KOMPLO TEORİLERİ - Gizli ilimler Sitesi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "KOMPLO TEORİLERİ - Gizli ilimler Sitesi"

Transkript

1 Gerçek hayatta olduğu gibi bilimde de, birtakım zincirleme olaylarda küçük değişiklikleri büyük sorunlar haline getiren bir kriz noktası bulunduğu bilinir. Kaos, bu noktaların her yerde olduğu anlamına gelir.işte bu nokta kaosun günlük dilde kullanılan kargaşa anlamından farklı olarak öncelikle fizikteki kullanımına tekabül eder. Her ne kadar bilim dünyasındaki ününü Edward Lorenz ile birlikte, 20. yüzyılın ikinci yarısından itibaren kazanmaya başlansa da kavramın çıkışı çok daha eskiye dayanır. Yunan ve Çin mitolojilerinin yaradılış efsanelerinde rastlanmakla birlikte eski Yunan filozofları tarafından da dünyanın oluşum aşamasını anlamlandırmak için felsefede kullanılmaya başlanmıştır. Ancak bilim tarihine girişi 18. yüzyılda olmuştur. Önceleri Poincare, Weierstraas Cantor, Peano gibi matematikçilerin ilgisini çeken kaos daha sonraları daha çok fizikçi-lerin ilgi gösterdikleri bir konu olmuştur. İşte 18. ve 19.yüzyıllarda kavrama pek çok farklı bilim insanı tarafından getirilen anlayışlar kaos teorisi nin çıkışına kaynaklık etmiştir.[1] Kaos kuramı, kaos teorisi veya kargaşa kuramı; yapısal olarak bir fizik teorisi ya da matematiksel bir tümevarım değil, fiziksel gerçeklik parçalarının bir bütün olarak eğilimini açıklamaya yarayan bir yöntemdir. Bir sigara dumanının havada yaptığı şekiller tamamen düzensiz ve bağımsız rastlantıların ürünü olarak görülebilir. Ancak bir teorik fizikçi dumanın bu dinamiğinin aslında ortamdaki birçok parametre ve etken ile belirlendiği görüşündedir. Bu girdiler o kadar çoktur ve o kadar değişkendir ki incelemek ve net bir kanıya varmak imkânsızdır. Parametrelerin bu denli değişken olması aslında o parametrelerin de bir çıktı olmasından kaynaklanır. Dumanın hareketine neden olan hafif bir hava akımı aslında odanın başka yerindeki bir sıcaklık değişikliği ve basınç farkının neden olduğu bir harekettir. Ayrıca dumanın dinamiğini etkileyen girdiler birbirlerine bağlı olabilirler ki bu durumu tam anlamıyla içinden çıkılmaz hâle sokar. Sigara dumanı örneğine geri dönersek, hava akımının yalnızca sıcaklık değişiminden kaynaklandığını farz edelim (ki pratikte bu milyonlarca etkenden biridir). Sıcaklık değişimi ortamda basınç farkı yarattığından hava akımını etkiler. Ancak oluşan hava akımı sıcaklıkta tekrar değişimlere neden olacağından farklı girdilerle tekrar bir fonksiyon oluşturur ve bu değişim sonsuza kadar devam eder. Birçok farklı girdinin sürekli değişerek fiziksel değişimler ve farklı düzenler yaratması ve bu düzenlerin yine kendisini etkilemesi insan zekasının ve günümüzdeki gözlem ve bilimsel tahmin yeteneklerinin çok çok üstünde olmasından dolayı kaos olarak nitelendirilir. Oysa tüm bu değişimlere neden olan fiziksel yasalara ve matematiksel açıklamalara hakimiz. İşte bu noktada karşımıza düzen ve anarşinin aslında birbirine ne kadar sıkı sıkıya sarılmış olduğu ortaya çıkar. Fiziksel yasalar ne kadar basit olursa olsun sonuç o kadar rastlantısal ve karmaşa doludur.[2] Kaos bazen günlük hayatta buzdağının görünen kısmı gibi bize sadece burnunun ucunu gösterir. Örneğin musluktan akan su bazen düzenli damlasa da bazen düzensiz biçimde 1 / 13

2 damlar. kalbimiz çoğu zaman düzenli atsa da bazen çarpıntı yapar. Sigara dumanı belli bir yere kadar düzdün yükseliyor gibi gözükse de bir anda kırılmaya ve çalkalanmaya başlar. Borsada, önemli iç ve dış siyası olaylar olmadığı zamanlar bile düzensiz gibi gözüken sürekli bir dalgalanma vardır. Kaos teoremi, böyle günlük yaşamda tanımlanabilen kaotik olayların arkasında yatan dinamikler olduğunu ve bunların Lineer olmayan (nonlineer) denklem sistemleri ile beli bir yere kadar tahmin edilebileceğini savunan matematiğin teoremidir (Belli bir yere kadar diyorum çünkü Kelebek etkisi yüzünden sürekli hesaplamaların imkansızlığı ortaya çıkıyor). Bu non-lineer denklem sistemleri grafiğe döküldüğü zaman atraktör adı verilen şekiller ortaya çıkmaktadır. [3] Sayısal bilgisayarların ve onların çıktılarını çok kolay görülebilir hâle getiren ekranların ortaya çıkmasıyla gelişti ve son on yıl içinde popülerlik kazandı. Ancak kaotik davranış gösteren sistemlerde kestirim yapmanın imkânsızlığı bu popüler görüntüyle birleşince, bilim adamları konuya oldukça kuşkucu bir gözle bakmaya başladılar. Fakat son yıllarda kaos teorisinin ve onun bir uzantısı olan fraktal geometrinin, borsadan meteorolojiye, iletişimden tıbba, kimyadan mekaniğe kadar uzanan çok farklı dallarda önemli kullanım alanları bulması ile bu kuşkular giderek yok olmaktadır.[2] Kaos Teorisi nin Gelişimi Teoriye temel oluşturan matematiksel ve temel bilimsel bulgular, 18.yüzyıla, hatta bazı gözlemler antik çağlara kadar geri gitmektedir. Yunan ve Çin mitolojilerinde yaradılış efsanelerinde başlangıçta bir kaosun olması rastlantı değildir. Özellikle Çin mitolojisindeki kaosun, bugün bilimsel dilde tanımladığımız olgularla hayret verici bir benzerliği olduğunu görülür. Batı da da daha sonraki dönemlerde bilim adamları tarafından karmaşık olgulara dair gözlemler yapılmıştır. Poincare, Weierstrass, von Koch, Cantor, Peano, Hausdorff, Besikoviç gibi çok üst düzey matematikçiler tarafından bu teorinin temel kavramları bulunmuştur.[2] 1961 yılının kış aylarından bir gün, Lorenz bu ardışık dizilerden birini uzun uzadıya incelemek istediği bir sırada kestirme bir yol izlemeye kalkıştı. Programı tekrar başa dönüp çalıştırmak yerine ortalardan bir yerden başladı. Makineye başlangıç durumundaki şartları vermek için, daha önce yazıcıdan çıkardığı dizelere bakıp oradaki sayıları klavyeden aynen girdi. Sonra da hem makinenin gürültüsünden kaçmak hem de bir fincan kahve içmek üzere koridorun sonundaki hole gitti. 1 saat kadar sonra döndüğünde hiç ummadığı bir şeyle karşılaştı; hem de 2 / 13

