DERS 8 BELİRSİZ TALEP DURUMUNDA STOK KONTROL. Zamanlama Kararları. Bir Seferlik Karar

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DERS 8 BELİRSİZ TALEP DURUMUNDA STOK KONTROL. Zamanlama Kararları. Bir Seferlik Karar"

Transkript

1 Zamanlama Kararları DERS 8 BELİRSİZ TALEP DURUMUNDA STOK KONTROL Miktar kararları Ne zaman sipariş verilecek? kararıyla birlikte verilir. Bu karar, stok yönetimindeki ana kararlardan biridir. Ne zaman sipariş verilecek? kararı stok düzeyleri, stok maliyetleri, sağlanılan servis düzeyi Modeller: Bir seferlik kararlar Sürekli gözden geçirme sistemleri Periyodik gözden geçirme sistemleri Bir Seferlik Kararlar Zamanlama Kararları Sürekli Kararlar Sürekli Gözden Geçirme Sistemleri EOQ, EPQ (Q, R) Sistemi Temel Stok Kesikli Zamanlı Kararlar Periyodik Gözden Geçirme Sistemleri EOQ (S, T) Sistemi (s, S) Sistemi Bir Seferlik Karar Bu durum perakende ve imalatta yaygındır. Sadece kısa bir peryot süresince talep edilen mevsimsel ürünleri düşünün. Ürün, mevsimin sonunda değer kaybeder. Tedarik süresi satış mevsiminden daha uzun olabilir. Bu durumda eğer talep orijinal sipariş miktarında daha yüksekse, ek ürünler için yeni sipariş verilemez. Örnek gazete standı Noel süsleri perakendecisi Noel ağacı son ürün stoğu gazeteci çocuk modeli yada Noel ağacı modeli Zamanlama kararlarının yapısı İki Kutu Opsiyonel Yenileme Eğer talep biliniyorsa (deterministik durum) problem basittir. Stokastik durumda ise talebin ne olacağı tam olarak bilinmez, ancak bir rassal değişken olarak tanımlanır. 1

2 Örnek: Bir Seferlik Karar (Kesikli Versiyon) Mrs. Kandell yıllardır Noel ağacı işiyle uğraşmakta ve satış miktarlarını yıllık olarak kaydetmektedir. Aşağıda verilen tablo kayıtlardan elde edilen yıllık Noel ağacı talebini ve olasılıklarını göstermektedir. Talep, d Olasılık, f D (d) Çözüm: Q sipariş miktarı; Q * - optimal D talep: f D (d) olasılık fonksiyonlu rassal değişken F D (d) birikimli dağılım fonksiyonu: F D (d) = P (D d) c o fazla (pozitif) birim stok başına maliyet π karşılanmayan birim talep başına maliyet Fazla stok bulundurma maliyeti ile karşılanamayan talep maliyeti dengelenmeli Marjinal Analiz Kavramı Marjinal analiz, bir birim daha fazla sipariş vermenin beklenen karını bulmak anlamına gelir. Stoktaki son ürünü satmama ve periyot sonunda elde ekstra stok bulundurma olasılığı P(D < Q) m Q Tüm ürünleri satma ve stoksuz kalmayla yüzyüze kalma olasılığı P(D Q) Gazeteci Çocuk İçin Kritik Oran Örnek: Bir Kerelik Karar (devam) P(D<Q) (C o uygulanır) P(D>Q) (π uygulanır) Eksik stok = kâr kaybı + memnuniyet kaybı Aşırı (fazla) stok = birim maliyet + elden çıkarma maliyeti Satın alma maliyeti optimal çözümü etkilemez, bu nedenle satın alma maliyetini ya ihmal et yada dolaylı olarak fazla Tek Periyot Stok Model Marjinal Analizi: E (son satış geliri) = E (son satış kaybı) yada eksik stok içinde bulunduğunu düşün. 2

