Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir."

Transkript

1 43 BÖLÜM 3 ZAMAN CEVABI Sitemi derecei, itemi karakteritik deklemii e ade halide (çarpaız) paydadaki i e yükek dereceidir. Bir Trafer Fokiyouu Kutupları Trafer fokiyou G() N()/N() şeklide ifade edilire, trafer fokiyouu değerii yapa değerlerie o itemi kutupları deir. Dolayııyla itemi kutupları D() i kökleridir. Bir Trafer Fokiyouu Sıfırları N( ) Trafer fokiyou G ( ) şeklide ifade edilire, trafer fokiyouu D( ) değerii 0 yapa değerlerie o itemi ıfırları deir. Dolayııyla itemi ıfırları N() i kökleridir. Sitemi Cevabı c( t) c f ( t) + c ( t) (3.1) Burada, c f (t) : Zorlamış cevap Giriş fokiyouu oluşturduğu kıımdır; öz-çözüme karşılık gelir. c (t) : Tabii (doğal) cevap Sitemi kedi yapıı oluşturur; geçici hal cevabıa karşılık gelir.

2 44 Herhagibir 1. Dereceli Sitemi Kutupları ve Sıfırları -düzlemi Giriş kutbu Sitem ıfırı Sitem kutbu Çıkış (freka veya -domei) Çıkış zama cevabı (Çıkış zama domei) zorlamış cevap tabii cevap Şekil Giriş fokiyouu kutbu zorlamış cevabı biçimii oluşturur.. Trafer fokiyouu kutbu tabii cevabı biçimii oluşturur. 3. Gerçek eke üzerideki kutup e -αt ütel formuu oluşturur. Burada α kutbu gerçek eke üzerideki yeridir. α mutlak değer olarak e kadar büyüke item o kadar çabuk öümleir. 4. Sıfırlar ve kutuplar birlikte, zorlamış ve tabii cevapları geliklerii oluştururlar.

3 45 Kutuplar Kullaılarak Cevabı Yorumlamaı Şekil 3. 1 Örek : R( ) t 4t 5t c( t) K + K e + K e + K e şeklide ifade edilebilir BİRİNCİ DERECELİ SİSTEMLER E geel halde cevap; a C( ) R( ) G( ) dır. + a) c(t) 1 e -αt (3.3) t 1 a olmaı durumuda e at 1 e olur. c ( t) (3.4) 1 İlk eğim a zama abiti So değeri %63 ü Şekil 3.3

4 46 Burada 1 a zama abiti (), a ütel freka (Hz) dir. Zama abiti baamak cevabıı o değerii %63 üe yükeliceye kadar geçe üreye eşittir. Sitemi kutbuu düzlemideki yeri ayı zamada ütel fokiyou üüü verir. Yükelme Zamaı (T r ) Baamak cevabıı o değerii %10 uda %90 ıa ulaşıcaya kadar geçe üredir. 1 e -at 0.9 ve 1 e -at 0.1 işlemlerii farkı alıdığıda T r buluur. T (3.5) r a a a Yerleşme Zamaı (T ) Baamak cevabıı kedi o değerii %98 ie ulaşıp orada kalıcaya kadar geçe üredir. 1 e -at 0.98 (3.6) T 4 a (3.7) Birici Dereceli Trafer Fokiyouu Deeyle Elde Edilmei Gelik Zama (aiye) Şekil 3.4 K K a K a C( ) (3.8) + a) + a ,454 (3.9) a (3.10)

5 47 a7.7 (3.11) K a 0.7 (3.1) K (3.13) 5.5 C ( ) + 7.7) (3.14) 3. İkici Dereceli Sitemler 1 R( ) ola bir. dereceli itemde trafer fokiyou aşağıdaki gibidir. b G( ) (3.15) + a + b İkici dereceli itemler çıkışta verdikleri cevaplara göre 4 ayrılırlar. Buları şekil 3.5 de açık olarak görebiliriz.

6 48 Sitem Kutup-ıfır eğrileri Cevap Geel -düzlemi Aşırı öümlü Az öümlü Söümüz Kritik öümlü Şekil Aşırı Söümlü Cevap Örek : 9 9 C ( ) (3.16) ) )( ) Sitemi köklerii 1, 7.854, buluruz.

7 49 c( t) 7.854t 1.146t e 1.7e şeklide yazılabiliriz. (3.17) Aşırı öümlü cevap ürete itemi geel ifadei aşağıdaki gibidir. a 1t at c( t) K1 + K e + K 3e (3.18) 3... Az Söümlü Cevap Örek : 9 C ( ) (3.19) + + 9) 1, 1 ± j 8 (3.0) t 8 c( t) 1 e co 8t + i 8t (3.1) 8 t c( t) e co t ( ) Kökler a± jb şeklideye; a öüm oraıı, b alıım frekaıı verir. (3.) Örek: Şekil 3.6 da göterile itemi baamak cevabıı biçimii gözlemle belirleyiiz. Şekil C ( ) (3.3) ) 1, -5 ± j13.3 (3.4) Burada ütel öüm frekaı 5, alıım frekaı 13.3 rad/ dir. ( K co13.3t K i13.3t ) 5t c( t) K + e (3.5) ( co13.3t φ ) 5t c( t) K1 + K 4e (3.6)

8 Söümüz Cevap Örek : 9 C ( ) + 9) (3.7) 1, ± j3 (3.8) c( t) 1 co3t olarak buluur. (3.9) Kritik Söümlü Cevap Örek : 9 C ( ) (3.30) ) 3 (3.31) 1, c( t) 3t 3t 1 3te e olarak buluur. (3.3) Geel olarak ifade edilire; 1) Aşırı öümlü cevapta iki gerçek kök σ, ) vardır ve geçici hal cevabı σ1t σ t c ( t) K1e + K e dir. ( 1 σ ) Az öümlü cevapta karmaşık kökler ( σ d ± jω d ) vardır ve geçici hal cevabı σ d t c ( t) Ae co ω t φ) dir. t d 3) Söümüz cevapta kökleri karmaşık kımı (± jω 1 ) vardır ve geçici hal cevabı ( t) Aco ω1t φ) dir. c 4) Kritik öümlü cevapta gerçek ve katlı kökler σ ) vardır ve geçici hal cevabı σ1t σ1t c ( t) K1e + K te dir. ( 1

9 Örek : G ( ) trafer fokiyou içi gözlem yoluyla baamak cevap formuu belirleyiiz. Çözüm : 1 R( ) (3.33) 400 C ( ) (3.34) ) , (3.35) 6 j (3.36) 1, j 6t c ( t) K + K e co19.078t ) (3.37) 1 φ Cevap formu az öümlüdür. 900 Örek: G ( ) trafer fokiyou içi gözlem yoluyla baamak cevap formuu belirleyiiz. Çözüm : 900 C ( ) (3.38) ) , (3.39) 1, 45 ± 15 5 (3.40) (3.41) (3.4) c ( t) K1 + K e (3.43) 11.46t + K 3 e 78.54t Cevap formu aşırı öümlüdür.

