FEN VE MÜHENDİSLİKTE MATEMATİK METOTLAR

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "FEN VE MÜHENDİSLİKTE MATEMATİK METOTLAR"

Transkript

1 EN VE MÜHENDİSLİKTE MATEMATİK METOTLAR 6. KİTAP DİERANSİYEL DENKLEMLER DD

2 İÇİNDEKİLER. İNTEGRAL DÖNÜŞÜMLER. KERNEL SEÇİMİ. METOT V. DURUMU A) B) Örnek DD ) Sabit Katsayılı DD V. DURUMU A) B) Euler DD ) Rdriues rmülü V. İki Özel nksiyn A) B), V. KHGDD V. HGDD EKLER VE NOTLAR

3 3. İNTEGRAL DÖNÜŞÜMLER Diferansiyel denklem çözümlerinin türev ifadelerini yk etmek lduğu ve bunun da interal işlemi ile sağlandığı örülmüştü. Bu interal işlemlerini reel eksende ve bir takım kalıp frmüllerle yapmak yerine, kmpleks düzlemde yl interali mettları kullanıp, tekil nktalardan ve dallanma kesiklerinden yararlanmak, dğal larak daha ilinç snuçlara yl açacaktır. Bu aşamada sadece. mertebe LDD 'lerin interal dönüşüm metdu ile çözümleri incelenecektir. Metdun, detaylar bir yana, temelde ikinci mertebe bir DD 'in birinci mertebeye indirenmesi lduğu örülecektir. En enel. mertebe hmjen LDD L p z p z p z tanımıyla z yazılabilir. z L z ifadesinde z d dz yerine anlaşılacaktır. İlk adım, çözümü bir interal dönüşüm biçiminde, w z d K z v larak yazmak lacaktır. z L larak z wz kullanılmasının erekçesi kısa sürede Burada : kmpleks düzleminde açık veya kapalı bir ylu, Kz, dönüşümün Kernel ini, v ise : interal w z 'nin DD 'in çözümü lmasını sağlayacak bir fnksiynu ifade etmektedir. Bu nktada daha syut düzeyde w K dönüşümünün z ile skalar çarpımının yapıldığı ve K ile v arasına d tamamlık ifadesi yerleştirildiği sezilmektedir. Çözüm wz d K z, v ifadesinde üç tane seçime bağlı esneklik vardır :, Kz, ve v. Öte yandan w z snucunun DD 'i sağlaması, yani L wz lması ereği de bir kısıtlama larak düşünülürse erçekte sadece iki z tane seçime bağlı esneklik lduğu anlaşılır.

4 4. KERNEL SEÇİMİ Bu seçimlerden ilki Kz, kernel fnksiynunun seçilmesidir; en yayın iki seçim :, exp z ( Laplace ) ve K z, z K z ( Euler ) kernelleridir. Euler kernelinin parametresi kesin larak belirtilene kadar seçim hakkı tamamen kullanılmış sayılmaz. Daha enel lan Euler kernelinden, uyun bir limit işlemi ile Laplace kerneline eçiş yapmak da mümkündür. p z a z b ; p z a z b, p z a z b durumunda Laplace, ;, p z a z a z a p z b z b p z c durumunda ise Euler kernellerinin uyun seçimler lduğu bilinmektedir. Metdun temel dayanak nktası L, M, sağlayan bir K z K z z M diferansiyel peratörü bulmaktır. Bu peratörün L 'den daha basit bir yapıda lup, birinci dereceye indirenebilir lması asıl z amaçtır. Eğer = veya ve bu nktada durup yeni bir kernel denemek erekir. = değilse yanlış kernel seçilmiş demektir. METOT L, M, eşitliği DD e yerleştirilince K z K z z L wz d v K z, z L denklemi z d v M K z, biçimine dönüşecektir. d v K z,

5 5 Denklemi, parçalı interal mettları ile elde edilen : d v K z, d K z, v d v K z, d K z, v v K z, d v K z, d K z, K z, v K z, d v K z, d özdeşlikleri kullanılarak d K z, M v v K z, d v K z v K z d,, = biçimini alır. Burada yer alan M M peratörünün hermitsel ifadesinin M seçimi eşleniği lduğu hatırlanacaktır. Elde kalan sn esnekliği de v yaparak kullanmak ve böylece v fnksiynunu belirlemek ikinci önemli adım lmaktadır. Bu durumda d K z, M v lacağı için de v K z, d v K z v K z d,, =

6 6 eşitliği ylunun belirlenmesinde kullanılır. Bu metdun pratik labilmesi için veya = = lması ereği vurulanmıştı. V. A) Genel Şimdi bu iki durum tek tek incelenebilir. = durumunda d v M v v v exp d d lur., exp, Yl şartı için ise v K z d K z elde edilir. En enel örnek larak Laplace dönüşümü ile çözümü ele alınınca ilk adım p z w p z w p z w DD inin p z p z p z z z z z exp exp eşitliğinden p z p z p z z z denklemine erişmektir. İkinci adımda bu eşitlik ve z ye öre ilk iki türevi z 'da değerlendirilerek p p p,, p p p p p p snuçlarına ulaşılır. Bu denklemler = sağlanması için erektiğini östermektedir. p p p

