Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Mukavemet-I. Yrd.Doç.Dr. Akın Ataş"

Transkript

1 Mukavemet-I Yrd.Doç.Dr. Akın Ataş

2 Bölüm 4 Basit Eğilme Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok.

3 4.1 Giriş Bu bölümde, eğilmeye maruz prizmatik elemanlardaki gerilmeler ve şekil değiştirmeler incelenecektir. Eğilme, kiriş ve putrel (I-beam) gibi makine ve yapı elemanlarının tasarımında kullanılan bir ana kavramdır. Eşit ve zıt yönlü M ve M kuvvet çiftleri aynı boyuna düzlemde etki etmektedir. Bu nedenle prizmatik eleman basit eğilmeye maruzdur.

4 4.1 Giriş 400 N 400 N 300 mm 900 mm 300 mm 400 N 400 N 120 N m 120 N m

5 4.1 Giriş 120 mm 120 mm 600 N 600 N 600 N 600 N 72 N m Mengenenin orta kısmı, dış merkezli yüklenir.

6 4.1 Giriş Basit eğilme incelemesi, kirişlerin incelenmesinde önemli bir rol oynar. Kesitteki normal gerilmelerin dağılımı, kiriş basit eğilmeye maruzmuş gibi, M kuvvet çiftinden elde edilebilir. Öte yandan, kayma gerilmeleri P kuvvetine bağlıdır.

7 4.2 Basit Eğilmede Simetrik Eleman Prizmatik eleman bir simetri düzlemine sahip olup, bu düzlemde M ve M kuvvet çiftlerine maruzdur. Denge koşulları gereği, basit eğilmeye maruz simetrik bir elemanın herhangi bir kesitindeki iç kuvvetler M kuvvet çiftine denktir. Bu kuvvet çiftinin M momenti, kesitteki eğilme momenti olarak adlandırılır. Kirişin konkavlığı yukarı doğru ise, M nin işareti pozitif, aksi takdirde negatif alınır.

8 4.2 Basit Eğilmede Simetrik Eleman x bileşenleri y eksenine göre momentler z eksenine göre momentler Kesit üzerinde etkiyen elemanter iç kuvvetler sistemi M kuvvet çiftine denktir. Kayma gerilmesi bileşenleri sıfıra eşittir (daha sonra açıklanacak). Son denklemdeki eksi işareti, pozitif kuvvetin z eksenine göre negatif (saat yönünde) moment meydana getirmesindendir.

9 4.3 Basit Eğilmede Simetrik Bir Elemanda Deformasyonlar Prizmatik eleman bir simetri düzlemine sahip olup M ve M kuvvet çiftlerine maruzdur. Eleman eğilir fakat simetri düzlemine göre simetrikliğini korur. M eğilme momenti her kesitte aynı olduğundan, eleman düzgün bir şekilde eğilir. AB çizgisi, C merkezli bir çember parçasına dönüşür. M>0 olduğunda, AB çizgisinin uzunluğu azalır, A B çizgisinin uzunluğu ise artar.

10 4.3 Basit Eğilmede Simetrik Bir Elemanda Deformasyonlar Eğilme sonrası elemanın eksenine dik kesitler düzlem kalır ve bu kesitlerin düzlemleri C noktasından geçer.

11 4.3 Basit Eğilmede Simetrik Bir Elemanda Deformasyonlar Bütün yüzler birbirine dik olduğundan: Ortaya çıkan deformasyonlar enine kesit elemanları arasında herhangi bir etkileşim gerektirmediğinden, σy, σz ve τyz gerilmeleri sıfırdır. Sıfır olmayan tek gerilme bileşeni σx tir. Elemanın üst kısmında negatif (basınç), alt kısmında pozitiftir (çekme).

12 4.3 Basit Eğilmede Simetrik Bir Elemanda Deformasyonlar Gerilmenin sıfır olduğu, elemanın alt ve üst yüzeylerine paralel yüzeye tarafsız yüzey denir. Tarafsız yüzey, bir enine kesiti, kesitin tarafsız ekseni adı verilen bir doğru boyunca keser.

13 4.3 Basit Eğilmede Simetrik Bir Elemanda Deformasyonlar Bir noktadaki şekil değiştirme ve gerilmeyi hesaplamak için öncelikle tarafsız eksenin yeri belirlenmelidir.

14 4.4 Elastik Bölgede Gerilme ve Deformasyonlar Tarafsız bölgenin konumu ve σm aşağıdaki ifadelerden elde edilir: x bileşenleri z eksenine göre momentler

15 4.4 Elastik Bölgede Gerilme ve Deformasyonlar Denklem, kesitin tarafsız eksenine göre birinci momentinin sıfır olması gerektiğini gösterir. Yani tarafsız eksen kesit merkezinden geçer. Elastik eğilme formülleri Elemanın eğilmesi sonucu oluşan σx normal gerilmesi, eğilme gerilmesi olarak adlandırılır.

16 4.4 Elastik Bölgede Gerilme ve Deformasyonlar Elastik eğilme formülleri Elastik kesit modülü = S nin büyük değerleri için aynı eğilme momenti altında daha düşük gerilme değerleri elde edilir. 15x10 3 mm 2 Aynı A değerine sahip iki kirişten daha yüksek h değerine sahip olanı eğilmeye karşı daha dirençlidir. h = 150 mm b =100 mm 75 mm 200 mm

17 4.4 Elastik Bölgede Gerilme ve Deformasyonlar Elastik eğilme formülleri Elastik kesit modülü =

18 4.4 Elastik Bölgede Gerilme ve Deformasyonlar M eğilme momentinin neden olduğu deformasyon, tarafsız yüzeyin eğriliği ile ölçülür. Eğrilik, ρ eğrilik yarıçapının tersi olarak tanımlanır.

19 Örnek mm 60 mm Çubuk, düşey simetri düzleminde etkiyen, iki eşit ve zıt yönlü kuvvet çiftine maruzdur. Çubuğun akmasına neden olan M eğilme momentinin değerini belirleyiniz. σy = 250 MPa olduğunu varsayınız.

20 Örnek mm 20 mm 60 mm Tarafsız eksen, kesitin C merkezinden geçer. 60 mm 30 mm T.E.

21 Örnek 4.02 Yarım çember kesitli alüminyum çubuk ρ = 2.5 m ortalama yarıçaplı bir çember yayı şeklinde eğilmiştir. Çubuğun düz yüzü, yayın eğrilik merkezine doğru döndüğüne göre, çubuktaki maksimum çekme ve basınç gerilmesini belirleyiniz. E = 70 GPa alınız.

22 Örnek 4.02

23 4.5 Bir Enine Kesitte Deformasyonlar Tarafsız yüzey Enine kesitin tarafsız ekseni Antiklastik eğrilik ρ eğrilik yarıçapının tersi, enine kesitin eğriliğini ifade eder ve antiklastik eğrilik adını alır.

24 4.5 Bir Enine Kesitte Deformasyonlar Elemanın tüm kesitlerinin düzlem kalması ve kayma gerilmesi bulunmaması isteniyorsa, kuvvet çiftleri elemanın uçları düzlem kalacak şekilde uygulanmalıdır. Bu, rijit plakalarla sağlanabilir. Gerçek yükleme durumları bu idealleştirmeden farklı olabilir. Ancak, Saint-Venant ilkesine göre, ele alınan kesit kuvvet çiflerinin uygulama noktasından yeteri kadar uzaksa, gerilme hesaplarında kullanılabilir.

25 Örnek Problem mm Tüp malzemesi: alüminyum. σy = 275 MPa, σu = 415 MPa, E = 73 GPa. 80 mm 6 mm Kavislerin etkisini ihmal ederek, (a) emniyet katsayısı 3.00 olacak şekilde M eğilme momentini, (b) tüpün karşı gelen eğrilik yarıçapını belirleyiniz.

26 Örnek Problem 4.1 Eylemsizlik Momenti. 120 mm 108 mm 80 mm 68 mm Emniyet Gerilmesi. a. Eğilme Momenti.

27 Örnek Problem 4.1 b. Eğrilik Yarıçapı. Alternatif Çözüm.

28 Örnek Problem 4.2 Dökme demirden yapılmış makine parçasının üzerine, 3kN m lik kuvvet çifti etkimektedir. E = 165 GPa olduğuna göre, (a) parçadaki maksimum çekme ve basınç gerilmelerini, (b) parçanın eğrilik yarıçapını belirleyiniz.

29 Örnek Problem 4.2 Merkez. Merkezi Eylemsizlik Momenti.

30 Örnek Problem 4.2 a. Maksimum Çekme Gerilmesi. Maksimum Basınç Gerilmesi. b. Eğrilik Yarıçapı. Eğrilik merkezi

31 4.6 Değişik Malzemelerden Yapılmış Elemanların Eğilmesi εx normal şekil değiştirmesi, kesitin tarafsız eksenine olan y mesafesiyle lineer olarak değişir. Malzemelerin elastisite modülleri farklı olduğundan, her bir malzemedeki normal gerilme ifadeleri farklı olur.

32 4.6 Değişik Malzemelerden Yapılmış Elemanların Eğilmesi E1 E1 E2 E1 n = E2/E1 İki parça da üstteki malzemeden yapılmış olsaydı, alt kısımdaki her bir elemanın genişliği n ile çarpılmak suretiyle, elemanın eğilmeye karşı direnci aynı kalırdı. Bu yolla elde edilen kesite dönüşmüş kesit denir.

33 4.6 Değişik Malzemelerden Yapılmış Elemanların Eğilmesi E1 Dönüşmüş kesit, E1 elastisite modüllü homojen bir malzemeden yapılmış bir elemanın kesitini ifade eder. Tarafsız eksen, dönüşmüş kesitin merkezinden geçirilir. Orijinal çubuğun üst kısmındaki bir noktadaki gerilme, dönüşmüş kesitteki gerilmeye eşittir. Ancak, orijinal kesitin alt kısmındaki bir noktada gerilme hesaplanırken, dönüşmüş kesitteki gerilme n ile çarpılır.

34 Örnek mm 10 mm 10 mm 75 mm Pirinç Çelik Pirinç Çelik (Eç = 200 GPa) ve pirinç (Ep = 100 GPa) parçalar birbirine yapıştırılmıştır. Çubuk M = 4.5 kn m eğilme momentli basit bir eğilmeye maruz kaldığında çelik ve pirinçteki maksimum gerilmeleri belirleyiniz.

35 Örnek mm 10 mm 10 mm 10 mm 36 mm 10 mm 37.5 mm 75 mm 75 mm Tamamı Pirinç Pirinç Çelik Pirinç 56 mm

36 4.6 Değişik Malzemelerden Yapılmış Elemanların Eğilmesi n = ES/EC İkinci dereceden denklem çözülerek dönüşmüş kesitin tarafsız ekseninin konumu belirlenir.

37 4.7 Gerilme Yığılmaları

38 Örnek 4.04 Eğilme momenti 180 N m olduğunda, çubuktaki gerilmenin 150 MPa ı aşmaması gerektiğine göre, oyukların izin verilebilir en küçük genişliğini belirleyiniz.

39 Örnek 4.04

40 Örnek Problem 4.3 Ahşabın elastisite modülü 12.5 GPa ve çeliğinki 200 GPa dır. Bileşik kirişe M = 50 kn m lik bir eğilme momenti uygulandığına göre, (a) ahşaptaki maksimum gerilmeyi, (b) tepe çizgisi boyunca çelikteki gerilmeyi belirleyiniz.

41 Örnek Problem 4.3 Dönüşmüş Kesit. Tarafsız Eksen. Merkezi Eylemsizlik Momenti.

42 Örnek Problem 4.3 a. Ahşaptaki Maksimum Gerilme. b. Çelikteki Gerilme.

43 Örnek Problem mm 100 mm Bir beton döşeme, alt yüzden 40 mm yukarıda 16 mm çaplı çelik çubuklarla güçlendirilmiştir. Betonun elastisite modülü 25 GPa ve çeliğinki 200 GPa dır. Döşemenin her bir 0.3 m genişliğindeki kısmına 4.5 kn m lik bir eğilme momenti uygulandığına göre, (a) betondaki maksimum gerilmeyi, (b) çelikteki gerilmeyi belirleyiniz.

44 Örnek Problem mm Dönüşmüş Kesit. 100 mm x T.E. naç = 3217 mm mm Tarafsız Eksen. 100 mm 36.8 mm 100 x = 63.2 mm Eylemsizlik Momenti mm 2

45 Örnek Problem 4.4 a. Betondaki Maksimum Gerilme MPa MPa b. Çelikteki Gerilme.

46 *4.8 Plastik Deformasyonlar Bu bölümün amacı, Hooke kanunu geçerli olmadığında kullanılabilecek genel bir yöntem elde etmektir. Analizde kullanılan elemanın hem düşey hem de yatay bir simetri düzlemine sahip olup çekme ve basınçta aynı σ ε bağıntısıyla karakterize edildiği kabul edilecektir. Bu şekilde, tarafsız eksen kesitin yatay simetri ekseni ile çakışır.

47 *4.8 Plastik Deformasyonlar Elemanın kesitindeki gerilme dağılımı: σmaks ın belirlendiği varsayılırsa, önce σ ε diyagramından karşı gelen εm değeri saptanır ve denkleme taşınır. y nin her değeri için denklemden εx in karşı gelen değeri belirlenir. σ ε diyagramından εx in bu değerine karşılık gelen σx gerilmesi belirlenir. σx y eğrisi çizilerek istenen gerilme dağılımı bulunur.

48 *4.8 Plastik Deformasyonlar Bu denklem şekildeki gerilme dağılımına karşı gelen eğilme momentini hesaplamak için kullanılabilir:

49 *4.8 Plastik Deformasyonlar Eğilme momentinin önemli bir değeri, elemanın kırılmasına sebep olan MU kopma momentidir. Bu değer, σmaks = σu alınarak σu kopma mukavemetinden belirlenebilir. Ancak, pratikte MU yu deneysel olarak belirlemek daha uygundur. RB maksimum gerilmesi: RB kurgusal gerilmesine, malzemenin eğilmede kırılma modülü denir.

50 *4.9 Elastoplastik Malzemeden Yapılmış Elemanlar

51 *4.9 Elastoplastik Malzemeden Yapılmış Elemanlar MY: maksimum elastik moment. yy: elastik çekirdeğin kalınlığının yarısı.

52 *4.9 Elastoplastik Malzemeden Yapılmış Elemanlar Bu denklem, elastik çekirdeğin 2yY kalınlığına karşı gelen M eğilme momentinin değerini bulmak için kullanılır.

53 *4.9 Elastoplastik Malzemeden Yapılmış Elemanlar Tam plastik deformasyona karşı gelen eğilme momentinin bu değerine, ele alınan elemanın plastik momenti denir. Yukarıdaki denklem, sadece elastoplastik bir malzemeden yapılmış dikdörtgen bir eleman için geçerlidir.

54 *4.9 Elastoplastik Malzemeden Yapılmış Elemanlar Şekil değiştirme dağılımı, akma başlangıcından sonra da sabit kalmaktadır. Yani, εx = -y/ρ denklemi geçerliliğini sürdürür ve yy yarı kalınlığının bulunması için kullanılabilir (εy: akma şekil değiştirmesi): Bu denklem sadece akma başlangıcından sonra geçerlidir.

55 *4.9 Elastoplastik Malzemeden Yapılmış Elemanlar Bir dikdörtgen elemanda MY maksimum elastik momentine ve MP plastik momentine ait gerilme dağılımları. Çekme ve basınç kuvvetlerinin bileşkeleri, gerilme dağılımlarını ifade eden hacimlerin merkezinden geçmeli ve büyüklükleri bu hacimlere eşit olmalıdır.

56 *4.9 Elastoplastik Malzemeden Yapılmış Elemanlar Kesiti dikdörtgen olmayan kirişlerde k = MP/MY oranının genellikle 3/2 ye eşit olmadığı görülecektir. Geniş başlıklı kirişlerde arasında değişir. Kesitin sadece şekline bağlı oluduğu için k = MP/MY oranına kesitin şekil çarpanı adı verilir. Bir elemanın MP/σY oranı, malzemenin plastik kesit modülü olarak adlandırılır ve Z ile gösterilir.

57 Örnek 4.05 Şekildeki eleman M = 36.8 kn m lik bir eğilme momentine maruzdur. Elemanın 240 MPa akma mukavemetli ve 200 GPa elastisite modüllü bir elastoplastik malzemeden yapıldığını varsayarak, (a) elastik çekirdeğin kalınlığını, (b) tarafsız yüzeyin eğrilik yarıçapını belirleyiniz.

58 Örnek 4.05 a. Elastik Çekirdeğin Kalınlığı.

59 Örnek 4.05 b. Eğrilik Yarıçapı.

60 *4.10 Tek Simetri Düzlemli Elemanların Plastik Deformasyonları Analiz plastik deformasyon haliyle sınırlı. R1 ve R2 kuvvet çiftine eşit olduğundan, büyüklükleri aynı olmalıdır. Tarafsız eksen kesiti iki eşit alanlı parçalara ayırır. Elemanın plastik momenti:

61 *4.11 Artık Gerilmeler Eğilme momenti yeterince büyükse, elastoplastik malzemeden yapılmış bir elemanda plastik bölgeler oluşur. Eğilme momenti sıfıra düşürüldüğünde, herhangi bir noktadaki gerilme ve şekil değiştirme yandaki grafikteki gibi ifade edilebilir.

62 Örnek 4.06 Şekildeki elemanda eğilme momenti M = 36.8 kn m lik maksimum değerinden sıfıra düşürüldükten sonraki (a) artık gerilmelerin dağılımını, (b) eğrilik yarıçapını belirleyiniz.

63 Örnek 4.06 a. Artık Gerilmelerin Dağılımı.

64 Örnek 4.06 b. Boşalmadan Sonraki Eğrilik Yarıçapı.

65 Örnek Problem mm 400 mm 20 mm 25 mm 300 mm AB kirişi elastoplastik olduğu varsayılan yüksek mukavemetli düşük alaşımlı çelikten (E = 200 GPa ve σy = 350 MPa) imal edilmiştir. Kavislerin etkisini ihmal ederek, (a) ilk akma oluştuğunda, (b) başlıklar tam plastik olduğu anda, M eğilme momentini ve karşı gelen eğrilik yarıçapını belirleyiniz.

66 Örnek Problem 4.5 a. Akma Başlangıcı Eğilme Momenti Eğrilik Yarıçapı. 1.75x MPa x10-3

67 Örnek Problem b. Tam Plastik Başlıklar. 1.75x MPa Eğilme Momenti. Eğrilik Yarıçapı.

68 Örnek Problem 4.6 Kesiti görülen kiriş, bir yatay eksen etrafında eğildiğinde, kirişin MP plastik momentini belirleyiniz. Malzemenin 240 MPa akma mukavemetli ve elastoplastik olduğunu varsayınız.

69 Örnek Problem 4.6 Tarafsız Eksen.

70 Örnek Problem 4.6 Plastik Moment.

71 Örnek Problem mm 400 mm 20 mm 25 mm 300 mm AB kirişi elastoplastik olduğu varsayılan yüksek mukavemetli düşük alaşımlı çelikten (E = 200 GPa ve σy = 350 MPa) imal edilmiştir kn m lik M kuvvet çifti kaldırıldıktan sonraki artık gerilmeleri ve kalıcı eğrilik yarıçapını belirleyiniz.

72 Örnek Problem 4.7 Elastik Boşalma. Artık Gerilmeler kn m 1127 kn m -350 MPa MPa mm mm MPa

73 Örnek Problem 4.7 Kalıcı Eğrilik Yarıçapı MPa (çekme) MPa (basınç)

74 4.12 Bir Simetri Düzleminde Dış Merkezli Eksenel Yükleme Burada, yüklerin etki çizgisinin kesit merkezinden geçmemesi, yani yüklemenin dış merkezli olması durumundaki gerilme dağılımı incelenecektir.

75 4.12 Bir Simetri Düzleminde Dış Merkezli Eksenel Yükleme Gerilme dağılımı kesit boyunca lineerdir ama düzgün değildir. İkinci durumda, her kesitte σx = 0 olan noktaların oluşturduğu çizgi, tarafsız ekseni temsil eder. y = 0 için σx 0 olduğundan, tarafsız eksen kesitin merkezi ile çakışmaz.

76 Örnek N 12 mm 16 mm 12 mm çaplı düşük karbonlu çelik çubuk eğilerek açık bir zincir halkası elde edilmiştir. 700 N luk yük etkisinde, (a) halkanın düz kısmındaki en büyük çekme ve basınç gerilmelerini, (b) kesitin merkezi ekseni ve tarafsız ekseni arasındaki mesafeyi belirleyiniz. 700 N

77 Örnek 4.07 a. En Büyük Çekme ve Basınç Gerilmeleri MPa 72.2 MPa 16 mm MPa MPa MPa 700 N

78 Örnek 4.07 b. Merkezi ve Tarafsız Eksenler Arasındaki Mesafe MPa 72.2 MPa MPa MPa MPa

79 Örnek Problem 4.8 Dökme demirden yapılmış bağlantı kolunun emniyet gerilmesi, çekmede 30 MPa ve basınçta 120 MPa olduğuna göre, kola uygulanabilecek en büyük P kuvvetini belirleyiniz. Not: Bağlantı kolunun T şekilli kesiti daha önce ele alınmıştı.

80 Örnek Problem 4.8 Kesitin Özellikleri.

81 Örnek Problem 4.8 C deki Kuvvet ve Kuvvet Çifti.

82 Örnek Problem 4.8 Süperpozisyon. En Büyük İzin Verilebilir Kuvvet.

83 4.13 Simetrik Olmayan Eğilme Simetri düzlemine sahip ve bu düzlemlerde etkiyen kuvvet çiftlerine sahip elemanlar, kuvvet çiftlerinin düzlemine göre simetrik kalır ve bu düzlemde eğilir. Her iki halde de, kesite uygulanan kuvvet çiftleri elemanın düşey simetri düzleminde etki etmektedir. İki halde de, kesitin tarafsız ekseni kuvvet çiftinin ekseniyle çakışmaktadır.

84 4.13 Simetrik Olmayan Eğilme Uygulanan kuvvet çiftinin yine düşey düzlemde etkidiği varsayılmaktadır. Ancak, düşey düzlem bir simetri düzlemi olmadığından, elemanın bu düzlemde eğilmesi veya kesitin tarafsız ekseninin kuvvet çiftinin ekseniyle çakışması beklenemez.

85 4.13 Simetrik Olmayan Eğilme x bileşenleri y eksenine göre momentler z eksenine göre momentler Daha önce kesit y eksenine göre simetrik kabul edildiğinden ikinci denklem kendiliğinden sağlanmıştı. Şimdi ise kesit keyfi. Son integral, kesitin y ve z eksenlerine göre Iyz çarpım eylemsizlik momentini ifade eder ve bu eksenler kesitin asal merkezi eksenleri ise sıfır olur.

86 4.13 Simetrik Olmayan Eğilme Burada, kesitler koordinat eksenlerinden en az birine göre simetriktir. y ve z eksenleri kesitin asal merkezi eksenleridir. M kuvvet çifti vektörü asal merkezi eksenlerden biri boyunca yönlendiğinden, tarafsız eksen kuvvet çifti ekseniyle çakışır.

87 4.13 Simetrik Olmayan Eğilme Kesitler 90 döndürülürse, b kesitinde kuvvet çifti elemanın bir simetri düzleminde etkimez. Buna rağmen, M kuvvet çifti vektörü yine bir asal merkezi eksen boyunca yönlenir ve tarafsız eksen yine kuvvet çifti ekseni ile çakışır.

88 4.13 Simetrik Olmayan Eğilme Bu şekillerde, koordinat eksenlerinin hiç biri simetri ekseni değildir ve koordinat eksenleri asal eksen değildir. Bu yüzden, M kuvvet çifti vektörü bir asal merkezi eksen boyunca yönlenmez ve tarafsız eksen kuvvet çiftinin ekseniyle çakışmaz.

89 4.13 Simetrik Olmayan Eğilme Bu kesit simetrik olmasa da, asal merkezi eksenlere sahiptir ve bu eksenler analitik olarak veya Mohr çemberi kullanılarak belirlenebilir. M kuvvet çifti vektörü, kesitin asal merkezi eksenlerinden biri boyunca yönlenmişse, tarafsız eksen kuvvet çiftinin ekseniyle çakışır.

90 4.13 Simetrik Olmayan Eğilme

91 4.13 Simetrik Olmayan Eğilme Aynı ifade, y ve z asal merkezi eksenleri belirlendikten sonra, simetrik olmayan bir kesitteki gerilmeleri belirlemek için de kullanılabilir.

92 Örnek N m 90 mm 180 N m lik kuvvet çifti, ahşap kirişe düşeyle 30 açı yapan bir düzlemde uygulanıyor. (a) Kirişteki maksimum gerilmeyi, (b) tarafsız yüzeyin yatay düzlemle yaptığı açıyı belirleyiniz. 40 mm

93 Örnek 4.08 a) Maksimum Gerilme. 180 N m 45 mm 20 mm

94 Örnek 4.08 b) Tarafsız Yüzeyle Yatay Düzlem Arasındaki Açı MPa 180 N m 45 mm 20 mm 6.64 MPa

95 4.14 Dış Merkezli Eksenel Yüklemenin Genel Hali Saint-Venant ilkesine göre, bir kesitteki gerilme dağılımını, kesit elemanın uçlarına yakın olmadığı sürece, üstteki yüklemeyi alttaki statik eşdeğeri ile değiştirerek süperpozisyon ilkesi ile belirleyebiliriz.

96 Örnek kn luk düşey bir yük ahşap direğe şekildeki gibi uygulanmaktadır. (a) A, B, C ve D noktalarındaki gerilmeyi belirleyiniz. (b) Kesitin tarafsız ekseninin konumunu belirleyiniz.

97 Örnek 4.09 a) Gerilmeler.

98 Örnek 4.09 a) Gerilmeler.

99 Örnek 4.09 b) Tarafsız Eksen.

100 Örnek Problem 4.9 S250 X mm 120 mm S250 X 37.8 kesitli bir çekme çelik elemana, yatay bir P yükü uygulanmaktadır. Elemandaki basınç gerilmesinin 82 MPa yı aşmaması gerektiğine göre, izin verilebilir en büyük P yükünü belirleyiniz.

101 Örnek Problem 4.9 Kesitin Özellikleri. 250 mm C deki Kuvvet ve Kuvvet Çiftleri. 118 mm Normal Gerilmeler.

102 Örnek Problem 4.9 Süperpozisyon. 250 mm 118 mm En Büyük İzin Verilebilir Yük.

103 *Örnek Problem 4.10 Düşey bir düzlemde etkiyen kuvvet çifti, Z-şekilli kesite sahip bir kirişe uygulanmaktadır. (a) A noktasındaki gerilmeyi, (b) tarafsız eksenin yatay düzlemle yaptığı açıyı belirleyiniz. Kesitin y ve z eksenlerine göre eylemsizlik ve çarpım eylemsizlik momentleri:

104 *Örnek Problem 4.10 Asal Eksenler. Yükleme.

105 *Örnek Problem 4.10 a. A daki Gerilme.

106 *Örnek Problem 4.10 b. Tarafsız Eksen.

107 *4.15 Eğri Elemanların Eğilmesi

108 *4.15 Eğri Elemanların Eğilmesi εx ve σx, tarafsız yüzeye olan y mesafesiyle lineer olarak değişmez. σx y eğrisi hiperbol yayı şeklindedir.

109 *4.15 Eğri Elemanların Eğilmesi Tarafsız yüzeyin konumunun belirlenmesi: Bir eğri elemanda, bir enine kesitin tarafsız ekseni, kesitin merkezinden geçmez.

110 *4.15 Eğri Elemanların Eğilmesi

111 *4.15 Eğri Elemanların Eğilmesi E Δθ/θ katsayısının belirlenmesi:

112 *4.15 Eğri Elemanların Eğilmesi

113 Örnek 4.10 Eğri dikdörtgen çubuğun ortalama yarıçapı r = 150 mm olup kesitinin genişliği b = 60 mm ve yüksekliği h = 36 mm dir. Kesitin merkezi ve tarafsız ekseni arasındaki e mesafesini belirleyiniz.

114 Örnek 4.10

115 Örnek 4.11 Çubuktaki eğilme momenti 900 N m olduğuna göre, en büyük çekme ve basınç gerilmelerini belirleyiniz.

116 Örnek 4.11

117 Örnek Problem 4.11 T şekilli kesite sahip bir makine parçası şekildeki gibi yüklenmiştir. Emniyet basınç gerilmesi 50 MPa olduğuna göre, parçaya uygulanabilecek en büyük P kuvvetini belirleyiniz.

118 Örnek Problem 4.11 Kesitin Merkezi. D deki Kuvvet ve Kuvvet Çifti.

119 Örnek Problem 4.11 Süperpozisyon. Tarafsız Yüzeyin Yarıçapı.

120 Örnek Problem 4.11 Emniyet Yükü.

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN Mukavemet-II PROF. DR. MURAT DEMİR AYDIN KAYNAK KİTAPLAR Cisimlerin Mukavemeti F.P. BEER, E.R. JOHNSTON Mukavemet-2 Prof.Dr. Onur SAYMAN, Prof.Dr. Ramazan Karakuzu Mukavemet Mehmet H. OMURTAG 1 SİMETRİK

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 6 Kirişlerde ve İnce Cidarlı Elemanlarda Kayma Gerilmeleri Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok,

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 5 Eğilmede Kirişlerin Analizi ve Tasarımı Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University CHAPTER BÖLÜM MECHANICS MUKAVEMET OF I MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Basit Eğilme Lecture Notes: J. Walt Oler Teas Tech Universit Düzenleen: Era Arslan 2002 The McGraw-Hill

Detaylı

Saf Eğilme(Pure Bending)

Saf Eğilme(Pure Bending) Saf Eğilme(Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki şekil değiştirmesini/ deformasyonları incelenecek. Burada çıkarılacak formüller

Detaylı

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu BASİT MESNETLİ KİRİŞTE SEHİM DENEYİ Deneyin Amacı Farklı malzeme ve kalınlığa sahip kirişlerin uygulanan yükün kirişin eğilme miktarına oranı olan rijitlik değerin değişik olduğunun gösterilmesi. Kiriş

Detaylı

Mukavemet 1. Fatih ALİBEYOĞLU. -Çalışma Soruları-

Mukavemet 1. Fatih ALİBEYOĞLU. -Çalışma Soruları- 1 Mukavemet 1 Fatih ALİBEYOĞLU -Çalışma Soruları- Soru 1 AB ve BC silindirik çubukları şekilde gösterildiği gibi, B de kaynak edilmiş ve yüklenmiştir. P kuvvetinin büyüklüğünü, AB çubuğundaki çekme gerilmesiyle

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 3 Malzemelerin esnekliği Gerilme Bir cisme uygulanan kuvvetin, kesit alanına bölümüdür. Kuvvetin yüzeye dik olması halindeki gerilme "normal gerilme" adını alır ve şeklinde

Detaylı

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır.

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Mühendislikte en önemli yapı ve makine elemanları mil ve kirişlerdir. Bu bölümde, mil ve kirişlerde

Detaylı

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş Mukavemet-II Yrd.Doç.Dr. Akın Ataş Bölüm 10 Kolonlar Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10.1 Giriş Önceki bölümlerde

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir.

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir. A-36 malzemeden çelik çubuk, şekil a gösterildiği iki kademeli olarak üretilmiştir. AB ve BC kesitleri sırasıyla A = 600 mm ve A = 1200 mm dir. A serbest ucunun ve B nin C ye göre yer değiştirmesini belirleyiniz.

Detaylı

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ 3 NOKTA EĞME DENEY FÖYÜ ÖĞRETİM ÜYESİ YRD.DOÇ.DR.ÖMER KADİR

Detaylı

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler Burulma (orsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler Endüstiryel uygulamalarda en çok rastlanan yükleme tiplerinden birisi dairsel kesitli millere gelen burulma momentleridir. Burulma

Detaylı

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER MUKAEMET I ÇÖZÜMÜ ÖRNEKER ders notu Yard. Doç. Dr. Erdem DAMCI Şubat 15 Mukavemet I - Çözümlü Örnekler / 7 Örnek 1. Üzerinde yalnızca yayılı yük bulunan ve açıklığı olan bir basit kirişe ait eğilme momenti

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 4 Kuvvet Sistemi Bileşkeleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 4. Kuvvet Sitemi Bileşkeleri

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 1 Giriş-Gerilme Kavramı Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok. 1.1 Giriş Cisimlerin

Detaylı

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS T E CHAPTER 2 Eksenel MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Yükleme Fatih Alibeyoğlu Eksenel Yükleme Bir önceki bölümde, uygulanan yükler neticesinde ortaya çıkan

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Gerilme ve Şekil değiştirme bileşenlerinin lineer ilişkileri Hooke Yasası olarak bilinir. Elastisite Modülü (Young Modülü) Tek boyutlu Hooke

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 2 Gerilme ve Şekil Değiştirme-Eksenel Yükleme Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

GERİLME Cismin kesilmiş alanı üzerinde O

GERİLME Cismin kesilmiş alanı üzerinde O GERİLME Cismin kesilmiş alanı üzerinde O ile tanımlı noktasına etki eden kuvvet ve momentin kesit alana etki eden gerçek yayılı yüklerin bileşke etkisini temsil ettiği ifade edilmişti. Cisimlerin mukavemeti

Detaylı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı 1. Basma Deneyinin Amacı Mühendislik malzemelerinin çoğu, uygulanan gerilmeler altında biçimlerini kalıcı olarak değiştirirler, yani plastik şekil değişimine uğrarlar. Bu malzemelerin hangi koşullar altında

Detaylı

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş Mukavemet-II Yrd.Doç.Dr. Akın Ataş Bölüm 9 Kirişlerin Yer Değiştirmesi Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9.1 Giriş

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS 009 he MGraw-Hill Companies, In. All rights reserved. - Burulma (orsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS ( τ ) df da Uygulanan

Detaylı

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ Malzemelerde Elastisite ve Kayma Elastisite Modüllerinin Eğme ve Burulma Testleri ile Belirlenmesi 1/5 DENEY 4 MAZEMEERDE EASTĐSĐTE VE KAYMA EASTĐSĐTE MODÜERĐNĐN EĞME VE BURUMA TESTERĐ ĐE BEĐRENMESĐ 1.

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

Malzemenin Mekanik Özellikleri

Malzemenin Mekanik Özellikleri Bölüm Amaçları: Gerilme ve şekil değiştirme kavramlarını gördükten sonra, şimdi bu iki büyüklüğün nasıl ilişkilendirildiğini inceleyeceğiz, Bir malzeme için gerilme-şekil değiştirme diyagramlarının deneysel

Detaylı

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele alınmıştı. Bu bölümde ise, eksenel yüklü elemanların şekil

Detaylı

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering Uygulama Sorusu-1 Şekildeki 40 mm çaplı şaft 0 kn eksenel çekme kuvveti ve 450 Nm burulma momentine maruzdur. Ayrıca milin her iki ucunda 360 Nm lik eğilme momenti etki etmektedir. Mil malzemesi için σ

Detaylı

Saf Eğilme (Pure Bending)

Saf Eğilme (Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde, doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki deformasonları incelenecek. Burada çıkarılacak formüller, en kesiti an az bir eksene göre simetrik

Detaylı

Kesit Tesirleri Tekil Kuvvetler

Kesit Tesirleri Tekil Kuvvetler Statik ve Mukavemet Kesit Tesirleri Tekil Kuvvetler B ÖĞR.GÖR.GÜLTEKİN BÜYÜKŞENGÜR Çevre Mühendisliği Mukavemet Şekil Değiştirebilen Cisimler Mekaniği Kesit Tesiri ve İşaret Kabulleri Kesit Tesiri Diyagramları

Detaylı

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması.

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. 1 Deneyin Adı Çekme Deneyi Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. Teorik Bilgi Malzemelerin statik (darbesiz) yük altındaki mukavemet özelliklerini

Detaylı

MAK 305 MAKİNE ELEMANLARI-1

MAK 305 MAKİNE ELEMANLARI-1 MAK 305 MAKİNE ELEMANLARI-1 BÖLÜM 1- MAKİNE ELEMANLARINDA MUKAVEMET HESABI Doç. Dr. Ali Rıza YILDIZ 1 BU DERS SUNUMDAN EDİNİLMESİ BEKLENEN BİLGİLER Makine Elemanlarında mukavemet hesabına neden ihtiyaç

Detaylı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Gerilme Bölüm Hedefleri Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Copyright 2011 Pearson Education South sia Pte Ltd GERİLME Kesim

Detaylı

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır.

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır. PROF.DR. MURAT DEMİR AYDIN ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır. Ders Notları (pdf), Sınav soruları cevapları, diğer kaynaklar için Öğretim

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

BURULMA DENEYİ 2. TANIMLAMALAR:

BURULMA DENEYİ 2. TANIMLAMALAR: BURULMA DENEYİ 1. DENEYİN AMACI: Burulma deneyi, malzemelerin kayma modülü (G) ve kayma akma gerilmesi ( A ) gibi özelliklerinin belirlenmesi amacıyla uygulanır. 2. TANIMLAMALAR: Kayma modülü: Kayma gerilmesi-kayma

Detaylı

Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir.

Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir. BASINÇ ÇUBUKLARI Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir. Basınç çubukları, sadece eksenel basınç kuvvetine maruz kalırlar. Bu çubuklar üzerinde Eğilme ve

Detaylı

BURSA TEKNĠK ÜNĠVERSĠTESĠ DOĞA BĠLĠMLERĠ, MĠMARLIK VE MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNE MÜHENDĠSLĠĞĠ BÖLÜMÜ

BURSA TEKNĠK ÜNĠVERSĠTESĠ DOĞA BĠLĠMLERĠ, MĠMARLIK VE MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNE MÜHENDĠSLĠĞĠ BÖLÜMÜ BURSA TEKNĠK ÜNĠVERSĠTESĠ DOĞA BĠLĠMLERĠ, MĠMARLIK VE MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNE MÜHENDĠSLĠĞĠ BÖLÜMÜ KOMPOZĠT VE SERAMĠK MALZEMELER ĠÇĠN ÜÇ NOKTA EĞME DENEYĠ FÖYÜ BURSA - 2016 1. GĠRĠġ Eğilme deneyi

Detaylı

BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS) (4.Hafta)

BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS) (4.Hafta) BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS) (4.Hafta) GERİLME KAVRAMI VE KIRILMA HİPOTEZLERİ Gerilme Birim yüzeye düşen yük (kuvvet) miktarı olarak tanımlanabilir. Parçanın içerisinde oluşan zorlanma

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 2 Kuvvet Vektörleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö.Soyuçok. 2 Kuvvet Vektörleri Bu bölümde,

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ GİRİŞ Yapılan herhangi bir mekanik tasarımda kullanılacak malzemelerin belirlenmesi

Detaylı

MATERIALS. Kavramı. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University

MATERIALS. Kavramı. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University Third E CHAPTER BÖLÜM 2 Şekil MECHANICS MUKAVEMET OF I MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University Değiştirme Kavramı Düenleyen:

Detaylı

Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin

Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin BURMA DENEYİ Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin genel mekanik özelliklerinin saptanmasında

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 5 Rijit Cisim Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 5. Rijit Cisim Dengesi Denge,

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 kışkan Statiğine Giriş kışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAK 2029

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAK 2029 Dersi Veren Birim: Makina Mühendisliği Dersin Türkçe Adı: MUKAVEMET Dersin Orjinal Adı: MUKAVEMET Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAK 09 Dersin Öğretim Dili:

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net MALZEME BİLGİSİ DERS 7 DR. FATİH AY www.fatihay.net fatihay@fatihay.net GEÇEN HAFTA KRİSTAL KAFES NOKTALARI KRİSTAL KAFES DOĞRULTULARI KRİSTAL KAFES DÜZLEMLERİ DOĞRUSAL VE DÜZLEMSEL YOĞUNLUK KRİSTAL VE

Detaylı

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü ÇEKME DENEYİ 1. DENEYİN AMACI Mühendislik malzemeleri rijit olmadığından kuvvet altında deforme olup, şekil ve boyut değişiklikleri gösterirler. Malzeme özelliklerini anlamak üzere mekanik testler yapılır.

Detaylı

Ara Sınav. Verilen Zaman: 2 saat (15:00-17:00) Kitap ve Notlar Kapalı. Maksimum Puan

Ara Sınav. Verilen Zaman: 2 saat (15:00-17:00) Kitap ve Notlar Kapalı. Maksimum Puan MAK 303 MAKİNA ELEMANLARI I Ara ınav 9 Kasım 2008 Ad, oyad Dr. M. Ali Güler Öğrenci No. Verilen Zaman: 2 saat (15:00-17:00) Kitap ve Notlar Kapalı Her soruyu dikkatle okuyunuz. Yaptığınız işlemleri gösteriniz.

Detaylı

29- Eylül KOÜ. Mühendislik Fakültesi Makine Mühendisliği Bölümü ( 1. ve 2. Öğretim 2. Sınıf / B Şubesi) Mukavemet Dersi - 1.

29- Eylül KOÜ. Mühendislik Fakültesi Makine Mühendisliği Bölümü ( 1. ve 2. Öğretim 2. Sınıf / B Şubesi) Mukavemet Dersi - 1. SORU-1) Şekildeki dikdörtgen kesitli kolonun genişliği b=200 mm. ve kalınlığı t=100 mm. dir. Kolon, kolon kesitinin geometrik merkezinden geçen ve tarafsız ekseni üzerinden etki eden P=400 kn değerindeki

Detaylı

Malzemelerin Deformasyonu

Malzemelerin Deformasyonu Malzemelerin Deformasyonu Malzemelerin deformasyonu Kristal, etkiyen kuvvete deformasyon ile cevap verir. Bir malzemeye yük uygulandığında malzeme üzerinde çeşitli yönlerde ve çeşitli şekillerde yükler

Detaylı

MUKAVEMET(8. Hafta) MALZEMENİN MEKANİK ÖZELLİKLERİ ÇEKME DENEYİ

MUKAVEMET(8. Hafta) MALZEMENİN MEKANİK ÖZELLİKLERİ ÇEKME DENEYİ MALZEMENİN MEKANİK ÖZELLİKLERİ ÇEKME DENEYİ MUKAVEMET(8. Hafta) Malzemenin mekanik özelliklerini ortaya çıkarmak için en yaygın kullanılan deney Çekme Deneyidir. Bu deneyden elde edilen sonuçlar mühendislik

Detaylı

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ):

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ): Tanışma ve İletişim... Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta (e-mail): mcerit@sakarya.edu.tr Öğrenci Başarısı Değerlendirme... Öğrencinin

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ GİRİŞ Mekanik tasarım yaparken öncelikli olarak tasarımda kullanılması düşünülen malzemelerin

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Bölüm-4 MALZEMELERDE ÇEKME-BASMA - KESME GERİLMELERİ VE YOUNG MODÜLÜ. 4.1. Malzemelerde Zorlanma ve Gerilme Şekilleri

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Bölüm-4 MALZEMELERDE ÇEKME-BASMA - KESME GERİLMELERİ VE YOUNG MODÜLÜ. 4.1. Malzemelerde Zorlanma ve Gerilme Şekilleri Bölüm-4 MALZEMELERDE ÇEKME-BASMA - KESME GERİLMELERİ VE YOUNG MODÜLÜ 4.1. Malzemelerde Zorlanma ve Gerilme Şekilleri Malzemeler genel olarak 3 çeşit zorlanmaya maruzdurlar. Bunlar çekme, basma ve kesme

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 14 Parçacık Kinetiği: İş ve Enerji Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 14 Parçacık

Detaylı

L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI

L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI T.C DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI BİTİRME PROJESİ KADİR BOZDEMİR PROJEYİ YÖNETEN PROF.

Detaylı

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş Mukavemet-II Yrd.Doç.Dr. Akın Ataş Bölüm 7 Gerilme ve Şekil Değiştirme Dönüşümleri Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

KİRİŞLERDE PLASTİK MAFSALIN PLASTİKLEŞME BÖLGESİNİ VEREN BİLGİSAYAR YAZILIMI

KİRİŞLERDE PLASTİK MAFSALIN PLASTİKLEŞME BÖLGESİNİ VEREN BİLGİSAYAR YAZILIMI IM 566 LİMİT ANALİZ DÖNEM PROJESİ KİRİŞLERDE PLASTİK MAFSALIN PLASTİKLEŞME BÖLGESİNİ VEREN BİLGİSAYAR YAZILIMI HAZIRLAYAN Bahadır Alyavuz DERS SORUMLUSU Prof. Dr. Sinan Altın GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

Geometriden kaynaklanan etkileri en aza indirmek için yük ve uzama, sırasıyla mühendislik gerilmesi ve mühendislik birim şekil değişimi parametreleri elde etmek üzere normalize edilir. Mühendislik gerilmesi

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 3 Parçacık Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 3 Parçacık Dengesi Bu bölümde,

Detaylı

Mukavemet. Betonarme Yapılar. Giriş, Malzeme Mekanik Özellikleri. Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği

Mukavemet. Betonarme Yapılar. Giriş, Malzeme Mekanik Özellikleri. Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği Mukavemet Giriş, Malzeme Mekanik Özellikleri Betonarme Yapılar Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği GİRİŞ Referans kitaplar: Mechanics of Materials, SI Edition, 9/E Russell

Detaylı

Prof. Dr. Cengiz DÜNDAR

Prof. Dr. Cengiz DÜNDAR Prof. Dr. Cengiz DÜNDAR BASİT EĞİLME ETKİSİNDEKİ ELEMANLARIN TAŞIMA GÜCÜ Çekme çubuklarının temel işlevi, çekme gerilmelerini karşılamaktır. Moment kolunu arttırarak donatının daha etkili çalışmasını sağlamak

Detaylı

29. Düzlem çerçeve örnek çözümleri

29. Düzlem çerçeve örnek çözümleri 9. Düzlem çerçeve örnek çözümleri 9. Düzlem çerçeve örnek çözümleri Örnek 9.: NPI00 profili ile imal edilecek olan sağdaki düzlem çerçeveni normal, kesme ve moment diyagramları çizilecektir. Yapı çeliği

Detaylı

BASINÇLI KAPLAR Endüstride kullanılan silindirik veya küresel kaplar genellikle kazan veya tank olarak görev yaparlar. Kap basınç altındayken

BASINÇLI KAPLAR Endüstride kullanılan silindirik veya küresel kaplar genellikle kazan veya tank olarak görev yaparlar. Kap basınç altındayken BASINÇLI KAPLAR BASINÇLI KAPLAR Endüstride kullanılan silindirik veya küresel kaplar genellikle kazan veya tank olarak görev yaparlar. Kap basınç altındayken yapıldığı malzeme her doğrultuda yüke maruzdur.

Detaylı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı 1 STATİK AĞIRLIK MERKEZİ 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler 3.4 Integrasyon ile ağırlık merkezi hesabı 3.5 Pappus-Guldinus Teoremi 3.6 Yayılı Yüke Eşdeğer Tekil Yük 3.7 Sıvı

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

MALZEMELERİN MEKANİK ÖZELLİKLERİ

MALZEMELERİN MEKANİK ÖZELLİKLERİ MALZEMELERİN MEKANİK ÖZELLİKLERİ Bir cismin uygulanan kuvvetlere karşı göstermiş olduğu tepki, mekanik davranış olarak tanımlanır. Bu davranış biçimini mekanik özellikleri belirler. Mekanik özellikler,

Detaylı

Eksenel Yükleme Amaçlar

Eksenel Yükleme Amaçlar Eksenel Yükleme Amaçlar Geçtiğimiz bölümlerde eksenel yüklü elemanlarda oluşan normal gerilme ve normal şekil değiştirme konularını gördük, Bu bölümde ise deformasyonların bulunması ile ilgili bir metot

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 15 Parçacık Kinetiği: İmpuls ve Momentum Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 15 Parçacık

Detaylı

METALİK MALZEMELERİN ÇEKME DENEYİ

METALİK MALZEMELERİN ÇEKME DENEYİ METALİK MALZEMELERİN ÇEKME DENEYİ Çekme deneyi, malzemelerin statik yük altında elastik ve plastik davranışını belirlemek amacıyla uygulanır. Çekme deneyi, asıl malzemeyi temsil etmesi için hazırlanan

Detaylı

Mohr Dairesi Düzlem Gerilme

Mohr Dairesi Düzlem Gerilme Mohr Dairesi Düzlem Gerilme Bu bölümde düzlem gerilme dönüşüm denklemlerinin grafiksel bir yöntem ile nasıl uygulanabildiğini göstereceğiz. Böylece dönüşüm denklemlerinin kullanılması daha kolay olacak.

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet II Final Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet II Final Sınavı (2A) KOCELİ ÜNİVERSİTESİ ühendislik ültesi ina ühendisliği ölümü ukavemet II inal Sınavı () dı Soyadı : 5 Haziran 01 Sınıfı : No : SORU 1: Şekilde sistemde boru anahtarına 00 N luk b ir kuvvet etki etmektedir.

Detaylı

MUKAVEMET SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU

MUKAVEMET SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU MUKAVEMET MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU Mukavemet Hesabı / 80 1) Elemana etkiyen dış kuvvet ve momentlerin, bunların oluşturduğu zorlanmaların cinsinin (çekme-basma, kesme, eğilme,

Detaylı

AKMA VE KIRILMA KRİTERLERİ

AKMA VE KIRILMA KRİTERLERİ AKMA VE KIRILMA KRİERLERİ Bir malzemenin herhangi bir noktasında gerilme değerlerinin tümü belli iken, o noktada hasar oluşup oluşmayacağına dair farklı teoriler ve kriterler vardır. Malzeme sünek ise

Detaylı

BETONARME KESİTLERİN EĞİLME MUKAVEMETLERİNİN BELİRLENMESİNDE TEMEL İLKE VE VARSAYIMLAR

BETONARME KESİTLERİN EĞİLME MUKAVEMETLERİNİN BELİRLENMESİNDE TEMEL İLKE VE VARSAYIMLAR BETONARME KESİTLERİN EĞİLME MUKAVEMETLERİNİN BELİRLENMESİNDE TEMEL İLKE VE VARSAYIMLAR BASİT EĞİLME Bir kesitte yalnız M eğilme momenti etkisi varsa basit eğilme söz konusudur. Betonarme yapılarda basit

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi 1 Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

= ε s = 0,003*( ,3979)/185,3979 = 6,2234*10-3

= ε s = 0,003*( ,3979)/185,3979 = 6,2234*10-3 1) Şekilde verilen kirişte sehim denetimi gerektirmeyen donatı sınırı kadar donatı altında moment taşıma kapasitesi M r = 274,18 knm ise b w kiriş genişliğini hesaplayınız. d=57 cm Malzeme: C25/S420 b

Detaylı

ÇALIŞMA SORULARI 1) Yukarıdaki şekilde AB ve BC silindirik çubukları B noktasında birbirleriyle birleştirilmişlerdir, AB çubuğunun çapı 30 mm ve BC çubuğunun çapı ise 50 mm dir. Sisteme A ucunda 60 kn

Detaylı

2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması

2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması 1. Deney Adı: ÇEKME TESTİ 2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması Mühendislik tasarımlarının en önemli özelliklerinin başında öngörülebilir olmaları gelmektedir. Öngörülebilirliğin

Detaylı

Yrd.Doç.Dr. Hüseyin YİĞİTER

Yrd.Doç.Dr. Hüseyin YİĞİTER Dokuz Eylül Üniversitesi İnşaat Mühendisliği Bölümü İNŞ2024 YAPI MALZEMESİ II SERTLEŞMİŞ BETONUN DİĞER ÖZELLİKLERİ Yrd.Doç.Dr. Hüseyin YİĞİTER http://kisi.deu.edu.tr/huseyin.yigiter EĞİLME DENEYİ ve EĞİLME

Detaylı

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVETLER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

ÇEKME DENEYİ. Şekil. a) Çekme Deneyi makinesi, b) Deney esnasında deney numunesinin aldığı şekiler

ÇEKME DENEYİ. Şekil. a) Çekme Deneyi makinesi, b) Deney esnasında deney numunesinin aldığı şekiler ÇEKME DENEYİ Çekme Deneyi Malzemenin mekanik özelliklerini ortaya çıkarmak için en yaygın kullanılan deney Çekme Deneyidir. Bu deneyden elde edilen sonuçlar mühendislik hesaplarında doğrudan kullanılabilir.

Detaylı

2. Basınç ve Akışkanların Statiği

2. Basınç ve Akışkanların Statiği 2. Basınç ve Akışkanların Statiği 1 Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvet olarak tanımlanır. Basıncın birimi pascal (Pa) adı verilen metrekare başına newton (N/m 2 ) birimine

Detaylı

Nlαlüminyum 5. αlüminyum

Nlαlüminyum 5. αlüminyum Soru 1. Bileşik bir çubuk iki rijit mesnet arasına erleştirilmiştir. Çubuğun sol kısmı bakır olup kesit alanı 60 cm, sağ kısmı da alüminum olup kesit alanı 40 cm dir. Sistem 7 C de gerilmesidir. Alüminum

Detaylı

STATİK GERİLMELER a) Eksenel yükleme Şekil 4.1 Eksenel Yükleme b) Kesme Yüklemesi Şekil 4.2 Kesme Yüklemesi

STATİK GERİLMELER a) Eksenel yükleme Şekil 4.1 Eksenel Yükleme b) Kesme Yüklemesi Şekil 4.2 Kesme Yüklemesi 4 STATİK GERİLMELER Genel yükleme durumuna göre gerilme tanımlamaları: a) Eksenel yükleme Şekil 4.1 Eksenel Yükleme Ç ; ü b) Kesme Yüklemesi Şekil 4.2 Kesme Yüklemesi ; ; ü c) Burulma Yüklemesi Şekil 4.3

Detaylı

Çekme testi ve gerilme-birim uzama diyagramı

Çekme testi ve gerilme-birim uzama diyagramı MCHANICS OF MATRIALS Beer Johnston DeWolf Maurek Çekme testi ve gerilme-birim uama diagramı Sünek bir maleme için çekme testi diagramı P P Lo P 2009 The McGraw-Hill Companies, Inc All rights reserved -

Detaylı

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3-

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3- 1 STATİK Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3- Moment KUVVET SİSTEMLERİ 2 Moment, bir kuvvetin bir nokta veya bir eksen etrafında oluşturduğu döndürme etkisinin ölçüsüdür. Momentin büyüklüğü

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Final Sınavı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Final Sınavı KOCEİ ÜNİVERSİTESİ Mühendislik akültesi Makina Mühendisliği ölümü Mukavemet I inal Sınavı dı Soadı : 9 Ocak 0 Sınıfı : h No : SORU : Şekildeki ucundan ankastre, ucundan serbest olan kirişinin uzunluğu

Detaylı