3 Örnek: Bir Kerelik Karar (devam) Q * siparişin beklenen aşırı stok maliyeti: P(D < Q*) c o = F D (Q * )c o Beklenen eksik stok bulundurma maliyeti: P(D > Q*) π = [1-F D (Q*)] π Q * için bu iki maliyet eşit olmalıdır: F D (Q * )c o = (1-F D (Q * ))π P( D < Q * ) = F D ( Q * ) = Periyot boyunca talebin karşılanma olasılığı (kritik oran) Q * ı hesaplamak için birikimli olasılık dağılımını kullanmalıyız. p p + c o Örnek: Bir Kerelik Karar (devam) Talep d Olasılık f D (d) Birikimli Olasılık F D (d) F D ( Q * ) = p = p + c o Mrs.Kandell satabileceğinden daha fazla ağaç alması durumunda, ağaç ve ağacın elden çıkarma maliyetinin yaklaşık 40 $ olacağını tahmin etmektedir. Eğer talebin sipariş verdiği ağaç sayısından fazla olması durumunda ise ağaç başına 40 $ kâr kaybı olacaktır. = 0.50 Q 28 Tek Periyot & Kesikli Talep: Lively Lobsters (L.L.) her gün taze, canlı ıstakoz tedarik etmektedir. L.L. firmasına her bir ıstakoz $ a mal olmakta ve satılan her ıstakoz için 7.50$ kar etmektedir. 1 gün bekleyen ıstakozun değeri ise 8.50 $ a düşmektedir. L.L. nin birim stoksuz kalma maliyeti: π = 7.50 = kâr kaybı Elde fazla ıstakoz kalmasının birim maliyeti: C o = = maliyet hurda değer = 6 L.L. nin hedef hizmet düzeyi CR = π/(π+ C o ) = 7.5 / ( ) = 0.56 Talep yanda verilen kesikli bir dağılım izler: Sonuç: 25 ıstakoz sipariş et. Çünkü talebin en % 56 sına kafi gelen en küçük miktar 25 ıstakozdur. Göreceli Frekans (pmf) Birikimli Göreceli Frekans (cdf) Talebin x'e eşit yada daha az olacağı olasılık Talep 19 0,05 0,05 P(D < 19 ) 20 0,05 0,10 P(D < 20 ) 21 0,08 0,18 P(D < 21 ) 22 0,08 0,26 P(D < 22 ) 23 0,13 0,39 P(D < 23 ) 0,14 0,53 P(D < ) 25 0,10 0,63 P(D < 25 ) 26 0,12 0,75 P(D < 26 ) 27 0,10 P(D < 27 ) 28 0,10 P(D < 28 ) 29 0,05 P(D < 29 ) * pmf = prob. mass function (olasılık yoğunluk fonk.) 3

4 Eğer L.L., optimal büyüklükte sipariş verirse beklenen (ortalama) kar ne olur? Q*=25 adet X= Elde kalan ıstakoz sayısı olsun (x=0,1,2,3,4,5,6). P(X=x Q=25): sipariş miktarı 25 iken x tane ıstakozun elde kalması olasılığı P(X=0 Q=25)=P(D=25)=0,10 (Q=25 iken talep 25 olursa elde ürün kalmaz. ) P(X=1 Q=25)=P(D=)=0,14 P(X=2 Q=25)=P(D=23)=0,13 P(X=3 Q=25)=P(D=22)=0,08 6 P(X=4 Q=25)=P(D=21)=0,08 P(X=5 Q=25)=P(D=20)=0,10 P(X=6 Q=25)=P(D=19)=0,05 E X = x X x. P(X = x) = x=1 x. P(X = x) E[X]=0.0,10+1.0,14+2.0,13+3.0,08+4.0,08+5.0,10+6.0,05=1,44 ıstakoz. Eğer L.L., optimal büyüklükte sipariş verirse beklenen (ortalama) kar ne olur? Q*=25 adet Y= Karsılanamayan talep (y=0,1,2,3,4). P(Y=y Q=25): sipariş miktarı 25 iken y tane ıstakoz talebinin karşılamama olasılığı P(Y=0 Q=25)=P(D=25)=0,10 (Q=25 iken talep 25 tüm talep karşılanır. ) P(Y=1 Q=25)=P(D=26)=0,12 P(Y=2 Q=25)=P(D=27)=0,10 P(Y=3 Q=25)=P(D=28)=0,10 P(Y=4 Q=25)=P(D=29)=0,05 E Y = y Y y. P(Y = y) = y. P(Y = y) E[Y]=0.0,10+1.0,12+2.0,10+3.0,10+4.0,05=0,82 ıstakoz. 4 y=1 Ortalama elde kalan ıstakoz miktarı=1,44 Ortalama karşılanamayan ıstakoz talebi= 0,82 π=7,5 $/adet C o =6 $/adet Ortalama kâr=(25*7,5)-(1,44*6)-(0,82*7,5) =187,5 (8,64) (6,15) =172,71 $ Bir Kerelik Karar: Sürekli Versiyon Bu derste talebin F D (d) birikimli dağılım ve f D (d) olasılık yoğunluk fonksiyonuna sahip rassal değişken olduğunu varsayıyoruz. D Normal rassal değişken olsun N(μ, σ) Geçmiş talep verisinden tahmin edilebilir. Çoğu zaman talebi doğru bir şekilde modeller Amaç: Beklenen maliyeti minimize et 4