7 7 B) Özel Bir Örnek Özel bir örnek larak a z b w a z b w a z b w DD 'inin çözümüne eçilebilir. Yukarıda elde edilen frmüllerden yararlanarak,, a a a b b b bulunur. Artık v fnksiynu v b b b exp d a a a exp d, a a a yl şartı ise b b b z exp d e a a a frmülleri ile belirlenip wz d K z, v çözüm ifadesine yerleştirilebilir. Bu yaklaşıma ileride KHGDD çözümü ile tekrar dönülecektir. ) Sabit Katsayılı DD Ancak daha önce, çk basit örünümlü ama kendinden beklenmedik bir zrluk çıkartan, ancak bu enel aşılınca da ene beklenmedik ilinç snuçlar serileyen sabit katsayılı w w w DD i çözülecektir. Bu DD 'in a z b w a z b w a z b w DD 'i ile karşılaştırması a a a ; b, b, b vermektedir. Bu da yanı sıra lması, dlayısıyla v ve yl şartı bulmak için kullanılan denklemlerin eçersiz ve yararsız lması demektir. Ancak aynı DD, 'Tamlık Çarpanı' kavramını andırır bir ylla z ile çarpılıp zw zw zw larak yazılırsa, bu sefer b b b ; a, a, a lur. Bu da v demektir. exp z ve z exp analitik bir fnksiyn lduğu için tüm kapalı yllar yl şartını

8 8 sağlar. w z exp z d interali için ise kmpleks düzleminde seçilebilecek tpljik açıdan farklı kapalı yllar vardır : ylu wz verir; bu DD i sağlayan, ama dğal larak, çözüm sayılmayan bir snuçtur. exp z w z ylu wz exp z verir. z, eğer ise = çkkatlılık durumunda ise interal ifade exp wz d wz z exp z bulunur. Böylece çkkatlı kök durumunda, eçmişte Abel frmülü kullanılarak bulunan ikinci çözüm, kmpleks düzlemde yl seçimi ile elde edilmektedir. ylu PROBLEMLER P.V. ), 4, 3 w DD ini Laplace dönüşümü ile çözün. Aynı işlemleri bu sefer, 4, 4 w DD ine uyulayın.

9 P.V. ) z,, w DD ini Laplace dönüşümü ile çözün. Aynı işlemleri bu sefer, z, w DD ine uyulayın. 9 P.V.3 ),, j z, ıncı mertebe Küresel Bessel fnksiynunu önce p z ile çarpın. Laplace kernelinin kullanılabilmesi için p ne lmalıdır? j çözümünü bulun. İkinci çözüm n için Abel frmülünü kullanın. P.V.4 ) Laplace dönüşümlerinde M v M de yanısıra v d exp z sağlayacağı için eçerli bir çözüm verir. Bu ylla z, z, z w Küresel Bessel DD i için sin z v v j snucunu elde edin. Daha snra z cs z v v n çözümüne erişin. z İpucu : j için v, : i den i 'ye iden bir yl. n için v tan, : Kapalı yl V. DURUMU A) Genel M denklemi = durumunda ise v d v d v v exp d d d lur.

10 K K Yl şartı için ise v exp d ifadesine erişilir. En enel örnek larak DD inin Euler dönüşümü ile çözümü ele alınınca ilk adım p z w p z w p z w p z p z p z z z z z denkleminden p z z p zz p zz veya z z z p z p z z p z z z z eşitliklerini elde etmektir. İkinci adımda bu eşitlik ve z 'ye öre ilk iki türevi z 'da değerlendirilerek p, p p, p p p ara snuçları bulunur. Bu denklemlerden lduğu, ancak akılcı bir seçimiyle = sağlanabileceği örülmektedir. p p p p p p ile verilen bu akılcı tercih snucu p, lmaktadır. p p p p p p p p,

11 B) Euler DD Özel bir örnek larak a z a z a w b z b w c w DD inin çözümüne eçilebilir. Yukarıda elde edilen frmüllerden yararlanarak b b c a a a, b b c a a b b a a a, a a a bulunur. Artık exp v d ve yl şartı K exp d kullanılarak wz d K z, v bulunabilir. Bu yaklaşıma ileride HGDD çözümü ile dönülecektir. ) Rdriues rmülü Ancak daha önce, bir anlamda HGDD 'in özel hali lan Leendre DD 'ini incelemek öğretici lur. z P zp P ; =,,,... ile verilen bu DD 'in enel Euler DD 'i ile karşılaştırılmasından a, a, a bulunur. Bu da b, ; b c erektirir. Böylece, tercihini lmaktadır. Bunların ilili exp ve frmüllere yerleştirilmesi ise v d

12 K exp d z P z frmülü kullanılarak, P z P z snuçlarını verir. Bu ara snuç d z larak yazılırsa, kmpleks düzleminde yl interali z içeren herhani bir kapalı yl için i d veya P! d sağlayan bir çözüm için z d z Rdriues frmülüne erişilir. Bu yaklaşım! dz m z, m z, n n m G n Geenbauer DD ine enelleştirilebilir, ancak m Tek Tamsayı 'larda, mesela m hebyshev DD i için, frmül hebyshev plinmları Tn x yerine nlarla ilintili Vn x fnksiynlarını verir. PROBLEMLER P.V. ) z, z, z J, Sıfırıncı mertebe Bessel DD ini Laplace dönüşümü ile çözün. Uyun bir değişken dönüşümü ile J sağlayan çözüm için J z d exp i z cs lduğunu österin. m P.V. ) Euler dönüşümü kullanarak z, m z, n n m G n Geenbauer DD i çözümünün interal ifadesini elde edin. hebyshev DD i Geenbauer DD inin m özel halidir; İnteral ifadenin hebyshev plinmlarını vermediğini österin.