3 öyle bir şey ki bununla artık yepyeni bir bilim dalı filizlenmeye başlıyordu. Bilgisayarın yaptığı bu dökümde bir önceki dökümün tıpatıp tekrarlanması gerekirdi. Lorenz aynı sayıları makineye kendi eliyle girmişti. Programda bir değişiklik yoktu oysa Lorenz yazıcıdan yeni çıkan döküme baktığında gördüğü şey şuydu: Hava durumu bir önceki dökümde yer alan şeklinden o kadar hızla uzaklaşmaktaydı ki bir kaç aylık bir süre zarfında aradaki bütün benzerlik ortadan kalkmıştı. Lorenz, bir bu sayı kümesine baktı bir de önceki sayı kümesine. Sanki bir şapkanın içinden rasgele 2 hava durumu seçip almış gibiydi. İlk aklına gelen şey gene vakumlu tüplerden birinin bozulduğu oldu. Birden gerçeğin farkına vardı. Makine bozulmuş falan değildi. Mesele makineye işlediği sayılardan kaynaklanıyordu. Bilgisayarın hafızasına kaydedilen ondalık kesir sayıları 6 haneydi: Yazıcıdan çıkan dökümde ise yerden kazanmak için sadece 3 hane görünüyordu: 506. Lorenz binde birlik bir farkın sonucu etkilemeyeceğini düşünerek sayıyı yuvarlamıştı. Önce grafiksel seyirlerindeki fark çok az olan bu iki olay birbirinin aynısı gibi devam ederken belli bir noktadan sonra yavaş yavaş farklı noktalara yönelmeye başlıyor ve bir süre sonra aralarında hiçbir benzerlik kalmıyor. Böylece kelebek etkisi kavramı ortaya çıkmıştır. Lorenz konuyu tamamen gelişigüzelliğe yönelen bir öngörülebilirlik imajı olarak sadece Kelebek Etkisine getirip o halde bıraksa sadece felaket tellallığı yapmış olurdu. Oysa meteoroloji modelinde bu gelişigüzelliğin ötesinde bir şeyler daha bulunduğunu fark etti. İnce bir geometrik yapı çerçevesinde, gelişigüzellik kılığına bürünmüş bir düzenin mevcut olduğunu gördü.[4] Kaos Teorisi ve Kelebek Etkisi Bir kelebek Çin de kanat çırpsa, California da kasırgaya sebep olabilir. Meteorolog Ed Lorenz tarafından, meteoroloji bilgisayarına verilerin küsuratlarının yanlış girilmesi sonucu bambaşka sonuçların ortaya çıkması yüzünden keşfediliyor. Hesaplanamayan her veri, her küsurat bir sonraki adımda katlanarak üst üste binecektir bu ise çok kısa süre sonra sistemi tahmin edilemez kılacaktır. Buna kaos dilinde başlangıç koşullarına hassas bağlılık deniyor. Kelebek etkisi, determinizmini kökünden yıkmıştır, determinizmin [a] adeta sonu olmuştur. 3 / 13

4 Determinizm sayesinde Ay a gidilmiştir, Uydular yörüngelerine oturtulmaktadır. Ama uzun vadede determinizme bel bağlamamak gerekir. Kelebek etkisi yüzünden gelecek hiçbir zaman hesaplanamaz. Teorik olarak evrendeki her parametreyi hesaplayacak ve geleceği tahmin edecek bir bilgisayar yapılsa, her zaman için kesinlikle ihmal edilecek veriler olacaktır, bırakın ihmal edilecek verileri, bu bilgisayarın kendi kullandığı enerji ve bu hesaplamaları yaparken ortaya çıkacak enerji değişimleri bile geleceği tahmin etmeyi imkansız kılıyor. O golü de atmış olsaydık, kaçırmasaydık şimdiye iki sıfır galiptik Futboldan hiç anlamam; ama böyle bir şeyin kelebek etkisi yüzünden mümkün olamayacağını söyleyebilirim. Zira o ilk gol atılsa idi, o andan itibaren bütün olayların gidişatı değişeceği için belki de mağlup bile olunabilirdi. Hatırlayacaksınız, birinci maddedeki kaos teoremi deterministik bir yaklaşımdır.nasıl oluyor diyeceksiniz hem kendisi deterministik oluyor aynı zamanda determinizmi çürütüyor. İşte olayın özünde yatan düşüncelerden birisi de budur. Kaosçular, bunu bir çelişki olarak görmüyorlar. [3] Uygulama Tümevarım Karmaşık sistem teorisinin ardında yatan yaklaşımı felsefe, özellikle de bilim felsefesi açısından incelenecek olunursa, ortaya ilginç bir olgu çıkar. Aslında bugün pozitif bilim olarak nitelendirilen şey, batı uygarlığının ve düşünüş biçiminin bir ürünüdür. Bu yaklaşımın en belirgin özelliği, analitik oluşu yani parçadan tüme yönelmesidir (tümevarım). Genelde karmaşık problemleri çözmede kullanılan ve bazen çok iyi sonuçlar veren bu yöntem gereğince, önce problem parçalanır ve ortaya çıkan daha basit alt problemler incelenir. Sonra, bu alt problemlerin çözümleri birleştirilerek, tüm problemin çözümü oluşturulur. Ancak bu yaklaşım görmezden gelerek ihmal ettiği parçalar arasındaki ilişkilerdir. Böyle bir sistem parçalandığında, bu ilişkiler yok olur ve parçaların tek tek çözümlerinin toplamı, asıl sistemin davranışını vermekten çok uzak olabilir.[2] 4 / 13

5 Tümdengelim Tümevarım yaklaşımının tam tersi ise tümdengelim, yani bütüne bakarak daha alt olgular hakkında çıkarsamalar yapmaktır. Genel anlamda tümevarımı Batı düşüncesinin, tümdengelimi Doğu düşüncesinin ürünü olarak nitelendirmek mümkündür. Kaos ya da karmaşıklık teorisi ise, bu anlamda bir Doğu-Batı sentezi olarak görülebilir. Çok yakın zamana kadar pozitif bilimlerin ilgilendiği alanlar doğrusallığın geçerli olduğu, daha doğrusu çok büyük hatalara yol açmadan varsayılabildiği alanlardır. Doğrusal bir sistemin girdisini x, çıktısını da y kabul edersek, x ile y arasında doğrusal sistemlere özgü şu ilişkiler olacaktır: Bu özellikleri sağlayan sistemlere verilen karmaşık bir girdiyi parçalara ayırıp her birine karşılık gelen çıktıyı bulabilir, sonra bu çıktıların hepsini toplayarak karmaşık girdinin yanıtını elde edebiliriz. Ayrıca, doğrusal bir sistemin girdisini ölçerken yapacağımız ufak bir hata, çıktının hesabında da başlangıçtaki ölçüm hatasına orantılı bir hata verecektir. Hâlbuki doğrusal olmayan bir sistemde Y yi kestirmeye çalıştığımızda ortaya çıkacak hata, X in ölçümündeki ufak hata ile orantılı olmayacak, çok daha ciddi sapma ve yanılmalara yol açacaktır. İşte bu özelliklerinden dolayı doğrusal olmayan sistemler kaotik davranma potansiyelini içlerinde taşırlar. Kaos görüşünün getirdiği en önemli değişikliklerden biri ise, kestirilemez determinizmdir. Sistemin yapısını ne kadar iyi modellersek modelleyelim, bir hata bile (Heisenberg belirsizlik kuralı na göre çok ufak da olsa, mutlaka bir hata olacaktır), yapacağımız kestirmede tamamen yanlış sonuçlara yol açacaktır. Buna başlangıç koşullarına duyarlılık adı verilir ve bu özellikten dolayı sistem tamamen nedensel olarak çalıştığı halde uzun vadeli doğru bir kestirim mümkün olmaz. Bugünkü değerleri ne kadar iyi ölçersek ölçelim, 30 gün sonra saat 12 de hava sıcaklığının ne olacağını kestiremeyiz. Bu görüş paralelinde ortaya konan en ünlü örnek ise Kelebek Etkisi denen modellemedir. Bu modelleme, en basit hâliyle şu iddiayı taşır: Çin de kanat çırpan bir kelebek ABD de bir fırtınaya neden olabilir. Kelebek etkisine verilebilecek bir diğer örnekte yılları arasında süren Amerikan İç Savaşı dır. Amerikanın güney eyaletleri dış işlerde birbirine bağımlı ama iç işlerinde bağımsız olmak yani konfederasyon isterken, kuzey eyaletleri birbirine çok daha katı bir şekilde bağlı olmak isterler, yani federasyon isterler. Ayrıca kuzeyde modern kapitalizmin kuralları gereğince, emek gücüne harcadığı emek karşılığı ücret yani yevmiye ya da maaş ödenirken, güneyde ise köle iş gücü vardır. Kuzey eyaletleri Amerikanın güney eyaletlerindeki köle iş gücünün tasfiye 5 / 13

6 olmasını isterler, çünkü böylece kuzeye gelecek olan fazla iş gücü yüzünden işçilik ücretleri düşecektir. Bundan dolayı Amerikanın kuzey ve güney eyaletleri arasında 1861 yılında savaş çıkar ve kuzey eyaletleri Amerikanın güney eyaletlerinin limanlarını ablukaya alırlar. Amerikanın güney eyaletleri ise İngiltere ve Rusya ya pamuk satamaz ve 19. yüzyılın en önemli sanayilerinden birisi tekstildir. Bunun üzerine Rusya ve İngiltere pamuk yetiştirebileceği alanlar araştırmaya başlar. 1860lardan 1880lere kadar Rusya tüm Orta Asya yı işgal eder, çünkü burası pamuk üretimi için çok elverişlidir. İngiltere ise Hindistan ın Doğu kısmını işgal eder yine pamuk üretimi için. Görüldüğü gibi, Amerika da çıkan bir iç savaş neticesinde Orta Asya yı Rusya işgal ederken Doğu Hindistan ı da İngiltere işgal etmiştir. İşte Kelebek Etkisi ya da Kaos Teorisi buna denir.[2] Kaos Teorisi nin Temel Önermeleri 1. Düzen düzensizliği yaratır. 2. Düzenin anlayamadığımız hali(kaos) varsa ki -illa ki olmalıdır- bundan dolayı düzensiz diyemeyiz. Yani düzenin dışına çıkmak imkânsızdır. 3. Düzensizliğin içinde de bir düzen vardır. 4. Düzen düzensizlikten doğar. 5. Yeni düzende uzlaşma ve bağlılık değişimin ardından çok kısa süreli olarak kendini gösterir / 13

7 Ulaşılan yeni düzen, kendiliğinden örgütlenen bir süreç vasıtasıyla kestirilemez bir yöne doğru gelişir.[2] Kaos Teorisi ve Fraktal Geometri Fraktal geometriden daha önce bahsedildiği için uzun uzun bu konuya girmeyeceğim. Bahsettiğimiz bu yeni anlayış, yeni bir geometri anlayışını da beraberinde getirmiştir. Doğaya baktığımız saman düz çizgiler, düz sınırlar yoktur, ölçek ne kadar küçültülürde küçültülsün sürekli kendini tekrarlayan bir yapı vardır. Fraktal geometri Benoit Mandelbrot tarafından ortaya atılmıştır. Kıyıların uzunluğu fraktal geometri tarafından hesaplanır. Galaksi kümeleri de fraktal geometriye örnektir. Ayrıca hiçbir zaman birbirinin aynısı olmayan kar taneleri de tamamen fraktal geometri çerçevesinde oluşur. [3] Kaos Teorisi ve Astroloji Popüler kültürde kelebek etkisi olarak bilinen bu kavram astrolojiye bakış açımızı da yeniden şekillendiriyor. Eğer evrende her şeyin diğer şeylerle sürekli bir etkileşim içinde olduğunu söylersek hata yapmış sayılmayız. Şimdiye kadar evrene bakışımızda neden ve sonuç ilişkisinin ne kadar köklü biçimde yer aldığını biliyoruz. Eski Grek filozofu Aristo tarafından şekillendirilen, Platon la ruhumuza işleyen bu ilke, Isaac Newton sayesinde matematiksel düzeyde formüle edilmişti. Bu mekanik evren modelinde doğrusal mantıksal açıklamalar sistemine zincirlenmiş durumdaydık. Ancak Lorenz in ortaya koyduğu yeni yaklaşımda aslında hayatın ve fiziksel fenomenlerin içinde kaosun yani düzensizliğin de bir düzeni olduğunu görebiliyoruz. Halen doktora çalışmalarına devam eden astrolog Bernadette Brady, Astrology, a place in chaos adlı kitabında astroloji ile kaos teorisi arasındaki paralellikleri ve her iki sistemin birbiri ile ne kadar çok ortak bağı olduğunu irdeliyor. Kaos teorisine göre herhangi bir sistem, örneğin bu fiziksel olarak bedenimiz ya da bilgisayarınızın ekran koruyucunda rastgele olarak belirdiğini gördüğümüz şekiller de olabilir, kendi içinde bir kalıba ve bu kalıbı ortaya koyan garip çekicilere (strange attractors) sahiptir. Başka bir deyişle, her düzende o düzeni kendi içinde organize ve düzenli kılan iç yapılar vardır. Örneğin trafikte sürekli tıkanan caddeler ve yanan kırmızı, yeşil 7 / 13

8 ışıklar, diyelim ki köprü trafiğinde belirli noktaların belirli zamanlarda sıkışmalarına ya da açılmalarına yol açar. Aynı şey bedenimiz içinde böyledir. Kaostan Çıkan Düzen Peki neden şöyle bakmayalım? Astrolojik haritamız hayatımızı belirli yönlere, eğilimlere ve açılımlara yönelten bir dizge olarak görülemez mi? Kaos teorisinde sistemi değişime uğratan belirli destek noktaları ve başlangıç noktası özellikleri vardır. Örneğin bilgisayarınızdaki ekran koruyucunun vereceği şekilleri önceden siz belirleyebilirsiniz. Bunların sayısını ve değişim hızlarını henüz görüntü rastgele şekillenmeden en başta belirleriz. Astrolojik haritamız da aslında kendi hayatımızın rastgele gibi devinmesinde bir ilk koşul ve düzen olarak görülebilir. Hayatımızın da birbirine benzeyen şekilleri, farklı destek noktaları, yeni şekillerin ve yeni yönelimlerin ortaya çıktığı durumlar vardır. Tıpkı önemli bir Pluton ya da Satürn transitinin devreye girerek farklı koşullar yaratması gibi. Aslında bu transitlere ve ilerletimlere değişik tetikleyiciler gözüyle bakabiliriz. Tıpkı bir kar tanesinin yıldızları gibi, fraktallar yani birbirine eş parçalar, yeni şekiller üretir ve bu benzer parçacıklar kendilerini yeniden yeniden üretmeye, sonsuza kadar gidebilecek şekiller yaratmaya başlar. Astrolojik haritamız bu tür düzenler ve garip çekiciler adı verilen yapılara sahiptir. Kimi kişinin haritasında büyük üçgenler ya da büyük kareler adı verilen açı kalıpları, her haritanın içinde farklı gruplar, gezegen yığılımları ve boş alanlar da vardır. Düzensizlik ve kaos gibi gözüken yapıların içinden kendilerine özgü bir düzen çıkacaktır. Tıpkı eski mitlerin ortaya koyduğu gibi önce kaos vardır, düzen de kaosun içinde çıkar. Astroloji bize kaotik gibi görülen hayatımızın düzenini sembolik düzeyde ifade etmektedir.[5] Edward Norton Lorenz Kimdir? Edward Norton Lorenz (23 Mayıs Nisan 2008) ABD doğumlu matematikçi ve meteorolog. Kaos teorisi ve kelebek etkisi ile bilinir. Kanser tedavisi gören Lorenz, 8 / 13

9 Cambridge deki evinde ölmüştür. Biyografi Lorenz, 23 Mayıs 1917 de West Hartford, Connecticut ta dünyaya geldi. Dartmouth kolejinde, Yeni Hampshire da, Harvard Üniversitesi ve Massachusetts aralarında matematik dersleri aldı. İkinci Dünya Savaşı sırasında Lorenz, ABD hava pilotları için hava çalışanı olarak görev aldı. Savaştan döndükten sonra, meteoroloji üzerine ders almaya devam etti. Lorenz, 1963 yılında MIT te meteorolog olarak çalışırken, bir sistemin başlangıç verilerindeki ufacık değişikliklerin bile, büyük ve öngörülemez sonuçlar doğurabileceğini öngörmüş ve bunu örneklendirmek için 1972 de sunduğu bir çalışmada, bir kelebeğin Amazon ormanlarında kanat çırpmasının Avrupa da fırtına kopmasına sebep olabileceği ifadesini kullanmıştı. Lorenz, sadece üç değişkenle kaos ortamı doğabileceğini keşfetmiş ve daha 19. yüzyılda Fransız matematikçisi Henri Poincaré nin fikir olarak ortaya attığı çok basit bir sistemde çok karmaşık bir dinamiğin ortaya çıkabileceğini kanıtlamıştı. Lorenz in teorisi ve buluşları, sadece matematik alanında değil, biyoloji, fizik ve sosyal bilimler alanında da yeni bir araştırma alanının doğmasına vesile olmuştu. Aldığı Ödüller Carl Gustaf Rossby Araştırma madalyası, Amerikan Meteoroli Sosyetesi Symons Memorial Altın madalyası, Royal Meteorological Society Arkadaş, National Academy of Sciences (U.S.A.) Üye, Norwegian Academy of Science and Letters. 9 / 13

10 Crafoord Prize, Royal Swedish Academy of Sciences Kyoto Prize Mayıs Buys Ballot madalyası [6] Chaos Theory (English) In mathematics, chaos theory describes the behavior of certain dynamical systems that is, systems whose states evolve with time that may exhibit dynamics that are highly sensitive to initial conditions (popularly referred to as the butterfly effect). As a result of this sensitivity, which manifests itself as an exponential growth of perturbations in the initial conditions, the behavior of chaotic systems appears to be random. This happens even though these systems are deterministic, meaning that their future dynamics are fully defined by their initial conditions with no random elements involved. This behavior is known as deterministic chaos, or simply chaos. Chaotic behavior is also observed in natural systems, such as the weather. This may be explained by a chaos-theoretical analysis of a mathematical model of such a system, embodying the laws of physics that are relevant for the natural system. Overview Chaotic behavior has been observed in the laboratory in a variety of systems including electrical circuits, lasers, oscillating chemical reactions, fluid dynamics, and mechanical and 10 / 13