5 Örnek: Gazeteci Çocuk Modeli Her günün başında, bir gazeteci saatin alacağı gazete sayısına karar vermek zorundadır. Günlük satışlar tam olarak tahmin edilemez ve geçmiş satış rakamlarından talebin (D) ortalaması µ=11.73 ve standart sapması σ=4.74 olan Normal dağılıma uyduğu tahmin edilmiştir. Gazete satış fiyatı 75 kuruş ve maliyeti 25 kuruştur. Gün sonunda elde kalan gazeteler, adedi 10 kuruştan geri iade edilmektedir. Optimal sipariş miktarını belirleyin. Örnek: Gazeteci Çocuk Modeli (devam) Kritik oran, matematiksel olarak türetilebilir ve optimal satın alınacak gazete sayısının F D (Q*) = π/ (π + c o ) ile bulunduğu gösterilebilir. Burada birim kar kaybı = satış fiyatı - alış fiyatı π = = 50 Fazla gazete başına kayıp = alış fiyatı - geri iade fiyatı c 0 = =15 F D (Q*) = π / (π + c o ) = 0.77 P( D < Q* ) = 0.77 Q* ı nasıl bulabiliriz? Optimal Sipariş Miktarının Belirlenmesi Optimal Siparis Miktarinin Belirlenmesi f(z) z = 0.74, μ = ve σ = 4.74 Z Z Q z m 15. Q * = zs + m Gazeteci her gün 15 gazete sipariş etmelidir. 5

6 Optimal Siparis Miktarinin Belirlenmesi Örnek: Talep Düzgün Dağılım Öğrenciler düzenleyecekleri etkinliğe katkı sağlamak amacıyla t-shirt satmayı planlıyor. T-shirt talebinin 48 ile 72 arasında eşit olasılıklı olarak dağıldığı varsayılıyor. Her bir t-shirt 3.50 $ a mal olmakta ve 5.00 $ dan satılacaktır. Yeterince t-shirt satın alınmaması durumunda katlanılan maliyet sadece kâr kaybı olacaktır. T-shirtler üzerine etkinliğin logosu basılı olduğu için etkinlik öncesinde satılamayan ve elde kalan t-shirtler tanesi ancak 2.50 $ dan satılabilecektir. Sipariş maliyetinin çok yüksek olması nedeniyle yalnızca tek sefer sipariş verilebilmektedir. Öğrencilerin 66 adet t-shirt sipariş etmesi halinde beklenen (ortalama) kârı bulun. Örnek: Talep Düzgün Dağılım Örnek: Talep Düzgün Dağılım f(d) 1/ X=Elde kalan tişört sayısı X=Q-d Q=66 adet π=1,5 TL/adet 48 Q=66 72 d Y=Karşılanamayan tişört talebi Y=d-Q E[X]=6,75 adet E[Y]=0,75 det C o = 1 TL/adet E X x. f ( x) dx Q 66 1 (Q d). f (d) dd (66 d) dd d48 d d dd d dd d 2 d48 d48 6,75 EY y. f (y) dy (d Q). f (d) dd ( d 66) dd d Q d d. dd 66. dd d 66. d ,75 E[kâr]=(66*1,5)-(6,75*1)-(0,75*1,5) =(99)-(6,75)-(1,125) =91,125 TL 6

DERS 8 BELIRSIZ TALEP DURUMUNDA STOK KONTROL. Zamanlama Kararları. Bir Seferlik Karar

DERS 8 BELIRSIZ TALEP DURUMUNDA STOK KONTROL. Zamanlama Kararları. Bir Seferlik Karar DERS 8 BELIRSIZ TALEP DURUMUNDA STOK KONTROL Zamanlama Kararları Miktar kararları Ne zaman sipariş verilecek? kararıyla birlikte verilir. Bu karar, stok yönetimindeki ana kararlardan biridir. Ne zaman

Detaylı

EME Sistem Simülasyonu. Giriş. Ertelenmiş Talep (Backorder) / Kayıp Satış (Lost Sales) Sürekli / Periyodik Gözden Geçirme

EME Sistem Simülasyonu. Giriş. Ertelenmiş Talep (Backorder) / Kayıp Satış (Lost Sales) Sürekli / Periyodik Gözden Geçirme EME 7 Giriş Sistem Simülasyonu Simülasyon problemlerinin önemli bir bölümü stok sistemlerini içerir. Bu derste basit bir stokastik stok Simulasyon Örnekleri Ders kontrol sistemi ele alınıp, sistemin isleyişi

Detaylı

EME SISTEM SİMÜLASYONU. Giriş. Ertelenmiş Talep (Backorder) / Kayıp Satış (Lost Sales) Sürekli / Periyodik Gözden Geçirme

EME SISTEM SİMÜLASYONU. Giriş. Ertelenmiş Talep (Backorder) / Kayıp Satış (Lost Sales) Sürekli / Periyodik Gözden Geçirme .. Giriş EME SISTEM SİMÜLASYONU Simülasyon problemlerinin önemli bir bölümü stok sistemlerini içerir. Bu derste basit bir stokastik stok kontrol sistemi ele alınıp, sistemin isleyişi elle simule Simulasyon