13 3 V. İKİ ÖZEL ONKSİYON A) Eldeki mettla KHGDD ve HGDD çözümlerine eçmeden önce iki özel fnksiynu yakından tanımak erekecektir. 'den n 'e kadar tamsayıların çarpımı larak tanımlanan n! ifadesini, tüm reel, hatta kmpleks sayılara enelleştirmek amacıyla Gauss tarafından eliştirilen Gamma fnksiynu du u expu larak tanımlanır. ifadesinin Parçalı İnteral metdu ile açılımından bağıntısı, interalin böylece n özel halinden de n! lmaktadır. özdeşliği elde edilir; B), u İki değişkenli Beta fnksiynu ise, du u Bu fnksiynun Gamma fnksiynu ile ilişkisini örebilmek için larak tanımlanır. ds s exp s ve dt t expt s x t y, değişken dönüşümleri yapılarak ifadelerinde 4 dx dy x y exp x y iki katlı interale erişilir. Bu nktada önce plar krdinatlar x r cs, y r sin ; dx dy r dr d yardımıyla 4 d cs sin r dr r exp r ara snucuna ulaşılır, snra da dlayısıyla r ; sin cs d sin cs yerleştirilerek,

14 d d exp, elde edilir. Böylece, lmaktadır. 4 PROBLEMLER n P.V. ) dx exp x n n lduğunu österin. P.V. ) dx n x n n n lduğunu österin. n P.V.3 ) n d sin lduğunu österin. n P.V.4 ) D-Byutta SO D simetrik hacım elemanı edilebilir A, A, A 4,... 3 D A r dr D. D A larak ifade katsayısını Gamma fnksiynları cinsinden hesaplayın. P.V.5 ) Lim x ax x? Lim ; x x x 5? P.V.6 ) Psi veya Diamma fnksiynu z için z z d n z larak tanımlanır. dz ve temel fnksiynlar içeren bir bağıntı bulun.

15 5 P.V.7 ) n N için : z n. exp i ile verilen z n etrafında küçük bir dairesel kapalı yl lmak üzere, n n z dz interalini hesaplayın. P.V.8 ),, ifadesini sadeleştirin. P.V.9 ) Binm açılımı katsayısı ifadesinin k k, k k k k k!, k ifadesine eşdeğer lduğunu österin. : Tamsayı P.V. ), fnksiynunun interal ifadesinde uyun bir trinmetrik dönüşüm yaparak lduğunu österin. P.V. ) d 4 sin 8 lduğunu österin. P.V. ) 6 x dx 5 lduğunu österin. x 3

16 P.V.3 ) d çıkarak d n n n n n n!!! dn n n! dn 6 yaklaşık ifadesinden yla N N! n n d n n dn n n dlayısıyla Stirlin benzeri nn! N nn N 3 n 3 frmülünü elde edin. Gerçek Stirlin : nn! N n N N n P.V.4 ) N lmak üzere N seçmenli bir tplulukta iki alternatife eşit y çıkma ihtimalinin yaklaşık larak N lduğunu österin. İpucu : Stirlin frmülü V. KHGDD durumuna uyun bir örnek zw z w w ile verilen KHGDD 'in Laplace dönüşümü ile çözümüdür. a z b w a z b w a z b w denklemi ile karşılaştırma snucu elde edilen a, b ; a, b ; a, b parametrelerinden bulunur. Artık v fnksiynu,, v exp d exp d

17 7 yl şartı ise z exp frmülleri ile belirlenebilir. Re Re durumunda, reel eksen üzerinde, aralığının uyun bir yl lduğu örülmektedir. () Böylece çözüm wz A d exp z lmaktadır. w sağlayacak bir çözüm için =, w A d A kullanılarak A elde edilir ve çözüm önce : exp larak yazılır. w z d z Bu nktada z w z k k z exp = açılımı interale yerleştirilerek k! k k d bulunur. k k d interalinin k, larak çözüme yerleştirilmesi ile wz z k z k! k k k k z 3 z z z...!! 3! k k k! KHG Serisine ulaşılır. parametresinin neatif bir tamsayı lması halinde çözümün bir plinm lacağı örülmektedir.

18 V. HGDD durumuna uyun bir örnek z z w z w w ile verilen HGDD in Euler dönüşümü ile çözümüdür. HGDD in parametrizasynu ilk bakışta tuhaf bulunsa bile, ileride bunun çözüm estetiği uğruna DD estetiğinden fedakarlık edilmesinden kaynaklandığı örülecektir. Ayrıca DD in değişimi altında değişmediği de özlenmektedir. a z a z a w b z b w c w 8 denklemi ile karşılaştırma snucu elde edilen a, a, a ; b, b ; c parametrelerinden ve tarihsel sebeplerle b b c, a a a tercih edilir. Bu tercih snucu,, v lmaktadır. Bu durumda exp d exp yl şartı ise w z bulunur d ; z z ile belirlenir ve d lur. Bu nktada hesap klaylığı açısından du d değişken dönüşümü yapılırsa yl şartı u u u uz u halini alır ve KHGDD ile aynı biçimde Re Re için, reel eksen üzerinde, aralığı uyun lur. () Böylece çözüm w z A du u u u z lmaktadır.

19 w sağlayacak bir çözüm için w A du u u u z A kullanılarak Bu nktada uz erekir. yazılır. w z du u u u z ifadesinin binm açılımını biraz dlambaçlı bir biçimde yapmak k k n n! x n x x = n k! k! n k k! uz k k k k k k k u z ifadesi k! 9 sin k k sin sin k k k sin kullanılarak uz larak basitleşir. Bu açılım çözüme yerleştirilince k ve k k u z k! k k k k z k k! bulunur. wz du u u k du u u interalinin k, k k larak çözüme yerleştirilmesi ile wz k k k z k k! k 3 z z z...!! 3!

20 HG Serisine ulaşılır. veya parametrelerinden herhani birinin neatif tamsayı lması halinde çözümün bir plinm lacağı örülmektedir. KHGDD 'in HGDD 'in, KHG serinin de HG serinin özel birer limiti ldukları DD kitapçığında örülmüştü. Benzer bir limit işleminin interal dönüşüm metdunda da eçerli lması dğaldır. s ifadesinde,, ; z du u u uz z değişken dönüşümünün snucu s,, ; u s du u u lur. Lim us u s u s us Lim exp us kullanılarak s, ; s Lim,, ; du u u exp u s du u u e us elde edilir. EKLER VE NOTLAR (,) Re Re lmayan durumlarda, çğu kapalı lmak üzere değişik yllar kullanılır. Bunların en karmaşığı her iki tekil nktanın etrafında iki kere ve ters yönlerde dlanan Pschhammer yludur.