10 5 5 Örek: G ( ) trafer fokiyou içi gözlem yoluyla (heap yapmada) baamak cevap formuu belirleyiiz. Çözüm: 5 C ( ) (3.44) ) 15 (3.45) 1, 15t 15t 1 3 ct () K + Ke + Kte (3.46) Cevap formu kritik öümlüdür. 65 Örek: G( ) trafer fokiyou içi gözlem yoluyla baamak cevap ( + 65) formuu belirleyiiz. Çözüm: 65 C ( ) + (3.47) 65) (3.48) 1, j ct () K + K co5 t φ) (3.49) 1 Cevap formu öümüzdür. 3.3 Geel İkici Dereceli Sitemler Tabii freka (ω ) ve öüm oraı (ζ ) ikici dereceli itemleri parametreleridir. Söümüz bir itemi alıım frekaı,tabii frekaı verir. Söüm Oraı, ζ, zama değişkeie bağlı olmakızı bir ora elde etmek amacıyla tarif edilmiştir. ütel öüm frekaı ζ veya tabii frekaı 1 tabii peryot ζ π zama abiti Geel durumda ıfırı olmaya,. dereceli itemi göterilişi aşağıdaki gibidir; b G( ) (3.50) + a + b

11 53 1, a a 4b (3.51) a 0 ω b dir. b ω (3.5) Sitem az öümlü kabul edilire zama abiti kökü gerçek kımı olur. a σ d (3.53) a ζ (3.54) σ d ω ω a ζ ω (3.55) Sitemi geel ifadei aşağıdaki gibidir. ω G( ) + ζ ω + ω (3.56) ω İkici dereceli bir itemde ζ ve ω i bulumaıda G( ) + ζ ω + ω trafer fokiyou kullaılır. G() i kökleri aşağıdaki gibidir. 1, ζ ω ± ζ 1ω (3.57)

12 54 Kutuplar Baamak cevapları Söümüz Az Söümlü Kritik Söümlü Aşırı Söümlü Şekil 3.7 Örek: 36 G( ) trafer fokiyouu ζ ve ω değerlerii buluuz. + 4, + 36 Çözüm: ω b 36 6 rad/ (3.58) 4. ζ ω (3.59) 4. ζ olarak buluur. (3.60)

13 55 Cevabı ζ ile Karakterize Edilmei Örek: Her bir item içi öüm oraıı ζ buluuz ve beklee cevabı türü hakkıda bilgi veriiz. Çözüm: 1 a) G ( ) (3.61) ζ 1,155 Cevap formu aşırı öümlüdür. b) 16 G ( ) (3.6) ζ 1 Cevap formu kritik öümlüdür. c) 0 G ( ) (3.63) ζ 0,894 Cevap formu az öümlüdür. Örek: Her bir item içi öüm oraıı, ζ, ve öüm frekaıı, ω, buluuz ve beklee cevabı türü hakkıda bilgi veriiz. Çözüm: 400 a) G ( ) (3.64) ω 400; ω 0 (3.65) a ζ ω (3.66) ζ 1.0 (3.67) ζ 0,3 (3.68) Cevap formu az öümlüdür.

14 56 b) 900 G ( ) (3.69) ω 900; ω 30 a ζ ω (3.70) (3.71) ζ (3.7) ζ 1,5 (3.73) Cevap formu aşırı öümlüdür. c) 5 G ( ) (3.74) ω 5; ω 15 (3.75) a ζ ω (3.76) ζ (3.77) ζ 1 (3.78) Cevap formu kritik öümlüdür. d) 65 G ( ) (3.79) + 65 ω 65; ω 5 a ζ ω ζ 0 (3.80) (3.81) (3.8) Cevap formu öümüzdür.

15 57 Kıaca; ζ >1 ; cevap formu aşırı öümlüdür. ζ 1 ; cevap formu kritik öümlüdür. 1 >ζ>0 ; cevap formu az öümlüdür ζ 0 ; cevap formu öümüzdür. 3.4 Az Söümlü İkici Dereceli Sitemler İkici dereceli itemi birim baamak cevabı aşağıdaki gibidir. C ) ω + ζω + ω ) (3.83) ( C( ) K K + K ζω (3.84) + + ω K 1 1 ω + ζω + ω ) K + K K ) (3.85) ( (1 + K ) + (ζω K ) (3.86) K 1 K 3 ζω ζ ( + ζω ) + ω 1 ζ ( 1 1 ζ C ) (3.87) ( + ζω ) + ω (1 ζ ) c( t) 1 e ζω (coω 1 ζ t + ζ 1 ζ iω 1 ζ t ) (3.88) c( t) ζ e ζωt co ω 1 ζ t φ) (3.89) Burada 1 ζ φ tg dir. 1 ζ

16 58 Şekil 3.8 de ζ ı değişik değerleri içi itemi yaptığı alıımlar görülmektedir. Şekil 3.8 Şekil 3.9 Tepe Zamaı Cevabı makimum değerie ulaşmaı içi gerekli zamaa Tepe Zamaı (T P ) deir. Yüzde Üt Aşım Çıkış cevabıı makimumuyla o değeri araıdaki % ilişkiie Yüzde Üt Aşım ( % OS veya %ÜA) deir. Yerleşme Zamaı Cevabı o değerii %98 ie ulaşıcaya kadar geçe üreye Yerleşme Zamaı (T S ) deir.

17 59 Yükelme Zamaı Çıkış cevabıı o değerii %10 uda %90 ıa ulaşmaı içi geçe üreye Yükelme Zamaı (T r ) deir. Tepe Zamaıı Bulumaı [ ] ω ω + ζω + ω + ζω + ω ζ Lc () t C ( ) ( ) (1 ) ω ω 1 ζ 1 ζ ( + ζω ) + ω (1 ζ ) ω ζωt c( t) e iω 1 ζ t 1 ζ (3.90) (3.91) (3.9) Makimumu bulmak içi türev ıfıra eşitleir. ω 1 ζ t π (3.93) π t (3.94) ω 1 ζ i her bir değeri çıkış eğriii makimum ve miimumlarıı verir. 0 t 0 1 t T p π T p (3.95) ω 1 ζ Yüzde Üt Aşımı Bulumaı cmax c fial % ÜA.100 (3.96) c fial c (t) fokiyouda t Tp koularak elde edile değer cmax dır.girişie birim baamak fokiyou uygulaa itemde c 1 dir. fial

18 60 ζπ 1 ζ ζ c + π max c( Tp ) 1 e coπ i (3.97) 1 ζ ζπ 1 ζ c aax 1+ e (3.98) ζπ 1 ζ % ÜA e.100 (3.99) l(% ÜA 100) ζ (3.100) π + l (% ÜA 100) Yerleşme Zamaıı Bulumaı ζω 1 t e 0.0 (3.101) 1 ζ T ( ζ ) l (3.10) ζω T 4 (3.103) ζω Yükelme Zamaıı Bulumaı Yükelme zamaıı geellikle ormalize edilmiş zama büyüklüğü ola araıdaki ilişkiyi götere tablolarda elde edilir. Bir Trafer Fokiyouda Tp, % OS, Tr, T i Bulumaı ω. T r ile ζ 100 Örek: G( ) trafer fokiyouu tepe zamaı, yerleşme zamaı, yükelme zamaı ve %üt aşım değerlerii buluuz. Çözüm : ω rad (3.104) / ζω 15 (3.105) 15 ζ 0.75 (3.106) 10

19 61 π π Tp ω 1 ζ T ζω ζω 0.75π ζ 1 % ÜA e.100 e (3.107) (3.108) (3.109) Tr içi tabloda yararlaılır. ζ T r ω Tr ω (ormalize yükelme zamaı) ζ (öüm oraı) Şekil 3.10 ζ 0.75 (3.110) T. ω.3 (3.111) r.3 T r 0. 3 (3.11) 10

