Doğrusal olmayan programlama. Suat ATAN

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Doğrusal olmayan programlama. Suat ATAN"

Transkript

1 Doğrusal olmayan programlama Suat ATAN

2 İçindekiler 1 Giriş 2 2 Optimizasyon 2 3 Doğrusal olmayan programlama Tek değişkenli fonksiyonun optimumluk şartları Çok Değişkenli Fonksiyonlarda Gerek ve Yeter Şart Doğrusal olmayan programlama problemlerinin çözümü Tek değişkenli kısıtsız optimizasyon problemlerinde yaklaşık çözüm teknikleri Aralığı ikiye bölme yöntemi Altın oran yöntemi Yarı aralık (bisection) yöntemi Çok değişkenli fonksiyonlarda yaklaşık çözüm teknikleri Gradyant yöntemi Newton yöntemi Kısıtlı optimizasyon Lagrange çarpanları Doğrudan arama yöntemi Yerine koyma metodu Kuhn-Tucker koşulları

3 1 Giriş Lineer programlama bir dizi sınırlamalar dahilinde çıktıların lineer matematiksel yöntemler kullanılarak optimize edilmesi demektir.anonim (2013d) Doğrusal (lineer) programlamadaki doğrusal (lineer) sözcüğü, modeldeki tüm matematiksel fonksiyonların doğrusal (lineer) olması gerektiğini belirtir. Programlama kelimesi ise bilgisayar programlamaya işaret etmez; daha çok planlama ile eş anlamlıdır. Dolayısıyla doğrusal (lineer) programlama, birçok uygun alternatif arasından belirlenmiş bir hedefe uyan optimal çözümü bulacak aktivitelerin planlanmasını ifade eder. (Anonim, 2013c) Matematikte matematiksel programlama ya da optimizasyon terimi; bir gerçel fonksiyonu minimize ya da maksimize etmek amacı ile gerçek ya da tamsayı değerlerini tanımlı bir aralıkta seçip fonksiyona yerleştirerek sistematik olarak bir problemi incelemek ya da çözmek işlemlerini ifade eder.pek çok gerçek ve teorik problemler bu genel çerçevede modellenebilir.bu teknik kullanılarak formüle edilen problemlere fizik bilminin ilgi alanından bir örnek verilecek olursa, bilgisayar monitörlerinin enerji minimizasyonundan söz edilebilir.(anonim, 2013b). Doğrusal programlama ve doğrusal olmayan programlama bu optimizasyonun bir alanıdır. Genel olarak doğrusal olmayan programlama, çözüm fonksiyonunun doğrusal(lineer) olmamasını ifade eder. Elbette gerçek hayatta doğrusal olmayan fonksiyona sahip çözümler de mevcuttur. Doğrusal olmayan programlamada kullanılacak matematiksel yöntem ve süreçler doğrusal programlamaya göre daha karmaşıktır. 2 Optimizasyon Matematik, bilgisayar bilimi, ya da yönetim bilimi, matematiksel optimizasyon (alternatif, optimizasyonu veya matematiksel programlama) mevcut alternatiflerin bazı dizi (bazı kriterler açısından) en iyi elemanın seçimidir. (Dantzig, 1965) Basit durumda, bir optimizasyon problemi sistematik bir izin kümesi içerisinden giriş değerlerini seçme ve fonksiyonunun değerini hesaplayarak gerçek işlevini maksimize veya minimize oluşur. Diğer formülasyonlar için optimizasyon teorisi ve teknikleri genelleme uygulamalı matematik geniş bir alanı kapsar. Daha genel olarak, optimizasyon amaç fonksiyonları ve etki farklı farklı çeşitli dahil olmak üzere tanımlanmış bir etki alanı (veya kısıtlamaları kümesi) verilen bazı objektif fonksiyonu mevcut en iyi değerler bulma içerir. Optimizasyon süreçleri, matematik gerektiren çalışmalardır. Modern optimizasyon yöntemle- 2

4 rinin başlangıcı değişimler hesabına (calculus of variations) kadar dayanır. Değişimler hesabı ile ilgili genel çerçeveyi 18. yüzyılda ortaya koyan Lagrange ın Lagrange çarpanlar yöntemi (Lagrangian multipler rule) olarak bilinen meşhur metodu da günümüzde optimizasyon teorisinin ana konularından birini oluşturmaktadır (Dutta). İlk ve en basit optimizasyon yöntemlerinden olan En Dik İniş, (EDİ) (steepest descent) metoduna ait uygulamanın Cauchy tarafından ilk kez gösterildiği 19.yüzyıl ortalarından yirminci yüzyılın ortalarına kadar bu sahada çok az ilerleme kaydedilmiştir. Bu dönemden itibaren bilgisayar teknolojisindeki gelişmelere paralel olarak çok hızlı işlemcilerin kullanılmaya başlanmasıyla optimizasyon konusundaki çalışmaların ve yeni uygulamaların miktarı da hızla artmıştır (Rao, 2009) Sayısal optimizasyon yöntemlerini üç grupta toplamak mümkündür. Bunlar; belirleyici (deterministic), olasılıksal (stochastic) ve melez (hybrid) metotlardır. Belirleyici metotlar genel olarak Fermat teoreminden hareketle oluşturulan EDİ ve Newton metotları gibi gradyan işlemlerine dayalı yöntemlerdir. Bununla birlikte uygulama yapılacak problemin özelliklerine bağlı olarak kullanılabilecek simpleks metotları, doğrusal programlama gibi değişik yöntemler de geçtiğimiz yüzyıl içerisinde ortaya çıkmıştır. Olasılıksal metotlar ise, Genetik Algoritmalar, Karınca Kolonisi ve Tavlama Benzetimi gibi türev bilgisi gerektirmeyen, genellikle doğadan esinlenen yöntemlerdir. Melez optimizasyon teknikleri ise belirleyici ve olasılıksal yöntemlerin bir arada kullanıldığı metotlardır. Her yöntemin farklı üstünlükleri ve eksiklikleri olabilmekle birlikte, genel olarak belirleyici yöntemler genel optimumu daha hassas bir şekilde bulabildiği, olasılıksal yöntemler ise uygulama kolaylıkları nedeniyle tercih edilirler. Melez yöntemler ise bir araya getirdiği farklı metotların üstünlüklerinden istifade etmeyi amaçlar. Dinamik sistemlerin kararlı denge noktalarının bulunması yaklaşımı ile doğrusal olmayan optimizasyon (doğrusal olmayan programlama) problemlerinin çözümü konusundaki teknikler de belirleyici yöntemlerden sayılmaktadır. Bu alandaki ilk çalışmalardan olan, doğrusal olmayan otonom sistemlerin kritik noktaları ile yerel optimumları ilişkilendiren Yamashita (Yamashita, 1980) dan sonra konu ile ilgili araştırmalar giderek artmış ve son on yılda yoğunlaşarak özellikle gradyan sistem yaklaşımları ile dinamik sistemin takip edeceği yörüngeler yoluyla dinamik sistemin denge noktalarına (yerel optimumlara) ulaşılması üzerinde durulmuştur. Söz konusu çalışmalarda, optimizasyonu yapılacak doğrusal olmayan fonksiyonun gradyanı kullanılarak birinci mertebeden adi diferansiyel denklem yardımıyla bir dinamik sistem tanımlanmakta ve bu dinamik sistemin denge noktaları, doğrusal olmayan fonksiyonun yerel optimumları olarak bulunmaktadır. Diğer taraftan ikinci mertebeden adi diferansiyel denklem üzerine kurulmuş dinamik sistem yaklaşımı üzerine de araştırmalar yapılmıştır. Hacıoğlu (2011) 3