FEN VE MÜHENDİSLİKTE MATEMATİK METOTLAR 2. KİTAP KOMPLEKS DEĞİŞKENLİ FONKSİYONLAR

FEN VE MÜHENDİSLİKTE MATEMATİK METOTLAR 2. KİTAP KOMPLEKS DEĞİŞKENLİ FONKSİYONLAR 41 FEN VE MÜHENDİSLİKTE MATEMATİK METOTLAR. KİTAP KOMPLEKS DEĞİŞKENLİ FONKSİYONLAR w 4 İÇİNDEKİLER I. KOMPLEKS SAYILAR A) Kmpleks Aritmetik B) Kmpleks Değişken II. KOMPLEKS FONKSİYONLAR A) Genel B) Kuvvet

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

I ) MATEMATİK TEMELLER

I ) MATEMATİK TEMELLER I ) MATEMATİK TEMELLER A) TANIMLAR VE İŞLEMLER B) KARTEZYEN DİFERANSİYEL OPERATÖRLER C) YEREL DİK KOORDİNAT SİSTEMLERİNDE DİFERANSİYEL OPERATÖRLER D) MOMENTUM UZAYI DEĞİŞKENLERİ A) TANIMLAR ve İŞLEMLER.

Detaylı

II ) O ÇIKARTIMI A) TARİHSEL GELİŞİM B) İNTEGRAL BİÇİMLER C) DİFERANSİYEL BİÇİMLER D) MAXWELL KATKISI E) POTANSİYELLER, AYARLAR, ELEKTROMAGNETOSTATİK

II ) O ÇIKARTIMI A) TARİHSEL GELİŞİM B) İNTEGRAL BİÇİMLER C) DİFERANSİYEL BİÇİMLER D) MAXWELL KATKISI E) POTANSİYELLER, AYARLAR, ELEKTROMAGNETOSTATİK 6 II ) J O ÇIKRTIMI ) TRİHSEL GELİŞİM B) İNTEGRL BİÇİMLER C) DİFERNSİYEL BİÇİMLER D) MXWELL KTKISI E) POTNSİYELLER, YRLR, ELEKTROMGNETOSTTİK F) ELEKTRODİNMİK G) RELTİVİSTİK YZILIM H) ÖZET TBLO I) UZY-ZMN

Detaylı

I ) MATEMATİK TEMELLER

I ) MATEMATİK TEMELLER 0 I ) MATEMATİK TEMELLER A) TANIMLAR VE İŞLEMLER B) KARTEZYEN DİFERANSİYEL OPERATÖRLER C) YEREL DİK KOORDİNAT SİSTEMLERİNDE DİFERANSİYEL OPERATÖRLER D) DIRAC DELTA FONKSİYONU E) -BOYUTTA FOURIER DÖNÜŞÜMÜ

Detaylı

Cebir Notları. Karmaşık sayılar TEST I. Gökhan DEMĐR, 2006

Cebir Notları. Karmaşık sayılar TEST I. Gökhan DEMĐR,  2006 MC Karmaşık saılar www.matematikclub.cm, 006 Cebir Ntları Gökhan DEMĐR, gdemir@ah.cm.tr TEST I. i 897 + i 975 + i 997 i 995 tplamının snucu i B) i C) i D) i E) 5i 8. Z = i nin kutupsal biçimi (cs0 + isin0)

Detaylı

Üçüncü Kitapta Neler Var?

Üçüncü Kitapta Neler Var? Üçüncü Kitapta Neler Var?. Kümeler 7 0. Kartezyen çarpım - Bağıntı 4. Fnksiynlar 4 74 4. İşlem 7 84. Mdüler Aritmetik 8 00 6. Plinmlar 0 0 7. İkinci Dereceden Denklemler 6 8. Eşitsizlikler 7 6 9. Parabl

Detaylı

Bahar Yarıyılı D_IFERANS_IYEL DENKLEMLER II ARA SINAV 6 Nisan 2011 Süre: 90 dakika CEVAP ANAHTARI. y = c n x n+r. (n + r) c n x n+r 1 +

Bahar Yarıyılı D_IFERANS_IYEL DENKLEMLER II ARA SINAV 6 Nisan 2011 Süre: 90 dakika CEVAP ANAHTARI. y = c n x n+r. (n + r) c n x n+r 1 + DÜZCE ÜN_IVERS_ITES_I FEN-EDEB_IYAT FAKÜLTES_I MATEMAT_IK BÖLÜMÜ 010-011 Bahar Yarıyılı D_IFERANS_IYEL DENKLEMLER II ARA SINAV 6 Nisan 011 Süre: 90 dakika CEVAP ANAHTARI 1. 0p x d y + dy + xy = 0 diferansiyel

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

YGS 2014 MATEMATIK SORULARI

YGS 2014 MATEMATIK SORULARI YGS 0 MTMTIK SORULRI. 6.(8 6 ) işleminin snucu kaçtır? 8 6 6 6 6 6.(8 6 ) 8 6 6 7. a b a, ve sayıları küçükten büyüğe dğru a sıralanmış ardışık tamsayılardır. una göre, a + b tplamı kaçtır? a a a b a b

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 9. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 9. SINIF TEST SORULARI OKULLAR ARASI 9. MATEMATİK YARIŞMASI. f(x) sıfırdan farklı dğrusal fnksiyn lmak üzere, f(x 6) f(x ) f(x) f(x ) f(x) f(x ) işleminin snucu kaçtır?. Rakamları çarpımı ile rakamları tplamının tplamları kendisine

