dir. d bulunur. YANIT: D Örnek 8,, 0, iþleminin sonucu kaçtýr?, A) 0 B) 0, C) 9,9 D) 0, E),, 0,,,,0 0,,, ,9 olur. YANIT: C

6 Matematik(YGS ve LYS) Rasyonel ve Ondalık Sayılar Örnek 9, , iþleminin sonucu kaçtýr? A) B) C) D) E) 0 Örneðin, 0, , , ,78 olur , , Örnek 0,. 0, 8.0,0 0,.0, +. 0,0 0, 0,08 0,0 0,0 0,0 + 0,0 olur. YANIT: C Eðer devreden kýsým 9 ise, 9 un solundaki rakamýn sayý deðeri artýrýlýp devirsiz olarak yazýlýr. Örneðin; 0,9, 7,9 8,,79,8 ve,9, olur. ifadesi bir tamsayý belirttiðine göre, pozitif x sayýsýnýn virgülden sonraki kýsmý aþaðýdakilerden hangisidir? A) 08 B) C) 9 D) 9 E) 999 x in virgülden sonraki kýsmý abc olsun. 0,08 ve x, abc iken 6, a b c, 9 + 0, 0 8, , 0 8, olduðundan x in virgülden sonraki kýsmý 9 dir. YANIT: D Devirli Ondalýk Sayýlar Bazý kesirler ondalýk yazýldýðýnda, ondalýk kýsýmdaki sayýlar belirli bir yerden sonra tekrar ederler. Bu tür sayýlara devirli ondalýk sayý denir ve devreden kýsmýn üzeri bir çizgi ile aþaðýdaki gibi gösterilir. 0, , 9 0, ,7 8,888...,8 gibi. Örnek a, 6, b,6 ve c,6 olduðuna göre, aþaðýdaki sýralamalardan hangisi doðrudur? A) a < b < c B) c < b < a C) a < c < b D) c < a < b E) b < a < c a, b, c, Virgülden sonraki üçüncü basamaða kadar sayýlar aynýdýr. O halde, dördüncü basamaða göre sýralama yapýlabilir. Buradan, a < c < b bulunur. YANIT: C Örnek 0 A) iþleminin sonucu kaçtýr? 0 0 B) 0 C) D) E) Devirli Ondalýk Sayýlarýn Rasyonel Sayýya Çevrilmesi abcd ab a,bcd olur ,0 + 0,00 + 0, ,0... 0, bulunur. YANIT: B 6

7 Konu Testi Matematik(YGS ve LYS). TEST.( + ).( ) işleminin sonucu kaçtır? 7. m, n, p, r birer rakamdır. r m > n > p > r olduğuna göre, büyük değeri kaçtır? m 0 A) 6 9 B) C) 6 p + toplamının en n 7 D) E) 8 A) B) C) D) E) 8. a, b ve c 6 7. : +. işleminin sonucu kaçtır? 9 A) B) C) D) 7 E) 6 olduğuna göre, aşağıdaki sıralamalardan hangisi doğrudur? A) a < b < c B) c < a < b C) a < c < b D) c < b < a E) b < c < a. ( ).( ) işleminin sonucu kaçtır? 9. x 0, y 0 ve z 0 olduğuna göre, aşağıdaki sıralamalardan hangisi doğrudur? A) x < y < z B) x < z < y C) z < y < x D) z < x < y E) y < x < z A) 9 B) 9 C) D) 9 E) a ise 7 ifadesinin a cinsinden değeri nedir? işleminin sonucu kaçtır? A) a B) a C) a D) a + E) a A) B) C) D) E). a + kesri bir basit kesir olduğuna göre, a nın en büyük doğal sayı değeri kaçtır?. ( ).( ).( )...( ) 0 işleminin sonucu kaçtır? A) B) C) 8 D) E) A) B) C) D) E) 6. m negatif bir basit kesirdir. Buna göre, aşağıdakilerden hangisi daima pozitif bir bileşik kesir olur? A) m B) C) + m D) m E) m m. 0 x 0 eşitliğini sağlayan x değeri kaçtır? A) B) C) D) E) 7

8 Matematik(YGS ve LYS) Konu Testi x kesrini tanımsız yapan x değerlerinin toplamı kaçtır? 9. x 0,0 ve y 0, 0 olduğuna göre, x + toplamı kaçtır? y A) 6 B) 60 C) D) E) A) B) C) D) 6 E) , devirli ondalık sayısı n m rasyonel sayısına eşittir.. 0, 008,, m ve n kendi aralarında asal olduğuna göre, m + n toplamı kaçtır? işleminin sonucu kaçtır? A) B) C) 0 D) 8 E) A) B) 7 C) D) E) 9. m 0,0 ve n 0,0. 7, 06,, + 0, 08, 07, işleminin sonucu kaçtır? olduğuna göre, n m ifadesinin değeri kaçtır? A) 0 B) C) D) 0 E) A), B) 7, C) 8, D) 8,8 E),. 0,,, 0 0 a b c 6. a ve b sıfırdan farklı birer rakamdır. ab ab, ab, + ab, ab 0, ab işleminin sonucu kaçtır? eşitliğinde a, b ve c birer pozitif sayı ise aşağıdaki sıralamalardan hangisi doğrudur? A) a < b < c B) c < b < a C) a < c < b D) b < c < a E) b < a < c A) B), C) D) 0, E) 0, m n 8 eşitliğinde n bir pozitif tamsayı olduğuna göre, m sayısının ondalık açılımındaki yüzde birler basamağında bulunan rakam kaçtır? işleminin sonucu aşağıdakilerden hangisine eşittir? A) 0,0 B) 0,0 C) 0,0 D) 0,0 E) 0, A) B) C) D) 7 E) 9 8. Aşağıdaki sayılardan hangisi en büyüktür? A) 0,0 B) 0,0 C) 0,0 D) 0,0 E) 0, işleminin sonucu kaçtır? A) B) C) D) 7 E) 8

9 Konu Testi Matematik(YGS ve LYS). ( ) + ( ) 0 ( ) ( ). f + p f 6 6 p işleminin sonucu kaçtır? 7 A) B) C) D) E) 9 işleminin sonucu kaçtır? A) B) C) 6 6 D) E) 6. a + 0 toplamının sonucu bir tamsayı olduğuna göre, a sayısı aşağıdakilerden hangisi olabilir? A),9 B),0 C) 7,98 D) 9,0 E), ( 06, ).(, ). (0,6) ( 0, ) işleminin sonucu kaçtır? A) 0, B), C) D) E) ,. 80, ,. 6 + işleminin sonucu aşağıdakilerden hangisidir? A) 0 B) 0 C),.0 D) 0 E).0. Yukarıdaki sayı doğrusunda ile 0 arası dört ile arası üç eş bölmeye ayrılmıştır. Buna göre, A ile B arasındaki uzaklık kaç birimdir? 8. A) 6 B) C) D) 7 E) 9 işleminin sonucu kaçtır? A) B) C) D) E) 0, 00,. 00, 0, işleminin sonucu kaçtır? A),8 B), C),08 D), E),8, 0, 9. 0, 0, işleminin sonucu kaçtır? A) 8,8 B) 8, C) 7, D) 6, E),. < < 6 olduğuna göre, yerine kaç farklı tam sayı yazılabilir? 0. f p : f p işleminin sonucu aşağıdakilerden hangisidir? A) B) C) D) E) 6 8 A) 7 B) 6 C) D) E) - C - A - E - D - C 6- E 7- D 8- B 9- A 0- C - B - D - C - A - B 6- E 7- C 8- C 9- A 0- B - B - C - C - D - A 6- C 7- D 8- E 9- A 0- A - A - D - C - A - B 9

10 Kartezyen Çarpım ve Bağıntı Matematik (YGS ve LYS) Sýralý Ýkili a ve b elemanlarýnýn (a, b) þeklinde yazýlmasýyla elde edilen elemana sýralý ikili denir. (a, b) (c, d) ise a c ve b d olmalýdýr. Örneðin; (x, x + y) (x +, y ) ise x x + x 6 ve x + y y 6 + y y y olur. Kartezyen Çarpým Kartezyen Çarpýmýn Grafiði A x B nin grafiði, A x B kümesine ait elemanlarýn (noktalarýn) analitik düzlemde iþaretlenmesiyle elde edilir. Örneðin; A {,, } ve B {, } ise A x B nin grafiðini çizelim. Önce A x B yi bulalým. A x B {(, ), (, ), (, ), (, ), (, ), (, )} A x B kümesi 6 elemanlý olduðundan; bu 6 nokta analitik düzlemde iþaretlenerek A x B nin grafiði aþaðýdaki gibi çizilir. Birinci bileþenleri A kümesinden ikinci bileþenleri B kümesinden alýnarak elde edilen tüm sýralý ikililerin kümesine A ile B nin kartezyen çarpýmý denir ve A x B þeklinde gösterilir. A x B {(x, y)i x A ve y B} olur. Örneðin; A {, } ve B {a, b, c} kümeleri için, A x B {(, a), (, b), (, c), (, a), (, b), (, c)} B x A {(a, ), (a, ), (b, ), (b, ), (c, ), (c, )} A x A {(, ), (, ), (, ), (, )} olur. A x B B x A dýr. Ancak s(a x B) s(b x A) olur. Örnek A {,, 6} ve B {y I y, y R} olduðuna göre A x B nin elemanlarýný dýþarýda býrakmayan en küçük çemberin çapý kaç birimdir? A) B) C) D) E) Kartezyen Çarpýmýn Özelikleri:. s(a x B) s(b x A) s(a). s(b). A x (B C) (A x B) (A x C). A x (B C) (A x B) (A x C). A x (B \ C) (A x B) \ (A x C) olur. Örnek B [, ] olduðundan B kümesinin sonsuz elemaný vardýr. Bundan dolayý A x B kümesi de sonsuz elemanlý olur. A x B kümesi; birinci bileþenleri, veya 6, ikinci bileþenleri [, ] aralýðýndaki herhangi bir reel sayý olan sýralý ikililerden oluþmaktadýr. Bu durumda A x B nin grafiði uç noktalarý (, ) ve (, ), (, ) ve (, ), (6, ) ve (6, ) olan doðru parçasýndan oluþmaktadýr. A {,,, 6, 7}, B {6, 7, 8, 9}, C {a, b, c, d} olduðuna göre, (A x C) (B x C) kümesinin eleman sayýsý kaçtýr? A) 6 B) 8 C) 0 D) E) 8 A B {,,, 6, 7, 8, 9} ve s(a B) 7 dir. (A x C) (B x C) (A B) x C olduðundan s[(a x C) (B x C)] s[(a B) x C] s(a B). s(c) 7. 8 bulunur. YANIT: E A x B ye ait noktalarý dýþarýda býrakmayan en küçük çemberin çapýnýn uzunluðu, grafikteki birbirinden en uzak iki nokta arasýndaki uzaklýktýr. Bu noktalar; (, ) ile (6, ) veya (, ) ile (6, ) dir. Bu durumda istenen çemberin çapý: birim bulunur. YANIT: E 0

11 Kartezyen Çarpım ve Bağıntı Matematik(YGS ve LYS) Örnek A {x I x < 6, x R} ve B {y I < y, y R} olduðuna göre, A x B yi kartezyen koordinat düzleminde gösterelim. A kümesini A [, 6) ve B kümesini B (, ] þeklinde yazabiliriz. A ve B kümeleri sonsuz elemanlý olduðundan A x B de sonsuz elemanlýdýr. Baðýntý A x B kümesinin her bir alt kümesine A dan B ye tanýmlý bir baðýntý denir. β A x B ise β, A dan B ye tanýmlý bir baðýntýdýr. Bu baðýntý, β : A B þeklinde gösterilir. A x A nýn herbir alt kümesine A dan A ya tanýmlý bir baðýntý veya kýsaca A kümesinde tanýmlý bir baðýntý denir. A x B nin herbir alt kümesi A dan B ye bir baðýntýdýr. s(a) n ve s(b) m ise s(a x B) n. m dir. n. m elemanlý bir kümenin n.m alt kümesi olduðundan, A dan B ye n.m tane baðýntý tanýmlanabilir. A [, 6) kümesi yatay, B (, ] kümesi düþey eksenden alýnýr. Birinci bileþeni ve ikinci bileþeni olan nokta (her ikisi de dahil köþeli parantez) olduðu için içi dolu; diðerleri ise içi boþ olarak iþaretlenir. Ýçi dolu olan noktanýn komþularý düz (sürekli) çizgi; içi boþ olan noktalarýn arasý ise kesikli çizgi olur. Sonra elde edilen dikdörtgenin içi taranarak grafik tamamlanýr. Örnek Örnek A ve B kümeleri için, s(a) ve s(b) olduðuna göre, A dan B ye kaç deðiþik baðýntý tanýmlanabilir? A) 8 B) 6 C) 6 D) 0 E) 6 s(a x B) s(a). s(b). 8 dir. A x B, 8 elemanlý bir küme olduðundan, 8 6 tane alt kümesi vardýr. A x B nin herbir alt kümesi A dan B ye tanýmlý bir baðýntý olduðu için, A dan B ye 6 tane baðýntý tanýmlanabilir. YANIT: E Örnek 6 Pozitif reel (gerçel) sayýlar kümesinde a + b 0 için baðýntýsý tanýmlanmýþtýr. Þekilde A x B nin grafiði verilmþitir. Buna göre, A B, A B, A \ B ve B \ A kümelerini bulalým. eþitliðinde m sayýsý kaçtýr? A) B) C) D) E) A x B nin grafiðinden; A (, ] ve B (, ] bulunur. Sayý doðrusunda gösterilen A ve B kümelerine göre, A B (, ] A B (, ] A \ B (, ] B \ A (, ] olur.. 8 β, ve + 0. m m m β, m + m + m + m 0 olduðundan m 0m + 9m m bulunur. + m YANIT: A