5 3 Doğrusal olmayan programlama Doğrusal olmayan Programlama konusundaki ilk önemli ı95ı yılında Karush-Kuhn ve Tucker tarafından optimal çözüm için gerek ve yeter şartlar teorisi adı altmda sunulmuştur. Genel bir optimizasyon problemi x 1, x 2, x 3,..., x n n adet karar değişkenini amaç fonksiyonunu optimize(minimize veya maksimize) etmek suretiyle uygun alan içerisinden seçmektir. f(x 1, x2,..., x n ) Bu problem Eğer amaç fonksiyonu doğrusal değilse veya çözüm kümesinin yer aldığı uygun alan doğrusal olmayan sınırlarla belirlenmiş ise doğrusal olmayan programlama problemi olarak adlandırılır. Bu durumda doğrusal olmayan programlama problemi şöyle gösterilir: Aşağıdaki sınırlama fonksiyonları koşulu ile g 1 (x 1, x2,..., x n ) b g m (x 1, x2,..., x n ) b m Max.f(x 1, x2,..., x n ) Doğrusal olmayan programlama problemleri mühendislik, matematik, işletme, fiziğe dayalı bilimler ve matematilk ile kararın (geniş anlamda) girdiği tüm alanlarda yaygın bir biçimde kullanılmaktadır. (Avriel, 2012). (Cornuejols and Tutuncu, 2007) Gerek ve Yeter Şart Kavramı: Optimizasyon tekniklerinin uygulamalarında ve aynı zamanda elde edilen sonucun gerçek optimum değer olup olmadığını belirlemede gerek ve yeter şartlar dikkate alındığından bu şartları kavramak önemlidir. Gerek şart: Optimum noktada şartları sağlaması gereken durumlar olarak adlandırılır. Diğer bir tanımla eğer herhangi bir nokta gerek şartları sağlamıyorsa optimum nokta olamaz. Bununla birlikte gerek şartları sağlayan nokta optimum olmayabilir veya tek bir nokta olmayabilir. Gerek şartları sağlayan noktalar aday nokta (candidate points) olarak adlandırılır. Dolayısıyla optimum 4

6 nokta ile optimum olmayan noktaları ayırmak için başka şartlara ihtiyaç duyulur ve bu şartlar yeter şart olarak adlandırılır. Yeter şart: Eğer aday optimum noktalar yeter şartları sağlıyorsa bu nokta optimum noktadır ve daha ileri testler yapmaya gerek yoktur. Ancak bu şartların sağlanamadığı veya kullanılmadığı durumlarda aday noktalarından herhangi birisinin optimum olmadığı söylenemeyebilir. Özetle: (Anonim, 2013a) 1. Optimum noktalar gerek şartları sağlamalıdır. Bu şartları sağlamayan noktalar optimum nokta olamaz. 2. Gerek şartları sağlayan bir noktanın optimum olması gerekmez; yani optimum olmayan noktalarda gerek şartları sağlayabilir. 3. Yeter şartı sağlayan bir aday nokta gerçekten optimumdur. 4. Eğer yeter şartlar kullanılamıyor veya hesaplanamıyorsa aday noktaların optimum olduğuna dair herhangi bir sonuç çıkartamayız. Bütün bu şartlara optimality conditions (optimumluk şartları) denir ve aşağıda belirtilen iki durum için kullanılır: 1. Bir tasarım noktası verildiğinde, optimumluk şartları kullanılarak bu noktanın aday nokta olup olmadığı tespit edilir. 2. Aday noktayı tespit etmek için bu şartlar kullanılır. Tek değişkenli optimizasyon Tek değişkenli fonksiyonlarda dikkat edilecek husus elde edilen minimum değerin lokal minimum mu yoksa global minimum mu olduğunun tespit edilmesidir. Lokal minimum Bir değişkenli bir f(x)fonksiyonun h ın küçük pozitif ve negatif değerinde aşağıdaki ifadeyi veriyorsa bu fonksiyonun x = x da relatif veya lokal minimumdur. f(x ) f(x + h) Benzer olarak x noktasında eğer aşağıdaki ifade sağlanıyorsa bu değerde f(x) fonksiyonu maksimumdur. f(x ) f(x + h) Global minimum veya maksimum değer için optimumluk şartlarının sağlanması gerekmektedir ki bir değişkenli bir fonksiyon için aşağıda verilmiştir. Grafiksel gösterim şekil 1 ile gösterimektedir. 5