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

Mustafa Sezer PEHLİVAN. Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü

Mustafa Sezer PEHLİVAN. Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü * Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü SAYILAR Doğal Sayılar, Tam Sayılar, Rasyonel Sayılar, N={0,1,2,3,,n, } Z={,-3,-2,-1,0,1,2,3, } Q={p/q: p,q Z ve q 0} İrrasyonel Sayılar, I= {p/q

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

Birinci Mertebeden Adi Diferansiyel Denklemler

Birinci Mertebeden Adi Diferansiyel Denklemler Birinci Mertebeden Adi Diferansiyel Denklemler Bir veya daha çok bağımlı değişken, bir veya daha çok bağımsız değişken ve bağımlı değişkenin bağımsız değişkene göre (diferansiyel) türevlerini içeren bağıntıya

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

DENEY-3. Devre Çözüm Teknikleri

DENEY-3. Devre Çözüm Teknikleri DENEY-3 Devre Çözüm Teknikleri A) Hazırlık Sruları Deneye gelmeden önce aşağıda belirtilen aşamaları eksiksiz yapınız. İstenilen tüm verileri rapr halinde deneye gelirken ilgili araştırma görevlisine teslim

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 7- SAYISAL TÜREV Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ İntegral işlemi gibi türev işlemi de mühendislikte çok fazla kullanılan bir işlemdir. Basit olarak bir fonksiyonun bir noktadaki

Detaylı

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz.

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz. D DİFERANSİYEL DENKLEMLER ÇALIŞMA SORULARI Fakülte No:................................................... Adı ve Soyadı:................................................. Bölüm:...................................................................

Detaylı

DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I

DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I MATEMAT IK BÖLÜMÜ 203-204 BAHAR YARIYILI D IFERANS IYEL DENKLEMLER II ARA SINAV 2 Nisan 204 Süre: 90 dakika CEVAP ANAHTARI. (5p) Belirsiz katsay lar yöntemini

Detaylı

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri İşaret ve Sistemler Ders 11: Laplace Dönüşümleri Laplace Dönüşüm Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) yada L[f(t)] olarak gösterilir. Burada tanımlanan s: İşaret ve Sistemler

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

RELATİVİTE VE ELEKTROMAGNETİK ETKİLEŞMELER

RELATİVİTE VE ELEKTROMAGNETİK ETKİLEŞMELER 14 RELATİVİTE VE ELEKTROMAGNETİK ETKİLEŞMELER A) GİRİŞ B) KİNEMATİK C) DİNAMİK D) ELEKTROMAGNETİK ETKİLEŞME E) ZORLIKLAR - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Detaylı

Diferensiyel Denklemler I Uygulama Notları

Diferensiyel Denklemler I Uygulama Notları 2004 Diferensiyel Denklemler I Uygulama Notları Mustafa Özdemir İçindekiler Temel Bilgiler...................................................................... 2 Tam Diferensiyel Denklemler........................................................4

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

TRİGONMETRİK FONKSİYONLAR: DİK ÜÇGEN YAKLAŞIMI

TRİGONMETRİK FONKSİYONLAR: DİK ÜÇGEN YAKLAŞIMI TRİGONMETRİK FONKSİYONLAR: DİK ÜÇGEN YAKLAŞIMI Diyelim ki yeryüzünden güneşe lan mesafeyi bulmak istiyruz. Şerit metre kullanmak açıkçası pratik değildir. Bu nedenle bu srunun üstesinden gelmek için basit

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Değişken Katsayılı Adi Diferensiyel Denklemler Katsayıları bağımsız(x) değişkene bağlı diferensiyel denklemlerdir. Genel ifadesi şöyledir.

Değişken Katsayılı Adi Diferensiyel Denklemler Katsayıları bağımsız(x) değişkene bağlı diferensiyel denklemlerdir. Genel ifadesi şöyledir. 3. Yüksek Mertebeden Adi Diferansiyel Denklemler Geçmiş konularda şu ana kadar ele alınan 1.mertebe-1.dereceden adi diferensiyel denklemler ancak 1.mertebe seviyesindeki belirli problemleri ifade edebilmektedir.

Detaylı

Ygs-Lys. 2010 dan itibaren üniversitelere öğrenci seçimi iki aşamalı sınav uygulanarak yapılacaktır.

Ygs-Lys. 2010 dan itibaren üniversitelere öğrenci seçimi iki aşamalı sınav uygulanarak yapılacaktır. Ygs-Lys 2010 dan itibaren üniversitelere öğrenci seçimi iki aşamalı sınav uygulanarak yapılacaktır. 1.Aşama : Yükseköğretime Geçiş Sınavı () 2.Aşama : Lisans Yerleştirme Sınavı (LYS) larak adlandırılmıştır.

Detaylı

SBS MATEMATİK DENEME SINAVI

SBS MATEMATİK DENEME SINAVI SS MTEMTİK DENEME SINVI 8. SINIF SS MTEMTİK DENEME SINVI. 4.. Güneş ile yut gezegeni arasındaki uzaklık 80000000 km dir. una göre bu uzaklığın bilimsel gösterimi aşağıdakilerden hangisidir? ),8.0 9 km

Detaylı

EEM 202 DENEY 11. Tablo 11.1 Deney 11 de kullanılan devre elemanları ve malzeme listesi. Devre Elemanları Ω Direnç (2 W)

EEM 202 DENEY 11. Tablo 11.1 Deney 11 de kullanılan devre elemanları ve malzeme listesi. Devre Elemanları Ω Direnç (2 W) N: EEM DENEY SEİ EZONANS DEESİ. Amaçlar Değişen frekanslı seri C devresinde empedansın ölçülmesi ve çizilmesi Seri C devresinde akım değişiminin frekansın değişimine göre incelenmesi Seri C devresinin