11 magneto-mechanical devices. Observations of chaotic behavior in nature include the dynamics of satellites in the solar system, the time evolution of the magnetic field of celestial bodies, population growth in ecology, the dynamics of the action potentials in neurons, and molecular vibrations. Everyday examples of chaotic systems include weather and climate. There is some controversy over the existence of chaotic dynamics in plate tectonics and in economics. Systems that exhibit mathematical chaos are deterministic and thus orderly in some sense; this technical use of the word chaos is at odds with common parlance, which suggests complete disorder. However, even though they are deterministic, chaotic systems show a strong kind of unpredictability not shown by other deterministic systems. A related field of physics called quantum chaos theory studies systems that follow the laws of quantum mechanics. Recently, another field, called relativistic chaos, has emerged to describe systems that follow the laws of general relativity. This article tries to describe limits on the degree of disorder that computers can model with simple rules that have complex results. For example, the Lorenz system pictured is chaotic, but has a clearly defined structure. Bounded chaos is a useful term for describing models of disorder. Attractors Some dynamical systems are chaotic everywhere (see e.g. Anosov diffeomorphisms) but in many cases chaotic behaviour is found only in a subset of phase space. The cases of most interest arise when the chaotic behaviour takes place on an attractor, since then a large set of initial conditions will lead to orbits that converge to this chaotic region. An easy way to visualize a chaotic attractor is to start with a point in the basin of attraction of the attractor, and then simply plot its subsequent orbit. Because of the topological transitivity condition, this is likely to produce a picture of the entire final attractor. Phase diagram for a damped driven pendulum, with double period motion 11 / 13

12 For instance, in a system describing a pendulum, the phase space might be two-dimensional, consisting of information about position and velocity. One might plot the position of a pendulum against its velocity. A pendulum at rest will be plotted as a point, and one in periodic motion will be plotted as a simple closed curve. When such a plot forms a closed curve, the curve is called an orbit. Our pendulum has an infinite number of such orbits, forming a pencil of nested ellipses about the origin. Minimum complexity of a chaotic system Simple systems can also produce chaos without relying on differential equations. An example is the logistic map, which is a difference equation (recurrence relation) that describes population growth over time. Another example is the Ricker model of population dynamics. Even the evolution of simple discrete systems, such as cellular automata, can heavily depend on initial conditions. Stephen Wolfram has investigated a cellular automaton with this property, termed by him rule 30. A minimal model for conservative (reversible) chaotic behavior is provided by Arnold s cat map. Mathematical theory Sharkovskii s theorem is the basis of the Li and Yorke (1975) proof that any one-dimensional system which exhibits a regular cycle of period three will also display regular cycles of every other length as well as completely chaotic orbits. Mathematicians have devised many additional ways to make quantitative statements about chaotic systems. These include: fractal dimension of the attractor, Lyapunov exponents, recurrence plots, Poincaré maps, bifurcation diagrams, and transfer operator.[7] Dipnotlar 12 / 13

13 [a] Determinizm: Her hareketin hesaplanabilen ve önceden tahmin edilebilen bir sonuç doğuracağı inanışına determinizm deniyor. Bu felsefi düşünce binlerce yıl önce eski yunanda ortaya çıktı ve 16. yy dan beri de bilimin bir parçası oldu. Sir Isaac Newton, modern bilimde determinizmin savunucularına en belirgin örnektir. Newton un öğretilerinin özünde determinizm yatar çünkü meydana gelen her olay, tümüyle olayın öncesinde ne olduğuna bağlı olmayı gerektirir. mesela bir örnek verecek olursak bir cisim belli bir yükseklikten yere atıldığı zaman yere ne zaman düşeceğini hesaplamak deterministik bir yaklaşımdır. Bu Konuyla İlgili Makaleler 1. Kelebek Etkisi ve Kaos Teorisi Başvurulan Kaynaklar [1] [2] tr.wikipedia.org/wiki/kaos_kuramı [3] forum.donanimhaber.com/m_ /tm.htm [4] [5] [6] akkinda.html [7] en.wikipedia.org/wiki/chaos_theory 13 / 13

Doğrusal Olmayan Sistemlere Doğru. Uzay Çetin. Python ve R ile Bilimsel Hesaplama Kursu Mustafa Gökçe Baydoğan, Uzay Çetin, Berk Orbay

Doğrusal Olmayan Sistemlere Doğru. Uzay Çetin. Python ve R ile Bilimsel Hesaplama Kursu Mustafa Gökçe Baydoğan, Uzay Çetin, Berk Orbay Doğrusal Olmayan Sistemlere Doğru 1 / 27 Doğrusal Olmayan Sistemlere Doğru Uzay Çetin Boğaziçi - Işık Üniversitesi Python ve R ile Bilimsel Hesaplama Kursu Mustafa Gökçe Baydoğan, Uzay Çetin, Berk Orbay

Detaylı

KLASİK FRAKTALLAR, FRAKTAL ÖZELLİKLERİ VE BOYUT ( C L A S S I C A L F R AC TA L S, F R AC TA L P R O P E R T I E S AND D I M E N S I O N )

KLASİK FRAKTALLAR, FRAKTAL ÖZELLİKLERİ VE BOYUT ( C L A S S I C A L F R AC TA L S, F R AC TA L P R O P E R T I E S AND D I M E N S I O N ) KLASİK FRAKTALLAR, FRAKTAL ÖZELLİKLERİ VE BOYUT ( C L A S S I C A L F R AC TA L S, F R AC TA L P R O P E R T I E S AND D I M E N S I O N ) KENDİNE BENZERLİK VE AFİNİTE (SELF SIMILARITY AND AFFINITY) Mandelbrot

Detaylı

Okut. Yüksel YURTAY. İletişim : (264) Sayısal Analiz. Giriş.

Okut. Yüksel YURTAY. İletişim :  (264) Sayısal Analiz. Giriş. Okut. Yüksel YURTAY İletişim : Sayısal Analiz yyurtay@sakarya.edu.tr www.cs.sakarya.edu.tr/yyurtay (264) 295 58 99 Giriş 1 Amaç : Mühendislik problemlerinin bilgisayar ortamında çözümünü mümkün kılacak

Detaylı

T.C. İZMİR KÂTİP ÇELEBİ ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ KOORDİNASYON BİRİMİ

T.C. İZMİR KÂTİP ÇELEBİ ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ KOORDİNASYON BİRİMİ T.C. İZMİR KÂTİP ÇELEBİ ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ KOORDİNASYON BİRİMİ PROJE BAŞLIĞI Mühendislik Problemlerinin Bilgisayar Destekli Çözümleri Proje No:2013-2-FMBP-73 Proje Türü ÖNAP SONUÇ

Detaylı

Matematik Mühendisliği - Mesleki İngilizce

Matematik Mühendisliği - Mesleki İngilizce Matematik Mühendisliği - Mesleki İngilizce Tanım - Definition Tanım nasıl verilmelidir? Tanım tanımlanan ismi veya sıfatı yeterince açıklamalı, gereğinden fazla detaya girmemeli ve açık olmalıdır. Bir

Detaylı

Bilimsel Araştırma Yöntemleri II

Bilimsel Araştırma Yöntemleri II Bilimsel Araştırma Yöntemleri II Öğr. Grv. Dr. M. Volkan TÜRKER vturker@marmara.edu.tr vturker@gmail.com www.volkanturker.com.tr Bilim Nedir? Nesnel geçerliliği olan bilgi bütünü Neden-sonuç ilişkilerinin

Detaylı

17. yy. Dehalar Yüzyılı

17. yy. Dehalar Yüzyılı 17. yy. Dehalar Yüzyılı 20. yy a kadar her bilimsel gelişmeyi etkilediler. 17. yy daki bilimsel devrimin temelleri 14.yy. da atılmıştı fakat; Coğrafi keşifler ile ticaret ve sanayideki gelişmeler sayesinde

Detaylı

Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim.

Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim. FRAKTALLAR 1 2 * 3 Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim. Bir nokta «sıfır boyutlu» ludur. Doğrusal nokta toplulukları «bir boyutlu» bir doğru

Detaylı

SOSYAL BİLİMLER KARMAŞIKLIK VE KAOS

SOSYAL BİLİMLER KARMAŞIKLIK VE KAOS Kitap Analizi SOSYAL BİLİMLER KARMAŞIKLIK VE KAOS Araş. Gör., Çanakkale Onsekiz Mart Üniversitesi, Biga İ.İ.B.F., İşletme Bölümü abdullahkiray@gmail.com 1. Kitabın Kişiliği: Kitabın Adı:Sosyal Bilimler

Detaylı

Bilimsel Yasa Kavramı. Yrd.Doç.Dr. Hasan Said TORTOP Kdz.Ereğli-2014

Bilimsel Yasa Kavramı. Yrd.Doç.Dr. Hasan Said TORTOP Kdz.Ereğli-2014 Bilimsel Yasa Kavramı Yrd.Doç.Dr. Hasan Said TORTOP Kdz.Ereğli-2014 Bilimsel yasa her şeyden önce genellemedir. Ama nasıl bir genelleme? 1.Bekarla evli değildir. 2. Bahçedeki elmalar kırmızıdır 3. Serbest

Detaylı

MATEMATİK BÖLÜMÜ BÖLÜM KODU:3201

MATEMATİK BÖLÜMÜ BÖLÜM KODU:3201 BÖLÜM KODU:01 011-01 01.Yarıyıl Dersleri 0.Yarıyıl Dersleri MTK 101 Analiz I Analysis I 4 1 5 6 MTK 10 Analiz II Analysis II 4 1 5 6 MTK 11 Lineer Cebir I Linear Algebra I 1 4 MTK 1 Lineer Cebir II Linear

Detaylı

İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL oda no: 303 (T4 / EEM)

İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL oda no: 303 (T4 / EEM) İşaret ve Sistemler İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL aakgul@sakarya.edu.tr oda no: 303 (T4 / EEM) Kaynaklar: 1. Signals and Systems, Oppenheim. (Türkçe versiyonu: Akademi Yayıncılık)

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

V R. Devre 1 i normal pozisyonuna getirin. Şalter (yukarı) N konumuna alınmış olmalıdır. Böylece devrede herhangi bir hata bulunmayacaktır.

V R. Devre 1 i normal pozisyonuna getirin. Şalter (yukarı) N konumuna alınmış olmalıdır. Böylece devrede herhangi bir hata bulunmayacaktır. Ohm Kanunu Bir devreden geçen akımın şiddeti uygulanan gerilim ile doğru orantılı, devrenin elektrik direnci ile ters orantılıdır. Bunun matematiksel olarak ifadesi şöyledir: I V R Burada V = Gerilim (Birimi

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

9. SINIF ÜNİTE DEĞERLENDİRME SINAVLARI LİSTESİ / TÜRK DİLİ VE EDEBİYATI

9. SINIF ÜNİTE DEĞERLENDİRME SINAVLARI LİSTESİ / TÜRK DİLİ VE EDEBİYATI SINAVLARI LİSTESİ / TÜRK DİLİ VE EDEBİYATI Türk Dili ve Edebiyatına Giriş İletişim Ses Bilgisi Yazım Kuralları Paragraf Bilgisi Bir Tür Olarak Hikâye Şekil Bilgisi ktalama Kuralları Bir Tür Olarak Şiir

Detaylı

Muhammed ERKUŞ. Sefer Ekrem ÇELİKBİLEK

Muhammed ERKUŞ. Sefer Ekrem ÇELİKBİLEK Hazırlayan: Sunan: Muhammed ERKUŞ Sefer Ekrem ÇELİKBİLEK 20047095 20043193 FİBONACCİ SAYILARI ve ALTIN ORAN Fibonacci Kimdir? Leonardo Fibonacci (1175-1250) Pisalı Leonardo Fibonacci Rönesans öncesi Avrupa'nın

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Yüz Tanımaya Dayalı Uygulamalar. (Özet)

Yüz Tanımaya Dayalı Uygulamalar. (Özet) 4 Yüz Tanımaya Dayalı Uygulamalar (Özet) Günümüzde, teknolojinin gelişmesi ile yüz tanımaya dayalı bir çok yöntem artık uygulama alanı bulabilmekte ve gittikçe de önem kazanmaktadır. Bir çok farklı uygulama

Detaylı

9. SINIF ÜNİTE DEĞERLENDİRME SINAVLARI LİSTESİ / DİL VE ANLATIM

9. SINIF ÜNİTE DEĞERLENDİRME SINAVLARI LİSTESİ / DİL VE ANLATIM SINAVLARI LİSTESİ / DİL VE ANLATIM İletişim Dil - Kültür İlişkisi İnsan, İletişim ve Dil Dillerin Sınıflandırılması Türk Dilinin Tarihi Gelişimi ve Türkiye Türkçesi Türkçenin Ses Özellikleri Telaffuz (Söyleyiş)

Detaylı

Bağlaç 88 adet P. Phrase 6 adet Toplam 94 adet

Bağlaç 88 adet P. Phrase 6 adet Toplam 94 adet ÖNEMLİ BAĞLAÇLAR Bu liste YDS için Önemli özellikle seçilmiş bağlaçları içerir. 88 adet P. Phrase 6 adet Toplam 94 adet Bu doküman, YDS ye hazırlananlar için dinamik olarak oluşturulmuştur. 1. although

Detaylı

Sistem nedir? Başlıca Fiziksel Sistemler: Bir matematiksel teori;

Sistem nedir? Başlıca Fiziksel Sistemler: Bir matematiksel teori; Sistem nedir? Birbirleriyle ilişkide olan elemanlar topluluğuna sistem denir. Yrd. Doç. Dr. Fatih KELEŞ Fiziksel sistemler, belirli bir görevi gerçekleştirmek üzere birbirlerine bağlanmış fiziksel eleman

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

FİZİK. Mekanik 12.11.2013 İNM 103: İNŞAAT MÜHENDİSLİĞİNE GİRİŞ. Mekanik Nedir? Mekanik Nedir?

FİZİK. Mekanik 12.11.2013 İNM 103: İNŞAAT MÜHENDİSLİĞİNE GİRİŞ. Mekanik Nedir? Mekanik Nedir? İNM 103: İNŞAAT MÜHENDİSLİĞİNE GİRİŞ 22.10.2013 MEKANİK ANABİLİM DALI Dr. Dilek OKUYUCU Mekanik Nedir? Mekanik: Kuvvetlerin etkisi altında cisimlerin davranışını inceleyen bilim dalıdır. FİZİK Mekanik

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak ya Kullanım Şartları hakkında bilgi almak için

Detaylı

SANAT FELSEFESİ. Sercan KALKAN Felsefe Öğretmeni

SANAT FELSEFESİ. Sercan KALKAN Felsefe Öğretmeni SANAT FELSEFESİ Sercan KALKAN Felsefe Öğretmeni Estetik güzel üzerine düşünme, onun ne olduğunu araştırma sanatıdır. A.G. Baumgarten SANATA FELSEFE İLE BAKMAK ESTETİK Estetik; güzelin ne olduğunu sorgulayan

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Araştırma Teknikleri

Araştırma Teknikleri Prof.Dr. Filiz Karaosmanoğlu Yrd.Doç.Dr. Bayram Kılıç Ekim 11, 2010 Yalova Bilimsel Yöntem Modeli Bilimsel Yöntem Bilimsel yöntem, tümevarım ile tümdengelim yaklaşımlarının ayrı ayrı yeterli olamayışları

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Ay 2016 2017 EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Hafta ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIMLAR EYLÜL 3 4 Sayılar ve İşlemler Çarpanlar

Detaylı

SBR331 Egzersiz Biyomekaniği

SBR331 Egzersiz Biyomekaniği SBR331 Egzersiz Biyomekaniği Açısal Kinematik 1 Angular Kinematics 1 Serdar Arıtan serdar.aritan@hacettepe.edu.tr Mekanik bilimi hareketli bütün cisimlerin hareketlerinin gözlemlenebildiği en asil ve kullanışlı

Detaylı

Türkçe Ulusal Derlemi Sözcük Sıklıkları (ilk 1000)

Türkçe Ulusal Derlemi Sözcük Sıklıkları (ilk 1000) Türkçe Ulusal Derlemi Sözcük Sıklıkları (ilk 1000) 14.08.2014 SIRA SIKLIK SÖZCÜK TÜR AÇIKLAMA 1 1209785 bir DT Belirleyici 2 1004455 ve CJ Bağlaç 3 625335 bu PN Adıl 4 361061 da AV Belirteç 5 352249 de

Detaylı

FEN VE TEKNOLOJI ÖĞRETIMI

FEN VE TEKNOLOJI ÖĞRETIMI FEN VE TEKNOLOJI ÖĞRETIMI Yrd. Doç. Dr. H. Hasan YOLCU http://hasanyolcu.wordpress.com/ DERS IÇIN KAYNAKLAR Editör: Prof.Dr. Salih Çepni Editör: Prof. Dr. Mehmet Bahar FEN ÇEŞIT VE ALT GRUP ANLAMıNA GELMEKTEDIR

Detaylı

"Bütün kümelerin kümesi", X olsun. Öyle ise her alt kümesi kendisinin elemanıdır. X'in "Alt kümeleri kümesi" de X'in alt kümesidir.

Bütün kümelerin kümesi, X olsun. Öyle ise her alt kümesi kendisinin elemanıdır. X'in Alt kümeleri kümesi de X'in alt kümesidir. Matematik Paradoksları: Doğru Parçası Paradoksu: Önce doğru parçasının tarifini yapalım: Doğru Parçası: Başlangıcı ve sonu olan ve sonsuz adet noktadan oluşan doğru. Pekiyi nokta nedir? Nokta: Kalemin

Detaylı

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.5. Doğrusal olmayan fonksiyonların eğimi Doğrusal fonksiyonlarda eğim her noktada sabittir

Detaylı

9. SINIF KONU TARAMA TESTLERİ LİSTESİ / TÜRK DİLİ VE EDEBİYATI

9. SINIF KONU TARAMA TESTLERİ LİSTESİ / TÜRK DİLİ VE EDEBİYATI TÜRK DİLİ VE EDEBİYATI Adı 01 Türk Dili ve Edebiyatına Giriş - I 02 Türk Dili ve Edebiyatına Giriş - II 03 Türk Dili ve Edebiyatına Giriş - III 04 Türk Dili ve Edebiyatına Giriş - IV 05 İletişim 06 Ses

Detaylı

Dersi Alan Dersi Veren Dersin Optik Kod Dersin Adı Saat Öğr. Grubu Öğretim Üyesi Yeri

Dersi Alan Dersi Veren Dersin Optik Kod Dersin Adı Saat Öğr. Grubu Öğretim Üyesi Yeri T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı İkinci Öğretim A. Fakülte İçinde "BÖLÜMÜMÜZ" Öğrencilerine Verdiğimiz Dersler I. YARIYIL 1104001062003

Detaylı

SAYISAL ÇÖZÜMLEME. Yrd.Doç.Dr.Esra Tunç Görmüş. 1.Hafta

SAYISAL ÇÖZÜMLEME. Yrd.Doç.Dr.Esra Tunç Görmüş. 1.Hafta SAYISAL ÇÖZÜMLEME Yrd.Doç.Dr.Esra Tunç Görmüş 1.Hafta Sayısal çözümleme nümerik analiz nümerik çözümleme, approximate computation mühendislikte sayısal yöntemler Computational mathematics Numerical analysis

Detaylı

ÖDÜLLÜ & ÜCRETSİZ 3-4 - 5 OCAK 2014. Yazım Kuralları, Noktalama Işaretleri, Deyim, Atasözü, Sözcükte Anlam, Cümlede Anlam,

ÖDÜLLÜ & ÜCRETSİZ 3-4 - 5 OCAK 2014. Yazım Kuralları, Noktalama Işaretleri, Deyim, Atasözü, Sözcükte Anlam, Cümlede Anlam, STS ye k m 5. - 6. - 7 n tü ıt la a Hediye! 5. Toplam 60 soru / 75 dakika Yazım Kuralları, Noktalama Işaretleri, Deyim, Atasözü, Sözcükte Anlam, Cümlede Anlam, Doğal Sayılar, Örüntüler, Doğal Sayılarda

Detaylı

2 Hata Hesabı. Hata Nedir? Mutlak Hata. Bağıl Hata

2 Hata Hesabı. Hata Nedir? Mutlak Hata. Bağıl Hata Hata Hesabı Hata Nedir? Herhangi bir fiziksel büyüklüğün ölçülen değeri ile gerçek değeri arasındaki farka hata denir. Ölçülen bir fiziksel büyüklüğün sayısal değeri, yapılan deneysel hatalardan dolayı

Detaylı

Evrenin yaratılışına, Big Bang teorisine, Risale-i Nur nasıl bir açıklık getirmiştir?

Evrenin yaratılışına, Big Bang teorisine, Risale-i Nur nasıl bir açıklık getirmiştir? Sorularlarisale.com Evrenin yaratılışına, Big Bang teorisine, Risale-i Nur nasıl bir açıklık getirmiştir? Konuyu Risale-i Nur eserleriyle de harmanlayıp size takdim etmeye çalışalım: İçinde bulunduğumuz

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

Teleskop: gökyüzüne açılan kapı

Teleskop: gökyüzüne açılan kapı Teleskop: gökyüzüne açılan kapı Teleskop sözcüğü, uzak anlamına gelen tele ve uzağa bakmak anlamına gelen skopein Yunanca sözcüklerinden oluşmuştur. En basit tanımıyla teleskop, gözlerimizle göremeyeceğimiz

Detaylı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı A. Fakülte İçinde "BÖLÜMÜMÜZ" Öğrencilerine Verdiğimiz Dersler I. YARIYIL 405001072003 Soyut Matematik

Detaylı

Gerçekten Asal Var mı? Ali Nesin

Gerçekten Asal Var mı? Ali Nesin Bu yazıda hile yapıyorum... Bir yerde bir hata var. Gerçekten Asal Var mı? Ali Nesin K endinden ve birden başka sayıya bölünmeyen a asal denir. Örneğin, 2, 3, 5, 7, 11, 13, 17, 19 asal dır. Ama 35 asal

Detaylı

FEN BİLİMLERİ ENSTİTÜSÜ BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI YÜKSEK LİSANS-DOKTORA PROGRAMI 2015-2016 EĞİTİM-ÖĞRETİM YILI GÜZ DÖNEMİ

FEN BİLİMLERİ ENSTİTÜSÜ BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI YÜKSEK LİSANS-DOKTORA PROGRAMI 2015-2016 EĞİTİM-ÖĞRETİM YILI GÜZ DÖNEMİ FEN BİLİMLERİ ENSTİTÜSÜ BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI YÜKSEK LİSANS-DOKTORA PROGRAMI ÖĞRETİM ELEMANI MATH511 İleri Mühendislik Matematiği Advanced Engineering Mathematics -1 Doç. Dr. Fatih KOYUNCU

Detaylı

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder.

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder. LENDİRME ŞEMASI ÜNİTE Üslü 1. Bir tam sayının negatif kuvvetini belirler ve rasyonel sayı olarak ifade eder.. Ondalık kesirlerin veya rasyonel sayıların kendileriyle tekrarlı çarpımını üslü sayı olarak

Detaylı

ANKARA ÜNİVERSİTESİ B/1 ÖĞRENCİ İŞLERİ DAİRE BAŞKANLIĞI ANADAL PROGRAMI İÇİN ÖNERİLEN EĞİTİM PROGRAMI FORMU

ANKARA ÜNİVERSİTESİ B/1 ÖĞRENCİ İŞLERİ DAİRE BAŞKANLIĞI ANADAL PROGRAMI İÇİN ÖNERİLEN EĞİTİM PROGRAMI FORMU PROGRAM ADI : FİZİK BÖLÜMÜ 4. SINIF / 7. YARIYIL * 1 FİZ 401 Elektromanyetik Teori (Electromagnetic Theory) 4 2 6 5 8 2 FİZ 403 Kuantum Mekaniği I (Quantum Mechanics I) 4 2 6 5 8 3 FİZ 411 Elektromanyetik

Detaylı

Ürün Detayları EHO DES 9. SINIF DENEME SINAVLARI SORU DAĞILIMLARI. Eğitim doğamızda var

Ürün Detayları EHO DES 9. SINIF DENEME SINAVLARI SORU DAĞILIMLARI. Eğitim doğamızda var . 115 // 9. Sınıf Programı - Türk Dili Ve Edebiyatı // 01 Türk Dili ve Edebiyatına Giriş 02 İletişim 03 Ses Bilgisi 04 Yazım Kuralları TÜRK DİLİ VE EDEBİYATI TÜRK DİLİ VE EDEBİYATI 05 Pragraf Bilgisi 06

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

= 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz dengenin istikrarlı olup olmadığını tespit ediniz.

= 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz dengenin istikrarlı olup olmadığını tespit ediniz. Siyasal Bilgiler Fakültesi İktisat Bölümü Matematiksel İktisat Ders Notu Prof. Dr. Hasan Şahin Faz Diyagramı Çizimi Açıklamarı = 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz

Detaylı

SAYILARA GİRİŞ. Her şeyden önce temel kavramları bilmeliyiz. Nedir temel kavramlar? Matematik dilinin abc'si olarak tanımlayabiliriz.

SAYILARA GİRİŞ. Her şeyden önce temel kavramları bilmeliyiz. Nedir temel kavramlar? Matematik dilinin abc'si olarak tanımlayabiliriz. SAYILARA GİRİŞ Her şeyden önce temel kavramları bilmeliyiz. Nedir temel kavramlar? Matematik dilinin abc'si olarak tanımlayabiliriz. Rakamlar {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} On tane rakam bulunmaktadır.

Detaylı

DİNAMİK (2.hafta) Yatay Hareket Formülleri: a x =0 olduğundan ilk hız ile yatay bileşende hareketine devam eder.