7 Şekil 1: Lokal ve global maksimum ve minimum 3.1 Tek değişkenli fonksiyonun optimumluk şartları Optimumluk şartları, bir f(x)nun aday noktalarını belirlemede kullanılır. Optimumluk şartlarını elde etmek için öncelikle aşağıda verilen kabul yapılır: x minimumnoktadır ve bunun civarındaki bir noktada fonksiyonun değeri ve türevidi kkate alınacaktır. noktası fonksiyonun lokal minimum noktası olsun. x ise x noktasına yakın herhangi bir nokta olarak dikkate alalım. Dolayısıyla artım miktarı d aşağıdaki gibi tanımlanır: d = x x ve bu noktalara karşılık f(x) fonksiyonun farkı aşağıdaki gibi verilir: (x) = f(x) f(x ) m noktası f(x) fonksiyonun lokal minimum olduğu nokta olduğundan küçük bir ilerlemede ( x değerine varıldığında) f(x) in değeri değişmez veya mutlaka artar. Dolayısıyla f(x) negatif olmayan bir değer alır. Dolayısıyla, f(x) = f(x) f(x ) 0. olmalıdır. Buradan f(x) fonksiyonu Taylor serisi ile açılıdktan sonra sonuç olarak d nin her değerinde şartı sağlayan değeri: f (x ) = 0 6

8 Şekil 2: Hessian Matrisi olacaktır. (Meyer, 1979) Bu şarta birinci-derece optimumluk şartı (first order optimality condition) veya birinci- derece gerek şart (first-order necessary condition) olarak adlandırılır zira fonksiyonun sadece birinci türevini içerir. Bu şartları sağlayan noktalar lokal minimum veya maksimum veya hiçbir olmayabilir (büküm noktası olabilir). Bu noktalar stationary noktaları olarak adlandırılır.aday noktaları belirledikten sonra bu noktalardan hangisinin fonksiyonu minimum veya maksimum yaptığını belirlemek için yeter şartlar dikkate alınır. Buna göre f (x ) 0 ise yeter şart olarak adlandırılır. 3.2 Çok Değişkenli Fonksiyonlarda Gerek ve Yeter Şart Eğer fonksiyon çok değişkenli ise bu durumda her bir eleman için ayrı ayrı kısmi türev alınan Hessian Matrisi tanımlamak gerekir. Çözüm buna göre yapılır. Şekil 2 ile Hessian matrisi gösterilmektedir. (Bartholomew-Biggs, 2005) Uygulamada Hessian Matrisi ile çözümün hesaplanması zaman alıcı olmaktadır bu bakımdan bilgisayarlı çözüm de yapılabilir. 7

9 4 Doğrusal olmayan programlama problemlerinin çözümü Doğrusal olmayan programlama problemlerinin hepsini çözen genel bir yöntem bulunmamakla birlikte, değişik tipteki doğrusal olmayan programlama problemlerinin çözümü için farklı yöntemler bulunmaktadır. Optimizasyon problemlerinin analitik yöntemlerle çözülemediği durumlarda yaklaşık çözüm tekniklerine başvurulur. Lineer olmayan programlama problemlerinin çözümü için geliştirilen algoritmaların temeli, tek değişkenli fonksiyonların çözümündeki algoritmalara dayanır. Bu nedenle önce tek değişkenli fonksiyonlarda aralığı ikiye bölme, altın-oran ve yarı-aralık algoritmaları, daha sonra da çok değişkenli fonksiyonlar için gradyant algoritmasından söz edilecektir Bir çok lineer olmayan programlama algoritmasının temel prensibi şu şekildedir: uygun bir X k noktası ile başlanır ve uygun bir λ k adım büyüklüğü bulunarak yeni bir X k+1 noktası elde edilir. Bu işleme ardışık olarak devam edilerek optimal çözüme ulaşılmaya çalışılır. 4.1 Tek değişkenli kısıtsız optimizasyon problemlerinde yaklaşık çözüm teknikleri Bir f(x) fonksiyonu [a, b] kapalı aralığında tanımlı ve bu aralıkta f(x) minimum veya maksimum değerini alsın. Verilen aralıkta fonksiyonun yaklaşık çözümünü bulmak için aralığı ikiye bölme, altın oran ile yarı-aralık yöntemleri kullanılabilir. Bunlardan aralığı ikiye bölme ve altın oran türev kullanmayan, yarı-aralık türev kullanan algoritmalardır. Bu yöntemlerle ilgili kısa açıklamalara yer verilmiştir (Erdoğan ve Alptekin, 2006) Aralığı ikiye bölme yöntemi Bir f(x) fonksiyonu [a,b] kapalı aralığında tanımlı ve bu aralıkta f(x) minimum veya maksimum değerini alsın. [a,b] aralığının orta noktasından ɛ > 0 uzaklıkta iki λ = (a + b)/2 ɛ ve µ = (a + b)/2 + ɛ noktaları alınarak bu noktaların fonksiyon altındaki görüntüleri bakılarak yeni bir aralık bulunur. Bu işleme aralık belli bir l > 0sayısından küçük olana kadar devam edilirse aranan çözüme ulaşılır Altın oran yöntemi Bir f(x)fonksiyonu [a, b] kapalı aralığında tanımlı ve bu aralıkta f(x) minimum veya maksimum değerini alsın. r2 + r 1 = 0 denkleminin pozitif kökü olan ve yaklaşık değeri r 0, 618 olan sayıya altın oran denir. Her iterasyonda sabit bir oranla aralığın uzunluğu indirgenerek yeni 8

10 nokta çiftleri bulunur. Bu işleme aralık belli bir l > 0 sayısından küçük olana kadar devam edilirse aranan çözüme ulaşılır Yarı aralık (bisection) yöntemi Bir f(x) fonksiyonu [a,b] kapalı aralığında tanımlı ve bu aralıkta f(x) türevlenebilir bir fonksiyon olmak üzere minimum veya maksimum değerini alsın. Bu durumda aralığın orta noktasındaki türev değerine bakılarak yeni aralık tespit edilir. Bu işleme aralık l > 0 sayısından olana kadar devam edilirse aranan çözüme ulaşılır. 4.2 Çok değişkenli fonksiyonlarda yaklaşık çözüm teknikleri Bu başlık altında gradyant ve Newton yöntemlerine yer verilmiştir. Uygulamada yaklaşık çözüm yöntemleri için bilgisayar programlarından yararlanılmaktadır. Örneğin aralığı ikiye bölme ve altın oran algoritması için C++ ve Newton ile gradyant yöntemleri için de Maple matematiksel programlama dilinde yazılan programlar kullanılabilmektedir Gradyant yöntemi Bu yöntem en hızlı artan veya en hızlı azalan yön olarak isimlendirilir. Öncelikle bir başlangıç noktası alınır, daha sonra amaç fonksiyonunu en hızlı geliştiren yönde hareket edilir. Bu yön amaç fonksiyonunun gradyantı ile (eğer amaç fonksiyonu maksimum ise) aynı yönde veya amaç fonksiyonunun gradyantının (eğer amaç fonksiyonu minimum ise) ters yönde olacaktır. Daha sonra gradyant belli bir katı kadar adım atılarak başlangıç noktasına ilave edilir. Fonksiyonun gradyantının normu ɛ > 0 olana kadar iterasyona devam edilerek çözüm bulunur. Özetle gradyant algoritması; 1. Rastgele bir X 0 noktasıyla başla, 2. X 0 da fonksiyon gradyantını hesapla, 3. Gradyan doğrultusunda bir adım atarak yeni bir X 1 noktasına git, 4. (2) ve (3) adımlarını, fonksiyonun gradyantının sıfır olduğu X noktasına kadar tekrarla, şeklindedir. 9