Detaylı

FM561 Optoelektronik. Işığın Modülasyonu

FM561 Optoelektronik. Işığın Modülasyonu FM561 Optelektrnik Işığın Mdülasynu Pasif ptelektrnik elemanlar Çeyrek Dalga Plakası Yarım Dalga Plakası Tarım Dalga Plakası Işığın Mdülasynu lektr-ptik mdülasyn» Pckel tkisi» Kerr tkisi Akust-Optik mdülasyn

Detaylı

III - ELEKTROMAGNETİK GENELLEŞTİRME

III - ELEKTROMAGNETİK GENELLEŞTİRME 3 - EEKTROMAGNETİK GENEEŞTİRME.A ) AGRANGE ORMAİZMİ Dnamğn agrange medu le yenden frmüle edlmes, genelleşrlmş krdna ssemlernn kullanılmasına mkan anır. Yen krdnaların ye larak ble dk lmaları gerekmez.

Detaylı

II. DERECEDEN DENKLEMLER Test -1

II. DERECEDEN DENKLEMLER Test -1 II. DERECEDEN DENKLEMLER Test -. 5 {, 5} {, 5} { 5, } {, 5} {, 5} 5. 5 {,, } {,, } {,, } {,, } {,, }.. 5 7 7 5 5,, 5 5, 5 5, 5 5, 6. 7. 5 95 { 5,, } {,, 5} { 5,, 9} {,, 5} { 9,, 5} 6 66 {, } {,, } {,,

Detaylı

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y SABİT KATSAYILI DENKLEMLERE DÖNÜŞTÜREBİLEN DENKLEMLER Bu bölümde sabit katsayılı diferansiyel denklemlere dönüşebilen değişken katsayılı diferansiyel denklemlerden Cauchy Euler ve Legendre difarensiyel

Detaylı

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER 1.1. Fiziksel Kanunlar ve Diferensiyel Denklemler Arasındaki İlişki... 1 1.2. Diferensiyel Denklemlerin Sınıflandırılması ve Terminoloji...

Detaylı

2 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var ise bulunuz.

2 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var ise bulunuz. ANALİZ 1.) a) sgn. sgn( 1) = 1 denkleminin çözüm kümesini b) f ( ) 3 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var

Detaylı

1. Hafta Uygulama Soruları

1. Hafta Uygulama Soruları . Hafta Uygulama Soruları ) x ekseni, x = doğrusu, y = x ve y = x + eğrileri arasında kalan alan nedir? ) y = x 3 ve y = 4 x 3 parabolleri arasında kalan alan nedir? 3) y = x, x y = 4 eğrileri arasında

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

Mat Matematik II / Calculus II

Mat Matematik II / Calculus II Mat - Matematik II / Calculus II Çalışma Soruları Çok Değişkenli Fonksiyonlar: Seviye eğri ve yüzeyler, Limit ve süreklilik wolframalpha.com uygulamasında bir fonksiyonun tanım kümesini bulmak için: x

Detaylı

Diferensiyel denklemler sürekli sistemlerin hareketlerinin ifade edilmesinde kullanılan denklemlerdir.

Diferensiyel denklemler sürekli sistemlerin hareketlerinin ifade edilmesinde kullanılan denklemlerdir. .. Diferensiyel Denklemler y f (x) de F ( x, y, y, y,...) 0 veya y f ( x, y, y,...) x ve y değişkenlerinin kendileri ve türevlerini içinde bulunduran denklemlerdir. (Türevler; "Bağımlı değişkenin değişiminin

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI

Ortak Akıl MATEMATİK DENEME SINAVI Ortak Akıl LYS MATEMATİK DENEME SINAVI 0505- Ortak Akıl Adem ÇİL Ali Can GÜLLÜ Ayhan YANAĞLIBAŞ Barbaros GÜR Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN

Detaylı

Kesirli Türevde Son Gelişmeler

Kesirli Türevde Son Gelişmeler Kesirli Türevde Son Gelişmeler Kübra DEĞERLİ Yrd.Doç.Dr. Işım Genç DEMİRİZ Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü 6-9 Eylül, 217 Kesirli Türevin Ortaya Çıkışı Gama ve Beta Fonksiyonları Bazı

Detaylı

LYS Y OĞRU MTMTİK TSTİ LYS-. u testte Matematik ile ilgili soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a ve b asal

Detaylı

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Trigonometrik Fonksiyonlar tanx. 1 cos x sinx ifadesi, aşağıdakilerden hangisine eşittir?

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Trigonometrik Fonksiyonlar tanx. 1 cos x sinx ifadesi, aşağıdakilerden hangisine eşittir? ÖĞRENİNİN I SOYI: NUMRSI: ersin dı KONU: Trignmetrik Fnksiynlar ersin Knusu. cs x sinx ifadesi, aşağıdakilerden. cs x ct x sin x sec x + sec x ) cs x csec x + csec x ) cs x. ct x cs ec x ct x. sec x csec

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

2012 LYS 1 MATEMATİK GEOMETRİ SORU VE ÇÖZÜMLERİ. sayısının 2 sayı A) 3 2. Çözüm : Cevap B. 2 x C) 1 5. Çözüm : Cevap D

2012 LYS 1 MATEMATİK GEOMETRİ SORU VE ÇÖZÜMLERİ. sayısının 2 sayı A) 3 2. Çözüm : Cevap B. 2 x C) 1 5. Çözüm : Cevap D 0 LYS MATEMATİK GEOMETRİ SORU VE ÇÖZÜMLERİ. 8 sayı tabanında verilen 8 sayısının sayı tabanında yazılışı aşağıdakilerden hangisidir? 00 B) 0. lduğuna göre ifadesinin değeri kaçtır? C) 0 D) 0 B) C) 9 E)

Detaylı

DİNAMİK İNŞ2009 Ders Notları

DİNAMİK İNŞ2009 Ders Notları DİNAMİK İNŞ2009 Ders Ntları Dç.Dr. İbrahim Serkan MISIR Dkuz Eylül Üniversitesi İnşaat Mühendisliği Bölümü Ders ntları için: http://kisi.deu.edu.tr/serkan.misir/ 2018-2019 GÜZ Dynamics, Furteenth Editin

Detaylı

Cebir Notları. Karmaşık Sayılar Testi z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır?