12 Matematik(YGS ve LYS) Kartezyen Çarpım ve Bağıntı Örnek 7 Yansýma Özeliði A {,,, } kümesinde tanýmlý β {(a, b)i a, b yi tam böler} baðýntýsýnýn eleman sayýsý kaçtýr? A) 6 B) 8 C) 0 D) E) β baðýntýsý, birinci bileþeni, ikinci bileþenini tam bölen sýralý ikililerden oluþmaktadýr. β {(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, )} olduðundan s(β) 8 dir. β baðýntýsýnýn þema ve grafiði aþaðýdaki gibidir. YANIT: B β, A kümesinde tanýmlý bir baðýntý olsun. Her x A için (x, x) β ise β yansýyan bir baðýntýdýr. Örneðin; A {,, } kümesinde tanýmlý; β {(, ), (, ), (, ), (, ), (, )} baðýntýsý yansýyandýr. β {(, ), (, ), (, ), (, )} baðýntýsý A olduðu halde (, ) β olduðundan, yansýyan deðildir. Simetri Özeliði β, A kümesinde tanýmlý bir baðýntý olsun. Her (x, y) β için (y, x) β ise β simetrik bir baðýntýdýr. Örneðin; A {a, b, c, d} kümesinde tanýmlý; β {(a, c), (b, b), (b, d), (c, a), (d, b)} baðýntýsý simetriktir. β {(a, b), (b, c), (c, c), (b, a), (d, d)} baðýntýsý (b, c) β olduðu halde (c, b) β olduðundan simetrik deðildir. Bir Baðýntýnýn Tersi A kümesinden B kümesine tanýmlý bir β baðýntýsý verilsin. β baðýntýsýna ait tüm sýralý ikililerin birinci ve ikinci bileþenlerinin yer deðiþtirmesiyle elde edilen baðýntýya, β baðýntýsýnýn tersi denir ve β ile gösterilir. Bu durumda β, B den A ya tanýmlý bir baðýntý olur. β A x B ise β B x A olup β {(y, x) I (x, y) β} dýr. Örneðin; β {(a, b), (b, b), (b, c), (c, a)} ise β {(b, a), (b, b), (c, b), (a, c)} olur. β simetrik ise β β dir. Ters Simetri Özeliði β, A kümesinde tanýmlý bir baðýntý olsun. (x y iken) Her (x, y) β için (y, x) β ise β ters simetrik bir baðýntýdýr. Birinci bileþeniyle, ikinci bileþeni ayný olan (x, x) ikililerinin bulunmasý baðýntýnýn ters simetri özeliðini bozmaz. Örneðin; A {a, b, c, d} kümesinde tanýmlý; β {(a, b), (b, b), (b, c), (c, a)} baðýntýsý ters simetriktir. β {(a, c), (a, d), (c, b), (d, a), (d, c)} baðýntýsý (a, d) β Örnek 8 olduðu halde (d, a) β olduðundan ters simetrik deðildir. R de tanýmlý, β {(x, y) I x y } baðýntýsý veriliyor. Buna göre β β aþaðýdakilerden hangisidir? Geçiþme Özeliði β, A kümesinde tanýmlý bir baðýntý olsun. A) {(, )} B) {(, )} C) {(, )} D) {(, )} E) {(, )} β baðýntýsýnda x ile y nin yerleri deðiþtirilerek β baðýntýsý bulunur. β {(x, y) I y x } olduðundan, x y ve y x ise x y bulunur. Buna göre, β β {(, )} olur. YANIT: D Her [(x, y) β ve (y, z) β] iken (x, z) β ise β geçiþken bir baðýntýdýr. Örneðin; A {a, b, c, d} kümesinde tanýmlý; β {(a, c), (b, b), (c, d), (a, d)} baðýntýsý geçiþkendir. β {(a, b), (b, b), (c, a)} baðýntýsý (c, a) β ve (a, b) β olduðu halde (c, b) β olduðundan geçiþken deðildir.

13 Konu Testi Matematik(YGS ve LYS). x, y R olmak üzere TEST (x +, y ) (x +, y + ) eşitliğini sağlayan (x, y) sıralı ikilisi aşağıdakilerden hangisidir? A) (, ) B) (6, ) C) (, 6) D) (, 6) E) (, ) 6. A, B ve C kümeleri için, A x B {(a, ), (a, ), (a, ), (b, ), (b, ), (b, )} A x C {(a, x), (a, ), (b, x), (b, )} olduğuna göre, A x (B C) kümesinin eleman sayısı kaçtır? A) 0 B) 9 C) 8 D) 7 E) 6. A {xi IxI, x Z} B {xi < x, x Z} olduğuna göre, A x B nin eleman sayısı kaçtır? A) B) C) 8 D) 0 E) 7.. A x C {(a, ), (a, ), (b, ), (b, ), (c, ) (c, )} B {r, s} olduğuna göre, A x B kümesi aşağıdakilerden hangisidir? A) {(, r), (, s), (, r), (, s)} B) {(r, ), (s, ), (r, ), (s, )} C) {(a, r), (a, s), (b, r), (b, s), (c, r) (c, s)} D) {(r, a), (s, a), (r, b), (s, b), (r, c) (s, c)} E) {(a, r), (a, s), (r, b), (s, b), (c, r)} Şekildeki A x B grafiğine göre, aşağıdakilerden hangisi yanlıştır? A) A B (, ) B) A \ B [, 6] C) B \ A [, ] D) A (B \ A) [, 6] E) A B (, 6). s(a), s(a x B) 6 ve s(a x C) 8 olduğuna göre, s(b x C) kaçtır? A) 6 B) 9 C) D) E) 6. A {xi x, x Z} B {yi y <, y R} 8. A {,, 0,, } ve B {0,,,, } kümeleri veriliyor. Buna göre, dik koordinat düzleminde (A B) x (A B) kartezyen çarpımının elemanlarını dışarıda bırakmayan en küçük dikdörtgenin alanı kaç birimkaredir? A) B) C) 8 D) E) olduğuna göre, A x B nin grafiği aşağıdakilerden hangisidir? 9. β(x, y) x y bağlantısı veriliyor. β(x, ) β(, ) olduğuna göre, x kaçtır? A) 6 B) C) 0. A {,,,, } ve B {x, y, z} kümeleri veriliyor. D) B den A ya kaç tane bağıntı yazılabilir? E) A) B) 8 C) 0 D) E)

14 Matematik(YGS ve LYS) Konu Testi. β {(x, y) : x y, x ve y Z} 8. Doğal sayılar kümesinde tanımlı, şeklinde tanımlanıyor. Buna göre, b bağıntısının eleman sayısı kaçtır? A) B) C) D) E) β {(x, y) I x + y 8, x, y N} β {(x, y) I x + y 7, x, y N} bağıntıları için β β kümesinin eleman sayısı kaçtır? A) 0 B) 9 C) 8 D) 7 E) 6. A {,,, } kümesi veriliyor. β : A A ve β {(x, y) I x + y } olduğuna göre, b bağıntısının kaç elemanı vardır? A) B) C) 6 D) 7 E) 0 9. N de tanımlanan β {(x, y) I (a ).x + (a + 6).y } bağıntısının simetrik olması için a kaç olmalıdır? A) B) C) D) E). A {0,, 9, 0, 8} kümesinde tanımlı β açılan bağıntısı, β {(x, y) I x böler y} biçiminde tanımlanıyor. Buna göre, b bağıntısı kaç elemanlıdır? A) B) 7 C) 8 D) 0 E) 0. R de tanımlı β {(x, y):.x + ( + a).y 0} yansıyan bir bağıntı olması için a kaçtır?. A {,, {}, {, }} ve B {a, b} kümeleri veriliyor. A) 7 B) C) D) E) Buna göre, A dan B ye tanımlanabilecek en çok elemanlı bağıntı sayısı kaçtır? A) 8 B) 9 C) 6 D) 7 E) 0. A {,, } kümesinde tanımlı β bağıntısının yansıyan olup, simetrik ve ters simetrik olmaması için β bağıntısı en az kaç elemanlı olmalıdır? A) B) C) D) 6 E) 7. A {,,, } ve B {, 6} kümeleri veriliyor. A dan B ye tanımlı elemanlı bağıntıların kaç tanesinde, (, ) ikilisi eleman olarak bulunur? A) 70 B) 6 C) D) 8 E) 0. A {,, } kümesinde tanımlı β {(, ), (, ), (, ), (, ), (, ), (, )} bağıntısında yansıma, simetri, ters simetri ve geçişme özelliklerinden kaç tanesi vardır? 6. α {(x, y): x + y ve x, y R} bağıntısı veriliyor. α bağıntısının elemanlarından biri (t +, t ) olduğuna göre, t kaçtır? A) B) C) D) E) A) 0 B) C) D) E). Kartezyen koordinat düzleminde; lx.yl bağıntısı veriliyor. 7. Z de tanımlı α {(x, y) I x y 7 ve x, y Z} bağıntısı veriliyor. α α kümesi aşağıdakilerden hangisidir? A) {( 7, 7)} B) {( 7, 7)} C) {(7, 7)} D) {(7, 7)} E) {(7, 8)} Buna göre, bu bağıntıyı sağlayan kaç tane (x, y) tamsayı sıralı ikilisi vardır? A) B) 6 C) 8 D) E) 6 - C - D - C - C - E 6- C 7- E 8- D 9- E 0- E - C - C - E - D - C 6- D 7- D 8- C 9- E 0- D - D - D - D

15 Matematik (YGS ve LYS) Fonksiyonlar Fonksiyon A kümesinin herbir elemanýný B kümesinin bir ve yalnýz bir elemanýyla eþleþtiren baðýntýlara A dan B ye tanýmlý fonksiyon denir ve f : A B þeklinde gösterilir. A, fonksiyonun taným kümesi ve B deðer kümesidir. A dan B ye tanýmlý bir f baðýntýsýnýn fonksiyon olabilmesi için aþaðýda verilen iki þartý saðlamasý gerekir.. A kümesinde görüntüsü olmayan (eþleþmeyen) eleman kalmamalýdýr.. A kümesindeki herhangi bir eleman B kümesindeki birden fazla elemanla eþleþmemelidir. Örneðin; A {a, b, c} ve B {b, e, h} kümeleri verilsin. A dan B ye tanýmlanan f {(a, b), (c, h), (d, h)} baðýntýsýnýn bir fonksiyon olup olmadýðýný inceleyelim. Örnek A {a, b, c} kümesinde tanýmlý baðýntýlardan kaç tanesi fonksiyon deðildir? A) 96 B) 8 C) D) 76 E) 8 A dan A ya tanýmlý baðýntýlara A kümesinde tanýmlý baðýntý dendiðini biliyoruz. A x A kümesinin herbir alt kümesi A kümesinde tanýmlý bir baðýntýdýr. s(a x A) s(a). s(a). 9 dur. 9 elemanlý bir kümenin 9 tane alt kümesi olduðundan A kümesinde toplam tane baðýntý tanýmlanabilir. Bu baðýntýlarýn sadece 7 tanesi fonksiyon olduðundan geriye kalan baðýntýlarýn 7 8 tanesi fonksiyon olmayan baðýntýdýr. YANIT: B Örnek f (a) b f (c) h A {,,, } ve f : A R olmak üzere f fonksiyonu f(x) x x kuralý ile veriliyor. f (d) h Buna göre, f fonksiyonunun görüntü kümesinin elemanlarýnýn toplamý kaçtýr? Yukarýda verilen f baðýntýsý bir fonksiyondur. f {(a, b), (c, h), (d, h)} olur. f: A B olmak üzere Taným kümesi A {a, c, d} Deðer kümesi B {b, e, h} Görüntü kümesi f (A) {b, h} dir. Örneðin; A {,, } ve B {a, b, c, d} kümeleri verilsin. A dan B ye tanýmlanan A) 0 B) 8 C) 6 D) E) f( ) ( ).( ) 8 f(). f(). f(). f(a) {8,, } olduðundan görüntü kümesinin elemanlarýnýn toplamý 8 + ( ) + 0 dir. YANIT: A f {(, d), (, a)} ve g {(, c), (, a), (, b), (, d)} baðýntýlarýnýn birer fonksiyon olup olmadýklarýný inceleyelim. Örnek f : A R ye tanýmlý bir f fonksiyonu f(x) x kuralý ile veriliyor. A dan B ye s(b) s(a) tane fonksiyon tanýmlanabilir. Örneðin; elemanlý bir kümeden elemanlý bir kümeye 8 tane farklý fonksiyon tanýmlanabilir. f(a) (, ] olduðuna göre, A kümesi aþaðýdakilerden hangisidir? A) [, ) B) (, ) C) [, ) D) (, ] E) (, ] f fonksiyonu; x i, x ile eþleþtirdiðinden x in görüntüsü x dir. < x < x > x olduðundan A [, ) bulunur. YANIT: C