11 4.2.2 Newton yöntemi Gradyan yönteminde amaç fonksiyonunun en hızlı iyileştiği yön olan gradyant yönünde adım atılarak yeni bir nokta bulunurken, Newton yönteminde ise ikinci mertebe koşulları kullanılması suretiyle Newton adımı atılarak yeni bir nokta bulunur. Newton adımı bir lineer denklem sisteminin çözülmesi ile bulunur. 4.3 Kısıtlı optimizasyon Kısıtlı doğrusal olmayan (nonlinear) optimizasyon problemleri, kısıtları eşitlik veya eşitsizlik şeklinde olan problemlerden oluşur. Yöntemler kısıtlılık ve kısıtsızlık hallerine göre geliştirilmiştir. Kısıtlı olanlar için analitik çözüm; kısıtlar eşitlik şeklinde ise lagrange çarpanları yöntemiyle yapılır. Kısıtlar eşitsizlik şeklinde ise Kuhn-Tucker (K-T) koşullarını sağlayacak şekilde çözümler araştırılır Lagrange çarpanları Z min,max = f(x 1, x 2,..., x n ) (1) g i (x) = b i (2) şeklinde verilen kısıtları eşitlik halinde ve değişkenleri serbest olan modelin çözümünde Langrange çarpanları yöntemi kullanılır. Kaya (2012) Yöntemin iki temel varsayımı vardır.(markland ve Sweigart, 1987, s.719 aktaran Kaya (2012)) Kısıtlayıcı fonksiyon sayısı (m), bilinmeyen değişken sayısı (n) sayısından az olmalıdır. Amaç fonksiyonu ve kısıtlar sürekli ve türevleri alınabilen fonksiyonlar olmalıdır. Modelin amaç fonksiyonu ve kısıtlarından oluşan Langrange fonksiyonu aşağıdaki biçimde gösterilir: L(x, λ) = f(x) + λ i [b i g i (x)] (3) λ i değerlerine Langrange çarpanları adı verilir. Langrange fonksiyonun kullanılmasıyla; m kısıtlı problem, m Langrange çarpanlı kısıtsız bir problem haline gelir. Langrange fonksiyonunun optimumu veren sonuç, kısıtları sağlamak zorunda olduğunda orjinal problemin de optimum çözümü olacaktır. Kaya (2012) 10

12 Örnek: Maksimizasyon problemimiz aşağıdaki gibi olsun. 1 Max : Z = 4x x 2 2 (4) kısıt ise: x 1 + 2x 2 = 40 (5) İlk adımda doğrusal olmayan amaç fonksiyonumuzu Langrange fonksiyonuna çevirelim. Bunun için kısıtlama fonksiyonunu da aşağıdaki gibi sıfıra eşit hale getirmek suretiyle dönüştürelim: x 1 + 2x 2 40 = 0 (6) Sonraki adım; Langrange çarpanı λ ile bir önceki sıfıra eşit eşitliğimizi çarpıp amaç fonksiyonuna etkileyelim (bu durumda amaç fonksiyonu değişmemiş olur). L = 4x 1 0.1x x 2 0.2x 2 2 λ(x 1 + 2x 2 40) (7) Şimdi ise 3 değişkenimiz ile ilgili Langrange fonksiyonunun kısmi türevini alalım: L x 1 = 4 0.2x 1 λ (8) L x 2 = 5 0.4x 2 2λ (9) Bu denklemleri sıfıra eşitleyelim: L λ = x 1 2x (10) 4 0.2x 1 λ = 0 (11) 5 0.4x 2 2λ = 0 (12) Denklemler çözüldüğünde aşağıdaki sonuçlar elde edilir: x 1 2x = 0 (13) x 1 = Örneğin tamamı Nonlinear Programming Solution Techniques adlı kitaptan alınmıştır. Anonim 11

13 Şekil 3: Problemin WolframAlpha ile çözülmüş hali ve 3 boyutlu görünümü. şişe üretmeli, kupa üretmeli x 2 = 10.8 λ = 0.33 olur Bu değerleri Langrange fonksiyonunda ilgili yerlere yazdığımızda L değeri $70.42 olacaktır. Yukarıda elle yapılan çözümün bilgisayarda çözülmüş hali: Yukarıdaki optimizasyon problemini bilgisayar yardımı ile manuel çözüme göre daha hızlı ve hatasız çözebiliriz. Çözümün grafiksel gösterimi Şekil 3 de gösterilmiştir. Örnek : Hickory Şirketi sandalye üretmektedir. Her ay sabit maliyetler 7500 $ ayrıca her bir sandalye başına üretim maliyeti 40 $ olmaktadır. Fiyat ise taleple bağlantılı olup aşağıdaki doğrusal denkleme göre ortaya çıkmaktadır. (v üretilecek adet olmak üzere): Anonim v = p (14) 12

14 Şekil 4: Hickory Şirketi için optimal üretim Buna göre doğrusal olmayan kar fonksiyonunu yazın ve maksimum karı sağlayacak fiyat ve optimum üretim adedini ve buna göre çıkacak maksimum karı da hesaplayın: Çözüm: p fiyat olmak üzere kar fonksiyonu hasılat- toplam maliyet olacaktır. Buna göre öncelikle maliyet fonksiyonumuz: c = v (15) olur, hasılat pv değerinden maliyeti çıkaracak olursak: Max.pv ( v) (16) Şimdi bu propbelmde v değerleri yerine v = p denkleminin sağ taraftaki ifadesini koyarak bilinmeyen adedini bire indirelim: Maksimize400p 1.2p p (17) ayrıca kar sıfır olmayacağından kısıt fonksiyonumuz: p > 0 olacaktır. Bu denklemi bilgisayar yardımı ile çözdüğümüzde: p = 146, 66 optimum üretim adedi v = 224 adet ve maksimum kar 2180 $ olacaktır. Çözümün 3 boyutlu grafiksel gösterimi şekil 4 ile gösterilmiştir. 13