Detaylı

DERS 9. Belirsiz Talep Durumunda Stok Kontrol-II. Terminoloji. Describing Demand. Zamanlama Kararları. Bir Seferlik Kararlar

DERS 9. Belirsiz Talep Durumunda Stok Kontrol-II. Terminoloji. Describing Demand. Zamanlama Kararları. Bir Seferlik Kararlar 1 DES 9 lama Kararları Belirsiz Talep Durumunda Stok Kontrol-II Bir Seferlik Kararlar Sürekli Kararlar Sürekli Gözden Geçirme Sistemleri Kesikli lı Kararlar Periyodik Gözden Geçirme Sistemleri EO, EP EO

Detaylı

KLÜ İİBF-İŞLETME * KANTİTATİF KARAR VERME TEKNİKLERİ

KLÜ İİBF-İŞLETME * KANTİTATİF KARAR VERME TEKNİKLERİ SORU 1. ASMALI BAKKAL Asmalı Bakkal'ın sahibi Nuri Amca, bir hafta boyunca satacağı ekmeklere ilişkin olarak ekmek fırınına vereceği günlük sipariş miktarı için hafta başında karar vermek zorundadır. Bunun

Detaylı

Herhangi bir rastgele değişken için kümülatif dağılım fonksiyonu/cumulative distribution function (KDF/CDF) şu şekilde tanımlanır.

Herhangi bir rastgele değişken için kümülatif dağılım fonksiyonu/cumulative distribution function (KDF/CDF) şu şekilde tanımlanır. Kümülatif Dağılım Fonksiyonları Herhangi bir rastgele değişken için kümülatif dağılım fonksiyonu/cumulative distribution function (KDF/CDF) şu şekilde tanımlanır. F X (x) = P (X x) = x f X(x ) dx Sürekli

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

Birden Fazla RDnin Bileşik Olasılık Fonksiyonları

Birden Fazla RDnin Bileşik Olasılık Fonksiyonları Birden Fazla RDnin Bileşik Olasılık Fonksiyonları Birden fazla x 1, x 2,..., x n gibi RDlerimiz olsun. Bunların bileşik olasılık fonksiyonları kesikli ve rastgele RDler için sırasıyla şu şekilde tanımlanır

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

Ders 4: Rastgele Değişkenler ve Dağılımları

Ders 4: Rastgele Değişkenler ve Dağılımları Ders 4: Rastgele Değişkenler ve Dağılımları Rastgele değişken kavramı Kesikli ve sürekli rastgele değişkenler İki boyutlu rastgele değişkenler Beklenen değer Varyans Örnek uzaydaki her elemanı bir sayıyla

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ

WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ SÜREKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 WEIBULL DAĞILIMI Weibull dağılımı, pek çok farklı sistemlerin bozulana kadar geçen süreleri ile ilgilenir. Dağılımın

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 16 BENZETİM ÖDEV SETİ Ödev 1. Bir depo ve N adet müşteriden oluşan bir taşımacılık sisteminde araç depodan başlayıp bütün müşterileri teker teker ziyaret ederek depoya geri dönmektedir. Sistemdeki

Detaylı

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar.

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar. 9..03 EME 305 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)

Detaylı

Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER

Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER Parametrik Olmayan İstatistik Prof. Dr. Cenk ÖZLER Not: Beklenen Frekansı 5 in altında olan gruplar varsa, bu gruplar bir önceki veya bir sonraki grupla birleştirilir. Hipotezler χ 2 Dağılışa Uyum Testi

Detaylı

EME 3105 SİSTEM SİMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9

EME 3105 SİSTEM SİMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9 EME 3105 1 Girdi Analizi Prosedürü SİSTEM SİMÜLASYONU Modellenecek sistemi (prosesi) dokümante et Veri toplamak için bir plan geliştir Veri topla Verilerin grafiksel ve istatistiksel analizini yap Girdi

Detaylı

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(2) Örnek (Ekonomik Sipariş Miktarı Modeli)(1)

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(2) Örnek (Ekonomik Sipariş Miktarı Modeli)(1) Stok Kontrol Önceki Derslerin Hatırlatması Ders 7 Farklı Bir Stok Yönetimi Durumu Uzun Dönemli Stok Problemi Talep hızı sabit, biliniyor Birim ürün maliyeti sabit Sipariş maliyeti sabit Tedarik Süresi

Detaylı

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER DOÇ. DR. NİHAL ERGİNEL 2015 X beklenen değeri B[X] ile gösterilir. B[X] = BEKLENEN DEĞER Belli bir malzeme taşınan kolilerin ağırlıkları