DİNAMİK (2.hafta) Yatay Hareket Formülleri: a x =0 olduğundan ilk hız ile yatay bileşende hareketine devam eder. EĞİK ATIŞ Bir merminin serbest uçuş hareketi iki dik bileşen şeklinde, yatay ve dikey hareket olarak incelenir. Bu harekette hava direnci ihmal edilerek çözüm yapılır. Hava direnci ihmal edilince yatay

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

6.12 Örnekler PROBLEMLER

6.12 Örnekler PROBLEMLER 6.1 6. 6.3 6.4 6.5 6.6 6.7 Çok Parçalı Taşıyıcı Sistemler Kafes Sistemler Kafes Köprüler Kafes Çatılar Tam, Eksik ve Fazla Bağlı Kafes Sistemler Kafes Sistemler İçin Çözüm Yöntemleri Kafes Sistemlerde

Detaylı

A UNIFIED APPROACH IN GPS ACCURACY DETERMINATION STUDIES

A UNIFIED APPROACH IN GPS ACCURACY DETERMINATION STUDIES A UNIFIED APPROACH IN GPS ACCURACY DETERMINATION STUDIES by Didem Öztürk B.S., Geodesy and Photogrammetry Department Yildiz Technical University, 2005 Submitted to the Kandilli Observatory and Earthquake

Detaylı

TÜRKİYE NİN NÜFUSU. Prof.Dr.rer.nat. D.Ali Ercan ADD Bilim Kurulu Başkanı Nükler Fizik Uzmanı. dn (t) / dt = c. n (t)

TÜRKİYE NİN NÜFUSU. Prof.Dr.rer.nat. D.Ali Ercan ADD Bilim Kurulu Başkanı Nükler Fizik Uzmanı. dn (t) / dt = c. n (t) TÜRKİYE NİN NÜFUSU Prof.Dr.rer.nat. D.Ali Ercan ADD Bilim Kurulu Başkanı Nükler Fizik Uzmanı Nüfus sayımının yapılmadığı son on yıldan bu yana nüfus ve buna bağlı demografik verilerde çelişkili rakamların

Detaylı

2014-2015 EĞİTİM-ÖĞRETİM YILI YAZ OKULU EŞDEĞER YAPILACAK DERSLER FAKÜLTE : MÜHENDİSLİK FAKÜLTESİ BÖLÜM : Bilgisayar Mühendisliği

2014-2015 EĞİTİM-ÖĞRETİM YILI YAZ OKULU EŞDEĞER YAPILACAK DERSLER FAKÜLTE : MÜHENDİSLİK FAKÜLTESİ BÖLÜM : Bilgisayar Mühendisliği 2014-2015 EĞİTİM-ÖĞRETİM YILI YAZ OKULU FAKÜLTE : MÜHENDİSLİK FAKÜLTESİ BÖLÜM : Bilgisayar Mühendisliği Dersin Açıldığı Bölüm Dersin Dersin 501001042010 Matematik 1 Fen Fak. Fizik Bölümü MAT0157 Matematik

Detaylı

Hatalar ve Bilgisayar Aritmetiği

Hatalar ve Bilgisayar Aritmetiği Hatalar ve Bilgisayar Aritmetiği Analitik yollardan çözemediğimiz birçok matematiksel problemi sayısal yöntemlerle bilgisayarlar aracılığı ile çözmeye çalışırız. Bu şekilde Sayısal yöntemler kullanarak

Detaylı

Determinizm ve Kaos. Özet

Determinizm ve Kaos. Özet Mantık, Matematik ve Felsefe II.Ulusal Sempozyumu Tema: Kaos Assos, 21-24 Eylül 2004 Determinizm ve Kaos Timur Karaçay Başkent Üniversitesi, Ankara tkaracay@baskent.edu.tr Özet Adına Kaos Kuramı denilebilecek

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Gezgin Satıcı Problemi 9. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Gezgin Satıcı Problemi Soru n tane şehri olan bir

Detaylı

1st TERM Class Code Class Name T A C. Fizik I Physics I Bilgisayar Programlama I (Java) Computer Programming I (Java)

1st TERM Class Code Class Name T A C. Fizik I Physics I Bilgisayar Programlama I (Java) Computer Programming I (Java) Curriculum: Students need to take a total of 128 credits of classes to graduate from the Electrical and Electronics Engineering Undergraduate Program. With 8 credits of classes taught in Turkish and 120

Detaylı

Massachusetts teknoloji Enstitüsüsü- Profesörler Berndt, Chapman, Doyle ve Stoker

Massachusetts teknoloji Enstitüsüsü- Profesörler Berndt, Chapman, Doyle ve Stoker Sloan Yönetim Okulu 15.010/15.011 Massachusetts teknoloji Enstitüsüsü- Profesörler Berndt, Chapman, Doyle ve Stoker NOTLARI #1 Piyasa Tanımı, Esneklik ve Rantlar Cuma- Eylül 10, 2004 BUGÜNÜN PROBLEM ÇÖZME

Detaylı

HAVACILIK. Uçuşun Temelleri. 1. Havacılık Nedir? 2. Havacılık Çeşitleri Nelerdir? Askeri. Sivil Havacılık. Havacılık. Genel. Havacılık.

HAVACILIK. Uçuşun Temelleri. 1. Havacılık Nedir? 2. Havacılık Çeşitleri Nelerdir? Askeri. Sivil Havacılık. Havacılık. Genel. Havacılık. Uçuşun Temelleri 1. Nedir? : Uçmak eylemi ile ilgili olan her şey demektir. Pilotluk, hava trafik kontrolörlüğü, uçak mühendisliği, havacılık meteorolojistliği, hava ulaştırma işletmeciliği gibi pek çok

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : Matematik Ders No : 0690230018 Teorik : 4 Pratik : 0 Kredi : 4 ECTS : 4 Ders Bilgileri Ders Türü Öğretim Dili Öğretim Tipi

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

2013 YGS SORU DAĞILIMLARI VE UZMAN YORUMLARI

2013 YGS SORU DAĞILIMLARI VE UZMAN YORUMLARI MEHMET ÖZÖNCEL ANADOLU LİSESİ REHBERLİK SERVİSİ 2013 YGS SORU DAĞILIMLARI VE UZMAN YORUMLARI TÜRKÇE 2013 YGS soruları geçmiş yıllardaki sınav müfredatına uygun olarak geldiği söylenebilir. 2013 YGS soruları,

Detaylı

Tayfur Öztürk Metalurji ve Malzeme Mühendisliği Orta Doğu Teknik Üniversitesi

Tayfur Öztürk Metalurji ve Malzeme Mühendisliği Orta Doğu Teknik Üniversitesi Malzeme ve Metalurji Mühendisliğinde Eğitim Programı Nasıl Olmalı Tayfur Öztürk Metalurji ve Malzeme Mühendisliği Orta Doğu Teknik Üniversitesi 1- Arka Plan 2-3M Eğitim Programı ve Evrimi 3-3M Eğitim Programı

Detaylı

Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve

Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve düzlem Geçen ders doğrusal cebir aracılığıyla izdüşümsel geometri için bir model kurduk. Şimdi bu modeli daha somut bir şekle sokalım, F = R durumunda kurduğumuz

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

9. SINIF. NET ÖLÇME ve DEĞERLENDİRME MERKEZİ 10.12.2009 TARİHLİ GENEL DEĞERLENDİRME SINAVI - 03 (GDS - 03) KONU DAĞILIMLARI

9. SINIF. NET ÖLÇME ve DEĞERLENDİRME MERKEZİ 10.12.2009 TARİHLİ GENEL DEĞERLENDİRME SINAVI - 03 (GDS - 03) KONU DAĞILIMLARI Paragraf 4 Sözcükte Anlam 3 Edebi Türler 1 Noktalama 2 Dillerin Sınıflandırılması 1 Şiir Bilgisi 9 İletişim 1 Dilin İşlevleri 2 Ses Olayları 1 Dil Dışı Göstergeler 1 TÜRKÇE Yazım Kuralları 2 Dil ve Kültür

Detaylı

Şekilde görüldüğü gibi Gerilim/akım yoğunluğu karakteristik eğrisi dört nedenden dolayi meydana gelir.