15 Şekil 5: Belirsizlik aralığı Doğrudan arama yöntemi Bu yöntemin düşüncesi tanımlanmış optimumu içerdiği bilinen bir belirsizlik aralığını tanımlamak ve optimum bulununcaya kadar aralığı daraltmaktır. Bu aralık başta istenildiği kadar küçük tutulabilir.bu yöntem şekil 5 ile grafiksel olarak gösterilmiştir. Örnek: Aşağıdaki doğrusal olmayan problemi doğrudan arama yöntemi ile çözelim: Çözüm: x L = 0, x R = 3 olsun: x L x x 2 ve x 1 x x R olmalıdır. 3x 0 x 2 Max.f(x) = x x 3 Burada: x 1 x L = x R x 2 ve = x 2 x 1 dir. Bu da: (18) x 1 = x L + x R x L 2 (19) ve x 2 = x L + x R x L + 2 olduğu anlamına gelir. = 0.01 olarak hesap yapılacak olursa sonuçlar 6 ile gösterilmektedir. (20) 14

16 Şekil 6: Doğrudan arama yöntemi ile çözüm Yerine koyma metodu Doğrusal olmayan programlama çözüm metotları içerisinde en kolay metot yerine koyma metodu 2 olarak bilinen metottur. Bu metot ancak tek kısıtlılık eşiği olan durumlarda kullanılır. Bu metodun mantığı değişlenleri birbiri yerine koymak suretiyle çözmektir. Bu kısıtlı optimizasyon modelinin bir nevi kısıtsız optimizasyon modeline dönüşmesi olarak kabul edilebilir.anonim Örnek: Problem: Anonim maksimizez = vp c f vc v (21) kısıt ise: v = p (22) Sabit değerler c f = 10000$vec v = 8$oslun Dikkat edilecek olursa amaç fonksiyonu doğrusal değildir çünkü v (satış adedi) ve p (fiyat) değişkenlerinin çarpanları vardır bu nedenle denklem doğrusal değildir. Şimdi yukarıdaki ilk fonksiyonda v yerine ikinci fonksiyondaki p değerini yazarsak: 2 İngilizce karşılığı substition method 15

17 Z = 1500p 24.6p 2 c f 1500c v pc v (23) c f ve c v sabit değişkenlerini de yerine koyduğumuzda: Z = 16696p 24.6p (24) Bu problemi Z nin diferansiyelini alıp sıfıra eşitleyerek çözeceğiz: Z p = p (25) 0 = p (26) 49.2p = (27) p = 34.49$ (28) Aynı problemin bilgisayar destekli çözümü şekil 7 ile gösterilmiştir. 4.4 Kuhn-Tucker koşulları Bir doğrusal olmayan programlama probleminde, problemin kısıtları eşitsizlik formunda ise bu türden problemlerin çözümü Kuhn-Tucker koşullarını sağlamalıdır. Kısıtları eşitsizlik formunda olan bir doğrusal olmayan programlama problemi aşağıdaki şekilde verilsin: m kısıt ve n değişkenden oluşan bir problemde; Maksimum veya minimum amaç fonksiyonu: z = f(x1, x2,..., xn) Kısıtlar: g1(x1, x2,..., xn) b1g2(x1, x2,..., xn) b2...gm(x1, x2,..., xn) bm şeklinde verilsin. Problemin Lagrange fonksiyonu yazılır ve buna göre Kuhn-Tucker koşulları incelenir. Lagrange fonksiyonu aşağıdaki gibi yazılır: L(x j, λ i ) = f(x j )λ(x j )(j = 1, 2,.., n)ve(i = 1, 2,..., m) Kuhn-Tucker koşullarının uygulanabilmesi için verilen doğrusal olmayan programlama probleminin kısıtlarının şeklinde olması gerekmektedir Winston, (2004). Kuhn-Tucker gerek şartları iki amaç için kullanılır: verilen bir noktanın muhtemel optimum olup olmadığını kontrol etmede aday minimum noktaların tespitinde kullanılır Kuhn-Tucker 1. derece gerek şartları ile ilgili önemli bazı özellikler aşağıda verilmiştir: 16

18 Şekil 7: Problemin bilgisayar destekli çözümü-optimal değer işaretlenmiştir 17

19 K-T şartları ancak regular (düzenli) noktada uygulanır. K-T şartlarını sağlamayan noktalar, eğer irregular (düzensiz) noktalar değilse lokal minimum olamazlar. K-T şartlarını sağlayan noktalar Kuhn-Tucker noktaları olara adlandırılır. K-T şartlarını sağlayan noktalar kısıtlı veya kısıtsız olabilir. Eğer eşitlik kısıtlayıcı varsa ve eşitliksiz kısıtlayıcıların hiçbiri aktif değilse K-T şartlarını sağlayan bu noktalar stationary noktalardır. Yani bu noktalar minimum maksimum veya dönüm noktaları olabilir. Kaynaklar Anonim. Nonlinear Programming Solution Techniques. Anonim. pages 1 8, 2013a. Anonim. Optimizasyon-vikipedia, b. URL Anonim. Dogrusal programlama-vikipedia, c. URL Anonim. Linear programming-wolfram mathworld, d. URL Mordecai Avriel. Nonlinear programming: analysis and methods. Courier Dover Publications, MC Bartholomew-Biggs. Nonlinear optimization with financial applications, volume Gerard Cornuejols and R Tutuncu. Optimization methods in finance. Number January George Bernard Dantzig. Linear programming and extensions. Princeton university press, J. Dutta. Optimization Theory - A Modern face of Applied Mathematics. Havacılık Mühendisliği Bölümü İstanbul Türkiye Hacıoğlu, Abdurahman; Hava Harp Okulu. Doğrusal olmayan optimizasyon problemleri için taşınır algoritmik fonksiyonlar yöntemi. Havacılık ve Uzay Teknolojileri Dergisi, 5(1):1, ISSN Cansın Kaya. Doğrtusal olmayan programlama ile portföy analizi, Ocak Yuksek Lisans Tezi. 18