16 Matematik(YGS ve LYS) Fonksiyonlar Örnek x + f x + olduðuna göre, f() kaçtýr? x A) B) C) 8 D) E) Örnek 7 f(x + ) x.f(x) + eþitliðini saðlayan f fonksiyonu veriliyor. f(7) 6 olduðuna göre, f() kaçtýr? x + x x + ifadesi e eþitlenirse, x Verilen eþitlikte x yerine 9 yazýlýrsa f(). 9 + bulunur. x 9 olur. YANIT: A A) B) C) D) E) 6 Verilen eþitlikte, x yerine önce daha sonra da yazalým. f(7). f() + 6. f() + f() 7 f(). f() + 7. f() + f() bulunur. YANIT: A Örnek f(x x ) x 6x + olduðuna göre, f() kaçtýr? A) B) 7 C) 8 D) 0 E). yol: x x x x 6 dýr. Verilen eþitlikte x x yerine 6 yazýlýrsa f(x x ) (x x) + f(). 6 + bulunur.. yol: f(x x ) x 6x + yazýlýrsa f(x x ) (x x ) + x x yerine a yazýlýrsa f(a) a + olur. Buradan, f(). + bulunur. YANIT: A Fonksiyon Çeþitleri Bire Bir Fonksiyon Taným kümesindeki her bir elemaný deðer kümesindeki farklý bir elemanla eþleþtiren fonksiyonlara bire bir veya fonksiyon denir. f: A B fonksiyonu bire bir ise s(a) s(b) dir. Örten Fonksiyon Görüntü kümesi, deðer kümesine eþit olan fonksiyonlara örten fonksiyon denir. Buna göre, deðer kümesinde açýkta eleman kalmýyorsa fonksiyon örtendir. Örten olmayan fonksiyonlara içine fonksiyon denir. O halde, A dan B ye tanýmlý f fonksiyonu; f(a) B ise örten, f(a) B ise içine fonksiyondur. f: A B fonksiyonu örten ise s(a) s(b) dir. f: A B fonksiyonu bire bir ve örten ise s(a) s(b) dir. Örnek 6 Her x reel sayýsý için Örneðin, f(x + ) x + f(x) eþitliðini saðlayan f fonksiyonu veriliyor. f() olduðuna göre, f() kaçtýr? A) B) C) 0 D) 8 E) 6 Verilen eþitlikte, x yerine önce daha sonra da yazalým. f( + ). + f() f() f( + ). + f() f() + 0 olur. YANIT: B 6

17 Fonksiyonlar Matematik(YGS ve LYS). s(a) n, s(b) m ve n m ise A dan B ye m! (m n)! tane bire bir fonksiyon tanýmlanabilir.. s(a) s(b) n ise A dan B ye n! tane bire bir ve örten fonksiyon tanýmlanabilir. Örneðin; s(a), s(b) 7 ve s(c) ise, 7! 7! A B ye 80 tane bire bir fonksiyon, (7 )!! A C ye! tane bire bir ve örten fonksiyon tanýmlanabilir. a 0 olmak üzere, f(x) ax + b biçimindeki birinci dereceden fonksiyonlara doðrusal fonksiyon denir. f: R R, f(x) ax + b fonksiyonu bire bir ve örtendir. Sabit Fonksiyon Taným kümesinin her bir elemanýný deðer kümesindeki ayný elemana eþleyen fonksiyona sabit fonksiyon denir. f: A B fonksiyonunda A kümesindeki her x elemaný için f(x) c ise f sabit fonksiyondur. f(x) ve g(x) birer sabit fonksiyondur. Örneðin; f(x) (a + ) x + b.x x + b a fonksiyonunun sabit fonksiyon olmasý için; f(x) (a + ).x + (b ).x + b a 0 0 a + 0 a ve b 0 b olmalýdýr. f(x) fonksiyonunda a ve b alýnýrsa, f(x). ( ) 7 sabit fonksiyonu bulunur. Örnek 8 f(x) doðrusal fonksiyonu için, f() ve f() olduðuna göre, f() kaçtýr? A) B) C) D) E) 7 f(x) ax + b in sabit fonksiyon olmasý için, cx + d olmalýdýr. Bu sabit fonksiyonun deðeri de, f(x) dir. f(x) doðrusal fonksiyon olduðu için, f(x) a x + b biçimindedir. f() a + b ve f() a + b eþitliklerinden, a ve b bulunur. O halde f(x) x+ dir. Buradan f(). + 7 bulunur. YANIT: E Birim Fonksiyon Taným kümesindeki her bir elemaný yine kendisine eþleyen fonksiyona birim fonksiyon denir. f: A A, f(x) x Örnek 9 x için, f(x) 6x k 9x + 6 fonksiyonu sabit fonksiyon olduðuna göre, k kaçtýr? A) 8 B) 6 C) D) E) 6x k 6 k f(x) sabit fonksiyon ise k olur. 9x YANIT: C kuralý ile tanýmlanan f fonksiyonu birim fonksiyondur. Birim fonksiyon genellikle I ile gösterilir. I (x) x dir. Örneðin; f(x) (a + ) x + b fonksiyonunun birim fonksiyon olmasý için; Bir Fonksiyonun Tersi f: A B fonksiyonu verilsin. f fonksiyonunun tersi f ile gösterilir ve f : B A, f {(y, x) I (x, y) f} olur. f (x) (a + ).x + b 0 a + a ve b 0 b olmalýdýr. f(x) fonksiyonunda a ve b alýnýrsa, f(x) ( + ).x +. f(x) x birim fonksiyonu bulunur. Bir f fonksiyonunun tersinin de yine bir fonksiyon olmasý için, bire bir ve örten olmasý gerekir. Bire bir ve örten olmayan fonksiyonlarýn tersleri fonksiyon deðildir. f nin taným kümesi f in deðer kümesi ve f nin deðer kümesi f in taným kümesidir. (a, b) f iken (b, a) f olduðundan, f(a) b ise f (b) a olur. 7

18 Matematik(YGS ve LYS) Fonksiyonlar Örnek 0 Örnek A {a, b, c, d} kümesinden B {,,, } kümesine tanýmlý aþaðýdaki fonksiyonlardan hangisinin tersi de bir fonksiyondur? A) f {(a, ), (b, ), (c, ), (d, )} B) f {(a, ), (b, ), (c, ), (d, )} C) f {(a, ), (b, ), (c, ), (d, )} D) f {(a, ), (b, ), (c, ), (d, )} E) f {(a, ), (b, ), (c, ), (d, )} Bire bir ve örten olmayan fonksiyonlarýn tersi fonksiyon olmadýðýndan A, B, C ve E seçeneklerinde verilen fonksiyonlarýn tersleri fonksiyon deðildir. Sadece D seçe-neðinde verilen f fonksiyonu bire bir ve örten olduðu için f ün tersi bir fonksiyondur. YANIT: D x < ve f(x) x + 6x olduðuna göre, f (x) aþaðýdakilerden hangisidir? A) 9 x + 9 B) x + 9 C) x + D) 6 x + E) + x + f(x) x + 6x y x + 6x x y + 6y Bu eþitlikte eþitliðin sað tarafýný tamkare yapmak için eþitliðin her iki yanýna eklersek, x + y + 6y + 9 x + (y + ) olduðundan y + + x + y + x + dir. x < için f (x) x + bulunur. YANIT: C Bir Fonksiyonun Tersinin Bulunmasý y f(x) kuralý ile verilen bir f fonksiyonunun tersini bulmak için her x yerine y ve her y yerine x yazýlýp y yalnýz býrakýlýr. Örneðin, f(x) x + ise f fonksiyonunun tersini bulalým; y f(x) olduðundan önce f(x) yerine y yazarsak, y x + eþitliði elde edilir. Bu eþitlikte x yerine y ve y yerine x yazýnca, x x y + y olur. Buradan f x (x) bulunur. Örnek f(x ) x+ olduðuna göre, f () kaçtýr? A) B) 8 C) D) E) 7 f(a) b ise f (b) a olduðundan, f(x ) x+ ise f ( x+ ) x olur. x+ eþitliðinden x bulunur. x yazýlýrsa, f ( ). f () 8 olur. YANIT: B Örnek ax f: R \ {} R \ {}, f (x) fonksiyonu veriliyor. x b f fonksiyonu bire bir ve örten ise, a + b kaçtýr? A) 6 B) 7 C) 8 D) 9 E) 0 f(x) ax + b ise f (x) x b a olur. R \ {}, f(x) in taným kümesi olduðundan 8 Örneðin; f(x) x ise f (x) f(x) ise f x 8 (x) olur. f(x) ax + b ise f (x) cx + d Örneðin; f(x) x + x ise f (x) dx + b cx a x + x olur. olur. ax x deðeri f (x) nin paydasýný sýfýr yapmalýdýr. x b. b 0 b 6 olur. f bx : R \ {} R \ {}, f (x) dýr. x a R \ {}, f (x) in taným kümesi olduðundan x deðeri f (x) bx x a. a 0 a olur. Buradan a + b bulunur. nýn paydasýný sýfýr yapmalýdýr. YANIT: E

19 Fonksiyonlar Matematik(YGS ve LYS) Fonksiyonlarýn Bileþkesi f: A B ve g: B C ye tanýmlý iki fonksiyon olsun. Burada f nin deðer kümesi, g nin taným kümesidir. f fonksiyonu, A kümesinin elemanlarýný B kümesinin elemanlarýyla ve g fonksiyonu, B kümesinin elemanlarýný C kümesinin elemanlarýyla eþleþtirmektedir. Sonuçta A kümesinin elemanlarý f ve g fonksiyonlarýyla C kümesinin elemanlarýyla eþleþmiþ olur. A kümesinin elemanlarýný, C kümesinin elemanlarýna eþleþtiren yeni fonksiyona g ile f fonksiyonlarýnýn bileþkesi denir ve gof þeklinde gösterilir. g bileþke f diye okunur. Örnek f(x) mx 6 ve (fof)(x) x 8 olduðuna göre, m aþaðýdakilerden hangisidir? A) B) C) D) E) f(x) mx 6 ise (fof)(x) m.(mx 6) 6 (fof)(x) m. x 6m 6 olur. (fof)(x) x 8 olduðundan, m. x 6m 6 x 8 olur. Buradan, m ve 6m 6 8 eþitlikleri bulunur. 6m 6 8 m olur. YANIT: E (gof): A C ye tanýmlý olup, (gof)(x) g(f(x)) tir. (gof)() g(f()) g() (gof)() g(f()) g() 7 (gof)() g(f()) g(8) (gof)() g(f()) g() 7 bulunur. Örnek (fog)(x) g(x) + 7 olduðuna göre, f(x ) aþaðýdakilerden hangisidir? A) x + B) x + 6 C) 6x D) 6x + E) 6x + Burada, f ile g nin yaptýðý eþleþme ile gof nin yaptýðý eþleþmenin ayný olduðu görülmektedir. Örneðin, f(x) x ve g(x) x + fonksiyonlarý için (fog)(x) ve (gof)(x) fonksiyonlarýný bulalým. (fog)(x) f(g(x)) g(x) + 7 olduðundan g(x) yerine a yazýlýrsa, f(a) a + 7 olur. Burada, a yerine x yazýlýrsa f(x ) (x ) + 7 6x + bulunur. YANIT: D (fog)(x) f(g(x)) (gof) (x) g(f(x)) f(x + ) g(x ) (x + ) (x ) + x + x + 8 x + Genel olarak (fog)(x) (gof)(x) tir. Ancak bazý fonksiyonlar için, fog gof olabilir. Örnek 6 f(x) x + 8 ve g(x) x + olduðuna göre, (fog ) () deðeri kaçtýr? A) B) C) D) E) Bileþke Fonksiyonun Özelikleri. (fog)oh fo(goh) fogoh. foi Iof f (I: birim fonksiyon). fof f of I. (f ) f. (fog) g of g(x) x + g (x) x olduðundan g () olur. (fog )() f [g ()] f( ).( ) + 8 olarak bulunur. YANIT: B 9