Şekilde görüldüğü gibi Gerilim/akım yoğunluğu karakteristik eğrisi dört nedenden dolayi meydana gelir. Bir fuel cell in teorik açık devre gerilimi: Formülüne göre 100 oc altinda yaklaşık 1.2 V dur. Fakat gerçekte bu değere hiçbir zaman ulaşılamaz. Şekil 3.1 de normal hava basıncında ve yaklaşık 70 oc da

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR KASIM EKİM EYLÜL Ay Hafta D.Saat i 0 04 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE SÜRE ÖĞRENME ALANI ALT ÖĞRENME ALANI Örüntü Süslemeler si KAZANIMLAR.Doğru, çokgen

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

Şekil 7.1 Bir tankta sıvı birikimi

Şekil 7.1 Bir tankta sıvı birikimi 6 7. DİFERENSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMLERİ Diferensiyel denklemlerin sayısal integrasyonunda kullanılabilecek bir çok yöntem vardır. Tecrübeler dördüncü mertebe (Runge-Kutta) yönteminin hemen hemen

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

Ünite. Madde ve Özellikleri. 1. Fizik Bilimine Giriş 2. Madde ve Özellikleri 3. Dayanıklılık, Yüzey Gerilimi ve Kılcal Olaylar

Ünite. Madde ve Özellikleri. 1. Fizik Bilimine Giriş 2. Madde ve Özellikleri 3. Dayanıklılık, Yüzey Gerilimi ve Kılcal Olaylar 1 Ünite Madde ve Özellikleri 1. Fizik Bilimine Giriş 2. Madde ve Özellikleri 3. Dayanıklılık, Yüzey Gerilimi ve Kılcal Olaylar 1 Fizik Bilimine Giriş Test Çözümleri 3 Test 1'in Çözümleri 1. Fizikteki

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

RF MİKROELEKTRONİK GÜRÜLTÜ

RF MİKROELEKTRONİK GÜRÜLTÜ RF MİKROELEKTRONİK GÜRÜLTÜ RASTGELE BİR SİNYAL Gürültü rastgele bir sinyal olduğu için herhangi bir zamandaki değerini tahmin etmek imkansızdır. Bu sebeple tekrarlayan sinyallerde de kullandığımız ortalama

Detaylı

Kafes Sistemler Turesses

Kafes Sistemler Turesses Kafes Sistemler Turesses Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir. Turesses are a carrier system formed by the bar elements. Each bar element connects to others

Detaylı

Fizik Bölümü Öğretim Planı

Fizik Bölümü Öğretim Planı Hazırlık Sınıfı 01.Yarıyıl leri 02.Yarıyıl leri FİZ000 Hazırlık Preparatory Course 30 FİZ000 Hazırlık Preparatory Course 30 1 01.Yarıyıl leri 02.Yarıyıl leri FİZ 111 Fizik I Physics I 4 2 5 6 FİZ112 Fizik

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan 1 Ders Planı 1. Karar Problemleri i. Karar problemlerinin bileşenleri ii. Değerler, amaçlar, bağlam iii. Etki diagramları 2. Model Girdilerinde Belirsizlik

Detaylı

Karar Verme. Karar Verme ve Oyun Teorisi. Kararların Özellikleri. Karar Analizi

Karar Verme. Karar Verme ve Oyun Teorisi. Kararların Özellikleri. Karar Analizi Karar Verme Karar Verme ve Oyun Teorisi Yrd.Doç.Dr. Gökçe BAYSAL TÜRKÖLMEZ Belirli bir amaca ulaşabilmek için, Değişik alternatiflerin belirlenmesi ve Bunlar içinden en etkilisinin seçilmesi işlemidir.

Detaylı

Laboratuvara Giriş. Adnan Menderes Üniversitesi Tarımsal Biyoteknoloji Bölümü TBT 109 Muavviz Ayvaz (Yrd. Doç. Dr.) 3. Hafta (03.10.

Laboratuvara Giriş. Adnan Menderes Üniversitesi Tarımsal Biyoteknoloji Bölümü TBT 109 Muavviz Ayvaz (Yrd. Doç. Dr.) 3. Hafta (03.10. ADÜ Tarımsal Biyoteknoloji Bölümü Laboratuvara Giriş Adnan Menderes Üniversitesi Tarımsal Biyoteknoloji Bölümü TBT 109 Muavviz Ayvaz (Yrd. Doç. Dr.) 3. Hafta (03.10.2013) Derslik B301 1 BİLGİ EDİNME İHTİYACI:

Detaylı

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir.

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir. BÖLÜM 1: FREKANS DAĞILIMLARI 1.1. Giriş İstatistik, rasgelelik içeren olaylar, süreçler, sistemler hakkında modeller kurmada, gözlemlere dayanarak bu modellerin geçerliliğini sınamada ve bu modellerden

Detaylı

12. SINIF / ÜNİVERSİTE HAZIRLIK YGS DENEME SINAVLARI DAĞILIMI / TÜRKÇE TESTİ

12. SINIF / ÜNİVERSİTE HAZIRLIK YGS DENEME SINAVLARI DAĞILIMI / TÜRKÇE TESTİ YGS DENEME SINAVLARI DAĞILIMI / TÜRKÇE TESTİ 01 Sözcükte ve Söz Öbeklerinde Anlam 02 Cümlede Anlam İlişkileri / Kavramlar 03 Cümle Yorumu 04 Anlatım ve Özellikleri 05 Anlatım Türleri 06 Sözlü Anlatım 07

Detaylı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2013-2014 Öğretim Yılı Güz Dönemi Haftalık Ders Programı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2013-2014 Öğretim Yılı Güz Dönemi Haftalık Ders Programı A. Fakülte İçinde "BÖLÜMÜMÜZ" Öğrencilerine Verdiğimiz Dersler I. YARIYIL 405001072003 Soyut Matematik I 08.00-12.00 Mat. 1.gr. Prof.Dr.A.FIRAT A 003 405001072003 Soyut Matematik I 08.00-12.00 Mat. 2.gr.

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI 1.KURUMUN ADI 2.KURUMUN ADRESİ 3.KURUCUNUN ADI :Tercih Özel Öğretim Kursu : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA : ARTI ÖZEL EĞİTİM ÖĞRETİM

Detaylı

HOW TO MAKE A SNAPSHOT Snapshot Nasil Yapilir. JEFF GOERTZEN / Art director, USA TODAY

HOW TO MAKE A SNAPSHOT Snapshot Nasil Yapilir. JEFF GOERTZEN / Art director, USA TODAY HOW TO MAKE A SNAPSHOT Snapshot Nasil Yapilir JEFF GOERTZEN / Art director, USA TODAY HEADLINE: How many minutes a day do you or someone else walk your dog? 0 minutes 13% 1-19 minutes 24% 20-39 minutes

Detaylı

WEEK 4 BLM323 NUMERIC ANALYSIS. Okt. Yasin ORTAKCI.

WEEK 4 BLM323 NUMERIC ANALYSIS. Okt. Yasin ORTAKCI. WEEK 4 BLM33 NUMERIC ANALYSIS Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 NONLINEAR EQUATION SYSTEM Two or more degree polinomial

Detaylı

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla.

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. 7.Ders Bazı Ekonometrik Modeller Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. Kaynak: TÜĐK dönemler gayri safi yurt içi hasıla düzeyi 1987-1 8680793 1987-2 9929354 1987-3 13560135 1987-4

Detaylı

BOZOK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİTİRME TEZİ E 3-BOYUTLU ÖKLİD UZAYINDA HELİSLER VE UYGULAMALARI.

BOZOK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİTİRME TEZİ E 3-BOYUTLU ÖKLİD UZAYINDA HELİSLER VE UYGULAMALARI. BOZOK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİTİRME TEZİ E -BOYUTLU ÖKLİD UZAYINDA HELİSLER VE UYGULAMALARI Hasibe ŞENOL 16104210046 Danışman: Yrd. Doç. Dr. Murat BABAARSLAN YOZGAT 201 ÖZET

Detaylı

DERS KONU SORU DERS KONU SORU

DERS KONU SORU DERS KONU SORU SAYISAL (FM) 1. HAFTA 2. HAFTA MATEMATİK Temel kavramlar MATEMATİK Bölünebilme EBOB-EKOK GEOMETRİ Temel kavramlar- GEOMETRİ Doğruda Açı Doğruda Açı FİZİK Optik (gölge- renk) FİZİK Optik (aynalar Kırılma)

Detaylı

2014 / 2015 YGSH HAFTA İÇİ KURS TAKVİMİ (YGSH) DAF NO DERS 2

2014 / 2015 YGSH HAFTA İÇİ KURS TAKVİMİ (YGSH) DAF NO DERS 2 EKİM 2014 TÜRKÇE 425 60 MATEMATİK GEOMETRİ FİZİK KİMYA BİYOLOJİ 80 50 45 30 50 ARİFE 1 Çarşamba 2 Perşembe 3 Cuma TATİL COĞRAFYA TARİH FELSEFE 45 45 20 KURBAN BAYR. 4 Cumartesi TATİL 1.GÜN KURBAN BAYR.

Detaylı

DENEME SINAVLARI KONU DAĞILIMI MATEMATİK. TURAN GÜNEŞ BUL. NO: 23 ÇANKAYA - ANKARA

DENEME SINAVLARI KONU DAĞILIMI MATEMATİK. TURAN GÜNEŞ BUL. NO: 23 ÇANKAYA - ANKARA MATEMATİK DERSİN ADI : MATEMATİK--9.SINIF 1 Mantık 12 1 2 Kümelerde Temel Kavramlar 10 2 2 3 Kümelerde İşlemler 6 1 1 1 4 Kartezyen Çarpım 4 2 1 1 5 Bağıntı 3 1 6 Fonksiyonlar 6 2 1 1 7 İşlem 3 1 1 1 8

Detaylı