20 6 Şekil 3.11 S 1, -σ d ± jω d (3.113) σ d ζ ω (3.114) ω T p d ω 1 ζ (3.115) ω π 1 ζ π ω d (3.116) T 4 4 (3.117) ζω σ d d Kutbu orijide uzaklığı ( ζω ) + ω ( ζ ) ω 1 (3.118) coθ ζ (3.119) θ büyüdükçe %ÜA da büyür. Şekil 3.1

21 63 Kutbu Yeride Tp, % OS ve T i Bulumaı Örek: Şekil 3.13 de göterile kutup diyagramı içi öüm oraı, tabii freka, tepe değeri, % üt aşım ve yerleşme zamaıı buluuz. Şekil ζ co θ co arctag (3.10) 3 ω rad (3.11) / π π T ω p (3.1) d ζπ 1 ζ % ÜA e.100 %6 (3.13) 4 4 T σ 3 d (3.14) Örek: Şekil 3.14 de verile itemde %0 üt aşım ve yerleşme zamaı elde etmek içi J ve D değerleri e olmalıdır? (Giriş fokiyou olarak giriş mometi T(t) baamak fokiyoudur.)

22 64 Şekil 3.14 Çözüm: ( J D + K ) ( ) T ( ) + θ (3.15) θ ( ) T ( ) 1 j D + + j K j (3.16) ω K J (3.17) D ζω (3.18) J T 4 (3.19) ζω J D 4 (3.130) 4 J ζ (3.131) ζω K % ÜA %0 ζ (3.13) J K (3.133) K J 0.05 (3.134) K 5N. m / rad J kgm (3.135) D 4 D N.m./rad J (3.136)

23 Ek Kutuplar Olmaı Halide Sitem Cevabı Sitemde 3. bir gerçek kutup olmaı durumuda,. Dereceli itemi birim baamak cevabı; C ) ω + ζω + ω ) şeklidedir. (3.137) ( 1, ζω jω 1 ζ (3.138) Böyle bir item cevabı kımi keirlere aşağıdaki gibi ayrılır. A B( + ζω ) + Cω C( ) + (3.139) ( + ζω + ω ) d d Sitemde α r de bir kutup daha olura; C ) ω + ζω + ω )( + α ) (3.140) ( r A B( + ζω ) + Cω D C( ) + (3.141) + α d + ( + ζω ) + ω d r c ζω t α rt ( t) Au( t) + e ( B coω dt + C iω dt) + De (3.14) α i durumu 3 adımda iceleir: r 1. α r α r1 ζω olmaı durumuda itemi. derece yaklaşımı yapılamaz.. α r α r ζω olmaı durumuda itemi. derece yaklaşımı yapılabilir. Sitemi. derece yaklaşımı yapılabilmei içi α 5ζω olmalıdır. 3. α olmaı durumuda itemi ürettiği az öümlü cevabı ayııdır. r 3. Kutupta Gele Bileşei Büyüklüğü bc A B + C D C( ) + + (3.143) + a + b)( + c) + a + b + c A, B, C, D büyüklükleri heaplaır. A 1 r B ca c c + b ca (3.144)

24 66 C ca c a bc c + b ca (3.145) b D c (3.146) + b ca Burada c yaklaştırılıra ; A 1, B 1, C a, D 0 olur. Bakı olmaya terim büyük eçilire, bu kutbu domeideki geliği (D) ıfır olur. 3.6 Sıfırlar Eklemei Halide Sitem Cevabı C(t) -10 te ıfır -5 te ıfır -3 te ıfır ıfırız Zama Şekil 3.15 Kutupları 1± j, 88 ola iteme ıraıyla 3, -5, -10 ıfırları eklei. Şekil 3.15 de görüldüğü gibi ıfır bakı kutuplara e kadar yaklaşıra geçici cevap üzerideki etkii o kadar büyük olur. Sıfır bakı kutuplarda e kadar uzaklaşıra item cevabı o kadar kutuplu item cevabıa bezer.

25 67 a da bir ıfır eklemiş trafer fokiyou aşağıdaki gibidir. ( + a) A B ( b + a) ( b + c) ( c + a) c + b T ( ) + + (3.147) ( + b)( + c) + b + c + b + c Eğer ıfır kutuplarda uzaka a,b ve c ye göre büyük olacak ve item 1 ( b + c) 1 ( c + b) a a + b c (3.148) + + ( + b)( + c) olacaktır. Sıfır bait bir kazaç faktörü gibi etki yapacaktır ve bileşe cevaplarıı bağıl geliklerii değiştirmeyecektir. Sadeleştirme Yötemiyle. Dereceye Yaklaştırma K( + z) T ) (3.149) ( + p )( + a + ) ( 3 b Siteme hem kutup, hem ıfır eklemiştir. Sıfırı yeri ve kutbu yeri birbirlerie yakıa, ( + z) ve ( + p3) terimleri adeleştirilebilir. Örek: 6.5( + 4) C 1( ) (3.150) + 3.5)( + 5)( + 6) 6.5( + 4) C ( ) (3.151) )( + 5)( + 6) Yukarıdaki iki item içi kutup-ıfır adeleştirmeii mümkü olup olmadığıı iceleyiiz. Çözüm: C 1( ) + (3.15) ( + 5) ( + 6) ( + 3.5) Burada (+3.5) kutbuu geliği (1) diğerlerii yaıda ihmal edilebilecek kadar küçük olmadığı içi ıfır-kutup adeleştirmei geçerli değildir C ( ) + (3.153) ( + 5) ( + 6) ( )

26 68 Burada (+4.01) kutbuu geliği (0.033) ihmal edilebileceğide ıfır-kutup adeleştirmei geçerlidir C ( ) + (3.154) ( + 5) ( + 6) c 5t 6t ( t) e e (3.155) 3.7 Lieerizlikleri Zama Cevabı Üzeride Etkileri Doğrualızlığa ede ola durumlar aşağıdaki gibidir: 1) Amplii doyuma ulaşmaı ) Ölü bölgei büyük olmaı (Motoru küçük gerilimlere cevap vermemei) 3) Dişli boşluğu Ate poziyo kotrolü içi; θ ) 0 ( E ( ) a θ m ( ) 0.1 E ( ) a ) (3.156) Türev alıır ω 0 ( ) 0.1θ m ( ) Ea ( ) (3.157) Şekil 3.16.a

27 69 Şekil 3.16.b Şekil 3.17.a

28 70 Şekil 3.17.b Şekil 3.18.a Şekil 3.18.b

29 71 Ate Kotrolü Açık Çevrim Cevabı Uygulamaı Güç Amplii Motor ve yük Açıal hıza döüştürücü Şekil 3.19 Örek: a) Gözlem yoluyla açık çevrim açıal hız cevabıı formuu belirleyiiz.(güç ampliie verile gerilim birim baamaktır.) b) Gözlem yoluyla açık çevrim itemii öüm oraı (ζ ) ve tabii frekaıı ( ω ) buluuz. c) Giriş birim baamak fokiyou olmak üzere açık çevrim itemii cevabıı aalitik ifadeii buluuz. ( ω 0 ( t)? Çözüm: a) ω 0 ( ) 083 V ( ) ( + 100)( ) p (3.158) 1 V p ( ) (3.159) 0.83 ω 0 ( ) + 100)( ) (3.160) 100t 1.71t ω 0 ( t) A + Be + Ce (3.161) b) 0.83 G ( ) (3.163) ω rad (3.164) /

30 7 ζ 3.89 ie item aşırı öümlü bir cevap verir. (3.165) c) ω 0 ( ) + (3.166) + 100)( ) t 1.71t ω ( t) e 0. e olarak buluur. (3.167) 0 14

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri Korol Siemleri Taarımı Siem Modellerii Zama Cevabı ve Performa Krierleri Prof.Dr. Galip Caever Korol Siemleri Taarımı Prof.Dr.Galip Caever Kapalı dögü iemi oluşurulmaıda öce iem modelide geçici rejim cevabıı

Detaylı

Otomatik Kontrol. Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri. Prof.Dr.Galip Cansever. Ders #6-8. Otomatik Kontrol

Otomatik Kontrol. Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri. Prof.Dr.Galip Cansever. Ders #6-8. Otomatik Kontrol Der #6-8 Oomaik Korol Siem Modellerii Zama Cevabı ve Performa Krierleri Prof.Dr.Galip Caever Oomaik Korol Prof.Dr.Galip Caever Kapalı dögü iemi oluşurulmaıda öce iem modelide geçici rejim cevabıı aalizi

Detaylı

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri Korol Siemleri Taarımı Siem Modellerii Zama Cevabı ve Performa Krierleri Korol Siemleri Taarımı Öğreim Görevlii : Der Yeri ve Zamaı : A-0 Perşembe 7-0pm Ofi : E-Blok E-mail : gorgu@yildiz.edu.r Daışma

Detaylı

Bölüm 7 - Kök- Yer Eğrisi Teknikleri

Bölüm 7 - Kök- Yer Eğrisi Teknikleri Bölüm 7 - Kök- Yer Eğrii Teknikleri Kök yer eğrii tekniği kararlı ve geçici hal cevabı analizinde kullanılmaktadır. Bu grafikel teknik kontrol iteminin performan niteliklerini tanımlamamıza yardımcı olur.

Detaylı

DENEY 5 İkinci Dereceden Sistem

DENEY 5 İkinci Dereceden Sistem DENEY 5 İkici Drcd Sitm DENEYİN AMACI. İkici drcd itmi karaktritiklrii alamak.. Söüm oraı ζ i, ikici drcd itm üzridki tkiii gözlmlmk. 3. Doğal frka i, ikici drcd itm üzridki tkiii gözlmlmk. GENEL BİLGİLER

Detaylı

ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ

ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ 73 BÖLÜM 5 ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ 5. Blok Diyagramları Blok diyagramları genellikle frekan domenindeki analizlerde kullanılır. Şekil 5. de çoklu alt-itemlerde kullanılan blok diyagramları

Detaylı

ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü

ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü ESM406- Elektrik Enerji Sitemlerinin Kontrolü. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü.. Hedefler Bu bölümün hedefleri:. Komplek değişkenlerin tanıtılmaı.. Laplace Tranformayonun tanıtılmaı..

Detaylı

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #9 Otomatik Kontrol Kararlılık (Stability) 1 Kararlılık, geçici rejim cevabı ve ürekli hal hataı gibi kontrol taarımcıının üç temel unurundan en önemli olanıdır. Lineer zamanla değişmeyen itemlerin

Detaylı

Frekans Analiz Yöntemleri I Bode Eğrileri

Frekans Analiz Yöntemleri I Bode Eğrileri Frekan Analiz Yöntemleri I Bode Eğrileri Prof.Dr. Galip Canever 1 Frekan cevabı analizi 1930 ve 1940 lı yıllarda Nyquit ve Bode tarafından geliştirilmiştir ve 1948 de Evan tarafından geliştirilen kök yer

Detaylı

Kontrol Sistemleri. Kontrolcüler. Yrd. Doç. Dr. Aytaç GÖREN

Kontrol Sistemleri. Kontrolcüler. Yrd. Doç. Dr. Aytaç GÖREN ontrol Sitemleri ontrolcüler Doğrual Sitemlerin Sınıflandırılmaı: Birinci Mertebeden Gecikmeli BMG Sitemler: x a T 1 x a t x e t Son değer teoremi : x x x adr adr adr lim xa 0 lim 0 T 1 t T t 2T t 3T t

Detaylı

Kontrol Sistemleri Tasarımı

Kontrol Sistemleri Tasarımı Kontrol Sitemleri Taarımı Kök Yer Eğrii ile Kontrolcü Taarımı Prof. Dr. Bülent E. Platin Kontrol Sitemlerinde Taarım İterleri Zaman Yanıtı Özellik Kararlılık Kalıcı Rejim Yanıtı Geçici rejim Yanıtı Kapalı

Detaylı

Kontrol Sistemleri Tasarımı

Kontrol Sistemleri Tasarımı Kotrol Sistemleri Tasarımı Frekas Yaıtı Prof. Dr. Bület E. Plati 3 Ağustos 0 Eylül 06 Taım Kararlı bir sistemi siüs girdisie sürekli rejim yaıtı Bu taımda 3 temel boyut bulumaktadır:. Kararlı bir sistem

Detaylı

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü 4. TRANSFER FONKSİYONU VE BLOK DİYAGRAM İNDİRGEME

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü 4. TRANSFER FONKSİYONU VE BLOK DİYAGRAM İNDİRGEME . TRNSFER FONKSİYONU VE BLOK DİYRM İNDİREME. Hedefler Bu bölümün amacı;. Tranfer fonkiyonu ile blok diyagramları araındaki ilişki incelemek,. Fizikel itemlerin blok diyagramlarını elde etmek, 3. Blok diyagramlarının

Detaylı

Kök Yer Eğrileri ile Tasarım

Kök Yer Eğrileri ile Tasarım Kök Yer Eğrileri ile Taarım Prof.Dr. Galip Canever Kök Yer Eğriinden Kazanç ın Belirlenmei Kök yer eğrii K nın pozitif değerleri için denkleminin muhtemel köklerini göteren eğridir. KG ( ) Taarımın amacı

Detaylı

Ders #10. Otomatik Kontrol. Sürekli Hal Hataları. Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #10. Otomatik Kontrol. Sürekli Hal Hataları. Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #0 Otomatik ontrol Sürekli Hal Hataları Prof.Dr.alip Canever Prof.Dr.alip Canever Denetim Sitemlerinin analiz ve taarımında üç kritere odaklanılır:. eçici Rejim Cevabı. ararlılık 3. Sürekli Hal ararlı

Detaylı

H09 Doğrusal kontrol sistemlerinin kararlılık analizi. Yrd. Doç. Dr. Aytaç Gören

H09 Doğrusal kontrol sistemlerinin kararlılık analizi. Yrd. Doç. Dr. Aytaç Gören H09 Doğrual kontrol itemlerinin kararlılık analizi MAK 306 - Der Kapamı H01 İçerik ve Otomatik kontrol kavramı H0 Otomatik kontrol kavramı ve devreler H03 Kontrol devrelerinde geri belemenin önemi H04

Detaylı

Deney 1 : Ayrık Sinyaller

Deney 1 : Ayrık Sinyaller İŞARET İŞLEME ve UYGULAMALARI Deney : Ayrık Sinyaller Deney : Ayrık Sinyaller. Ayrık Sinüzoidaller 2. Periyodik Ayrık Sinyaller i. Fourier Serilerinin Önemli Özellikleri 3. Peryodik Olmayan Sonlu uzunluklu

Detaylı

Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Elektriksel Sistemeler Mekaniksel Sistemler. Ders #4

Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Elektriksel Sistemeler Mekaniksel Sistemler. Ders #4 Der #4 Otomatik Kontrol Fizikel Sitemlerin Modellenmei Elektrikel Sitemeler Mekanikel Sitemler 6 February 007 Otomatik Kontrol Kontrol itemlerinin analizinde ve taarımında en önemli noktalardan bir tanei

Detaylı

>> pretty(f) s exp(10) 1/ s + 1 1/100 (s + 1) + 1 s

>> pretty(f) s exp(10) 1/ s + 1 1/100 (s + 1) + 1 s ELN5 OTOMATİK KONTROL MATLAB ÖRNEKLERİ - LAPLACE VE TERS LAPLACE DÖNÜŞÜMÜ UYGULAMALARI: Symbolic Math Toolbox içinde tanımlı olan laplace ve ilaplace komutları ile Laplace ve Ter Laplace dönüşümlerinin

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI

FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI FREKANS CEVABI YÖNEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI G(s (r(t ı Laplace döüşümü; A(s B(s A(s (s p (s p L(s p C(s G(sR(s R(s R s A(s B(s R(s A(s R a C(s L B(s s s j s j s p a b b s

Detaylı

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ 5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ Bir lieer deklemi geel çözümüü bulmak homoje kısmı temel çözümlerii belirlemesie bağlıdır. Sabit katsayılı diferasiyel deklemleri temel çözümlerii

Detaylı

Otomatik Kontrol. Blok Diyagramlar ve İşaret Akış Diyagramları. Prof.Dr.Galip Cansever. Ders #3. 26 February 2007 Otomatik Kontrol

Otomatik Kontrol. Blok Diyagramlar ve İşaret Akış Diyagramları. Prof.Dr.Galip Cansever. Ders #3. 26 February 2007 Otomatik Kontrol Der # Otomatik Kontrol Blok Diyagramlar ve İşaret Akış Diyagramları ProfDralip Canever 6 February 007 Otomatik Kontrol ProfDralip Canever Karmaşık itemler bir çok alt itemin bir araya gelmeiyle oluşmuştur

Detaylı

LOGARİTMİK ORTAM FİLTRELERİNİN SİSTEMATİK SENTEZİ

LOGARİTMİK ORTAM FİLTRELERİNİN SİSTEMATİK SENTEZİ .C. PAMUKKALE ÜNİERSİESİ FEN BİLİMLERİ ENSİÜSÜ LOGARİMİK ORAM FİLRELERİNİN SİSEMAİK SENEZİ Şaziye SURA YLMAZ Yükek Lia ezi DENİZLİ 5 LOGARİMİK ORAM FİLRELERİNİN SİSEMAİK SENEZİ Pamukkale Üiveritei Fe Bilimleri

Detaylı

H03 Kontrol devrelerinde geri beslemenin önemi. Yrd. Doç. Dr. Aytaç Gören

H03 Kontrol devrelerinde geri beslemenin önemi. Yrd. Doç. Dr. Aytaç Gören H03 ontrol devrelerinde geri belemenin önemi Yrd. Doç. Dr. Aytaç ören MA 3026 - Der apamı H0 İçerik ve Otomatik kontrol kavramı H02 Otomatik kontrol kavramı ve devreler H03 ontrol devrelerinde geri belemenin

Detaylı

YÜZME HAVUZUNUN AYARLI SIVI SÖNÜMLEYİCİ OLARAK PERFORMANSI

YÜZME HAVUZUNUN AYARLI SIVI SÖNÜMLEYİCİ OLARAK PERFORMANSI . Türkiye Deprem Mühediliği ve Simoloi Koferaı -4 Ekim ODTÜ AKARA ÖZET: YÜZME HAVUZUU AYARLI SIVI SÖÜMLEYİCİ OLARAK PERFORMASI A. Bozer Yrd. Doç. Dr., İşaat Müh. Bölümü, uh aci Yazga Üiveritei, Kayeri

Detaylı

İstatistiksel Tahminleme. Güven Seviyesi. Verilerin yayılımı ( Örnek hacmi X = X / n Güven seviyesi (1 - )

İstatistiksel Tahminleme. Güven Seviyesi. Verilerin yayılımı ( Örnek hacmi X = X / n Güven seviyesi (1 - ) 04.05.0 İtatitikel Tahmileme İTATİTİKEL TAHMİNLEME VE YORUMLAMA ÜRECİ GÜVEN ARALIĞI Nokta Tahmii Populayo parametreii tek bir tahmi değerii verir μˆ σˆ p Pˆ Aralık Tahmii Populayo parametreii tahmi aralığıı

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları

Detaylı

Analiz II Çalışma Soruları-2

Analiz II Çalışma Soruları-2 Aaliz II Çalışma Soruları- So gücelleme: 04040 (I Aşağıdaki foksiyoları (ilgili değişkelere göre türevlerii buluuz 7 cos π 8 log (si π ( si ta e 9 4 5 6 + cot 0 sec sit t si( e + e arccos ( e cos(ta (II

Detaylı

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

t Dağılımı ve t testi

t Dağılımı ve t testi t Dağılımı ve t teti Studet t Dağılımı Küçük öreklerde (

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

MAK312 ÖLÇME ve DEĞERLENDİRME OTOMATİK KONTROL LABORATUARI 1. Elektriksel Ölçümler ve İşlemsel Kuvvetlendiriciler

MAK312 ÖLÇME ve DEĞERLENDİRME OTOMATİK KONTROL LABORATUARI 1. Elektriksel Ölçümler ve İşlemsel Kuvvetlendiriciler MAK32 ÖLÇME ve DEĞELENDİME OTOMATİK KONTOL LABOATUAI Elektriksel Ölçümler ve İşlemsel Kuvvetlediriciler AMAÇLA:. Multimetre ile direç, gerilim ve akım ölçümleri, 2. Direç ölçümüde belirsizlik aalizii yapılması

Detaylı

DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI

DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI DENEY NO: 9 DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI Deneyin Amacı: Lineer-zamanla değişmeyen -kapılı devrelerin Genlik-Frekan ve Faz-Frekan karakteritiklerinin

Detaylı

Nümerik Analiz. Bilgisayar Destekli. Ders notları 2014. PROGRAMLAR: Doğrusal denklem sistemi Çözücüler

Nümerik Analiz. Bilgisayar Destekli. Ders notları 2014. PROGRAMLAR: Doğrusal denklem sistemi Çözücüler ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ Mühedilik Mimarlık Fakültei İşaat Mühediliği Bölümü E-Pota: ogu.ahmet.topcu@gmail.com We: http://mmf.ogu.edu.tr/atopcu Bilgiayar Detekli Nümerik Aaliz Der otları 014 Ahmet

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

Soru No Puan Program Çıktısı 1,4 1,3,10 1,3,10 1,3,10

Soru No Puan Program Çıktısı 1,4 1,3,10 1,3,10 1,3,10 OREN008 Fial Sıavı 3.05.06 5:00 Öğreci Numaraı İmza Program Aı ve Soyaı SORU. Aşağıaki oruları cevaplayıız... Staarizayo ve peifikayo eir? Tüketici içi fayaları elerir?.. Vikozite eir? Egler vikozimetrei

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

limiti reel sayı Sonuç:

limiti reel sayı Sonuç: 6 TÜREV MAT Bara Yücel Taı: a, br veriliş ols. olak üzere : a, b R oksiyo ab, içi li liiti reel sayı ise, b liit değerie oksiyo oktasıdaki türevi deir ve d dy, ya da biçiide gösterilir. d d Ba göre, li

Detaylı

BİR FAZLI PARALEL AKTİF GÜÇ FİLTRELERİ İÇİN SENSÖRSÜZ DA GERİLİM KONTROLÜ

BİR FAZLI PARALEL AKTİF GÜÇ FİLTRELERİ İÇİN SENSÖRSÜZ DA GERİLİM KONTROLÜ Gazi Üiv. Müh. Mim. Fak. Der. J. Fac. Eg. Arch. Gazi Uiv. Cilt 6, No, 3-3, 0 Vol 6, No, 3-3, 0 BİR FAZLI PARALEL AKİF GÜÇ FİLRELERİ İÇİN SENSÖRSÜZ DA GERİLİM KONROLÜ İlhami ÇOLAK, Orha KAPLAN Gazi Üiveritei

Detaylı

Tümleştirilmiş Kombinezonsal Devre Elemanları

Tümleştirilmiş Kombinezonsal Devre Elemanları Sayıal Devreler (Lojik Devreleri) Tümleştirilmiş Kombiezoal Devre Elemaları Sayıal itemleri gerçekleştirilmeide çokça kullaıla lojik devreler, lojik bağlaçları bir araya getirilmeiyle tümleştirilmiş devre

Detaylı

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Temel bilgiler ve örnekler Güç ve hareket iletimi

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Temel bilgiler ve örnekler Güç ve hareket iletimi Makie Elemaları II Prof. Dr. Akgü ALSARAN Temel bilgiler ve örekler Güç ve hareket iletimi İçerik Güç ve Hareket İletimi Redüktör Vites kutusu Örek 2 Giriş 3 Bir eerjiyi, mekaik eerjiye döüştürmek içi

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

ÇOK FAZLI DEVRELER EBE-212, Ö.F.BAY 1

ÇOK FAZLI DEVRELER EBE-212, Ö.F.BAY 1 ÇOK FAL DERELER EBE-212, Ö.F.BAY 1 Üç Fazlı Devreler EBE-212, Ö.F.BAY 2 Eğer gerilim kaynaklarının genlikleri aynı ve aralarında 12 faz farkı var ise böyle bir kaynağa dengeli üç fazlı gerilim kaynağı

Detaylı

Süzgeç. Şekil 4.1 Süzgeçlemedeki temel fikir

Süzgeç. Şekil 4.1 Süzgeçlemedeki temel fikir Deey 4: ayısal üzgeçler Amaç Bu deeyi amacı solu dürtü yaıtlı (FIR) ve sosuz dürtü yaıtlı (IIR) sayısal süzgeçleri taıtılması ve frekas yaıtlarıı icelemesidir. Giriş iyal işlemede süzgeçleme bir siyali

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ Lokma Gökçe Olimpiyat problemlerii çözümüde eşitsizlik teorisi öemli bir yer tutar. Baze bir maksimum miimum değer problemide, baze bir geometrik eşitsizlik kaıtıda, baze

Detaylı

Bölüm I Sinyaller ve Sistemler

Bölüm I Sinyaller ve Sistemler - Güz Haberleşme Sisemleride emel Bilgiler Güz - uay ERŞ. Haa Bölüm I Siyaller ve Sisemler emel Bilgiler Siyaller ve Sııladırılması Güç ve Eerji Furier Serileri Furier rasrmu ve Özellikleri Dira Dela Fksiyu

Detaylı

DİFERANSİYEL DENKLEMLER ve UYGULAMALARI

DİFERANSİYEL DENKLEMLER ve UYGULAMALARI Ercie Üiveritei Mühedilik Fakültei Makia Mühediliği Bölümü DİFERANSİYEL DENKLEMLER ve UYGULAMALARI (DERS NOTLARI) Doç.Dr. Sebahatti ÜNALAN Kaeri, Elül BÖLÜM I. GİRİŞ. ROBLEM ve DİFERANSİYEL ÇÖZÜM Mühedilik

Detaylı

problem 111) s+1=0 koku nedir s=-1 s+5=0 koku nedir s=-5

problem 111) s+1=0 koku nedir s=-1 s+5=0 koku nedir s=-5 problem ) +=0 koku nedir =- +5=0 koku nedir =-5-5=0 koku nedir =+5 -------------------------- -------------------------- problem ) +=0, ifirdan onuza kadar degiire kok nail degiir. +=0 kokleri 0 0 - -

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Bölüm 7 Sinüsoidal Kalıcı Durum Devre Analizi

Bölüm 7 Sinüsoidal Kalıcı Durum Devre Analizi Bölüm 7 Sinüoidal Kalıcı Durum Devre Analizi 7. Sinüoidal kaynaklar 7. Ortalama ve Etkin Değer 7.3 Karmaşık Sayılar 7.4 Sinüoidallerin Fazör Göterimi 7.5 Devrelerin Sinüzoidal Kalıcı Durum Cevabı 7.6 Devrelerin

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi 3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu n 8 Eylül Deneme Sınavı (Prof.Dr.Ventilav Dimitrov) Konu: Karmaşık ekanik Soruları Soru. Yarıçapı R olan iki homojen küre yatay pürüzüz bir çubuğa şekildeki gibi geçirilmiştir. Kütlei m olan hareketiz

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble.

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble. 1 Rastgele Süreçler Olasılık taması Rastgele Deney Çıktı Örnek Uzay, S (s) Zamanın Fonksiy onu (t, s) Olayları Tanımla Rastgele süreç konsepti (Ensemble) deney (t,s 1 ) 1 t Örnek Fonksiyonlar (t,s ) t

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

BİR STURM-LIOUVILLE TİPİNDE PROBLEMİN ÇÖZÜM FONKSİYONLARININ ASİMPTOTİĞİ VE GREEN FONKSİYONU

BİR STURM-LIOUVILLE TİPİNDE PROBLEMİN ÇÖZÜM FONKSİYONLARININ ASİMPTOTİĞİ VE GREEN FONKSİYONU T.C. AHİ EVRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BİR STURM-LIOUVILLE TİPİNDE PROBLEMİN ÇÖZÜM FONKSİYONLARININ ASİMPTOTİĞİ VE GREEN FONKSİYONU Oka KUZU YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI KIRŞEHİR

Detaylı

t Dağılımı ve t testi

t Dağılımı ve t testi r. Mehme Akaraylı ağılımı ve ei oç. r. Mehme AKSARAYLI.E.Ü. İ.İ.B.F. EKONOMETRİ BÖLÜMÜ mehme.akarayli@deu.edu.r Sude ağılımı Küçük öreklerde (

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

Titreşim Sistemlerinin Modellenmesi : Matematik Model

Titreşim Sistemlerinin Modellenmesi : Matematik Model Tireşim Sisemlerii Moellemesi : Maemaik Moel Müheislik sisemleri ile ilgili ireşim aalizlerii gerçekleşirme içi öcelikle sisem serbeslik erecelerii yapılacak ireşim aalizi ile uyumlu olarak emsil eecek

Detaylı

«ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş

«ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş Ş ç Ü Ü ÜÜ ö ş ş ç ş ç ş «ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş Ü ç ç Ç ç ş ö ş ç ş ö Ç ş ö Ç ş ö ç ş ç Çö ç ş ş ö ş ş ş ş ş ö ö ş ç ş ç Çö ş ö ş ş ç ş Ü ş ş Ö Ü ş ç ç Çö ö Ş ş Çö ş ö ş ş ç ş

Detaylı

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa ELECO ' Elektrik - Elektronik ve Bilgiayar Mühendiliği Sempozyumu, 9 Kaım - Aralık, Bura Zaman Gecikmeli Yük Frekan Kontrol Siteminin ekaiu Yöntemi Kullanılarak Kararlılık Analizi Stability Analyi of Time-Delayed

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ 4. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ PARANIN ZAMAN DEĞERİ VE GETİRİ ÇEŞİTLERİ Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Paraı Zama Değeri Paraı Zama Değeri Yatırım

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

TEK-FAZLI TRANSFORMATÖRÜN PARAMETRELERİNİN BULUNMASI DENEY 325-02

TEK-FAZLI TRANSFORMATÖRÜN PARAMETRELERİNİN BULUNMASI DENEY 325-02 İNÖNÜ ÜNİERSİTESİ MÜENDİSİK FKÜTESİ EEKTRİK-EEKTRONİK MÜ. BÖ. 325 EEKTRİK MKİNRI BORTURI I TEK-FZI TRNSFORMTÖRÜN PRMETREERİNİN BUUNMSI DENEY 325-02 1. MÇ: Tek fazlı tranformatörün çalışmaını incelemek

Detaylı

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 04

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 04 EELP1 DERS 04 Özer ŞENYURT Nian 10 1 ELEKTRĐK MOTORLARI Özer ŞENYURT Nian 10 ELEKTRĐK MOTORLARI Özer ŞENYURT Nian 10 3 ASENKRON MOTORLAR Endütride en azla kullanılan motorlardır. Doğru akım motorlarına

Detaylı

DİKGEN FREKANS BÖLMELİ ÇOĞULLAMA SİSTEMLERİNDE PİLOT TON TABANLI SENKRONİZASYON TEKNİĞİ ÖZET

DİKGEN FREKANS BÖLMELİ ÇOĞULLAMA SİSTEMLERİNDE PİLOT TON TABANLI SENKRONİZASYON TEKNİĞİ ÖZET Erciye Üiveritei Fe Bilimleri Etitüü Dergii (1-) 75-8 (006) http://fbe.erciye.edu.tr/ ISSN 101-354 DİKGEN FREKANS BÖMEİ ÇOĞUAMA SİSTEMERİNDE PİOT TON TABANI SENKRONİZASYON TEKNİĞİ M. Nuri SEYMAN a, Necmi

Detaylı

BAĞINTI VE FONKSİYON

BAĞINTI VE FONKSİYON BAĞINTI VE FONKSİYON SIRALI N-Lİ x, x, x,..., x tae elema olsu. ( x, x, x,..., x ) yazılışıda elemaları sırası öemli ise x, x, x,..., x ) e sıralı -li deir. x, x, x,..., x ) de ( x (, x, x ( x, ) sıralı

Detaylı

Yrd.Doç. Dr. Mustafa Akkol

Yrd.Doç. Dr. Mustafa Akkol komşuluğu: Taım: ; isteildiği kadar küçük seçilebile poziti bir sayı olmak üzere a a açık aralığıa a R sayısıı komşuluğu deir Örek : Taım: a a a a ve 0 00 olsu ' i 0 00 0 00 999 00 : Z R bir dizi deir

Detaylı

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2 Açıklama Sorusu : V kayışlar, ayı mekaizma büyüklükleride düz kayışlara göre daha yüksek dödürme mometlerii taşıyabildikleri bilimektedir. V kayışları düz kayışlara göre gözlee bu üstülüğü sebebi "kama

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ PURPLE COMET MATEMATİK BULUŞMASI Nisa 2010 LİSE - PROBLEMLERİ c Copyright Titu Adreescu ad Joatha Kae Çeviri. Sibel Kılıçarsla Casu ve Fatih Kürşat Casu Problem 1 m ve aralarıda asal pozitif tam sayılar

Detaylı

Bir Uçağın Yatış Kontrol Sistem Tasarımında Klasik ve Bulanık Denetleyici Etkileri

Bir Uçağın Yatış Kontrol Sistem Tasarımında Klasik ve Bulanık Denetleyici Etkileri Makine Teknolojileri Elektronik Dergii Cilt: 7, No: 1, 010 (31-4) Electronic Journal of Machine Technologie Vol: 7, No: 1, 010 (31-4) TENOLOJĐ ARAŞTIRMALAR www.teknolojikaratirmalar.com e-issn:1304-4141

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniveritei Biyomedikal Mühendiliği BMM212 Elektronik-1 Laboratuvarı eney Föyü eney#1 Temel Yarıiletken iyot Karakteritikleri oç. r. Mutlu AVCI Ar. Gör. Mutafa İSTANBULLU AANA, 2015 ENEY 1 Temel

Detaylı

CİVATA BAĞLANTILARI_II

CİVATA BAĞLANTILARI_II CİVATA BAĞLANTILARI_II 11. Civata Bağlantılarının Heabı 11.1. Statik kuvvet ve gerilmeler Cıvata, gerilme kuvveti ile çekmeye ve ıkma momenti ile burulmaya dolayııyla bileşik gerilmeye maruzdur. kuvveti

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri uyruk Teorisi Ders Notları: Bazı uyruk Modelleri Mehmet YILMAZ mehmetyilmaz@akara.edu.tr 10 ASIM 2017 11. HAFTA 6 Çok kaallı, solu N kapasiteli, kuyruk sistemi M/M//N/ Birimleri sisteme gelişleri arasıdaki

Detaylı

LPG DEPOLAMA TANKLARININ GAZ VERME KAPASİTELERİNİN İNCELENMESİ

LPG DEPOLAMA TANKLARININ GAZ VERME KAPASİTELERİNİN İNCELENMESİ 825 LPG DEPOLAMA TAKLARII GAZ VERME KAPASİTELERİİ İCELEMESİ Fehmi AKGÜ 1. ÖZET Sunulan çalışmada, LPG depolama tanklarının gaz verme kapaitelerinin belirlenmei amacına yönelik zamana bağlı ve ürekli rejim

Detaylı

DİELEKTRİK ÖZELLİKLER

DİELEKTRİK ÖZELLİKLER 0700 ENEJİ HATLAINDA ÇAPAZLAMA! zun meafeli enerji taşıma hatlarında iletkenler belirli meafelerde (L/) çarazlanarak direğe monte edilirler! Çarazlama yaılmadığı durumlarda: Fazların reaktan ve kaaiteleri

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Yard. Doç. Dr. Mustafa Akkol

Yard. Doç. Dr. Mustafa Akkol Yard. Doç. Dr. Mustaa Akkol Değişim Oraı: oksiouu değişimii ile, i değişimii İle östere. Değişim oraı olur. Diğer tarata olduğuda, Değişim oraı ve 0, alalım. Örek: Yard. Doç. Dr. Mustaa Akkol olur. 0,

Detaylı

Zemin Kütle Özellikleri. Yrd. Doç. Dr. Saadet A. BERİLGEN

Zemin Kütle Özellikleri. Yrd. Doç. Dr. Saadet A. BERİLGEN Zemin Kütle Özellikleri Yrd. Doç. Dr. Saadet A. BERİLGEN 1 Bir zemin kütlei katı daneler ve bunların araındaki boşluklardan oluşmaktadır. Boşluklar ie tamamen veya kımen u ile dolu olabilmektedir. Dolayııyla,

Detaylı

HAFTA 1: SİNYALLER. Sayfa 1

HAFTA 1: SİNYALLER. Sayfa 1 HAFTA : SİNYALLER. Siyal edir?.... Periyodik Siyaller... 4.3 Kullaışlı Siyaller... 9.3. Birim dürtü ve birim basamak foksiyoları... 9.3.. Kesikli zamada birim dürtü ve birim basamak dizileri... 9.3.. Sürekli

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Hazırlayan: Dr. Nurdan Bilgin Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Tüm uygulamalar için aşağıdaki

Detaylı

ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM ARALIĞINDA DĐNAMĐK ANALĐZĐ

ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM ARALIĞINDA DĐNAMĐK ANALĐZĐ DOKUZ EYLÜL ÜNĐVERSĐTESĐ FEN BĐLĐMLERĐ ENSTĐTÜSÜ ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM ARALIĞINDA DĐNAMĐK ANALĐZĐ Kerem GÜRBÜZ Hazira, 011 ĐZMĐR ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM

Detaylı

n, 1 den büyük bir sayma sayısı olmak üzere,

n, 1 den büyük bir sayma sayısı olmak üzere, KÖKLÜ SAYILAR, de üyük ir sayma sayısı olmak üzere, x = α deklemii sağlaya x sayısıa α ı yici derecede kökü deir. x m = x m O halde tersi düşüülürse, ir üslü sayıı üssü kesirli ise, o sayı köklü sayı içimide

Detaylı

ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ

ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ Yuuf ALTUN Metin DEMĐRTAŞ 2 Elektrik Elektronik Mühendiliği Bölümü Mühendilik Mimarlık Fakültei Balıkeir Üniveritei, 45, Cağış, Balıkeir e-pota: altuny@balikeir.edu.tr

Detaylı

TEKNOLOJİ FAKÜLTESİ Elektrik Elektronik Mühendisliği Bölümü ELEKTRİK MAKİNALARI LABORATUARI II

TEKNOLOJİ FAKÜLTESİ Elektrik Elektronik Mühendisliği Bölümü ELEKTRİK MAKİNALARI LABORATUARI II TEKNOLOJİ FAKÜLTESİ Elektrik Elektroik Mühedisliği Bölümü ELEKTRİK MAKİNALAR LABORATUAR Öğretim Üyesi : rof. Dr. Gügör BAL Deeyi Adı : Asekro Makia Deeyleri Öğrecii Adı Soyadı : Numarası : Tarih: M-1 ÜÇ-FAZ

Detaylı

dir. Periyodik bir sinyalin örneklenmesi sırasında, periyot başına alınmak istenen ölçüm sayısı N

dir. Periyodik bir sinyalin örneklenmesi sırasında, periyot başına alınmak istenen ölçüm sayısı N DENEY 7: ÖRNEKLEME, AYRIK SİNYALLERİN SPEKTRUMLARI VE ÖRTÜŞME OLAYI. Deneyin Amacı Bu deneyde, ürekli inyallerin zaman ve rekan uzaylarında örneklenmei, ayrık inyallerin ektrumlarının elde edilmei ve örtüşme

Detaylı

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise YTÜ-İktisat İstatistik II Örekleme ve Öreklem Dağılımları BASİT RASSAL ÖRNEKLEME N tae ese arasıda taelik bir öreklem seçilmesii istediğii düşüelim. eseli olaaklı her öreklemi seçilme şasıı eşit kıla seçim

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK AKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY ÖYÜ DENEY I VİDALARDA OTOBLOKAJ DENEY II SÜRTÜNME KATSAYISININ BELİRLENMESİ DERSİN

Detaylı

BEKLENEN DEĞER. 6. Ders. Tanım: X, bir rasgele değişken ve g : R R, B B R için x : g x B B R özelliğine sahip bir fonksiyon olmak üzere:

BEKLENEN DEĞER. 6. Ders. Tanım: X, bir rasgele değişken ve g : R R, B B R için x : g x B B R özelliğine sahip bir fonksiyon olmak üzere: 6. Ders BEKLENEN DEĞER Taım: X, bir rasgele değişke ve g : R R, B BR içi x : gx B BR özelliğie sahip bir foksiyo olmak üzere: i) X kesikli ve ii) X sürekli ve gx fx olduğuda, x EgX gxfx gx fxdx olduğuda,

Detaylı

ÖZET Doktora Tezi KISITLI DURUM KALMAN FİLTRESİ VE BAZI UYGULAMALARI Esi KÖKSAL BABACAN Akara Üiversitesi Fe Bilimleri Estitüsü İstatistik Aabilim Dal

ÖZET Doktora Tezi KISITLI DURUM KALMAN FİLTRESİ VE BAZI UYGULAMALARI Esi KÖKSAL BABACAN Akara Üiversitesi Fe Bilimleri Estitüsü İstatistik Aabilim Dal ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ KISITLI DURUM KALMAN FİLTRESİ VE BAZI UYGULAMALARI Esi KÖKSAL BABACAN İSTATİSTİK ANABİLİM DALI ANKARA 2009 Her hakkı saklıdır ÖZET Doktora Tezi

Detaylı

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı) 3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda

Detaylı

Bu denklem, kapalı-döngü kutbunun var olma koşulunu, açı koşulu ve modül koşulu olmak üzere iki koşulu belirler. Burada G ( s)

Bu denklem, kapalı-döngü kutbunun var olma koşulunu, açı koşulu ve modül koşulu olmak üzere iki koşulu belirler. Burada G ( s) Kök-Yer Eğrileri: Kplı-dögü deeti iteii geçici-duru dvrışıı teel özellikleri kplı-dögü kutuplrıd belirleir. Dolyııyl probleleri çözüleeide kplı-dögü kutuplrıı - krşık yı düzleideki dğılıı rştırılı gerekir.

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

1.Seviye ITAP 09 Aralık_2011 Sınavı Dinamik III

1.Seviye ITAP 09 Aralık_2011 Sınavı Dinamik III .Seviye ITAP 9 Aralık_ Sınavı Dinamik III.Kütlei m=.kg olan bir taş, yükekliği h=5m olan bir kaleden yatay yönde v =5m/ hızı ile atılıyor. Cimin kinetik ve potaniyel enerjiini zamanın fonkiyonu olarak

Detaylı

Hava. çıkışı. Fan. Şekil 1 6/7 Motor şasi ve fan gurubunun yalıtımı

Hava. çıkışı. Fan. Şekil 1 6/7 Motor şasi ve fan gurubunun yalıtımı Uygulama /0 Fa ve motor gurubu şasi üzerie cıvatalamış olup şasi de fabrika zemiie dübellerle bağlamak istemektedir. Şasi ve üzerideki toplam kütle 00 kg dır. Motor döme devri =000 dev/dak. Sistemi yere

Detaylı