20 RM Meyer. Max-Min Problems. Essential Mathematics for Applied Fields, pages 1 8, URL S. S. Rao. Engineering Optimization: Theory and Practice, Fourth Edition. John Wiley and Sons, Inc., H. Yamashita. A Differential Equation Approach to Nonlinear Programming. Mathematical Programming, cilt 18, s,

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik (Eşitlik Kısıtlı Türevli Yöntem) Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde

Detaylı

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR Kısıtlı ve kısıtsız fonksiyonlar için maksimum veya minimum (ekstremum) noktalarının belirlenmesinde diferansiyel hesabı kullanarak çeşitli

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr Doğrusal programlama, karar verici konumundaki kişilerin

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Hessien Matris-Quadratik Form Mutlak ve Bölgesel Maksimum-Minimum Noktalar Giriş Kısıtlı ve kısıtsız fonksiyonlar için

Detaylı

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2 OPTIMIZASYON.... Bir Değişkenli Fonksiyonların Maksimizasyonu.... Türev...3.. Bir noktadaki türevin değeri...4.. Maksimum için Birinci Derece Koşulu...4.3. İkinci Derece Koşulu...5.4. Türev Kuralları...5

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

OPTİMİZASYON TEKNİKLERİ-2. Hafta

OPTİMİZASYON TEKNİKLERİ-2. Hafta GİRİŞ OPTİMİZASYON TEKNİKLERİ-2. Hafta Mühendislik açısından bir işin tasarlanıp, gerçekleştirilmesi yeterli değildir. İşin en iyi çözüm yöntemiyle en verimli bir şekilde yapılması bir anlam ifade eder.

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ Kenan KILIÇASLAN Okul No:1098107203 1. DESTEK VEKTÖR MAKİNELER

Detaylı

TİPİK MODELLEME UYGULAMALARI

TİPİK MODELLEME UYGULAMALARI MODELLEME Matematik modelleme yaklaşımı sistemlerin daha iyi anlaşılması, analiz edilmesi ve tasarımının etkin ve ekonomik bir yoludur. Modelleme karmaşık parametrelerin belirlenmesi için iyi tanımlamalara

Detaylı

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL)

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL) DOĞRUSAL PROGRAMLAMA (GENEL) Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik biçiminde verilmesi durumunda amaca

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 2- HATA VE HATA KAYNAKLARI Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ Bir denklemin veya problemin çözümünde kullanılan sayısal yöntem belli bir giriş verisini işleme tabi tutarak sayısal

Detaylı

Okut. Yüksel YURTAY. İletişim : (264) Sayısal Analiz. Giriş.

Okut. Yüksel YURTAY. İletişim :  (264) Sayısal Analiz. Giriş. Okut. Yüksel YURTAY İletişim : Sayısal Analiz yyurtay@sakarya.edu.tr www.cs.sakarya.edu.tr/yyurtay (264) 295 58 99 Giriş 1 Amaç : Mühendislik problemlerinin bilgisayar ortamında çözümünü mümkün kılacak

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik

Detaylı

HATA VE HATA KAYNAKLARI...

HATA VE HATA KAYNAKLARI... İÇİNDEKİLER 1. GİRİŞ... 1 1.1 Giriş... 1 1.2 Sayısal Analizin İlgi Alanı... 2 1.3 Mühendislik Problemlerinin Çözümü ve Sayısal Analiz... 2 1.4 Sayısal Analizde Bilgisayarın Önemi... 7 1.5 Sayısal Çözümün

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER HEDEFLER İÇİNDEKİLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER Özdeşlikler Birinci Dereceden Bir Bilinmeyenli Denklemler İkinci Dereceden Bir Bilinmeyenli Denklemler Yüksek Dereceden Denklemler Eşitsizlikler

Detaylı

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Kalkülüs II (MATH 152) Ders Detayları

Kalkülüs II (MATH 152) Ders Detayları Kalkülüs II (MATH 152) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kalkülüs II MATH 152 Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i Math 151 Kalkülüs I Dersin

Detaylı

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI Hatice YANIKOĞLU a, Ezgi ÖZKARA a, Mehmet YÜCEER a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği

Detaylı

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY)

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) 1 DOĞRUSAL PROGRAMLAMADA İKİLİK (DUALİTE-DUALITY) Doğrusal programlama modelleri olarak adlandırılır. Aynı modelin değişik bir düzende oluşturulmasıyla Dual (İkilik)

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

Kısmi Diferansiyel Denklemler (MATH378) Ders Detayları

Kısmi Diferansiyel Denklemler (MATH378) Ders Detayları Kısmi Diferansiyel Denklemler (MATH378) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Kredi AKTS Saati Kısmi Diferansiyel Denklemler MATH378 Bahar 3 0 0 3 6 Ön Koşul Ders(ler)i

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTıRMA MODELININ TANıMı Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme

Detaylı

T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI

T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI Genişletilmiş Lagrange Yöntemi Hazırlayan: Nicat GASIM Öğretim Üyesi Prof. Dr. İpek Deveci KARAKOÇ

Detaylı

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem 3.2. DP Modellerinin Simpleks Yöntem ile Çözümü 3.2.1. Primal Simpleks Yöntem Grafik çözüm yönteminde gördüğümüz gibi optimal çözüm noktası, her zaman uygun çözüm alanının bir köşe noktası ya da uç noktası

Detaylı

SAYISAL ÇÖZÜMLEME. Yrd.Doç.Dr.Esra Tunç Görmüş. 1.Hafta

SAYISAL ÇÖZÜMLEME. Yrd.Doç.Dr.Esra Tunç Görmüş. 1.Hafta SAYISAL ÇÖZÜMLEME Yrd.Doç.Dr.Esra Tunç Görmüş 1.Hafta Sayısal çözümleme nümerik analiz nümerik çözümleme, approximate computation mühendislikte sayısal yöntemler Computational mathematics Numerical analysis

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr Ders Bilgisi Ders Kodu 9060528 Ders Bölüm 1 Ders Başlığı BİLİŞİM SİSTEMLERİ İÇİN MATEMATİĞİN TEMELLERİ Ders Kredisi 3 ECTS 8.0 Katalog Tanımı Ön koşullar Ders saati Bu dersin amacı altyapısı teknik olmayan

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

Modelleme bir sanattan çok bir Bilim olarak tanımlanabilir. Bir model kurucu için en önemli karar model seçiminde ilişkileri belirlemektir.