20 Matematik(YGS ve LYS) Fonksiyonlar Örnek 7 (fog)(x) 6x 7 ve g(x) x+ Örnek 9 f(x) x ve g(x) x + x olduðuna göre, f(x) fonksiyonu aþaðýdakilerden hangisidir? A) x B) x C) x D) x + 6 E) x (fog)og fo(gog ) fo I f dir. g(x) x+ ise g (x) x olur. [(fog)og ] (x) (fog) (g (x)) olduðuna göre, (g of) (x) eþitliðini saðlayan x deðeri kaçtýr? A) B) C) D) E) (g of)(x) g (f(x)) eþitliðinden f(x) g() yazýlabilir. + Buradan x ve x bulunur.. YANIT: B [fo(gog x )] (x) (fog) ( ) x (f o I)(x) 6 7 f(x) x 0 bulunur. YANIT: E Permütasyon Fonksiyon A dan A ya tanýmlanan bire bir ve örten fonksiyonlarýn her birine permütasyon fonksiyon denir. A {a, b, c, d} kümesi verilsin. Örnek 8 (fog)(x) 6x 7 ve f(x) x olduðuna göre, g(x) fonksiyonu aþaðýdakilerden hangisidir? A) x B) x + C) x 6 D) x E) x (fog)(x) 6x 7 f[g(x)] 6x 7 dir. f(x) x f[g(x)].g(x) olduğundan,.g(x) 6x 7 f: A A permütasyon fonksiyonu aþaðýdaki þekilde tanýmlansýn. Yukarýda verilen f fonksiyonu f {(a, c), (b, a), (c, d), (d, b)} dir. f {(c, a), (a, b), (d, c), (b, d)} olduðundan, a b c d f olur. b d a c f fonksiyonu þeklinde yazýlýr..g(x) 6x + 6 g(x) x + olur. YANIT: B Örnek 0 Sayý Birleme Oyunu ise (fog) fonksiyonunu bulalým. Herhangi bir doðal sayý tutun. Sayý çift ise ile bölün, tek ise ile çarpýp ekleyin. Her yeni elde edilen sayýya ayný kuralý uygulayarak iþlem devam edildiðinde belirli bir yerden sonra elde edilir. Örneðin sayýmýz 7 olsun çift : 6 çift, 6 : tek,. + 0 çift 0 : 0 çift, 0 : 0 çift, 0 : tek,. + 6 çift, 6 : 8 çift, 8 : çift, : çift, : olur. bileþke yazýlýrken ikinci fonksiyondan baþlanýr. g: ve f: ise fog: g: ve f: ise fog: g: ve f: ise fog: g: ve f: ise fog: olur. 0

21 Fonksiyonlar Matematik(YGS ve LYS) Örnek Örnek a f d b a c c d b ve gof a c b d c a d b f {(, ), (, ), (, 8)} ve g {(, ), (, 7), (, ), (8, )} olduðuna göre, aþaðýdakilerden hangisi doðrudur? ise g fonksiyonunu bulalým. a b c d f olduðundan b d c a A) f g {(, ), (, 6)} B) f + g {(, 9), (, )} C) f. g {(, 0), (, ), (, 6)} D). f {(8, 0), (6, 8), (0, 8)} E) (gof) () 7 a (gof)of c b c d a a b c d g f p olur. d b a c d a o b b b d c c d a Fonksiyonlarda iþlemler f ve g nin taným kümelerinin ortak elemanlarý üzerinde yapýlabilir. Burada, f fonksiyonunun (, ), (, 8) ve g fonksiyonunun (, ), (, ) ikilileri üzerinde iþlemler yapýlabilir. Fonksiyonlarda Ýþlemler f: A R ve g: B R fonksiyonlarý verilsin.. (f + g): A B R ve (f + g) (x) f(x) + g(x). (f g): A B R ve (f g) (x) f(x) g(x). (f. g): A B R ve (f. g) (x) f(x). g(x). ( ): A B R ve ( ) (x), [g(x) 0]. (c. f): A R ve (c. f) (x) c. f (x) dir. ( c R) Örnek f(x) x + 8 ve g(x) x olduðuna göre, aþaðýdakilerden hangisi yanlýþtýr? A) (f + g) (x) x + 6 B) (g f) (x) x 0 C) (f. g) (x) 6x + 0x 6 D) (f g) () E) ( ) () 6 A) f g {(, ), (, 8 )} {(, ), (, 6)} B) f + g {(, +. ), (, 8 +. )} {(, 9), (, )} C) f.g {(,. ), (, 8. )} {(, 0), (, 6)} D). f {(,. ), (,. 8)} {(, 6), (, )} E) (gof) () g[f()] g() 7 olduðundan E seçeneði doðrudur. Örnek f(x) x, x < 6 x +, 6 x < 0 x, 0 x olduðuna göre, (fofof)() deðeri kaçtýr? YANIT: E A) 6 B) 8 C) 9 D) 0 E) < 6 f(). olduðundan (fofof) () f{f [f()]} f{f()} dir. 0 f() 8 olduðundan f{f()} f(8) dir. 6 8 < 0 f(8) bulunur. YANIT: C A) (f + g) (x) (x + 8) + (x ) x + 6 B) (g f) (x) (x ) (x + 8) x 0 C) (f. g) (x) (x + 8). (x ) 6x + 0x 6 D) (f g) (). f(). g(). (. + 8) (. ) f(). + 8 E) ( ) () olduðundan g(). E seçeneði yanlýþtýr. YANIT: E Fonksiyonun Grafiði Bir fonksiyonun elemanlarýna, analitik düzlemde karþýlýk gelen noktalarýn kümesine bu fonksiyonun grafiði denir. y f(x) fonksiyonun grafiði üzerinde P(a, b) noktasý verilsin. Bunun anlamý; f(a) b veya f (b) a dýr.

22 Matematik(YGS ve LYS) Fonksiyonlar Örnek Örnek 7 Þekilde, y f(x) fonksiyonunun grafiði verilmiþtir. (fof)(x) olduðuna göre, x kaçtýr? A) B) C) D) E) y f(x) fonksiyonunun grafiði A(, 0) ve B(0, ) noktalarýndan geçtiði için f( ) 0 ve f(0) dir. (fof)(x) f[f(x)] f(x) 0 olmalýdýr. 0 Buradan, x x bulunur. YANIT: D Þekilde, f(x) ve g(x) fonksiyonlarýnýn grafikleri verilmiþtir. Buna göre, A) deðeri kaçtýr? B) C) 0 D) E) Grafiðe göre, f(), f() 0, g() ve g() tür. g() olduðundan, (fog) () f[g()] f() 0 dýr. g() + (fog)() + 0 Buradan, bulunur. f() YANIT: B Örnek 6 Örnek 8 Þekilde, y f(x) fonksiyonunun grafiði verilmiþtir. (fof)( 7) + f(0) Buna göre, deðeri kaçtýr? f ( ) A) B) C) D) E) Þekilde, f(x) ve g(x) x fonksiyonunun grafikleri verilmiþtir. Buna göre, [f o g o f] (0) deðeri kaçtýr? A) B) C) 0 D) E) 8 A( 7, ) noktasýna göre, f( 7) olduðundan (fof) ( 7) f[f( 7)] f() dir. C(, 0) noktasýna göre, f() 0 olduðundan, (fof) ( 7) f[f( 7)] f() 0 olur. B(0, ) noktasýna göre, f(0) ve D(6, ) noktasýna göre, f ( ) 6 olduðundan, (fof)( 7) + f(0) 0 + f ( ) 6 bulunur. YANIT: B f(0) 8 olduðundan, [f o g o f] (0) f {g [f(0)]} f [g (8)] dir. g(x) x ise g (x ) x g (8) olur. Buradan, f[g (8)] f() 0 olduðu için, (f o g of)(0) 0 bulunur. YANIT: C

23 Konu Testi Matematik(YGS ve LYS) TEST. A {x I x < 7 ve x Z} dir. f: A R, f(x) x fonksiyonunun görüntü kümesi kaç elemanlıdır? 7. f(x) 6 x + x+ fonksiyonunun tanım aralığı aşağıdakilerden hangisidir? A) x B) x 6 C) x D) x E) x A) B) 6 C) 7 D) 8 E) 0. f: A B, bire bir ve örten bir fonksiyondur. f(x) x ve B {,, 0, 7} olduğuna göre, A kümesi aşağıdakilerden hangisidir? A) {,, 0, } B) { 8,, } C) {0,, } D) {, 0,, } E) {,, 0, } 8. f: R {} R {} kümesinde tanımlı mx + f(x) x+ n fonksiyonu bire bir ve örtendir. Buna göre, m + n toplamı kaçtır? A) B) C) D) E). A {,, } ve B {a, b, c} kümeleri veriliyor. Buna göre, A dan B ye (A B) tanımlanan aşağıdaki bağıntılardan hangisi bir fonksiyondur, ancak tersi bir fonksiyon değildir? A) {(, a), (, c), (, b), (, c)} B) {(, c), (, a), (, b)} C) {(, b), (, c), (, a)} D) {(, a), (, b), (, c)} E) {(, c), (, a), (, c)} 9. f(x) x + x + olduğuna göre, f( x) f(x ) fonksiyonu aşağıdakilerden hangisidir? A) x B) x C) 0 D) x E) x 0. f(x ) + f(x + ) x +. f( x) m.x + n fonksiyonu veriliyor. f(x) fonksiyonu birim fonksiyon olduğuna göre, m + n toplamı kaçtır? olduğuna göre, f() değeri kaçtır? A) B) C) D) E) 6 A) B) C) 0 D) E). f(x) (a ).x + (b + ).x + a b fonksiyonu sabit bir fonksiyon olduğuna göre, f(a + b) kaçtır? A) B) 0 C) D) E) mx fx () x sabit bir fonksiyon olduğuna göre, m + f(m) toplamı kaçtır? A) 6 B) C) D) 0 E). f(x x ) x 6x + olduğuna göre, f() değeri kaçtır? A) B) C) D) E). fx ( ) x + x x olduğuna göre, f() değeri kaçtır? A) 7 B) 9 C) D) E) 8

24 Matematik(YGS ve LYS) Konu Testi. f(x) x fonksiyonu veriliyor. 9. f(x + ) f(x) + x fonksiyonu veriliyor. Buna göre, f(x) fonksiyonunun f(x + ) cinsinden eşiti aşağıdakilerden hangisidir? A).f(x + ) + B).f(x + ) C).f(x + ) D).f(x + ) + E).f(x + ) + f() olduğuna göre, f() değeri kaçtır? A) B) C) 8 D) E) 0. f: R R, f(x + ) f(x) +. fx () x x olduğuna göre, f( x ) fonksiyonunun f(x) cinsinden ifadesi aşağıdakilerden hangisidir? olduğuna göre, f(6) f() farkı kaçtır? A) B) 8 C) D) E) 6 A) f(x) B) fx () D) f(x) E) f(x) C) fx (). x.f(x) (x ).f(x ) fonksiyonu veriliyor. f() olduğuna göre, f() değeri kaçtır?. f(x) x olduğuna göre, f(x + ) ifadesinin f(x) cinsinden eşiti aşağıdakilerden hangisidir? A).f(x) B) [f(x)] C) 9.f(x) D) f(x) E) f(x) + 9 A) B) C) D) 88 E)..( f ) + fx ( ) x x olduğuna göre, f() değeri kaçtır? A) B) C) D) E) 6. f(n) n fonksiyonu veriliyor. n! f(n + ) k. f(n) olduğuna göre, k aşağıdakilerden hangisine eşittir? A) n + D) n + B) n + E) n C) n..f(x ) f( x) + x olduğuna göre, f() değeri kaçtır? A) B) 0 C) D) E) 7. f(x) + f(x ) 6x + 7 olduğuna göre, f() değeri kaçtır? A) B) 8 C) 6 D) E) 8. f(x + ).f(x) ve f() olduğuna göre, f() değeri kaçtır? A) B) C) D) 0 E) 0 8 x. xf.( ) x+ f( ) x olduğuna göre, f() değeri kaçtır? 6 A) B) C) D) 6 E) - C - D - E - D - E 6- A 7- C 8- E 9- C 0- C - A - C - D - A - C 6- B 7- A 8- E 9- E 0- D - A - B - E - D

25 Konu Testi Matematik(YGS ve LYS). x, y R {0} olmak üzere f(x + y) f(x). f(y) TEST 7. f(x) x ve g(x) x olduğuna göre, f[g()] g[f()] kaçtır? A) B) 6 C) 0 D) 9 E) olduğuna göre, f() ise f() kaçtır? A) B) 6 C) 8 D) E) 6 8. (fof) (x) 9x + 8 olduğuna göre, f() değeri aşağıdakilerden hangisi olabilir?. x, y R {} olmak üzere, f(x. y) f(x) + f(y) A) 7 B) C) D) 7 E) 8 olduğuna göre, f() ise f(8) kaçtır? A) B) 0 C) 8 D) 7 E) 9. f(x) x ve (fog)(x) 6x olduğuna göre, g() değeri kaçtır? A) 8 B) 7 C) 6 D) E). f(x + ) x olduğuna göre, f() + f () toplamı kaçtır? A) B) 0 C) D) 7 E) 9 0. g (x) x ve (fog)(x) 0x + olduğuna göre, f() değeri kaçtır? A) B) C) D) E) x + x +. f( ) x x olduğuna göre, f () değeri kaçtır? A) B) C) D) E). (fog)(x). g(x) + olduğuna göre, f (7) değeri kaçtır? A) B) C) D) E) 6. f(x) bir doğrusal fonksiyondur. f() ve f () olduğuna göre, f() değeri kaçtır? A) 6 B) C) D) E) 8. g(x ) (gof) (x) olduğuna göre, f() + f () toplamı kaçtır? A) 8 B) 6 C) D) E) 6. f: (, ] [, ) f(x) x 6x + olduğuna göre, f (6) değeri kaçtır? A) 6 B) C) 0 D) E) x, x # 0. fx () * x, x > 0 olduğuna göre, (fofof)( ) ifadesinin değeri kaçtır? A) B) C) D) E) 6

26 Matematik(YGS ve LYS) Konu Testi. f {(, ), (, ), (, ), (, )} g {(, ), (, ), (, ), (, )} olduğuna göre, (fog) () + (f. g) () işleminin sonucu kaçtır? A) 6 B) 8 C) 9 D) E) 9.. f f p ve g f p olduğuna göre, gof aşağıdakilerden hangisidir? A) f p B) f p C) f D) f p E) f p p Şekilde grafiği verilen y f(x) fonksiyonu ile ilgili aşağıdakilerden hangisi yanlıştır? A) Tanım kümesi [, 6] dır. B) Görüntü kümesi [, ] tir. C) x < aralığında bire-birdir. D) < x 6 aralığında bire-birdir. E) < x aralığında bire-birdir. 6. A {0,,,, } kümesi üzerinde tanımlanan f f p ve g f 0 0 p permütasyon fonksiyonları için f[g ()] değeri kaçtır? Şekilde y f(x) ve y g(x) fonksiyonlarının grafikleri verilmiştir. A) 0 B) C) D) E) y f(x) doğrusal bir fonksiyon olduğuna göre, (f og)() + g () işleminin sonucu kaçtır? 7. Şekilde y f(x) ve y g(x) fonksiyonlarının grafikleri verilmiştir.. A) B) 0 C) D) E) 6 Buna göre, (fog)() (gof)() işleminin sonucu kaçtır? A) 6 B) C) 0 D) E) (fofof)(x ) olduğuna göre, x kaçtır? Şekilde y f(x) fonksiyonunun grafiği verilmiştir. A) B) C) D) E) Şekilde y f(x + ) fonksiyonunun grafiği verilmiştir. Buna göre, f() + f (0) işleminin sonucu kaçtır? A) B) C) 0 D) E) - E - A - E - C - D 6- D 7- A 8- E 9- B 0- E - A - B - B - C - E 6- C 7- A 8- B 9- D 0- E - C

27 Matematik (YGS ve LYS) İşlem ve Modüler Aritmetik Ýþlem A x A kümesinden B kümesine tanýmlý her fonksiyona, A kümesinde tanýmlý bir ikili iþlem veya kýsaca iþlem denir. Ýþlemler, fonksiyonlarý göstermek için kullanýlan f, g, h gibi harfler yerine, genellikle,,, o, gibi sembollerle gösterilir. Örneðin, f: N x N Z ye tanýmlý, f(x, y) x y + kuralý ile verilen f fonksiyonu, x y x y + biçiminde gösterilir. f(, ). + veya Örnek b a + 8b þeklinde tanýmlanmýþtýr. a Buna göre, A) a iþleminin sonucu kaçtýr? B) C) D) E) a ve b b b a + 8b iþlemine göre, a olur.. + tür. Sonuç olarak f fonksiyonu ( iþlemi) taným kümesindeki (, ) ikilisini deðer kümesindeki elemanýyla eþleþtirmektedir bulunur. Örnek YANIT: E Örnek Pozitif tamsayýlar kümesi üzerinde her a, b için; Gerçel (reel) sayýlar kümesi üzerinde iþlemi, a b a b b iþlemi tanýmlanmýþtýr. Buna göre, ( ) iþleminin sonucu kaçtýr? A) 6 B) 69 C) 76 D) 78 E) 79 þeklinde tanýmlanmýþtýr. Buna göre, ( ) ( ) iþleminin sonucu kaçtýr? A) 0 B) C) 8 D) E) 6 Önce parantez içindeki iþleminin sonucu bulunur. iþleminin tanýmýndan,. 6 tür. O halde, ( ) olur. Buradan, bulunur. YANIT: B > olduðundan + 6 dýr. < olduðundan. 6 dýr. Bu iki eþitlikten ( ) ( ) 6 6 olur. 6 6 olduðu için bulunur. YANIT: B Örnek Tamsayýlar kümesi üzerinde her x, y için, x y x + y xy iþlemi tanýmlanmýþtýr. 7 m olduðuna göre, m kaçtýr? Örnek x y x. y x. y ve x y x.y x iþlemleri veriliyor. (a ) a 6 olduðuna göre, a kaçtýr? A) B) C) D) E) iþlemine göre eþitliðin iki tarafý ayrý ayrý bulunursa. +. ve 7 m. 7 + m 7m 6m olur. Buradan, 6m m bulunur. YANIT: C A) B) C) D) E) 6 a a. a a olduðundan, (a ) a 6 (a) a 6 dýr. (a) a (a). a a. a a olduðundan, a 6 a bulunur. YANIT: A 7

28 Matematik(YGS ve LYS) İşlem ve Modüler Aritmetik Örnek 6 Dik koordinat düzleminin noktalarý üzerinde bir iþlemi, (a, b) (c, d) (ac bd, ad + bc) þeklinde tanýmlanýyor. Buna göre, (, ) (x, y) (7, ) eþitliðini saðlayan (x, y) ikilisi aþaðýdakilerden hangisidir? A) (, ) B) (, ) C) (, ) D) (, ) E) (, ) iþleminin deðiþme özeliði olduðundan, her a ve b gerçel sayýlarý için a b b a dýr. Verilen eþitlikte b a yerine a b yazýlýrsa, a b a + b (a b) olur. bulunur. + Bu eþitlikten, ( ) sonucu elde edilir. YANIT: A (, ) (x, y) (7, ) eþitliðinde (x y, y + x) (7, ) olduðundan x y 7 ve y + x bulunur. Bu iki denklemin ortak çözümü yapýlýrsa x ve y olur. Buna göre, (x, y) ikilisi (, ) bulunur. YANIT: A Ýþlemin Özelikleri. Kapalýlýk Özeliði, A kümesinde tanýmlý bir iþlem olsun. Her x, y A için (x y) A ise, A kümesi iþlemine göre kapalýdýr.. Birleþme Özeliði, A kümesinde tanýmlý bir iþlem olsun. Her x, y, z A için, x (y z) (x y) z ise iþleminin birleþme özeliði vardýr. Toplama ve çarpma iþlemlerinin birleþme özeliði vardýr. Çýkarma ve bölme iþlemlerinin birleþme özeliði yoktur. Ýki doðal sayýnýn toplamý daima bir doðal sayý olduðundan, doðal sayýlar kümesi toplama iþlemine göre kapalýdýr. Ýki doðal sayýnýn farký her zaman bir doðal sayý olmayacaðý için, doðal sayýlar kümesi çýkarma iþlemine göre kapalý deðildir.. Deðiþme Özeliði, A kümesinde tanýmlý bir iþlem olsun. Her x, y A için x y y x ise iþleminin deðiþme özeliði vardýr.. Birim (Etkisiz) Eleman, A kümesinde tanýmlý bir iþlem olsun. Her x A için, x e e x x eþitliðini saðlayan bir e A varsa, e elemanýna iþleminin birim (etkisiz) elemaný denir. Bir iþlemin birim elemaný varsa, bir tanedir. Toplama iþleminin birim elemaný 0 (sýfýr), çarpma iþleminin birim elemaný dir. Çýkarma ve bölme iþlemlerinin birim elemaný yoktur. Toplama ve çarpma iþlemlerinin deðiþme özeliði vardýr. Çýkarma ve bölme iþlemlerinin deðiþme özeliði yoktur. Örneðin, Örnek 8 a b a + b + a. b + 6 iþlemi veriliyor. a b a + b.a.b iþleminin deðiþme özeliði vardýr. b a b + a.b.a olduðundan, a b b a dýr. Örnek 7 Gerçel sayýlar kümesi üzerinde deðiþme özeliði olan, a b a + b (b a) iþlemi tanýmlanmýþtýr. Buna göre, ( ) iþleminin sonucu kaçtýr? A) B) C) D) E) Buna göre, iþleminin birim elemaný kaçtýr? A) B) C) D) E) iþleminin deðiþme özeliði olduðu için a e a eþitliðinden birim eleman bulunabilir. a e a a + e + a. e + 6 a e( + a) 6 a 6 a ( + a) e + a + a bulunur. YANIT: B 8

29 İşlem ve Modüler Aritmetik Matematik(YGS ve LYS) Örnek 9 a b a + b a. b iþlemi veriliyor. Bu iþleme göre, in tersi kaçtýr? A) B) C) D) E). Bir Elemanýn Tersi, A kümesinde tanýmlý bir iþlem ve e, iþleminin birim elemaný olsun. Her x A için, x x x x e eþitliðini saðlayan bir x A varsa, x elemanýna x in iþlemine göre tersi denir. x ifadesi üslü sayýlardaki gibi anlamýna gelmez. Bir iþleme göre bir elemanýn tersi varsa, bir tanedir. Bir iþleme göre, birim elemanýn tersi daima kendisidir. e e dir. Toplama iþlemine göre, x in tersi x dir. Çarpma iþlemine göre (x 0 için) x in tersi dir. Bir iþleme göre, herhangi bir elemanýn tersini bulmak için önce o iþlemin birim elemanýný bulmak gerekir. a e a a + e a.e a e( a) a e bulunur. Örnek a b a + b ab iþlemi veriliyor. iþlemine göre, tersi kendisine eþit olan elemanlarýn toplamý kaçtýr? A) B) C) D) E) Önce iþleminin birim elemanýný bulalým. a e a a + e ae a e( a) a a e bulunur. a a a e olduðunu biliyoruz. Tersi kendisine eþit olan eleman a ise a a dýr. Öyleyse a a e olmalýdýr. a + a a. a a 6a + 0 (a ) (a ) 0 a veya a olur. ve nin tersi kendisine eþit olduðundan, + tür. YANIT: D 6. Yutan Eleman, A kümesinde tanýmlý bir iþlem olsun. Her x A için x m m x m eþitliðini saðlayan bir m A varsa, m ye iþleminin yutan elemaný denir. Bir iþlemin yutan elemaný varsa, bir tanedir. Bir iþlemin yutan elemaný varsa, yutan elemanýn bu iþleme göre tersi yoktur. Çarpma iþleminin yutan elemaný sýfýrdýr. Toplama, çýkarma ve bölme iþlemlerinin yutan elemaný yoktur. in iþlemine göre tersini ile gösterelim bulunur. Örnek 0 a b a + b iþlemi veriliyor. YANIT: E Örnek x + y xy + x y iþlemi veriliyor. Buna göre, iþleminin yutan elemaný kaçtýr? Buna göre, a eþitliðinde a kaçtýr? A) B) C) D) E) iþleminin birim elemaný e olsun. iþleminin deðiþme özeliði olduðu için; x x e ve a e a dýr. a eþitliðin iki tarafý ile iþleme girdi. a e olduðundan a e a a + olur. YANIT: A A) B) C) iþleminin yutan elemaný m olsun. D) E) x + m xm+ x m m m x m xm + 0 x + m( + x) 0 (x + ). ( m) 0 m bulunur. YANIT: D 9

DERSHANELERÝ MATEMATÝK - I

DERSHANELERÝ MATEMATÝK - I B Ý R E Y D E R S H A N E L E R Ý S I N I F Ý Ç Ý D E R S A N L A T I M F Ö Y Ü DERSHANELERÝ Konu Bölüm DAF No. FONKSÝYONLAR - I MF-TM 53 MATEMATÝK - I 53 Bu yayýnýn her hakký saklýdýr. Tüm haklarý bry

Detaylı

EÞÝTSÝZLÝKLER. I. ve II. Dereceden Bir Bilinmeyenli Eþitsizlik. Polinomlarýn Çarpýmý ve Bölümü Bulunan Eþitsizlik

EÞÝTSÝZLÝKLER. I. ve II. Dereceden Bir Bilinmeyenli Eþitsizlik. Polinomlarýn Çarpýmý ve Bölümü Bulunan Eþitsizlik l l l EÞÝTSÝZLÝKLER I. ve II. Dereceden Bir Bilinmeyenli Eþitsizlik Polinomlarýn Çarpýmý ve Bölümü Bulunan Eþitsizlik Çift ve Tek Katlý Kök, Üslü ve Mutlak Deðerlik Eþitsizlik l Alýþtýrma 1 l Eþitsizlik

Detaylı

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir. BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı

Detaylı

DOÐRUNUN ANALÝTÝÐÝ - I

DOÐRUNUN ANALÝTÝÐÝ - I YGS-LYS GEOMETRÝ Konu Anlatýmý DOÐRUNUN ANALÝTÝÐÝ - I ANALÝTÝK DÜZLEM Baþlangýç noktasýnda birbirine dik olan iki sayý doðrusunun oluþturduðu sisteme dik koordinat sistemi, bu doðrularýn belirttiði düzleme

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak sayfası İÇİNDEKİLER 6. ÜNİTE İKİNCİ DERECEDEN DENKLEM VE FNKSİYNLAR İkinci Dereceden Bir Bilinmeyenli Denklemler... 4 a + b + c = 0 Denkleminin Genel Çözümü... 5 7 Karmaşık Sayılar... 8 4 Konu Testleri

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - I

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - I BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - I SAYI BASAMAKLARI - II MF TM YGS LYS1 05 Ders anlatým föyleri öðrenci tarafýndan dersten sonra

Detaylı

DENEME Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir.

DENEME Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir. 1. Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir. 1. 3 2x +1 = 27 olduðuna göre, x kaçtýr? A) 0 B) 1 C) 2 D) 3 E) 4 4. Yukarýda

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II II. DERECEDEN DENKLEMLER - IV MF TM LYS1 08 Ders anlatým föyleri öðrenci tarafýndan dersten

Detaylı

YAZILIYA HAZIRLIK TESTLERÝ TEST / 1

YAZILIYA HAZIRLIK TESTLERÝ TEST / 1 YAZILIYA HAZIRLIK TESTLERÝ TEST / 1 1. x +6x+5=0 5. x +5x+m=0 denkleminin reel kökü olmadýðýna göre, m nin alabileceði en küçük tam sayý deðeri kaçtýr? A) {1,5} B) {,3} C) { 5, 1} D) { 5,1} E) {,3} A)

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II EÞÝTSÝZLÝKLER - I MF TM LYS1 13 Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar

Detaylı

DOĞAL SAYILARLA İŞLEMLER

DOĞAL SAYILARLA İŞLEMLER bilgi Üslü Doğal Sayılar DOĞAL SAYILARLA İŞLEMLER Bir bardak suda kaç tane molekül vardýr? Dünya daki canlý sayýsý kaçtýr? Ay ýn Dünya ya olan uzaklýðý kaç milimetredir? Tüm evreni doldurmak için kaç kum

Detaylı

A A A A) 2159 B) 2519 C) 2520 D) 5039 E) 10!-1 A)4 B)5 C)6 D)7 E)8. 4. x 1. ,...,x 10. , x 2. , x 3. sýfýrdan farklý reel sayýlar olmak üzere,

A A A A) 2159 B) 2519 C) 2520 D) 5039 E) 10!-1 A)4 B)5 C)6 D)7 E)8. 4. x 1. ,...,x 10. , x 2. , x 3. sýfýrdan farklý reel sayýlar olmak üzere, ., 3, 4, 5, 6, 7, 8, 9 ve 0 sayýlarý ile bölündüðünde sýrasýyla,, 3, 4, 5, 6, 7, 8, ve 9 kalanlarýný veren en küçük tamsayý aþaðýdakilerden hangisidir? A) 59 B) 59 C) 50 D) 5039 E) 0!- 3. Yasin, annesinin

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II KARMAÞIK SAYILAR - II MF TM LYS 3 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar

Detaylı

Mantýk Kümeler I. MANTIK. rnek rnek rnek rnek rnek... 5 A. TANIM B. ÖNERME. 9. Sýnýf / Sayý.. 01

Mantýk Kümeler I. MANTIK. rnek rnek rnek rnek rnek... 5 A. TANIM B. ÖNERME. 9. Sýnýf / Sayý.. 01 Matematik Mantýk Kümeler Sevgili öðrenciler, hayatýnýza yön verecek olan ÖSS de, baþarýlý olmuþ öðrencilerin ortak özelliði, 4 yýl boyunca düzenli ve disiplinli çalýþmýþ olmalarýdýr. ÖSS Türkiye Birincisi

Detaylı

BAĞINTI - FONKSİYON Test -1

BAĞINTI - FONKSİYON Test -1 BAĞINTI - FONKSİYON Test -. A,,,4,5 B,, olduğuna göre, AB kümesinin eleman saısı A) 8 B) C) D) 4 E) 5 5. A ve B herhangi iki küme AB,a,,a,,a,,b,,b,,b olduğuna göre, s(a) + s(b) toplamı A) B) 4 C) 5 D)

Detaylı

Kümeler II. KÜMELER. Çözüm A. TANIM. rnek... 3. Çözüm B. KÜMELERÝN GÖSTERÝLMESÝ. rnek... 1. rnek... 2. rnek... 4. 9. Sýnýf / Sayý..

Kümeler II. KÜMELER. Çözüm A. TANIM. rnek... 3. Çözüm B. KÜMELERÝN GÖSTERÝLMESÝ. rnek... 1. rnek... 2. rnek... 4. 9. Sýnýf / Sayý.. Kümeler II. KÜMLR. TNIM Küme, bir nesneler topluluðudur. Kümeyi oluþturan nesneler herkes tarafýndan ayný þekilde anlaþýlmalýdýr. Kümeyi oluþturan nesnelerin her birine eleman denir. Kümeyi genel olarak,,

Detaylı

DENEME Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir.

DENEME Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir. 1. Bu testte 40 soru bulunmaktadýr. 2. Bu testteki sorular matematiksel iliþkilerden yararlanma gücünü ölçmeye yöneliktir. 1. a, b, c birbirinden farklý rakamlardýr. 2a + 3b - 4c ifadesinin alabileceði

Detaylı

4. f(x) = x 3 3ax 2 + 2x 1 fonksiyonunda f ý (x) in < x < için f(x) azalan bir fonksiyon olduðuna

4. f(x) = x 3 3ax 2 + 2x 1 fonksiyonunda f ý (x) in < x < için f(x) azalan bir fonksiyon olduðuna Artan - Azalan Fonksionlar Ma. Min. ve Dönüm Noktalarý ÖSYM SORULARI. Aþaðýdaki fonksionlardan hangisi daima artandýr? A) + = B) = C) = ( ) + D) = E) = + (97). f() = a + fonksionunda f ý () in erel (baðýl)

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak sayfası İÇİNDEKİLER 7. ÜNİTE POLİNOMLAR Polinom Kavramı ve Polinomlarda İşlemler... 4 Polinom Kavramı... 4 9 Polinomlarda İşlemler... 9 Konu Testleri - - - 4-5... 6 Polinomlarda Çarpanlara Ayırma...

Detaylı

YAZILIYA HAZIRLIK TESTLERÝ TEST / 1

YAZILIYA HAZIRLIK TESTLERÝ TEST / 1 YAZILIYA HAZIRLIK TESTLERÝ TEST / 1 1. Yandaki tablonun kutucuklarýna terimler yazýlmýþtýr. Buna göre, aþaðýdakilerden hangisi yanlýþtýr? x x 4 x 3x 6x 5. P(x). Q(x) çarpým polinomunun derecesi 5 tir.

Detaylı

KÖKLÜ SAYILAR TEST / 1

KÖKLÜ SAYILAR TEST / 1 KÖKLÜ SAYILAR TEST / 1 1. Aþaðýdakilerden hangisi reel sayý deðildir? A) B) C) 0 D) 8 E). 6 2 9 A) 16 B) 18 C) 20 D) 2 E) 0 2. Aþaðýdakilerden hangisi irrasyonel sayýdýr? 6. Aþaðýdakilerden hangisi yanlýþtýr?

Detaylı

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde 1. Aşağıdaki kümelerden hangisi sonsuz küme belirtir? A) A = { x 4 < x < 36,x N} B) B = { x 19 < x,x asal sayı} C) C = { x x = 5k,0 < x < 100,k Z} D) D = { x x = 5, x Z} E) E = { x x < 19,x N}. A, B ve

Detaylı

Polinomlar II. Dereceden Denklemler

Polinomlar II. Dereceden Denklemler Ödev Tarihi :... Ödev Kontrol Tarihi :... Kontrol Eden :... LYS MATEMATİK - II Ödev Kitapçığı 1 (MF-TM) Polinomlar II. Dereceden Denklemler Adý Soyadý :... BÝREY DERSHANELERÝ MATEMATÝK-II ÖDEV KÝTAPÇIÐI

Detaylı

POLÝNOMLAR TEST / Aþaðýdakilerden hangisi polinom fonksiyonu deðildir?

POLÝNOMLAR TEST / Aþaðýdakilerden hangisi polinom fonksiyonu deðildir? POLÝNOMLAR TEST / 1 1. Bir fonksiyonun polinom belirtmesi için, deðiþkenlerin kuvveti doðal sayý olmalýdýr. Buna göre, aþaðýdakilerden hangisi bir polinomdur? 5. m 4 8 m 1 P(x) = x + 2.x + 2 ifadesi bir

Detaylı

Kanguru Matematik Türkiye 2017

Kanguru Matematik Türkiye 2017 Kanguru Matematik Türkiye 07 4 puanlýk sorular. Bir dörtgenin köþegenleri, dörtgeni dört üçgene ayýrmaktadýr. Her üçgenin alaný bir asal sayý ile gösterildiðine göre, aþaðýdaki sayýlardan hangisi bu dörtgenin

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak sayfası İÇİNDEKİLER. ÜNİTE DENKLEM VE EŞİTSİZLİKLER Gerçek Sayılar... 4 Doğal Sayılarda İşlemler... 4 Tam Sayılar... 4 Rasyonel Sayılar... 5 İrrasyonel Sayılar... 5 Gerçek (Reel) Sayılar... 6 9 Konu

Detaylı

ÇEMBERÝN ANALÝTÝÐÝ - I

ÇEMBERÝN ANALÝTÝÐÝ - I YGS-LYS GEOMETRÝ Konu Anlatýmý ÇEMBERÝN ANALÝTÝÐÝ - I 1. Çember Denklemi: Analitik düzlemde merkezi M(a, b) ve yarýçapý r birim olan çemberin denklemi, (x - a) 2 + (y - b) 2 = r 2 (x - a) 2 + y 2 = r 2

Detaylı

MODÜLER ARÝTMETÝK TEST / 1

MODÜLER ARÝTMETÝK TEST / 1 MODÜLER ARÝTMETÝK TEST / 1 1. m Z, x y(mod m) ise xy=m.k, k Z olduðuna göre, aþaðýdaki eþitliklerden hangisi yanlýþtýr? 5. 3x+1 2(mod 7) olduðuna göre, x in en küçük pozitif tam sayý deðeri kaçtýr? A)

Detaylı

MATEMATİK SORU BANKASI

MATEMATİK SORU BANKASI Bu kitap tarafından hazırlanmıştır. MATEMATİK SORU BANKASI ISBN-978-605-6067-8- Sertifika No: 748 Konu Kavrama s e r i s i Üniversiteye Hazırlık & Okula Yardımcı Bu kitabın tüm basım ve yayın hakları na

Detaylı

ÖZEL EGE LİSESİ 10. OKULLARARASI MATEMATİK YARIŞMASI 10. SINIFLAR SORULARI

ÖZEL EGE LİSESİ 10. OKULLARARASI MATEMATİK YARIŞMASI 10. SINIFLAR SORULARI 0 KULLARARASI MATEMATİK YARIŞMASI 0 SINIFLAR SRULARI (5xy) dört basamaklı sayıdır 5 x y 6 - a 3 Yukarıdaki bölme işlemine göre y nin alabileceği değerler toplamı kaçtır? 4 m pozitif bir tamsayı olmak üzere;

Detaylı

5. 2x 2 4x + 16 ifadesinde kaç terim vardýr? 6. 4y 3 16y + 18 ifadesinin terimlerin katsayýlarý

5. 2x 2 4x + 16 ifadesinde kaç terim vardýr? 6. 4y 3 16y + 18 ifadesinin terimlerin katsayýlarý CEBÝRSEL ÝFADELER ve DENKLEM ÇÖZME Test -. x 4 için x 7 ifadesinin deðeri kaçtýr? A) B) C) 9 D). x 4x ifadesinde kaç terim vardýr? A) B) C) D) 4. 4y y 8 ifadesinin terimlerin katsayýlarý toplamý kaçtýr?.

Detaylı

1. Böleni 13 olan bir bölme iþleminde kalanlarýn

1. Böleni 13 olan bir bölme iþleminde kalanlarýn 4. SINIF COÞMAYA SORULARI 1. BÖLÜM 3. DÝKKAT! Bu bölümde 1 den 10 a kadar puan deðeri 1,25 olan sorular vardýr. 1. Böleni 13 olan bir bölme iþleminde kalanlarýn toplamý kaçtýr? A) 83 B) 78 C) 91 D) 87

Detaylı

4. a ve b, 7 den küçük pozitif tam sayý olduðuna göre, 2 a a b. 5. 16 x+1 = 3

4. a ve b, 7 den küçük pozitif tam sayý olduðuna göre, 2 a a b. 5. 16 x+1 = 3 LYS ÜNÝVSÝT HAZILIK ÖZ-D-BÝ YAYINLAI MATMATÝK DNM SINAVI A Soru saýsý: 5 Yanýtlama süresi: 75 dakika Bu testle ilgili anýtlarýnýzý optik formdaki Matematik bölümüne iþaretleiniz. Doðru anýtlarýnýzýn saýsýndan

Detaylı

LYS MATEMATÝK II. Polinomlar. II. Dereceden Denklemler

LYS MATEMATÝK II. Polinomlar. II. Dereceden Denklemler LYS MATEMATÝK II Soru Çözüm Dersi Kitapçığı 1 (MF - TM) Polinomlar II. Dereceden Denklemler Bu yayýnýn her hakký saklýdýr. Tüm haklarý bry Birey Eðitim Yayýncýlýk Pazarlama Ltd. Þti. e aittir. Kýsmen de

Detaylı

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur? 07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin

Detaylı

Aþaðýdaki tablodaki sayýlarýn deðerlerini bulunuz. Deðeri 0 veya 1 olan sayýlarýn bulunduðu kutularý boyayýnýz. b. ( 3) 4, 3 2, ( 3) 3, ( 3) 0

Aþaðýdaki tablodaki sayýlarýn deðerlerini bulunuz. Deðeri 0 veya 1 olan sayýlarýn bulunduðu kutularý boyayýnýz. b. ( 3) 4, 3 2, ( 3) 3, ( 3) 0 Tam Sayýlarýn Kuvveti Sýfýr hariç her sayýnýn sýfýrýncý kuvveti e eþittir. n 0 = (n 0) Sýfýrýn (sýfýr hariç) her kuvvetinin deðeri 0 dýr. 0 n = 0 (n 0) Bir sayýnýn birinci kuvveti her zaman kendisine eþittir.

Detaylı

Halit Tansel Satan, Tolga TANIŞ, Simay AYDIN

Halit Tansel Satan, Tolga TANIŞ, Simay AYDIN YAYIN KURULU Hazırlayanlar Halit Tansel Satan, Tolga TANIŞ, Simay AYDIN YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni Saime YILDIRIM Kurumsal Yayınlar Birimi Dizgi & Grafik Mustafa Burak SANK

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

MATEMATÝK TESTÝ. Pozitif n tam sayýlarý için, 10,23 0, 4 1,023 0,04. n! = (n. iþleminin sonucu kaçtýr? R(n) 2).

MATEMATÝK TESTÝ. Pozitif n tam sayýlarý için, 10,23 0, 4 1,023 0,04. n! = (n. iþleminin sonucu kaçtýr? R(n) 2). MATEMATÝK TESTÝ. Bu testte 0 soru vardýr.. Cevaplarýnýzý, cevap kaðýdýnýn Matematik Testi için ayrýlan kýsmýna iþaretleyiniz.. 0, 0, 4,0 0,04 iþleminin sonucu kaçtýr? A) 0 B) 9 0 D) 0 E) 0 4. Pozitif n

Detaylı

3. FASÝKÜL 1. FASÝKÜL 4. FASÝKÜL 2. FASÝKÜL 5. FASÝKÜL. 3. ÜNÝTE: ÇIKARMA ÝÞLEMÝ, AÇILAR VE ÞEKÝLLER Çýkarma Ýþlemi Zihinden Çýkarma

3. FASÝKÜL 1. FASÝKÜL 4. FASÝKÜL 2. FASÝKÜL 5. FASÝKÜL. 3. ÜNÝTE: ÇIKARMA ÝÞLEMÝ, AÇILAR VE ÞEKÝLLER Çýkarma Ýþlemi Zihinden Çýkarma Ýçindekiler 1. FASÝKÜL 1. ÜNÝTE: ÞEKÝLLER VE SAYILAR Nokta Düzlem ve Düzlemsel Þekiller Geometrik Cisimlerin Yüzleri ve Yüzeyleri Tablo ve Þekil Grafiði Üç Basamaklý Doðal Sayýlar Sayýlarý Karþýlaþtýrma

Detaylı

LYS MATEMATİK DENEME - 1

LYS MATEMATİK DENEME - 1 LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte

Detaylı

PARABOL TEST / 1. 1. Aþaðýdaki fonksiyonlardan hangisinin grafiði parabol. 5. Aþaðýdaki fonksiyonlardan hangisinin grafiði A(0,2) noktalarýndan geçer?

PARABOL TEST / 1. 1. Aþaðýdaki fonksiyonlardan hangisinin grafiði parabol. 5. Aþaðýdaki fonksiyonlardan hangisinin grafiði A(0,2) noktalarýndan geçer? PARABOL TEST /. Aþaðýdaki fnksinlardan hangisinin grafiði parabl belirtir? 5. Aþaðýdaki fnksinlardan hangisinin grafiði A(0,) nktalarýndan geçer? A) f()=5 f()=+ C) f()= D) f()= f()= 4 + + A) f()= f()=

Detaylı

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif tamsayılar

Detaylı

3. Çarpýmlarý 24 olan iki sayýnýn toplamý 10 ise, oranlarý kaçtýr? AA 2 1 1 2 1. BÖLÜM

3. Çarpýmlarý 24 olan iki sayýnýn toplamý 10 ise, oranlarý kaçtýr? AA 2 1 1 2 1. BÖLÜM 7. SINIF COÞMAYA SORULARI 1. BÖLÜM DÝKKAT! Bu bölümde 1 den 10 a kadar puan deðeri 1,25 olan sorular vardýr. 3. Çarpýmlarý 24 olan iki sayýnýn toplamý 10 ise, oranlarý kaçtýr? 2 1 1 2 A) B) C) D) 3 2 3

Detaylı

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ 1 SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif

Detaylı

LÝMÝTTE BELÝRSÝZLÝKLERÝN GÝDERÝLMESÝ

LÝMÝTTE BELÝRSÝZLÝKLERÝN GÝDERÝLMESÝ LÝMÝTTE BELÝRSÝZLÝKLERÝN GÝDERÝLMESÝ Limit iþlemini yaparken deðiþkenin yerine deðerini koyduðumuzda, Örnek + 4 Belirsizliklerin Giderilmesi belirsizliklerinden herhangi biri meydana geliyorsa aþaðýda

Detaylı

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon İçindekiler Cebir 1. Fonksiyonlar....... 1.1 Fonksiyonların Tanım, Değer ve Görüntü Kümesi...... 1.1.1 Fonksiyon.. 1.1. Görüntü Kümesi... 1.1.3 Eşit Fonksiyonlar. 1.1.4 Fonksiyonun Gösterimi. 1.1.4.1 Liste

Detaylı

ünite doðal sayýsýndaki 1 rakamlarýnýn basamak deðerleri toplamý kaçtýr?

ünite doðal sayýsýndaki 1 rakamlarýnýn basamak deðerleri toplamý kaçtýr? ünite1 TEST 1 Doðal Sayýlar Matematik 4. 10 491 375 doðal sayýsýndaki 1 rakamlarýnýn basamak deðerleri toplamý kaçtýr? 1. Ýki milyon yüz üç bin beþ yüz bir biçiminde okunan doðal sayý aþaðýdakilerden A.

Detaylı

Kanguru Matematik Türkiye 2017

Kanguru Matematik Türkiye 2017 4 puanlýk sorular 1. Bir dik ikizkenar ABC üçgeni, BC = AB = birim olacak þekilde veriliyor. Üçgenin C köþesini merkez kabul ederek çizilen ve yarýçapý birim olan bir yay, hipotenüsü D noktasýnda, üçgenin

Detaylı

1. BÖLÜM. 4. Bilgi: Bir üçgende, iki kenarýn uzunluklarý toplamý üçüncü kenardan büyük, farký ise üçüncü kenardan küçüktür.

1. BÖLÜM. 4. Bilgi: Bir üçgende, iki kenarýn uzunluklarý toplamý üçüncü kenardan büyük, farký ise üçüncü kenardan küçüktür. 8. SINIF COÞMY SORULRI 1. ÖLÜM DÝKKT! u bölümde 1 den 10 a kadar puan deðeri 1,25 olan sorular vardýr. 3. 1. 1 1 1 1 1 1 D E F 1 1 1 C 1 ir kenarý 1 birim olan 24 küçük kareden oluþan þekilde alaný 1 birimkareden

Detaylı

Kanguru Matematik Türkiye 2015

Kanguru Matematik Türkiye 2015 3 puanlýk sorular 1. Ayla 1997 ve kardeþi Cemile 2001 yýlýnda doðmuþtur. Bu iki kýz kardeþin yaþlarý farký için aþaðýdakilerden hangisi her zaman doðrudur? A) 4 yýldan azdýr B) en az 4 yýldýr C) tam 4

Detaylı

4. 5. x x = 200!

4. 5. x x = 200! 8. SINIF COÞMY SORULRI 1. ÖLÜM 3. DÝKKT! u bölümde 1 den 10 a kadar puan deðeri 1,25 olan sorular vardýr. 1. adým (2) 2. adým (4) 1. x bir tam sayý ve 4 3 x 1 7 5 x eþitsizliðinin doðru olmasý için x yerine

Detaylı

12-A. Sayılar - 1 TEST

12-A. Sayılar - 1 TEST -A TEST Sayılar -. Birbirinden farklı beş pozitif tam sayının toplamı 0 dur. Bu sayılardan sadece ikisi den büyüktür. Bu sayılardan üç tanesi çift sayıdır. Buna göre bu sayılardan en büyüğü en çok kaç

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II KARMAÞIK SAYILAR - I MF TM LYS 30 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. Adý Soadý :... Bu kitapçýðýn

Detaylı

1.DERECEDEN DENKLEMLER. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

1.DERECEDEN DENKLEMLER.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) .DERECEDEN DENKLEMLER Rüstem YILMAZ 546 550 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları 8 Ağustos 07 0. Bir Bilinmeyenli

Detaylı

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI YGS - LYS SAYILAR KONU ÖZETLİ LÜ SORU BANKASI ANKARA ÖN SÖZ Sevgili Öğrenciler, ÖSYM nin son yıllarda yaptığı sınavlardaki matematik sorularının eski sınav sorularından çok farklı olduğu herkes tarafından

Detaylı

10. 4a5, 2b7 ve 1cd üç basamaklý sayýlardýr.

10. 4a5, 2b7 ve 1cd üç basamaklý sayýlardýr. 5. ACB + AC BC iþlemine göre, A.C çarpýmý kaçtýr? 0. 4a5, b7 ve cd üç basamaklý sayýlardýr. 4a5 b7 cd A) B) 4 C) 5 D) 6 E) olduðuna göre, c + b a + d ifadesinin deðeri kaçtýr? A) 8 B) C) 5 D) 7 E) 8 (05-06

Detaylı

ÖZEL EGE LİSESİ 12. OKULLAR ARASI MATEMATİK YARIŞMASI 9. SINIF ELEME SINAVI TEST SORULARI. 4. c tabanındaki iki basamaklı ardışık üç

ÖZEL EGE LİSESİ 12. OKULLAR ARASI MATEMATİK YARIŞMASI 9. SINIF ELEME SINAVI TEST SORULARI. 4. c tabanındaki iki basamaklı ardışık üç 1. Rakamları toplamından büyük olan kaç tane doğal sayı vardır? A) 0 B) 1 C) 3 D) 8 E) 10 4. c tabanındaki iki basamaklı ardışık üç sayının toplamı (0) cc ise c nin alamayacağı en büyük değer kaçtır? A)

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý ölüm Sýnav DF No. MTEMTÝK - II TRÝGNMETRÝ - I MF TM LYS 8 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr.

Detaylı

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona , 2006 MC Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Đşlem ĐŞLEM A ve A x A nın bir alt kümesinden A ya her fonksiyona ikili işlem denir. Örneğin toplama, çıkarma, çarpma birer işlemdir. Đşlemler

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 10. SINIF TEST SORULARI A) 80 B) 84 C) 88 D) 102 E) 106

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 10. SINIF TEST SORULARI A) 80 B) 84 C) 88 D) 102 E) 106 1. n bir doğal sayı olmak üzere, n! sayısının sondan k basamağı 0 dır. Buna göre, k tamsayısı aşağıdakilerden hangisi olamaz? 3. (x+y+z+t ) 6 ifadesinin açılımında kaç terim vardır? A) 80 B) 84 C) 88 D)

Detaylı

10. SINIF MATEMATİK FONKSİYONLARDA İŞLEMLER-2

10. SINIF MATEMATİK FONKSİYONLARDA İŞLEMLER-2 . SINIF MTEMTİK FONKSİYONLRD İŞLEMLER- ÇKEY NDOLU LİSESİ MTEMTİK ÖLÜMÜ . ÜNİTE.. FONKSİYONLRD DÖRT İŞLEM Neler öğreneceksiniz? Fonksiyonlarda dört işlem yani toplama çıkarma, çarpma ve bölmeyi öğreneceksiniz.

Detaylı

HATIRLAYALIM TAM SAYILAR

HATIRLAYALIM TAM SAYILAR HATIRLAYALIM bilgi TAM SAYILAR Sayıların önüne koyulan "+" ve " " işaretleri sayıların yönünü belirtir. Önünde "+" işareti olan tam sayılar "pozitif tam sayılar", önünde " " işareti olan tam sayılar "negatif

Detaylı

LYS 1 ÖZ-DE-BÝR YAYINLARI MATEMATÝK DENEME SINAVI 1 MA = a 4, 3 b Bazý M pozitif gerçek sayýlarý için, 5M = M 5 ve. 6.

LYS 1 ÖZ-DE-BÝR YAYINLARI MATEMATÝK DENEME SINAVI 1 MA = a 4, 3 b Bazý M pozitif gerçek sayýlarý için, 5M = M 5 ve. 6. LYS ÜNÝVERSÝTE HAZIRLIK ÖZ-DE-BÝR YAYINLARI MATEMATÝK DENEME SINAVI A Soru saýsý: 0 Yanýtlama süresi: dakika Bu testle ilgili anýtlarýnýzý optik formdaki Matematik bölümüne iþaretleiniz. Doðru anýtlarýnýzýn

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý ölüm Sýnav DF No. MTEMTÝK - II PRL - I MF TM LYS 09 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý Soadý

Detaylı

LYS MATEMATÝK II - 10

LYS MATEMATÝK II - 10 ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS UYGULM FÖYÜ (MF-TM) DERSHNELERÝ LYS MTEMTÝK II - 0 PRL - I Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý Soadý :... u kitapçýðýn her hakký

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır? 017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINAV SORULARI 1. 1999 ÖSS a, b, c pozitif gerçel (reel) sayılar olmak üzere a+ b ifadesindeki her sayı 3 ile çarpılırsa aşağıdakilerden hangisi elde c edilir? 3 a+ b A) B) c a+ 3b C)

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ 1. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No MATEMATÝK - II POLÝNOMLAR - IV MF TM LYS1 04 Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr

Detaylı

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1 1. BÖLÜM Sayılarda Temel Kavramlar Bölme - Bölünebilme - Faktöriyel EBOB - EKOK Kontrol Noktası 1 Isınma Hareketleri 1 Uygun eşleştirmeleri yapınız. I. {0, 1, 2,..., 9} II. {1, 2, 3,...} III. {0, 1, 2,

Detaylı

Ön Hazýrlýk Geometrik Þekiller

Ön Hazýrlýk Geometrik Þekiller Ön Hazýrlýk Geometrik Þekiller 1 4 7 10 5 2 3 11 6 8 9 Noktalý kâðýtta bazý geometrik þekiller verilmiþtir. Bu þekillere göre aþaðýdaki ifadelerden doðru olanlarýn yanýna D yanlýþ olanlarýn yanýna Y harfini

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

ünite1 1. Aþaðýdaki kavram ve gösterimi çiftlerinden hangisi doðrudur? A. ýþýn, B. doðru parçasý, d C. nokta, A D. doðru,

ünite1 1. Aþaðýdaki kavram ve gösterimi çiftlerinden hangisi doðrudur? A. ýþýn, B. doðru parçasý, d C. nokta, A D. doðru, ünite1 Geometri Matematik E 1 3. 1. þaðýdaki kavram ve gösterimi çiftlerinden hangisi doðrudur?. ýþýn, B B. doðru parçasý, d. nokta,. doðru, B Y erilen açýnýn gösterimi aþaðýdakilerden hangisi olabilir?.

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ DERSHANELERÝ Konu Ders Adý Bölüm Sýnav DAF No. MATEMATÝK - II EÞÝTSÝZLÝKLER - III MF TM LYS1 15 Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar

Detaylı

6. SINIF MATEMATIK KAZANIM ODAKLI SORU BANKASI

6. SINIF MATEMATIK KAZANIM ODAKLI SORU BANKASI 6. SINIF MATEMATIK KAZANIM ODAKLI SORU BANKASI Tudem Eğitim Hiz. San. ve Tic. A.Ş 1476/1 Sokak No: 10/51 Alsancak/Konak/ÝZMÝR Yazarlar: Tudem Yazý Kurulu Dizgi ve Grafik: Tudem Grafik Ekibi Baský ve Cilt:

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

Geometriye Y olculuk. E Kare, Dikdörtgen ve Üçgen E Açýlar E Açýlarý Ölçme E E E E E. Çevremizdeki Geometri. Geometrik Þekilleri Ýnceleyelim

Geometriye Y olculuk. E Kare, Dikdörtgen ve Üçgen E Açýlar E Açýlarý Ölçme E E E E E. Çevremizdeki Geometri. Geometrik Þekilleri Ýnceleyelim Matematik 1. Fasikül ÜNÝTE 1 Geometriye Yolculuk ... ÜNÝTE 1 Geometriye Y olculuk Çevremizdeki Geometri E Kare, Dikdörtgen ve Üçgen E Açýlar E Açýlarý Ölçme Geometrik Þekilleri Ýnceleyelim E E E E E Üçgenler

Detaylı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı A 1. Köşeleri, yarıçapı 1 olan çemberin üstünde yer alan düzgün bir n-genin çevre uzunluğunun alanına oranı 4 3 ise, n kaçtır? 3 a) 3 b) 4 c) 5 d)

Detaylı

3. Tabloya göre aþaðýdaki grafiklerden hangi- si çizilemez?

3. Tabloya göre aþaðýdaki grafiklerden hangi- si çizilemez? 5. SINIF COÞMY SORULRI 1. 1. BÖLÜM DÝKKT! Bu bölümde 1 den 10 a kadar puan deðeri 1,25 olan sorular vardýr. Kazan Bardak Tam dolu kazandan 5 bardak su alýndýðýnda kazanýn 'si boþalmaktadýr. 1 12 Kazanýn

Detaylı

ÝÇÝNDEKÝLER 1. ÜNÝTE 2. ÜNÝTE

ÝÇÝNDEKÝLER 1. ÜNÝTE 2. ÜNÝTE ÝÇÝNDEKÝLER. ÜNÝTE ÇEVREMÝZDEKÝ GEOMETRÝ... Açýlarý Ýsimlendirme... Açýlarý Ölçme... Açý Çeþitleri... Üçgen Çeþitleri... 7 Üçgenlerin iç Açýlarýnýn Ölçüleri Toplamý... 9 Ölçme ve Deðerlendirme... Kazaným

Detaylı

Doðruda Açýlar Üçgende Açýlar Açý - Kenar Baðýntýlarý Dik Üçgen ve Öklit Baðýntýlarý Ýkizkenar ve Eþkenar Üçgen Üçgende Alan

Doðruda Açýlar Üçgende Açýlar Açý - Kenar Baðýntýlarý Dik Üçgen ve Öklit Baðýntýlarý Ýkizkenar ve Eþkenar Üçgen Üçgende Alan Ödev Tarihi :... Ödev Kontrol Tarihi :... Kontrol den :... LYS GOMTRİ Ödev Kitapçığı 1 (M-TM) oðruda çýlar Üçgende çýlar çý - Kenar aðýntýlarý ik Üçgen ve Öklit aðýntýlarý Ýkizkenar ve þkenar Üçgen Üçgende

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

Kanguru Matematik Türkiye 2017

Kanguru Matematik Türkiye 2017 4 puanlýk sorular 1. Dünyanýn en büyük dairesel pizzasý 128 parçaya bölünecektir. Her bir kesim tam bir çap olacaðýna göre kaç tane kesim yapmak gerekmektedir? A) 7 B) 64 C) 127 D) 128 E) 256 2. Ali'nin

Detaylı

Üçgenler Geometrik Cisimler Dönüþüm Geometrisi Örüntü ve Süslemeler Ýz Düþümü

Üçgenler Geometrik Cisimler Dönüþüm Geometrisi Örüntü ve Süslemeler Ýz Düþümü Üçgenler Geometrik isimler önüþüm Geometrisi Örüntü ve Süslemeler Ýz üþümü 119 120 Üçgenler Üçgenler 4 cm 2 cm 2 cm Yukarýdaki çubuklarýn uzunluklarý 4 cm, 2 cm ve 2 cm dir. u üç çubuðun uç noktalarýný

Detaylı

TEST. 8 Ünite Sonu Testi m/s kaç km/h'tir? A) 72 B) 144 C) 216 D) 288 K 25 6 L 30 5 M 20 7

TEST. 8 Ünite Sonu Testi m/s kaç km/h'tir? A) 72 B) 144 C) 216 D) 288 K 25 6 L 30 5 M 20 7 TEST 8 Ünite Sonu Testi 1. 40 m/s kaç km/h'tir? A) 72 B) 144 C) 216 D) 288 2. A noktasýndan harekete baþlayan üç atletten Sema I yolunu, Esra II yolunu, Duygu ise III yolunu kullanarak eþit sürede B noktasýna

Detaylı

Yönergeyi dikkatlice oku. Gözden hiçbir þeyi kaçýrmamaya dikkat et. Þifrenin birini testin iþaretlenen yerine ( Adayýn Þifresi ), diðer þifreyi de

Yönergeyi dikkatlice oku. Gözden hiçbir þeyi kaçýrmamaya dikkat et. Þifrenin birini testin iþaretlenen yerine ( Adayýn Þifresi ), diðer þifreyi de ADAYIN ÞÝFRESÝ Eðitimi Geliþtirme Dairesi DENEME DEVLET OLGUNLUK SINAVI ÖÐRENCÝLERÝN BÝLGÝ VE BECERÝLERÝNÝ DEÐERLENDÝRME SEKTÖRÜ Öðrencilerin Bilgi Ve Becerilerini Deðerlendirme Sektörü BÝRÝNCÝ deðerlendiricinin

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 10. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 10. SINIF TEST SORULARI . a 6 b a b 8 ifadesinin açılımında b çarpanının bulunmadığı terim aşağıdakilerden hangisidir?. Bir toplulukta en az iki kişinin yılın aynı ayı ve haftanın aynı gününde doğduğu kesin bilindiğine göre,

Detaylı

( 2x+1, 3y 1. Örnek...4 : A = {1, 2, 3} ve B = {a, b} kümeleri için, AxB ve BxA kümelerini liste biçimde yazınız.

( 2x+1, 3y 1. Örnek...4 : A = {1, 2, 3} ve B = {a, b} kümeleri için, AxB ve BxA kümelerini liste biçimde yazınız. SIRALI İKİLİ a ve b'nin (a,b) biçiminde tek bir eleman olarak yazılmasına sıralı ikili ya da kısaca ikili denir. Burada a' ya ikilinin birinci bileşeni, b' ye ise ikinci bileşeni denir. Örneğin ; (4, 3)

Detaylı

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x Çalışma Soruları. Aşağıdaki denklemleri çözünüz: a) 7x = 4x + b) x 7x = x 4 c) x 4 x + = 0. Aşağıdaki eşitsizliklerin çözüm kümelerini belirleyiniz ve aralıklar cinsinden ifade ediniz: a) 4x > 9 b) x 4

Detaylı

3.14159265358979323846264 3383279502884 Matematik 6 KAZANIM ODAKLI 0112358132134 Kısa Bilgi Bol Alıştırma Çözümlü Sorular Yıldızlı Sorular Tudem Eğitim Hiz. San. ve Tic. A.Ş 1476/1 Sok. No: 10/51 Alsancak/Konak/ÝZMÝR

Detaylı

2017 MÜKEMMEL YGS MATEMATİK

2017 MÜKEMMEL YGS MATEMATİK 2017 MÜKEMMEL YGS MATEMATİK 1. 2,31 0,33 0,65 0,13 + 3,6 0,6 işleminin sonucu kaçtır? A)0,5 B) 0,8 C)0,9 D)5 E)8 4. Üç basamaklı ABB doğal sayısı 4 e ve 9 a kalansız bölünmektedir. Buna göre, A+B toplamının

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2 1. 1 =? Lys 1 7. x + y = (6k) (x k) + y = (k 5) olduğuna göre x y =?. 6 a.b = ise a + 1 b. b 1 a =? 1k 8. x ve y birbirinden farklı pozitif gerçel sayılar olmak üzere, x y y x. x.y = (x y) ise x y =?.

Detaylı