Cebir Notları. Karmaşık Sayılar Testi z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır? Cebr Ntları Karmaşık Sayılar Test. + se Re() + Im()?. ( x y) + + ( x+ y ) se x + y tplamı kaçtır?. x + y ( x ) ve se y kaçtır?. ve se y x kaçtır?. sayısı kaça eşttr?. sayısı kaça eşttr? 7. x+ + ( y ) y

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak ya Kullanım Şartları hakkında bilgi almak için

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri H a z ı r l aya n : D r. N u r d a n B i l g i n Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Bir önceki

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

KOMPLEKS SAYILARIN ALTERNATİF AKIM DEVRELERİNE UYGULANMASI

KOMPLEKS SAYILARIN ALTERNATİF AKIM DEVRELERİNE UYGULANMASI BÖÜM 5 KOMPEKS SAYAN AENAİF AKM DEVEEİNE YGANMAS 5. - (DİENÇ BOBİN SEİ DEVESİ 5. - (DİENÇ KONDANSAÖ SEİ DEVESİ 5.3 -- (DİENÇ BOBİN KONDANSAÖ SEİ DEVESİ 5.4 - (DİENÇ BOBİN PAAE DEVESİ 5.5 - (DİENÇ KONDANSAÖ

Detaylı

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9 İÇİNDEKİLER Ön Söz... Adi Diferansiyel Denklemler... Birinci Mertebeden ve Birinci Dereceden Diferansiyel Denklemler...9 Homojen Diferansiyel Denklemler...15 Tam Diferansiyel Denklemler...19 Birinci Mertebeden

Detaylı

MATEMATÝK GEOMETRÝ DENEMELERÝ

MATEMATÝK GEOMETRÝ DENEMELERÝ ENEME MTEMTÝK GEOMETRÝ ENEMELERÝ 1. ( ) 1, 3 9 : 9 4 6 0,5 1 4. K dğal sayısının 36 ile bölümünden kalan 14 tür. işleminin snucu kaçtır? 1 ) 3 ) 1 ) ) 1 E) 3 3 una göre, aşağıdakilerden hangisi 4 ile tam

Detaylı

BLM 426 YAZILIM MÜHENDİSLİĞİ BAHAR Yrd. Doç. Dr. Nesrin AYDIN ATASOY

BLM 426 YAZILIM MÜHENDİSLİĞİ BAHAR Yrd. Doç. Dr. Nesrin AYDIN ATASOY BLM 426 YAZILIM MÜHENDİSLİĞİ BAHAR 2016 Yrd. Dç. Dr. Nesrin AYDIN ATASOY 3. HAFTA: PLANLAMA Yazılım geliştirme sürecinin ilk aşaması, planlama aşamasıdır. Başarılı bir prje geliştirebilmek için prjenin

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS Bir Dönemde Okutulan Ders Saati MAT101 Genel I (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) 1 Kümeler, reel sayılar, bir denklem veya eşitsizliğin grafiği 2 Fonksiyonlar,

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

11. z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır? 14. eşitliğini sağlayan z karmaşık sayısı kaçtır? 15.

11. z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır? 14. eşitliğini sağlayan z karmaşık sayısı kaçtır? 15. GD. + se Re() + Im()? www.gkhandemr.rg, 007 Cebr Ntları Gökhan DEMĐR, gdemr@yah.cm.tr Karmaşık sayılar 9. + + sayısı kaça eşttr? 7 890. ( x y) + + ( x + y) se x + y tplamı kaçtır?. x + y ( x) ve se y kaçtır?.

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 1.. Kutupsal Formda Gösterim z x + iy vektörünün pozitif reel eksenle yaptığı açıya θ diyelim. cos θ x, sin θ y ve buradan tan θ y θ arctan y olup θ ya z z

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

İkinci Mertebeden Lineer Diferansiyel Denklemler

İkinci Mertebeden Lineer Diferansiyel Denklemler A(x)y + B(x)y + C(x)y = F (x) (5) Denklem (5) in sağ tarafında bulunan F (x) fonksiyonu, I aralığı üzerinde sıfıra özdeş ise, (5) denklemine lineer homogen; aksi taktirde lineer homogen olmayan denklem

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

(z z 0 ) n. n=1. Z f (z) dz = 2ib 1

(z z 0 ) n. n=1. Z f (z) dz = 2ib 1 0 RE IDÜ TEOR IS I Tan m. f fonksiyonu z 0 noktas nda ayr k singülerli¼ge sahip olsun. Bu durumda f fonksiyonu 0 < jz z 0 j < " bölgesinde X X f(z) = a n (z z 0 ) n b n + (z z 0 ) n Laurent seri aç l m

Detaylı

DERS ÖĞRETİM PROGRAMI FORMU

DERS ÖĞRETİM PROGRAMI FORMU DERS ÖĞRETİM PROGRAMI FORMU Dersin Adı Kodu Normal Kredisi ECTS Ders 4 Yarıyılı Kredisi uygulama 0 Diferansiyel Denklemler 0252311 3 4 6 Laboratuvar 0 (Saat/Hafta) Dersin Dili Türkçe Dersin Türü Zorunlu

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER HEDEFLER İÇİNDEKİLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER Özdeşlikler Birinci Dereceden Bir Bilinmeyenli Denklemler İkinci Dereceden Bir Bilinmeyenli Denklemler Yüksek Dereceden Denklemler Eşitsizlikler

Detaylı

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ EKİM 07-08 EĞİTİM - ÖĞRETİM YILI 0. SINIF MATEMATİK DERSİ 0... Olayların gerçekleşme sayısını toplama ve çarpma prensiplerini kullanarak hesaplar. 0... Sınırsız sayıda tekrarlayan nesnelerin dizilişlerini

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ DERS UYGULAMA FORMU

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ DERS UYGULAMA FORMU ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ DERS UYGULAMA FORMU Ders Adı MM 207 - Mühendislik Matematiği-I Dili : Türkçe Öğretim Yılı ve Yarıyılı 2011-2012-Güz Teori : 3 Pratik

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI DEVRE VE SİSTEM ANALİZİ 01.1.015 ÇALIŞMA SORULARI 1. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında a) v 5 ( geriliminin tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz.

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır.

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır. -A Adı Soadı kulu Sınıfı LYS- MATEMATİK TESTİ Bu Testte; Toplam Adet soru bulunmaktadır. Cevaplama Süresi 7 dakikadır. Süre bitiminde Matematik Testi sınav kitapçığınızı gözetmeninize verip Geometri Testi

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

1.DERECEDEN DENKLEMLER. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

1.DERECEDEN DENKLEMLER.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) .DERECEDEN DENKLEMLER Rüstem YILMAZ 546 550 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları 8 Ağustos 07 0. Bir Bilinmeyenli

Detaylı

DENKLEM DÜZENEKLERI 1

DENKLEM DÜZENEKLERI 1 DENKLEM DÜZENEKLERI 1 Dizey kuramının önemli bir kullanım alanı doğrusal denklem düzeneklerinin çözümüdür. 2.1. Doğrusal düzenekler Doğrusal denklem düzeneği (n denklem n bilinmeyen) a 11 x 1 + a 12 x

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta Kompleks Sayıların Cebirsel ve Geometrik Özellikleri

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta Kompleks Sayıların Cebirsel ve Geometrik Özellikleri 1. KOMPLEKS SAYILAR 1.1. Kompleks Sayıların Cebirsel ve Geometrik Özellikleri Tanım 1. x, y R olmak üzere (x, y) sıralı ikililerine kompleks sayı denir. Burada x, z nin reel kısmı, ve y, z nin imajiner

Detaylı

Çizelge 1. Yeraltısuyu beslenim sıcaklığı ve yükseltisi tahmininde kullanılan yöntemlerin karşılaştırılması

Çizelge 1. Yeraltısuyu beslenim sıcaklığı ve yükseltisi tahmininde kullanılan yöntemlerin karşılaştırılması YERALTISUYU BESLENİM SICAKLIK VE YÜKSELTİSİNİN BELİRLENMESİ Yeraltısuyu sistemlerinde beslenim kşulları, arazi gözlemleri ile tpgrafik, jeljik, hidrjeljik, meterljik bilgilerin birleştirilmesi ile belirlenebilir.

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ 6.2. Laplace Dönüşümü Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) ya da L[f(t)] olarak gösterilir. Burada tanımlanan s; ÇÖZÜM: a) b) c) ÇÖZÜM: 6.3.

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ SINIF DEĞERLENDİRME SINAVI

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ SINIF DEĞERLENDİRME SINAVI T.. MİLLÎ EĞİTİM KNLIĞI 0-0. SINIF EĞERLENİRME SINVI - 0-0.SINIF MTEMTİK TESTİ (LYS ) EĞERLENİRME SINVI - dı ve Syadı :... Sınıfı :... Öğrenci Numarası :... SORU SYISI : 80 SINV SÜRESİ : akika eğerlendirme

Detaylı

Final sınavı konularına aşağıdaki sorular dahil değildir: 1, 2, 3, 4, 5, 6, 7, 19, 20, 21, 25, 27, 28, 29, 30, 33-b.

Final sınavı konularına aşağıdaki sorular dahil değildir: 1, 2, 3, 4, 5, 6, 7, 19, 20, 21, 25, 27, 28, 29, 30, 33-b. Final sınavı konularına aşağıdaki sorular dahil değildir:,,,, 5, 6, 7, 9,,, 5, 7, 8, 9,, -b. MAT -MATEMATİK (- GÜZ DÖNEMİ) FİNAL ÇALIŞMA SORULARI. Tabanı a büyük eksenli, b küçük eksenli elips ile sınırlanan

Detaylı

Iki Boyutlu Sabit Katsay l Lineer Homogen Diferensiyel Denklem Sistemleri (Euler Metodu)

Iki Boyutlu Sabit Katsay l Lineer Homogen Diferensiyel Denklem Sistemleri (Euler Metodu) Iki Boyulu Sabi Kasay l Lineer Homogen Diferensiyel Denklem Sisemleri (Euler Meodu) Bu bölümde sabi kasay l, lineer, homogen 8 >< d = a 1x + b 1 y >: dy d = a 2x + b 2 y sisemi ele al nmakad r. Burada

Detaylı

KPSS ÖABT İLKÖĞRETİM MATEMATİK. Tamamı Çözümlü SORU BANKASI. 50 soruda SORU

KPSS ÖABT İLKÖĞRETİM MATEMATİK. Tamamı Çözümlü SORU BANKASI. 50 soruda SORU KPSS ÖABT 09 İLKÖĞRETİM MATEMATİK Tamamı Çözümlü SORU BANKASI 50 soruda SORU Komisyon ÖABT İLKÖĞRETİM MATEMATİK TAMAMI ÇÖZÜMLÜ SORU BANKASI ISBN 978-605--9-6 Kitapta yer alan bölümlerin tüm sorumluluğu

Detaylı