Modelleme bir sanattan çok bir Bilim olarak tanımlanabilir. Bir model kurucu için en önemli karar model seçiminde ilişkileri belirlemektir. MODELLEME MODELLEME Matematik modelleme yaklaşımı sistemlerin daha iyi anlaşılması, analiz edilmesi ve tasarımının etkin ve ekonomik bir yoludur. Modelleme karmaşık parametrelerin belirlenmesi için iyi

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS Bir Dönemde Okutulan Ders Saati MAT101 Genel I (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) 1 Kümeler, reel sayılar, bir denklem veya eşitsizliğin grafiği 2 Fonksiyonlar,

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-I

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-I HEDEFLER İÇİNDEKİLER TÜREV UYGULAMALARI-I Artan ve Azalan Fonksiyonlar Fonksiyonların Maksimum ve Minimumu Birinci Türev Testi İkinci Türev Testi Türevin Geometrik Yorumu Türevin Fiziksel Yorumu MATEMATİK-1

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : ANALİZ I Ders No : 0310250035 : 4 Pratik : 2 Kredi : 5 ECTS : 8 Ders Bilgileri Ders Türü Öğretim Dili Öğretim Tipi Zorunlu

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 4- LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Matematikte veya hidrolik, dinamik, mekanik, elektrik

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I 1/19 İçerik Yöneylem Araştırmasının Dalları Kullanım Alanları Yöneylem Araştırmasında Bazı Yöntemler Doğrusal (Lineer) Programlama, Oyun Teorisi, Dinamik Programlama, Tam Sayılı

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTIRMA MODELİNİN TANIMI Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ Prof. Dr. İbrahim UZUN Yayın No : 2415 İşletme-Ekonomi Dizisi : 147 5. Baskı Eylül 2012 - İSTANBUL ISBN 978-605 - 377-438 - 9 Copyright Bu kitabın

Detaylı

TAMSAYILI PROGRAMLAMA

TAMSAYILI PROGRAMLAMA TAMSAYILI PROGRAMLAMA Doğrusal programlama problemlerinde sık sık çözümün tamsayı olması gereken durumlar ile karşılaşılır. Örneğin ele alınan problem masa, sandalye, otomobil vb. üretimlerinin optimum

Detaylı

Matematiksel modellerin elemanları

Matematiksel modellerin elemanları Matematiksel modellerin elemanları Op#mizasyon ve Doğrusal Programlama Maksimizasyon ve Minimizasyon örnekleri, Doğrusal programlama modeli kurma uygulamaları 6. DERS 1. Karar değişkenleri: Bir karar verme

Detaylı

Fonksiyon Optimizasyonunda Genetik Algoritmalar

Fonksiyon Optimizasyonunda Genetik Algoritmalar 01-12-06 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Karar değişkenlere ilişkin fonksiyonların ve bu fonksiyonlara ilişkin sınırlamaların tanımlanması

Karar değişkenlere ilişkin fonksiyonların ve bu fonksiyonlara ilişkin sınırlamaların tanımlanması İNŞAAT PROJELERİNİN PROGRAMLAMA, TASARIM VE YAPIM SÜRECİNDE OPTİMİZASYON Doğrusal Optimizasyon Optimizasyon Kuramı (Eniyileme Süreci) Doğrusal Olmayan Optimizasyon Optimizasyon en iyi çözümü bulma sürecidir.

Detaylı

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.5. Doğrusal olmayan fonksiyonların eğimi Doğrusal fonksiyonlarda eğim her noktada sabittir

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 1- GİRİŞ Doç. Dr. Ali Rıza YILDIZ 1 Mühendislikte, herhangi bir fiziksel sistemin matematiksel modellenmesi sonucu elde edilen karmaşık veya analitik çözülemeyen denklemlerin

Detaylı

Temelleri. Doç.Dr.Ali Argun Karacabey

Temelleri. Doç.Dr.Ali Argun Karacabey Doğrusal Programlamanın Temelleri Doç.Dr.Ali Argun Karacabey Doğrusal Programlama Nedir? Bir Doğrusal Programlama Modeli doğrusal kısıtlar altında bir doğrusal ğ fonksiyonun değerini ğ maksimize yada minimize

Detaylı

Kimya Mühendisliğinde Uygulamalı Matematik

Kimya Mühendisliğinde Uygulamalı Matematik Fen Bilimleri Enstitüsü Kimya Mühendisliği Anabilim Dalı Kimya Mühendisliğinde Uygulamalı Matematik DERS BİLGİ FORMU DERS BİLGİLERİ Dersin Adı Kodu Yarıyıl Kimya Mühendisliğinde Uygulamalı Matematik T

Detaylı

KOMBİNATORYAL OPTİMİZASYON

KOMBİNATORYAL OPTİMİZASYON KOMBİNATORYAL OPTİMİZASYON İnsanların, daha iyi nasıl olabilir ya da nasıl elde edilebilir?, sorusuna cevap aramaları, teknolojinin gelişmesini sağlayan en önemli etken olmuştur. Gerçek hayatı daha kolay

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU

ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU Tek değişkenli bir f(x) fonksiyonunu ele alalım. [Bazı x ler için f (x) bulunamayabilir.] Aşağıdaki DOP modelini çözmek istediğimizi var sayalım. Max f(x)

Detaylı

Uygulamalı Matematik (MATH587) Ders Detayları

Uygulamalı Matematik (MATH587) Ders Detayları Uygulamalı Matematik (MATH587) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Kredi AKTS Saati Uygulamalı Matematik MATH587 Güz 3 0 0 3 7.5 Ön Koşul Ders(ler)i Math 262 Adi

Detaylı

Çok değişkenli fonksiyonlar. Maksimum- Minimum

Çok değişkenli fonksiyonlar. Maksimum- Minimum 66 Bölüm 6 Ders 06 Çok değişkenli fonksiyonlar. Maksimum- Minimum 6.1 Çözümler:Alıştırmalar 06 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay Ön Bilgi: z = f (x, y) fonksiyonu 3-boyutlu uzayda bir yüzeyin denklemidir.