Detaylı

Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Simülasyonda İstatiksel Modeller Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(1) Örnek (Ekonomik Sipariş Miktarı Modeli)(2)

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(1) Örnek (Ekonomik Sipariş Miktarı Modeli)(2) Stok Kontrol Önceki Derslerin Hatırlatması Ders 5 Farklı Bir Stok Yönetimi Durumu Uzun Dönemli Stok Problemi Talep hızı sabit oranlı, biliniyor Birim ürün maliyeti sabit Sipariş maliyeti sabit Tedarik

Detaylı

ENM-3105 Sistem Simulasyonu Kısa Sınav 1

ENM-3105 Sistem Simulasyonu Kısa Sınav 1 ENM-3105 Sistem Simulasyonu Kısa Sınav 1 Sınav Tarihi ve Yeri: 06 Kasım 2014, Perşembe, İlk ders, B203 No lu Derslik) (Kısa Sınav 1 de aşağıda verilen sorulardan birinin benzeri sorulacaktır.) Soru 1)

Detaylı

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI Prof. Dr. Nezir KÖSE 30.12.2013 S-1) Ankara ilinde satın alınan televizyonların %40 ı A-firması tarafından üretilmektedir.

Detaylı

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ Günümüz simülasyonları gerçek sistem davranışlarını, zamanın bir fonksiyonu olduğu düşüncesine dayanan Monte Carlo yöntemine dayanır. 1.

Detaylı

Merkezi Limit Teoremi

Merkezi Limit Teoremi Örnekleme Dağılımı Merkezi Limit Teoremi Şimdiye kadar normal dağılıma uygun olan veriler ile ilgili örnekler incelendi. Çarpıklık gösteren veriler söz konusu olduğunda ne yapılması gerekir? Hala normal

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı

Stok Kontrolü 1 (Inventory Control)

Stok Kontrolü 1 (Inventory Control) PAU ENDÜSTRİ MÜHENDİSLİĞİ IENG 318 - Üretim Planlama ve Kontrolü 1 Stok Kontrolü 1 (Inventory Control) Amaç Ürüne olan talep bilindiğinde (yani talep tahmin hatasının sıfır olduğu durumda) stok kontrolü

Detaylı

ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM

ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ KESİKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 GEOMETRİK DAĞILIM Bir Bernoulli deneyi ilk olumlu sonuç elde edilmesine kadar tekrarlansın. X: ilk olumlu sonucun

Detaylı

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( )

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( ) İKİ DEĞİŞKENLİ OLASILIK Rassal bir deneme yapılmakta ve farklı iki olay ile ilgilenilmektedir. A 1, A 2,,A i olayları bağdaşmaz ve bütünü kapsayıcıdır. B 1, B 2,,B j olayları bağdaşmaz ve bütünü kapsayıcıdır.

Detaylı

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan 1 Ders Planı 1. Karar Problemleri i. Karar problemlerinin bileşenleri ii. Değerler, amaçlar, bağlam iii. Etki diagramları 2. Model Girdilerinde Belirsizlik

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

Konu 5. Bölüm 2 : Proje Değerlendirme ve Gözden Geçirme Tekniği (PERT) Üç zamanlı tahmin yaklaşımı. a : Faaliyetin iyimser gerçekleşme süresi

Konu 5. Bölüm 2 : Proje Değerlendirme ve Gözden Geçirme Tekniği (PERT) Üç zamanlı tahmin yaklaşımı. a : Faaliyetin iyimser gerçekleşme süresi Proje Yönetimi ölüm : Proje eğerlendirme ve özden eçirme Tekniği (PRT) Konu PRT Proje Planlamasında Olasılıksal Yaklaşım Üç zamanlı tahmin yaklaşımı a : aaliyetin iyimser gerçekleşme süresi m : aaliyetin

Detaylı

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler Rastgele Değişkenlerin Dağılımları Mühendislikte İstatistik Yöntemler Ayrık Rastgele Değişkenler ve Olasılık Dağılımları Yapılan çalışmalarda elde edilen verilerin dağılışı ve dağılış fonksiyonu her seferinde

Detaylı

Simülasyonda İstatiksel Modeller

Simülasyonda İstatiksel Modeller Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun

Detaylı

İSTATİSTİK I KAVRAMLARININ

İSTATİSTİK I KAVRAMLARININ YTÜ-İktisat İstatistik II İstatistik I Gözden Geçirme İSTATİSTİK I KAVRAMLARININ GÖZDEN GEÇİRİLMESİ Hüseyin Taştan Yıldız Teknik Üniversitesi, İktisat Bölümü, email: tastan@yildiz.edu.tr YTÜ-İktisat İstatistik

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL İSTATİSTİKSEL TAHMİN Örnekten anakütle parametrelerinin tahmin edilmesidir. İki tür tahminleme yöntemi vardır:

Detaylı

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30)

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30) ENM 316 BENZETİM ÖDEV SETİ Ödev 1. Bir projede A, B, C, D, E ve F olmak üzere 6 faaliyet vardır. Projenin tamamlanması için bu faaliyetlerin sırası ile yapılması gerekmektedir. Her faaliyetin tamamlanması

Detaylı

KESİKLİ DÜZGÜN DAĞILIM

KESİKLİ DÜZGÜN DAĞILIM KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

8. Uygulama. Bazı Sürekli Dağılımlar

8. Uygulama. Bazı Sürekli Dağılımlar 8. Uygulama Bazı Sürekli Dağılımlar : Bir tür böcek 6 gün yaşadıktan sonra iki gün içinde aynı miktarlarda azalıp ölmektedir. X rasgele değişkeni bu türden bir böceğin ömrü olmak üzere, X U (6,8) dır.

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R Geçen Ders Envanter yonetımı: Gazetecı problemı Rastsal Rakamlar Üret Talebi hesapla Geliri hesapla Toplam maliyeti hesapla Günlük ve aylık

Detaylı

YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri-

YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri- YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri- Hazırlayan Yrd. Doç. Selçuk Üniversitesi Mühendislik Fakültesi - Endüstri Mühendisliği Bölümü Giriş Zaman içerisinde tamamen önceden kestirilemeyecek şekilde

Detaylı

STOK VE STOK YÖNETİMİ.

STOK VE STOK YÖNETİMİ. STOK YÖNETİMİ STOK VE STOK YÖNETİMİ. Bir işletmede gereksinim duyulana kadar bekletilen malzemelere stok denir. Her kuruluş talep ile arz arasında bir tampon görevini görmesi için stok bulundurur. Stok

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL PARAMETRİK OLMAYAN TESTLER Daha önce incelediğimiz testler, normal dağılmış ana kütleden örneklerin

Detaylı

SÜREKLİ( CONTINUOUS) OLASILIK

SÜREKLİ( CONTINUOUS) OLASILIK SÜREKLİ( CONTINUOUS) OLASILIK DAĞILIMLARI Sürekli bir random değişken (a,b) aralığındaki her değeri alabiliyorsa bu değişkene ait olasılık dağılım fonksiyonunun grafiğinde eğri altında kalan alan bize

Detaylı

ARALIK TAHMİNİ (INTERVAL ESTIMATION):

ARALIK TAHMİNİ (INTERVAL ESTIMATION): YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

Bekleme Hattı Teorisi

Bekleme Hattı Teorisi Bekleme Hattı Teorisi Sürekli Parametreli Markov Zincirleri Tanım 1. * +, durum uzayı * +olan sürekli parametreli bir süreç olsun. Aşağıdaki özellik geçerli olduğunda bu sürece sürekli parametreli Markov

Detaylı

Olasılık ve İstatistik Hatırlatma

Olasılık ve İstatistik Hatırlatma Olasılık ve İstatistik Hatırlatma BSM 445 Kuyruk Teorisi Güz 014 Yrd. Doç. Dr. Ferhat Dikbıyık Bir olayın olasılığı bize ne anlatır? Verilen bir olasılığın manası nedir? Örnek: Tavlada düşeş atma olasılığı

Detaylı

Girişimcilikte Simülasyon: Eğitimcinin Eğitimi

Girişimcilikte Simülasyon: Eğitimcinin Eğitimi Girişimcilikte Simülasyon: Eğitimcinin Eğitimi Giriş Modeller Uygulamalar Risk analizi Olası Analiz Simülasyon Yöntemi Envanter Simülasyonu Bekleme Hatları Avantajlar ve dezavantajlar Referanslar SUNUM

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

MATEMATİK-II dersi. Bankacılık ve Finans, İşletme, Uluslararası Ticaret. Bölümleri için FİNAL Çalışma Soruları

MATEMATİK-II dersi. Bankacılık ve Finans, İşletme, Uluslararası Ticaret. Bölümleri için FİNAL Çalışma Soruları MATEMATİK-II dersi Bankacılık ve Finans, İşletme, Uluslararası Ticaret Bölümleri için FİNAL Çalışma Soruları ] e d =? = u d= du du d= udu u u e d= e d= e = edu= e + c= e + c ] e d =? = + = e + c e d e

Detaylı

11.1 TEDARİK ZİNCİRİNDE GÜVENLİK STOĞUNUN ROLÜ

11.1 TEDARİK ZİNCİRİNDE GÜVENLİK STOĞUNUN ROLÜ 11.1 TEARİK ZİNCİRİNE GÜVENİK STOĞUNUN ROÜ Güvenlik stoğu talebin tahmin edileni aşması durumunda oluşan talebi karşılamak için elde tutulan bir stoktur. Talep tahminlerindeki belirsizlik ve talebin tahmin

Detaylı

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi Normallik Varsayımı ve Ençok Olabilirlik Yöntemi EO Açıklayıcı Örnekler Ekonometri 1 Konu 14 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike

Detaylı

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble.

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble. 1 Rastgele Süreçler Olasılık taması Rastgele Deney Çıktı Örnek Uzay, S (s) Zamanın Fonksiy onu (t, s) Olayları Tanımla Rastgele süreç konsepti (Ensemble) deney (t,s 1 ) 1 t Örnek Fonksiyonlar (t,s ) t

Detaylı

BMÜ-421 BENZETIM VE MODELLEME STOKASTİK ÜRETEÇLER. İlhan AYDIN

BMÜ-421 BENZETIM VE MODELLEME STOKASTİK ÜRETEÇLER. İlhan AYDIN BMÜ-421 BENZETIM VE MODELLEME STOKASTİK ÜRETEÇLER İlhan AYDIN RASGELE SAYI ÜRETEÇLERİ BMÜ-421 Benzetim ve Modelleme 2 Deterministik terimler ile doğayı tanımlamak geleneksel bir yoldur. Doğa ve mühendislik

Detaylı

3/6/2013. Ders 6: Kesikli Olasılık Dağılımları

3/6/2013. Ders 6: Kesikli Olasılık Dağılımları Ders 6: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

TEDARİK ZİNCİRİ YÖNETİMİ ÖZET ÜNİTE

TEDARİK ZİNCİRİ YÖNETİMİ ÖZET ÜNİTE TEDARİK ZİNCİRİ YÖNETİMİ ÖZET ÜNİTE 8 ÜNİTE 8 STOK YÖNETİMİ Stok tutma işletmeler açısından oldukça büyük ve maliyetli bir yatırımdır.stok yönetiminin etkin bir biçimde gerçekleştirilmesi gerek nakit akış

Detaylı

DETERMİNİSTİK ENVANTER MODELLERİ

DETERMİNİSTİK ENVANTER MODELLERİ SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II DETERMİNİSTİK ENVANTER MODELLERİ DERS NOTLARI DETERMİNİSTİK ENVANTER MODELLERİ Bu derste deterministik envanter modelleri görülecektir.

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ MARKOV SÜREÇLERİ. Markov Analizi

Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ MARKOV SÜREÇLERİ. Markov Analizi Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ MARKOV SÜREÇLERİ Doç. Dr. İhsan KAYA Markov Analizi Markov analizi, bugün çalışan bir makinenin ertesi gün arızalanma olasılığının

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü umutokkan@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN Hidrolik Anabilim Dalı Balıkesir Üniversitesi Balıkesir Üniversitesi İnşaat

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 7 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

Matematik Ders Notları. Doç. Dr. Murat Donduran

Matematik Ders Notları. Doç. Dr. Murat Donduran Matematik Ders Notları Doç. Dr. Murat Donduran Mart 18, 28 2 İçindekiler 1 Tanımlı Integral Uygulamaları 5 1.1 Olasılık.............................. 5 3 4 İÇINDEKILER Bölüm 1 Tanımlı Integral Uygulamaları

Detaylı

Rastlantı Değişkenleri

Rastlantı Değişkenleri Rastlantı Değişkenleri Olasılık Kütle Fonk. Example: A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers,

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

MONTE CARLO BENZETİMİ

MONTE CARLO BENZETİMİ MONTE CARLO BENZETİMİ U(0,1) rassal değişkenler kullanılarak (zamanın önemli bir rolü olmadığı) stokastik ya da deterministik problemlerin çözümünde kullanılan bir tekniktir. Monte Carlo simülasyonu, genellikle

Detaylı

Özet: Zaman ve Belirsizlik Zamanlararası Fiyatlar ve Şimdiki Değer Belirsizlik Tersine Dödürülemez Yatırımlar ve Opsiyon Değer

Özet: Zaman ve Belirsizlik Zamanlararası Fiyatlar ve Şimdiki Değer Belirsizlik Tersine Dödürülemez Yatırımlar ve Opsiyon Değer Özet: Zaman ve Belirsizlik Zamanlararası Fiyatlar ve Şimdiki Değer Belirsizlik Tersine Dödürülemez Yatırımlar ve Opsiyon Değer Zaman Đktisadı: Bazı Konular Şimdi nakit mi gelecekte nakit ödemeleri mi?

Detaylı

DERS NOTU 01 TÜKETİCİ TEORİSİ

DERS NOTU 01 TÜKETİCİ TEORİSİ DERS NOTU 01 TÜKETİCİ TEORİSİ Bugünki dersin işleniş planı: I. Hanehalkı Karar Problemi... 1 A. Bütçe Doğrusu... 1 II. Seçimin Temeli: Fayda... 5 A. Azalan Marjinal Fayda... 5 B. Fayda Fonksiyonu... 9

Detaylı

Stok Yönetimi. Pamukkale Üniversitesi Endüstri Mühendisliği Bölümü IENG 227 Modern Üretim Yaklaşımları

Stok Yönetimi. Pamukkale Üniversitesi Endüstri Mühendisliği Bölümü IENG 227 Modern Üretim Yaklaşımları Stok Yönetimi Pamukkale Üniversitesi Endüstri Mühendisliği Bölümü IENG 227 Modern Üretim Yaklaşımları Stok nedir? Stok, işletmenin ihtiyaçlarını karşılamak üzere bulundurduğu bitmiş ürün veya çeşitli düzeylerden

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

NİCELİKSEL KONTROL GRAFİKLERİ

NİCELİKSEL KONTROL GRAFİKLERİ NİCELİKSEL KONTROL GRAFİKLERİ Prof. Dr. Nihal ERGİNEL Anadolu Üniversitesi X BİRİMLER VE HAREKETLİ DEĞİŞİM ARALIĞI KONTROL GRAFİĞİ X- Birimler Kontrol Grafiği n= birimlik örnekler alınır. Üretim hızı oldukça

Detaylı

ÜSTEL DÜZLEŞTİRME YÖNTEMİ

ÜSTEL DÜZLEŞTİRME YÖNTEMİ ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik

Detaylı

İstatistik I Ders Notları

İstatistik I Ders Notları İstatistik I Ders Notları Sürekli Rassal Değişkenler Hüseyin Taştan Kasım 2, 26 İçindekiler Sürekli Rassal Değişkenlerin Özellikleri 2 2 Olasılık Yoğunluk Fonksiyonu 2 Birikimli Olasılık Fonksiyonu 6 4

Detaylı

Rassal Değişken Üretimi

Rassal Değişken Üretimi Rassal Değişken Üretimi Doç. Dr. Mehmet AKSARAYLI GİRİŞ Yaşadığımız ya da karşılaştığımız olayların sonuçları farlılık göstermektedir. Sonuçları farklılık gösteren bu olaylar, tesadüfü olaylar olarak adlandırılır.

Detaylı

Notasyonlar ve Genel Kurallar

Notasyonlar ve Genel Kurallar Notasyonlar ve Genel Kurallar BSM 445 Kuyruk Teorisi Güz 2014 Yrd. Doç. Dr. Ferhat Dikbıyık Bir kuyruğun temel bileşenleri 1. Varış Prosesi 6. Servis disiplinleri 2. Servis zamanı dağılımı 4. Bekleme yerleri

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

Hipotez Testleri. Mühendislikte İstatistik Yöntemler

Hipotez Testleri. Mühendislikte İstatistik Yöntemler Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ

Detaylı

YÖNEYLEM ARAŞTIRMASI-II Hafta 14

YÖNEYLEM ARAŞTIRMASI-II Hafta 14 9.0.07 YÖNEYLEM ARAŞTIRMASI-II Hafta ERT ANALİZİ Olasılıksal roje Değerlendirme ve Gözden Geçirme Tekniği ERT (robabilistic Evaluation and Review Technique) Eğer projenin faaliyetlerinin tamamlanma süresi

Detaylı

STOK YÖNETİMİ. Prof.Dr.Aydın Ulucan

STOK YÖNETİMİ. Prof.Dr.Aydın Ulucan STOK YÖNETİMİ Prof.Dr.Aydın Ulucan Giriş Stok işletmelerde kullanılmak üzere bir mal ve kaynağın depolanmış halidir. Daha ticari bir anlamla, gelecekteki talebi karşılamak için malın depolanması da denilebilir.

Detaylı

ENM 316 BENZETİM. Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30)

ENM 316 BENZETİM. Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30) ENM 316 BENZETİM ÖDEV 1: Bir projede A, B, C, D, E ve F olmak üzere 6 faaliyet vardır. Projenin tamamlanması için bu faaliyetlerin sırası ile yapılması gerekmektedir. Her faaliyetin tamamlanması için gereken

Detaylı

RISK ANALIZI SINAVI WEB EKİM Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir:

RISK ANALIZI SINAVI WEB EKİM Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir: RISK ANALIZI SINAVI WEB EKİM 2017 SORU 1: Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir: 115 240 325 570 750 Hasarların α = 1 ve λ parametreli Gamma(α, λ) dağılıma

Detaylı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı 1 Bernoulli Dağılımı Bir şans değişkeninin bernoulli dağılımı göstermesi için ilgilenilen süreçte bernoulli

Detaylı