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik İkiye Bölme / Yarılama Yöntemi Genel olarak f x = 0 gerek şartını sağlamak oldukça doğrusal olmayan ve bu sebeple çözümü

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,

Detaylı

YÖNEYLEM ARAŞTIRMASI - II

YÖNEYLEM ARAŞTIRMASI - II YÖNEYLEM ARAŞTIRMASI - II Araş. Gör. Murat SARI 1/35 I Giriş Biri diğerini izleyen ve karşılıklı etkileri olan bir dizi kararın bütünüyle ele alındığı problemler için geliştirilen karar modelleri ve bunların

Detaylı

fonksiyonu aralığında sürekli bir fonksiyon ve için ise olur. Eğer bu aralıktaki bütün x ler için ise bu fonksiyonun noktasında bir minimumu vardır.

fonksiyonu aralığında sürekli bir fonksiyon ve için ise olur. Eğer bu aralıktaki bütün x ler için ise bu fonksiyonun noktasında bir minimumu vardır. TÜREV UYGULAMALARI Bölüm içinde maksimum, minimum, artan ve azalan fonksiyonlar, büküm noktası, teğet, normal ve belirsizliğin türev yardımıyla giderilmesi işlenmektedir. 11.1 Maksimum ve Minimum (Ekstremum)

Detaylı

Bekleme Hattı Teorisi

Bekleme Hattı Teorisi Bekleme Hattı Teorisi Sürekli Parametreli Markov Zincirleri Tanım 1. * +, durum uzayı * +olan sürekli parametreli bir süreç olsun. Aşağıdaki özellik geçerli olduğunda bu sürece sürekli parametreli Markov

Detaylı

ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI

ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI İlaç Tasarımında Yeni Yazılımların Geliştirilmesi: Elektron Konformasyonel-Genetik Algoritma Metodu ile Triaminotriazin Bileşiklerinde Farmakofor Belirlenmesi ve Nicel Biyoaktivite Hesabı; ERCİYES ÜNİVERSİTESİ

Detaylı

Lineer Denklem Sistemleri

Lineer Denklem Sistemleri Lineer Denklem Sistemleri Yazar Yrd. Doç.Dr. Nezahat ÇETİN ÜNİTE 3 Amaçlar Bu üniteyi çalıştıktan sonra; Lineer Denklem ve Lineer Denklem Sistemleri kavramlarını öğrenecek, Lineer Denklem Sistemlerinin

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces TANIM n bir doğal sayı ve a 0, a 1, a 2,..., a n 1, a n birer gerçel sayı olmak üzere, P(x) = a 0 + a 1 x + a 2 x 2 +... + a n 1 x n 1 +a n x n biçimindeki ifadelere x değişkenine bağlı, gerçel (reel)

Detaylı

Kalkülüs II (MATH 152) Ders Detayları

Kalkülüs II (MATH 152) Ders Detayları Kalkülüs II (MATH 152) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kalkülüs II MATH 152 Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i Math 151 Kalkülüs I Dersin

Detaylı

Algoritma ve Akış Diyagramları

Algoritma ve Akış Diyagramları Algoritma ve Akış Diyagramları Bir problemin çözümüne ulaşabilmek için izlenecek ardışık mantık ve işlem dizisine ALGORİTMA, algoritmanın çizimsel gösterimine ise AKIŞ DİYAGRAMI adı verilir 1 Akış diyagramları

Detaylı

Prof.Dr.Ünal Ufuktepe

Prof.Dr.Ünal Ufuktepe İzmir Ekonomi Üniversitesi, Matematik Bölümü 21 Ocak 2012 KLASİK ANLAMDA TÜREV Fiziğin en temel işlevlerinden biri hareketi tanımlamaktır. Newton ve Leibniz hareketi tanımlama ve tahmin etme konusunda

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

Yeşilköy Anadolu Lisesi

Yeşilköy Anadolu Lisesi Yeşilköy Anadolu Lisesi TANIM (KONUYA GİRİŞ) a, b, c gerçel sayı ve a ¹ 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli denklem denir. Bu açık önermeyi

Detaylı

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011 Sembolik Programlama 1. Gün Şenol Pişkin 20 Eylül 2011 Sunum Kapsamı MuPAD İçerik Başlangıç 1. Bölüm: Cebirsel işlemler 2. Bölüm: Denklem çözümleri MuPAD Kısaca MuPAD Bilgisi ve Tarihçesi MuPAD Diğer Araçlar

Detaylı

Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması.

Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması. Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması. Projenin Amacı: Aritmetik bir dizinin ilk n-teriminin belirli tam sayı kuvvetleri toplamının

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA (NLP)

DOĞRUSAL OLMAYAN PROGRAMLAMA (NLP) DOĞRUSAL OLMAYAN PROGRAMLAMA (NLP) 1. Non-lineer kar analizi, 2. Kısıtlı optimizasyon, 3. Yerine koyma (substitution) yöntemi, 4. Lagranj Çarpanları Yöntemi 5. Başabaş Analizleri ve Duyarlılık Testleri

Detaylı

Diferansiyel Denklemler (MATH 276) Ders Detayları

Diferansiyel Denklemler (MATH 276) Ders Detayları Diferansiyel Denklemler (MATH 276) Ders Detayları Ders Adı Diferansiyel Denklemler Ders Kodu MATH 276 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 4 0 0 4 6 Ön Koşul Ders(ler)i Math

Detaylı

Şekil 7.1 Bir tankta sıvı birikimi

Şekil 7.1 Bir tankta sıvı birikimi 6 7. DİFERENSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMLERİ Diferensiyel denklemlerin sayısal integrasyonunda kullanılabilecek bir çok yöntem vardır. Tecrübeler dördüncü mertebe (Runge-Kutta) yönteminin hemen hemen

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-II

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-II HEDEFLER İÇİNDEKİLER TÜREV UYGULAMALARI-II Fonksiyonların Bükeyliği Maksimum - Minimum Problemleri Belirsiz Haller MATEMATİK-1 Doç.Dr.Murat SUBAŞI Bu üniteyi çalıştıktan sonra; Fonksiyonların grafiklerinin

Detaylı

Kompleks Analiz (MATH 346) Ders Detayları

Kompleks Analiz (MATH 346) Ders Detayları Kompleks Analiz (MATH 346) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kompleks Analiz MATH 346 Güz 4 0 0 4 7 Ön Koşul Ders(ler)i Math 251 Dersin Dili

Detaylı

Esnek Hesaplamaya Giriş

Esnek Hesaplamaya Giriş Esnek Hesaplamaya Giriş J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Esnek Hesaplama Nedir? Esnek hesaplamanın temelinde yatan

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı