Lineer Olmayan Yapı Sistemlerinin Analizi İçin Yay-Boyu Metodu

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Lineer Olmayan Yapı Sistemlerinin Analizi İçin Yay-Boyu Metodu"

Transkript

1 Fıra Ünv. Fen ve Müh. Bl. Dergs Scence and Eng. J of Fıra Unv. 9 (4), , (4), , 007 Lneer Olmayan Yaı Ssemlernn Analz İçn Yay-Boyu Meodu Cengz OLA ve Yusuf CALAYIR Fıra Ünverses eknk Blmler MYO, Elazığ Fıra Ünverses Mühendslk Faküles İnşaa Mühendslğ Bölümü, Elazığ (Gelş/Receved: ; Kabul/Acceed: ) Öze: Yaıların lneer olmayan davranışını nceleyeblmek çn yük-deformasyon eğrs am olarak elde edlmeldr. Yük konrollü br meo olan Newon-Rahson meodu lm nokaları cvarında çözüm vermedğnden delasman konrollü meolar gelşrlmşr. Bununla brlke, vurgu veya ers vurgu burkulması davranışı göseren ssemlerde bu meolar haalara neden olablmekedr. Yay-boyu meoları kullanılarak bu haalar en al düzeye ndrgeneblr. Anahar Kelmeler: Yay-boyu meodu, vurgu ve ers vurgu burkulması. he Arc-Lengh Mehod for Nonlnear Analyss of Srucural Sysems Absrac: o nvesgae he nonlnear behavor of srucures, he comlee load-deformaon curve mus be obaned. he dslacemen conrolled echnques have been develoed due o falng of load conrolled mehods (such as Newon-Rahson mehod) near he lm ons. However, hese echnques may lead o errors for sysems whch are exhbng sna-hrough or sna-back behavors. hese errors can be mnmzed by usng Arclengh mehods. Keywords: Arc-lengh mehod, sna-hrough and sna-back behavors.. Grş Yaıların lneer olmayan davranışını nceleyeblmek çn yük-deformasyon eğrs am olarak elde edlmeldr. Yük konrollü br meo olan Newon-Rahson meodu lm nokası cvarlarında çözüm vermedğnden delasman konrollü meolar gelşrlmşr. Faka vurgu burkulması (sna-hrough) veya ers vurgu burkulması (Sna-back) davranışı göseren ssemlerde bu meolar haalara neden olmakadır. Bu roblemler aşmak çn yük konrollü meolarla, delasman konrollü meoları brlke kullanmak br çözüm yönem olablr []. Yaıların lneer olmayan davranışını elde emek çn kullanılan yay-boyu (archlengh) meodu daha genel br meo olu, lk olarak Rks [,3] ve Wemner [4] arafından gelşrlmş ve daha sonraları brçok araşırmacı [5-0] bu yönem yenden düzenleyerek kullanmışır. Yay-boyu meolarıyla lm nokaları (maksmum ve mnmum yükler) geçen çözüm algormaları üreleblr... Yay-Boyu Meodu Yük veya delasman konrollü meolarda br adımdak yük sevyes arameres veya delasman sab uulmakadır. Buna karşılık, yay-boyu meodunda se yük sevyes arameres her erasyonda yenden elde edlerek yakınsama nokasına ulaşılır (Şekl ). Dolayısıyla, bu meoa yük sevyes arameres λ, denge denklemlerne lave br değşken olarak grer. Bu yönemde lneer olmayan yaı ssemlernn denge denklemler R ( u, λ) = F( u) λ = 0 () şeklnde yazılablr []. Burada R arık kuvve, F ç kuvve, dış yük vekörünü ve u yer değşrme vekörünü gösermekedr. Yay-boyu meodunun amacı () denklem le l sab yay boyu arasındak kesşm bulmakır. Ψ yük ölçeklendrme arameresn gösermek üzere, l sab yay boyu dferansyel olarak

2 C. ola ve Y. Calayr l = du du + dλ Ψ () şeklnde veya arımsal olarak a(, λ) = + λ Ψ = 0 (3) bçmnde fade edleblr. Burada u arımsal yer değşrmeler, λ arımsal yük fakörünü, l belrlenen arımsal yay boyunu emsl emekedr. λ λ λ. erasyon. erasyon Yakınsama nokası Denge eğrs yer değşrme veköründek eraf değşm ve δ λ yük faköründek eraf değşm çn yenden düzenlenrse, K R = δλ λ Ψ a (6) eşlğ yazılablr. K mars ekl (sngular) olsa dah köşel aranez çndek genşlelmş rjlk mars ekl olmayablr. Bununla brlke, K mars smerk olmasına karşılık bu mars smerk değldr. Bu nedenlerden dolayı (6) denklemnn nümerk çözümü zorlaşmakadır. Söz konusu denklem çözmek yerne, Baoz ve Dha [] ın eknğ kullanılarak br ek nokadak yer değşrme konrolü çn (5) bağınısındak sınırlama doğrudan kullanılablr. Bunun çn δ u eraf yer değşrmes k kısma ayrılır. Yen blnmeyen yük sevyes λ + = λ + δλ (7) λ 0 u 0 0 Şekl. Yay-boyu meodunun grafksel göserm. Yay-boyu meodunda yük sevyes arameres λ lave br değşken olarak ele alındığından, k yer değşrme veköründek olam serbeslk derecesn gösermek üzere, denge denklemlerndek olam blnmeyen sayısı k + olur. Bu durumda () ve (3 ) denklemler brlke kullanılarak çözüm elde edleblr. Kısalılmış aylor açılımları kullanılarak, () ve (3) denklemler sırasıyla, R + R R = R + + δλ u λ (4) = R + K δλ = 0 + = a = a + + λ Ψ δλ 0 (5) formunda yazılablr. Burada K eğe rjlk marsdr. Denklem (4) ve (5) brleşrlerek, δ u u şeklnde fade edlecek olursa, bu yük sevyesnde eraf yer değşrme (4) bağınısından = K = K R( u, λ ( R( u, λ ) δλ ) + şeklnde elde edleblr. Bu eşlk = K R ) + δλ K = + δλ (8) (9) formunda yenden yazılablr. Burada δ u, λ yük sevyesndek Newon-Rahson meodundan elde edlen eraf yer değşrmey ve δ u se sab dış yük vekörü ye karşılık gelen yer değşrmey gösermekedr. + erasyonundak arımsal yer değşrmeler u + = + = + + δλ (0) olarak elde edleblr. Bu eşlkek ek blnmeyen olan δλ, denklem (3) dek sınırlama kullanılarak bulunablr. (3) sınırlayıcı denklem 56

3 Lneer Olmayan Yaı Ssemlernn Analz İçn Yay-Boyu Meodu + λ = = λ + Ψ Ψ şeklnde yenden yazılır ve (0) eşlke kullanılırsa, 3 = () bağınısı bu c δλ + c δλ + c 0 () knc dereceden denklem bulunur. Burada c, c ve c 3 sırasıyla Ψ c = + (3a) c = + ) + λ Ψ (3b) ( c3 = ( + ) ( + λ Ψ Τ + ) (3c) şeklnde anımlanmakadır. Crsfeld [3], bu denklemlerde yük ölçeklendrme arameresn sıfır almanın ( Ψ = 0 ) çözümler fazla eklemedğn belrmşr. (3a-c) denklemler çözülerek δλ eraf değşm çn k kök elde edleblr. δλ ve δλ köklernden k ane arımsal yer değşrme u + = + + δλ (4a),, u + = + + δλ (4b) olarak bulunur. Bu yer değşrmelerden, br öncek u arımsal yer değşrmesnn doğrulusuna en yakın doğruluyu sağlayanı seçlerek, yük-deformasyon eğrsnn kend z üzernde ekrar emes (doublng-back) önleneblr. Bunu belrlemek çn u ve + arasındak en küçük açıyı sağlayan δλ değer çözümlerde kullanılır. Yan cos θ = = + ( δ + ) u + δλ (5) bağınısından maksmum kosnüs değern veren θ açısı genellkle senlen çözümü verr. Bununla brlke, bazı keskn ers vurgu burkulmalarında (shar sna-backs) bu krer de haalı seçme neden olablmekedr [3]. Yukarıdak denklemlerde verlen arımsal yük fakörü, + λ = λ + δλ (6) şeklnde güncelleşrlerek yakınsama sağlanana kadar şleme devam edlr... redkör Çözüm Br öncek kısımda Yay-boyu meodunun uygulanması açıklanmışır. İerasyonların başlangıcında ler Euler eğesel redkörü göz önüne alınarak = K = λ K = λ (7) olarak yazılablr. Burada K erasyonların başlangıcındak eğe rjlk marsn ve al nds se lgl büyüklüğün redkör değern emsl emekedr. Bu eşlk () denklemnde kullanılır ve Ψ = 0 alınırsa, λ = ± = s (8) olarak elde edlr. Denklem (8) dek s, + ve - değerlern alan br arameredr. Çözüm başlangıcında K mars ozf defne se bu aramere + olarak alınır. Çözümün lerk safhalarında bu değşkenn şarenn belrlenmes çn çeşl krerler kullanılmakadır. Bunlardan bazıları aşağıda verlmşr. a) Mevcu eğe rjlk marsnn deermnanının şare sgn( s ) = sgn( K ) (9) Denge eğrsnn lm ve burkulma nokalarında, eğe rjlk marsnde negaf vo oluşur. Söz konusu krer bu k noka 57

4 C. ola ve Y. Calayr arasındak farkı ayır edememekedr. Burkulma durumunda, redkör denge eğrsn zlemek yerne burkulmanın meydana geldğ noka erafında salınım yamakadır. Dolayısıyla çözüm başarıyla amamlanamayablr. b) Arımsal ş şare enerj krernde se olerans değer 0-4 alınmışır. L olarak H sgn( s ) = sgn( ) (0) Bu krer burkulma nokalarına duyarlı değldr, yan burkulma nokasını geçerek denge eğrsn zlemeye devam edeblr. Bununla brlke ers vurgu burkulma davranışı mevcu olursa çözüm elde edlemeyeblr. c) Öncek yakınsamış arımsal yer değşrme le mevcu eğesel çözüm arasındak ç çarımın şare R Şekl. ee nokasından ekl yüke maruz kemer. Kemer kalınlığı =9.05 mm çn kemern ee nokasının yük-yer değşrme eğrsnde vurgu burkulması davranışı gözlenmemekedr (Şekl 3). Bununla brlke, kemer kalınlığı azalılınca, kemern vurgu burkulması davranışına olan eğlm armakadır (Şekl 4-5). b n sgn( s ) = sgn( ) () Burada u n, öncek yakınsamış arımsal yer değşrme olu, mevcu denge eğrsnn geçmş hakkında blg çermekedr. Bundan dolayı (a) ve (b) krerlernde oluşan roblemler bu krerde kolayca aşılablr. Bununla brlke n arımsal yer değşrmelernn yeernce küçük olması gerekr [4,5].. Sayısal Uygulama Şekl de geomers verlen ve ee nokasından ekl yüke maruz bırakılmış kemern, yay-boyu meodu kullanılarak geomerk bakımdan lneer olmayan davranışı, farklı kemer kalınlıkları kullanılarak ncelenmşr. Kemern yarıçaı R = mm, açıklığı L = mm, yükseklğ H = 7.8 mm, genşlğ b = 5.4 mm, elasse modülü E = Ma ve osson oranı ν = 0. olarak alınmışır. Smerden dolayı sadece kemern yarısı dkkae alınmışır. Kullanılan ağ ssem 0 ane dokuz düğümlü dörgen kabuk elemandan oluşmakadır. Yakınsama çn delasman ve enerj krerler seçlmş, delasman krernde olerans değer 0-5 ve 58 Şekl 3. =9.05 mm çn ee nokasının yük-yer değşrme eğrs. Şekl 4. =9.55 mm çn ee nokasının yük-yer değşrme eğrs.

5 Lneer Olmayan Yaı Ssemlernn Analz İçn Yay-Boyu Meodu doğablmekedr. Buna karşılık, yay-boyu meodunda yük sevyes arameres her erasyonda yenden elde edlerek yakınsama nokasına ulaşılmakadır. 3. Sonuçlar Şekl 5. =4.765 mm çn ee nokasının yük-yer değşrme eğrs. Bu eğrler, yay-boyu yönemnn eknlğn açıkça oraya koymakadır. Yük veya delasman konrollü meolarda br adımdak yük sevyes arameres veya delasman sab uulduğundan, lm nokası cvarında nümerk roblemler Yaıların lneer olmayan davranışını nceleyeblmek çn yük-deformasyon eğrs am olarak elde edlmeldr. Yük konrollü br meo olan Newon-Rahson meodu lm nokaları cvarında çözüm vermedğnden delasman konrollü meolar gelşrlmşr. Bununla brlke, vurgu burkulması veya ers vurgu burkulması davranışı göseren ssemlerde bu meolar haalara neden olablmekedr. Yayboyu meolarında yük sevyes arameres her erasyonda yenden elde edlerek yakınsama nokasına ulaşılmaka ve söz konusu haalar en al düzeye ndrgeneblmekedr. 4. Kaynaklar. Memon, B. A. and Su, X. Z. (004). Arc-Lengh echnque for Nonlnear Fne Elemen Analyss, Journal of Zhejang Unversy, 5(5), Rks, E. (97). he Alcaon of Newon s Mehod o he roblem of Elasc Sably, Journal of Aled Mechancs, 39, Rks, E. (979). An Incremenal Aroach o he Soluon of Snang and Bucklng roblems, Inernaonal Journal of Solds and Srucures, 5(7), Wemner, G.A. (97). Dscree Aroxmaon Relaed o Nonlnear heores of Solds. Inernaonal Journal of Solds and Srucures, 7(), Bergan,. G., Horrgmoe, G., Brakeland, B. and Sorede,. H. (978). Soluon echnques for Non-Lnear Fne Elemen roblems, Inernaonal Journal for Numercal Mehods n Engneerng, (), Crsfeld, M. A. (98). A Fas Incremenal/Ierave Soluon rocedure ha Handles "Sna-hrough", Comuers and Srucures, 3(-3), Crsfeld, M. A. (983). An Arc-Lengh Mehod Includng Lne Searches and Acceleraons, Inernaonal Journal for Numercal Mehods n Engneerng, 9(9), Feng, Y.., erc, D. and Owen, D. R. J. (996). A New Creron for Deermnaon of Inal Loadng arameer n Arc-Lengh Mehods, Comuers and Srucures, 58(3), Hellweg, H. B. and Crsfeld, M. A. (998). A New Arc-Lengh Mehod for Handlng Shar Sna-Backs, Comuers and Srucures, 66(5), Souza, N. E. A. and Feng, Y.. (999). On he Deermnaon of he ah Drecon for Arc- Lengh Mehods n he resence of Bfurcaons and `Sna-Backs', Comuer Mehods n Aled Mechancs and Engneerng, 79(-), Meek, J. L. and an, H. S. (984). Geomercally Nonlnear Analyss of Sace Frames by An Incremenal Ierave echnque, Comuer Mehods n Aled Mechancs and Engneerng, 47(3), Baoz, J.L., Dha, G. (979). Incremenal Dslacemen Algorhms for Nonlnear roblems, Inernaonal Journal for Numercal Mehods n Engneerng, 4(8), Crsfeld, M. A. (99). Non-lnear Fne Elemen Analyss of Solds and Srucures: Volume I, John Wley and Sons, New York, 345.

6 C. ola ve Y. Calayr 4. ola, C. (006). Geomerk Bakımdan Lneer Olmayan Kabuk Yaıların Sak Ve Dnamk Davranışı, Dokora ez, Elazığ. 5. ola, C., Calayr, Y., Ulucan, Z. Ç. (006). osbucklng Behavor of Geomercally Non-lnear Axsymmerc Shells, Sevenh Inernaonal Congress on Advances n Cvl Engneerng, Ocober -3, Yldz echncal Unversy, Isanbul, urkey. 530

PARABOLİK KISMİ DİFERANSİYEL DENKLEMLER İÇİN İKİ ZAMAN ADIMLI YAKLAŞIMLAR ÜZERİNE BİR ÇALIŞMA. Gamze YÜKSEL 1, Mustafa GÜLSU 1, *

PARABOLİK KISMİ DİFERANSİYEL DENKLEMLER İÇİN İKİ ZAMAN ADIMLI YAKLAŞIMLAR ÜZERİNE BİR ÇALIŞMA. Gamze YÜKSEL 1, Mustafa GÜLSU 1, * Ercyes Ünverses Fen Blmler Ensüsü Dergs 5 - - 45 9 p://fbe.ercyes.ed.r/ ISS -54 PARABOLİK KISMİ DİFERASİYEL DEKLEMLER İÇİ İKİ ZAMA ADIMLI YAKLAŞIMLAR ÜZERİE BİR ÇALIŞMA Gamze YÜKSEL Msafa GÜLS * Mğla Ünverses

Detaylı

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Ünsal M.; Varol, A.: Soğutma Kulelernn Boyutlandırılması İçn Br Kuramsal 8 Mayıs 990, S: 8-85, Adana 4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Asaf Varol Fırat Ünverstes, Teknk Eğtm Fakültes,

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

Saklı Markov modelleri kullanılarak Türkiye de dolar kurundaki değişimin tahmin edilmesi

Saklı Markov modelleri kullanılarak Türkiye de dolar kurundaki değişimin tahmin edilmesi İsanbul Ünverses İşleme Faküles Dergs Isanbul Unversy Journal of he School of Busness Admnsraon Cl/Vol:38, Sayı/o:, 2009, -23 ISS: 303-732 - www.fdergs.org 2009 Saklı Markov modeller kullanılarak ürkye

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.teknolojkarastrmalar.com ISSN:134-4141 Makne Teknolojler Elektronk Dergs 28 (1) 61-68 TEKNOLOJĐK ARAŞTIRMALAR Kısa Makale Tabakalı Br Dskn Termal Gerlme Analz Hasan ÇALLIOĞLU 1, Şükrü KARAKAYA 2 1

Detaylı

DENEY 5: FREKANS MODÜLASYONU

DENEY 5: FREKANS MODÜLASYONU DENEY 5: FREKANS MODÜLASYONU AMAÇ: Malab da rekans modülasyonunun uygulanması ve nelenmes. ÖN HAZIRLIK 1. TEMEL TANIMLAR Açı modülasyonu, az ve rekans modülasyonunu kasamakadır. Taşıyıının rekansı veya

Detaylı

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE BAÜ Fen Bl. Enst. Dergs (6).8. YAYII YÜK İE YÜKENİŞ YAPI KİRİŞERİNDE GÖÇE YÜKÜ HESABI Perhan (Karakulak) EFE Balıkesr Ünverstes ühendslk marlık Fakültes İnşaat üh. Bölümü Balıkesr, TÜRKİYE ÖZET Yapılar

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüneyt BAYILMIŞ Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz SAYISAL ANALİZ SAYISAL TÜREV Numercal Derentaton Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz İÇİNDEKİLER Sayısal Türev Ger Farklar

Detaylı

alphanumeric journal The Journal of Operations Research, Statistics, Econometrics and Management Information Systems

alphanumeric journal The Journal of Operations Research, Statistics, Econometrics and Management Information Systems Avalable onlne a www.alphanumerournal.om alphanumer ournal The Journal of Operaons Researh, Sass, Eonomers and Managemen Informaon Sysems Volume 3, Issue 2, 2015 2015.03.02.STAT.08 Absra OUTLIERS IN SURVIVAL

Detaylı

NOT: Deney kılavuzunun Dönme Dinamiği Aygıtının Kullanımı İle İlgili Bilgiler Başlıklı Bölümü okuyunuz.

NOT: Deney kılavuzunun Dönme Dinamiği Aygıtının Kullanımı İle İlgili Bilgiler Başlıklı Bölümü okuyunuz. 8. AÇISAL HIZ, AÇISAL İVME VE TORK Hazırlayan Arş. Grv. M. ERYÜREK NOT: Deney kılavuzunun Dönme Dnamğ Aygıının Kullanımı İle İlgl Blgler Başlıklı Bölümü okuyunuz. AMAÇ 1. Küle merkez boyunca geçen ab br

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A) KOCELİ ÜNİVERSİTESİ Mühendslk akültes Makna Mühendslğ Bölümü Mukavemet I Vze Sınavı () dı Soyadı : 18 Kasım 013 Sınıfı : No : SORU 1: Şeklde verlen levhalar aralarında açısı 10 o la 0 o arasında olacak

Detaylı

AKIŞKAN ÇAMUR TABAKASIYLA YÜZEY DALGALARININ ETKİLEŞİMİNİN SAYISAL MODELLENMESİ

AKIŞKAN ÇAMUR TABAKASIYLA YÜZEY DALGALARININ ETKİLEŞİMİNİN SAYISAL MODELLENMESİ AKIŞKAN ÇAMUR TABAKASIYLA YÜZEY DALGALARININ ETKİLEŞİMİNİN SAYISAL MODELLENMESİ Doç.Dr.Lale BALAS, A. Mehme ŞİRİN Gaz Ünverses, Mühendslk Mmarlık Faküles,İnşaa Mühendslğ Bölümü, Malepe, Ankara Tel:37400/7,

Detaylı

Anlık ve Ortalama Güç

Anlık ve Ortalama Güç ALTERNATİF AK-Dere Analz Bölü-4 AC Güç Anlık Güç Oralaa güç Güç fakörü Akf, reakf güç Kpleks güç Reakf güç düzele (Kpanzasyn aksu akf güç ransfer Anlık Güç, p( (herhang br ank güç p Anlık e Oralaa Güç

Detaylı

Veride etiket bilgisi yok Denetimsiz öğrenme (unsupervised learning) Neden gereklidir?

Veride etiket bilgisi yok Denetimsiz öğrenme (unsupervised learning) Neden gereklidir? MEH535 Örünü Tanıma 7. Kümeleme (Cluserng) Doç.Dr. M. Kemal GÜLLÜ Elekronk ve Haberleşme Mühendslğ Bölümü web: hp://akademkpersonel.kocael.edu.r/kemalg/ E-posa: kemalg@kocael.edu.r Verde eke blgs yok Denemsz

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

Ses ve Gürüjtü. Iklimlendirilen Binalarda. Konusunun İrdelenmesi. i» S M İ&Öİ. i n?ı bî E 'Lrfı : : 1: tÿ7jss. f<0 I60

Ses ve Gürüjtü. Iklimlendirilen Binalarda. Konusunun İrdelenmesi. i» S M İ&Öİ. i n?ı bî E 'Lrfı : : 1: tÿ7jss. f<0 I60 Iklmlendrlen Bnalarda Ses ve Gürüjü Konusunun İrdelenmes Kevork Çlngroğlu, Mak.Y.Müh. TTMD Üyes_ ÖZET Bu yanda. ıklmlendrlen bnaların bünyesnde ve çevresnde bulunan HVAC maknalar He çevre seslernn (Trafk

Detaylı

Koşullu Varyans Modelleri: İmkb Serileri Üzerine Bir Uygulama

Koşullu Varyans Modelleri: İmkb Serileri Üzerine Bir Uygulama Çukurova Ünverses İİBF Dergs Cl:15.Sayı:.Aralık 11 ss.1-18 Koşullu Varyans Modeller: İmkb Serler Üzerne Br Uygulama Condııonal Varıance Models: An Alıcaıon on Isanbul Sock Exchange Serıes H.Alan Çabuk

Detaylı

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler 6.4.7 NÜMERİK ANALİZ Yrd. Doç. Dr. Hatce ÇITAKOĞLU 6 Müendslk sstemlernn analznde ve ugulamalı dsplnlerde türev çeren dferansel denklemlern analtk çözümü büük öneme saptr. Sınır değer ve/vea başlangıç

Detaylı

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain *

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain * BİR ESAS İDEAL BÖLGESİ ÜZERİNDEKİ SONLU DOĞURULMUŞ BİR MODÜLÜN DİREK PARÇALANIŞI * Drec Decompoon of A Fnely-Generaed Module Over a Prncpal Ideal Doman * Zeynep YAPTI Fen Blmler Enüü Maemak Anablm Dalı

Detaylı

DİNAMİK ANALİZ PROBLEMLERİ İÇİN YENİ BİR ADIM ADIM SAYISAL ÇÖZÜMLEME YÖNTEMİ

DİNAMİK ANALİZ PROBLEMLERİ İÇİN YENİ BİR ADIM ADIM SAYISAL ÇÖZÜMLEME YÖNTEMİ . Türkye Deprem Mühendslğ ve Ssmoloj Konferansı 5-7 Eylül 0 MKÜ HATAY DİNAMİK ANALİZ PROBLEMLERİ İÇİN YENİ BİR ADIM ADIM SAYISAL ÇÖZÜMLEME YÖNTEMİ ÖZET: H. Çlsalar ve K. Aydın Yüksek Lsans Öğrencs, İnşaat

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

Programı : Elektronik Müh.

Programı : Elektronik Müh. İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜZ RESİMLERİNDEN CİNSİYET TAYİNİ YÜKSEK LİSANS TEZİ Özlem ÖZBUDAK Anablm Dalı : Elekronk e Haberleşme Müh. Programı : Elekronk Müh. OCAK 009 İSTANBUL

Detaylı

Cinsiyet Değişkeni Bağlamında Harcama Alt Grupları ve Gelir Đlişkisi: Dumlupınar Üniversitesi Öğrencileri Üzerine Bir Uygulama.

Cinsiyet Değişkeni Bağlamında Harcama Alt Grupları ve Gelir Đlişkisi: Dumlupınar Üniversitesi Öğrencileri Üzerine Bir Uygulama. Cnsye Değşken Bağlamında Harcama Al Grupları ve Gelr Đlşks: Dumlupınar Ünverses Öğrencler Üzerne Br Uygulama Mahmu ZORTUK * Öze: Đksa blmnn en öneml konuları arasında yer alan gelr le ükem lşks her dönem

Detaylı

İMKB BİLEŞİK 100 ENDEKSİ GETİRİ VOLATİLİTESİNİN ANALİZİ ANALYSIS OF ISTANBUL STOCK EXCHANGE 100 INDEX S RETURN VOLATILITY ABSTRACT

İMKB BİLEŞİK 100 ENDEKSİ GETİRİ VOLATİLİTESİNİN ANALİZİ ANALYSIS OF ISTANBUL STOCK EXCHANGE 100 INDEX S RETURN VOLATILITY ABSTRACT İsanbul Tcare Ünverses Sosyal Blmler Dergs Yıl:7 Sayı:3 Bahar 008 s.339-350 İMKB BİLEŞİK 00 ENDEKSİ GETİRİ VOLATİLİTESİNİN ANALİZİ Ünal H. ÖZDEN ÖZET Fnansal serlerde, aşıdıkları özellkler nedenyle doğrusal

Detaylı

Deprem Tepkisinin Sayısal Metotlar ile Değerlendirilmesi (Newmark-Beta Metodu) Deprem Mühendisliğine Giriş Dersi Doç. Dr.

Deprem Tepkisinin Sayısal Metotlar ile Değerlendirilmesi (Newmark-Beta Metodu) Deprem Mühendisliğine Giriş Dersi Doç. Dr. Deprem Tepksnn Sayısal Metotlar le Değerlendrlmes (Newmark-Beta Metodu) Sunum Anahat Grş Sayısal Metotlar Motvasyon Tahrk Fonksyonunun Parçalı Lneer Interpolasyonu (Pecewse Lnear Interpolaton of Exctaton

Detaylı

YAPILARIN ENERJİ ESASLI TASARIMI İÇİN BİR HESAP YÖNTEMİ

YAPILARIN ENERJİ ESASLI TASARIMI İÇİN BİR HESAP YÖNTEMİ YAPILARI EERJİ ESASLI TASARIMI İÇİ BİR HESAP YÖTEMİ Araş. Gör. Onur MERTER Araş. Gör. Özgür BOZDAĞ Prof. Dr. Mustafa DÜZGÜ Dokuz Eylül Ünverstes Dokuz Eylül Ünverstes Dokuz Eylül Ünverstes Fen Blmler Ensttüsü

Detaylı

Calculating the Index of Refraction of Air

Calculating the Index of Refraction of Air Ankara Unversty Faculty o Engneerng Optcs Lab IV Sprng 2009 Calculatng the Index o Reracton o Ar Lab Group: 1 Teoman Soygül Snan Tarakçı Seval Cbcel Muhammed Karakaya March 3, 2009 Havanın Kırılma Đndsnn

Detaylı

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi)

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi) JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) yeryüzünde oluşturacağı gerlm değerler hesaplanablr. Daha sonra aşağıdak formül kullanılarak görünür özdrenç hesaplanır. a K I K 2 1 1 1 1 AM BM AN

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

YÜKSEK LİSANS TEZİ Savaş OK. Anabilim Dalı : Makina Mühendisliği. Programı : Sistem Dinamiği ve Kontrol

YÜKSEK LİSANS TEZİ Savaş OK. Anabilim Dalı : Makina Mühendisliği. Programı : Sistem Dinamiği ve Kontrol İSTABUL TEKİK ÜİVERSİTESİ FE BİLİMLERİ ESTİTÜSÜ DİAMİK MATRİS KOTROL VE GEELLEŞTİRİLMİŞ ÖGÖRÜLÜ KOTROL ALGORİTMALARII KARŞILAŞTIRILMASI YÜKSEK LİSAS TEZİ Savaş OK Anablm Dalı : Makna Mühendslğ Programı

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim.

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim. SM de yer alacak fermyonlar Standart Model (SM) agrange Yoğunluğu u s t d c b u, d, c, s, t, b e e e,, Şmdlk nötrnoları kütlesz Kabul edeceğz. Kuark çftlern gösterelm. u, c ve t y u (=1,,) olarak gösterelm.

Detaylı

KAPASİTANS VE ENDÜKTANS EBE-215, Ö.F.BAY 1

KAPASİTANS VE ENDÜKTANS EBE-215, Ö.F.BAY 1 KAPASİTANS VE ENDÜKTANS EBE-5, Ö.F.BAY KAPASİTANS VE ENDÜKTANS Bu bölümde enerj depolayan pasf elemanlardan Kapasörler e Endükörler anıılmakadır ÖĞRENME HEDEFLERİ KAPASİTÖRLER Elekrk alanında enerj depolarlar

Detaylı

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine Geelleşrlmş Oralama Foksyou ve Bazı Öeml Eşszlkler Öğrem Üzere Gabl ADİLOV, Gülek TINAZTEPE & Serap KEALİ * Öze Armek oralama, Geomerk oralama, Harmok oralama, Kuvadrak oralama ve bular arasıdak lşk vere

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Journal of Engneerng and Naural Scences Mühendslk ve Fen Blmler Dergs Sgma 29, 329-339, 2011 PhD Research Arcle / Dokora Çalışması Araşırma Makales A MULTI-STAGE SUPPLY CHAIN MODEL TO DETERMINE OPTIMAL

Detaylı

ORTOTROPİK ZİNCİR YAN PLAKALARINDA GERİLME YIĞILMASI KATSAYILARININ HESAPLANMASI

ORTOTROPİK ZİNCİR YAN PLAKALARINDA GERİLME YIĞILMASI KATSAYILARININ HESAPLANMASI PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 997 : 3 : 3 :45-49

Detaylı

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS NURAY TUNCER PROF. DR. DURDU KARASOY Tez Danışmanı Hacettepe Ünverstes Lsansüstü Eğtm-Öğretm Yönetmelğnn İstatstk Anablm Dalı İçn Öngördüğü

Detaylı

ESNEK SİSTEMLERİN KAYAN KİPLİ DENETİMİ VE BİR UYDU MODELİNE UYGULANMASI. Nurdan BİLGİN YÜKSEK LİSANS TEZİ MAKİNA MÜHENDİSLİĞİ

ESNEK SİSTEMLERİN KAYAN KİPLİ DENETİMİ VE BİR UYDU MODELİNE UYGULANMASI. Nurdan BİLGİN YÜKSEK LİSANS TEZİ MAKİNA MÜHENDİSLİĞİ ESNEK SİSTEMLERİN KAYAN KİPLİ DENETİMİ VE BİR UYDU MODELİNE UYGULANMASI Nurdan BİLGİN YÜKSEK LİSANS TEZİ MAKİNA MÜHENDİSLİĞİ GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ NİSAN 7 ANKARA ESNEK SİSTEMLERİN KAYAN

Detaylı

TÜRKİYE DEKİ 380 kv LUK 14 BARALI GÜÇ SİSTEMİNDE EKONOMİK YÜKLENME ANALİZİ

TÜRKİYE DEKİ 380 kv LUK 14 BARALI GÜÇ SİSTEMİNDE EKONOMİK YÜKLENME ANALİZİ TÜRİYE DEİ 38 kv LU 4 BARALI GÜÇ SİSTEMİDE EOOMİ YÜLEME AALİZİ Mehmet URBA Ümmühan BAŞARA 2,2 Elektrk-Elektronk Mühendslğ Bölümü Mühendslk-Mmarlık Fakültes Anadolu Ünverstes İk Eylül ampüsü, 2647, ESİŞEHİR

Detaylı

BİR BOYUTLU HAREKET FİZİK I. Bir Boyutlu Hareket? 12.10.2011. Hız ve Sürat. 1 boyut (doğru) 2 boyut (düzlem) 3 boyut (hacim) 0 boyut (nokta)

BİR BOYUTLU HAREKET FİZİK I. Bir Boyutlu Hareket? 12.10.2011. Hız ve Sürat. 1 boyut (doğru) 2 boyut (düzlem) 3 boyut (hacim) 0 boyut (nokta) .0.0 r oulu Hareke? İR OYUTLU HREKET FİZİK I bou (doğru bou (düzlem 3 bou (hacm 0 bou (noka u bölümde adece br doğru bounca harekee bakacağız (br boulu. Hareke ler olablr (pozf erdeğşrme ea ger olablr

Detaylı

UZAY ÇERÇEVE SİSTEMLERİN ELASTİK-PLASTİK ANALİZİ İÇİN BİR YÖNTEM

UZAY ÇERÇEVE SİSTEMLERİN ELASTİK-PLASTİK ANALİZİ İÇİN BİR YÖNTEM ECAS Uluslararası Yapı ve Deprem ühendslğ Sempozyumu, Ekm, Orta Doğu Teknk Ünverstes, Ankara, Türkye UZAY ÇERÇEVE SİSTEERİN STİK-PASTİK ANAİZİ İÇİN BİR YÖNTE Erdem Damcı, Turgay Çoşgun, Tuncer Çelk, Namık

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

ÖZET Yüksek Lisans Tezi. Kinematik Modelde Kalman Filtreleme Yöntemi ile Deformasyon Analizi. Serkan DOĞANALP. Selçuk Üniversitesi

ÖZET Yüksek Lisans Tezi. Kinematik Modelde Kalman Filtreleme Yöntemi ile Deformasyon Analizi. Serkan DOĞANALP. Selçuk Üniversitesi ÖZE Yüksek Lsans ez Knematk Modelde Kalman Fltreleme Yöntem le Deformasyon Analz Serkan DOĞANALP Selçuk Ünverstes Fen Blmler Ensttüsü Jeodez ve Fotogrametr Anablm Dalı Danışman: Yrd. Doç. Dr. Bayram URGU

Detaylı

İhracat, İthalat ve Ekonomik Büyüme Arasındaki Nedensellik İlişkileri: Türkiye Örneği

İhracat, İthalat ve Ekonomik Büyüme Arasındaki Nedensellik İlişkileri: Türkiye Örneği Uluslararası Alanya İşleme Faküles Dergs Inernaonal Journal of Alanya Faculy of Busness Yıl:05, C:7, S:, s. 87-94 Year:05, Vol:7, No:, s. 87-94 İhraca, İhala ve Ekonomk Büyüme Arasındak Nedensellk İlşkler:

Detaylı

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3 Yıldız Teknk Ünverstes Elektrk Mühendslğ Bölümü Deneyn Amacı İşlemsel kuvvetlendrcnn çalışma prensbnn anlaşılması le çeştl OP AMP devrelernn uygulanması ve ncelenmes. Özet ve Motvasyon.. Operasyonel Amplfkatör

Detaylı

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007 Yrd. Doç. Dr. Atlla EVİN Afyon Kocatepe Ünverstes 007 ENERJİ Maddenn fzksel ve kmyasal hal değşm m le brlkte dama enerj değşm m de söz s z konusudur. Enerj değşmler mler lke olarak Termodnamğn Brnc Yasasına

Detaylı

Otomatik Kontrol Ulusal Toplantısı, TOK2013, 26-28 Eylül 2013, Malatya DOĞRUSAL OLMAYAN KONTROL SİSTEMLERİ

Otomatik Kontrol Ulusal Toplantısı, TOK2013, 26-28 Eylül 2013, Malatya DOĞRUSAL OLMAYAN KONTROL SİSTEMLERİ Oomak Konrol Ulusal oplanısı OK3 6-8 Eylül 3 Malaya DOĞRUSAL OLMAYAN KONROL SİSEMLERİ 33 Oomak Konrol Ulusal oplanısı OK3 6-8 Eylül 3 Malaya rnc ve İknc Dereceden Kayan Kpl Güdüm Yönem le Havadan Havaya

Detaylı

FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ

FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ 1 Nasır Çoruh, Tarık Erfdan, 3 Satılmış Ürgün, 4 Semra Öztürk 1,,4 Kocael Ünverstes Elektrk Mühendslğ Bölümü 3 Kocael Ünverstes Svl Havacılık Yüksekokulu ncoruh@kocael.edu.tr,

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt:13 Sayı:2 sh.75-87 Mayıs 2012

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt:13 Sayı:2 sh.75-87 Mayıs 2012 DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Clt:13 Sayı:2 sh.75-87 Mayıs 2012 ÇELİK YAPI SİSTEMLERİNDE İKİNCİ MERTEBE ANALİZ YÖNTEMLERİNİN İNCELENMESİ (INVESTIGATION OF SECOND ORDER ANALYSIS

Detaylı

Seralarda Isıtma Kapasitelerinin Hesaplanmasına Yönelik Bir Bilgisayar Programı

Seralarda Isıtma Kapasitelerinin Hesaplanmasına Yönelik Bir Bilgisayar Programı Seralarda Isıma Kapaselernn Hesaplanmasına Yönelk Br Blgsayar Programı Gürkan Alp Kağan GÜRDİL 1, Kemal Çağaay SELVİ 1, Hasan ÖNDER 2 1 Ondokuz Mayıs Ünverses, Zraa Faküles, Tarım Maknaları Bölümü, Samsun

Detaylı

HİPERSTATİK SİSTEMLER

HİPERSTATİK SİSTEMLER HİPERSTATİK SİSTELER Tanım: Bütün kest zorlarını ve bunlara bağlı olarak şekl değştrmelern ve yer değştrmelern hesabı çn denge denklemlernn yeterl olmadığı sstemlere Hperstatk Sstemler denr. Hperstatk

Detaylı

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Türkye İnşaat Mühendslğ, XVII. Teknk Kongre, İstanbul, 2004 İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Nur MERZİ 1, Metn NOHUTCU, Evren YILDIZ 1 Orta Doğu Teknk Ünverstes, İnşaat Mühendslğ Bölümü, 06531 Ankara

Detaylı

Mamografide Şüpheli Kitle Adayı Bölgelerin Belirlenmesi

Mamografide Şüpheli Kitle Adayı Bölgelerin Belirlenmesi Mamografde Şüphel Kle Adayı Bölgelern Belrlenmes Burçn KURT a, Vasf V. NABİYEV b, Kemal TURHAN a a Byosas ve Tıp Blşm AD, Karadenz Ten Ünverses, Trabzon b Blgsayar Mühendslğ AD, Karadenz Ten Ünverses,

Detaylı

MATLAB GUI İLE DA MOTOR İÇİN PID DENETLEYİCİLİ ARAYÜZ TASARIMI INTERFACE DESING WITH PID CONTROLLER FOR DC MOTOR BY MATLAB GUI

MATLAB GUI İLE DA MOTOR İÇİN PID DENETLEYİCİLİ ARAYÜZ TASARIMI INTERFACE DESING WITH PID CONTROLLER FOR DC MOTOR BY MATLAB GUI İler Teknoloj Blmler Dergs Clt 2, Sayı 3, 10-18, 2013 Journal of Advanced Technology Scences Vol 2, No 3, 10-18, 2013 MATLAB GUI İLE DA MOTOR İÇİN PID DENETLEYİCİLİ ARAYÜZ TASARIMI M. Fath ÖZLÜK 1*, H.

Detaylı

BİRİM KÖK TESTLERİNDE YAPISAL KIRILMA ZAMANININ İÇSEL OLARAK BELİRLENMESİ PROBLEMİ: ALTERNATİF YAKLAŞIMLARIN PERFORMANSLARI

BİRİM KÖK TESTLERİNDE YAPISAL KIRILMA ZAMANININ İÇSEL OLARAK BELİRLENMESİ PROBLEMİ: ALTERNATİF YAKLAŞIMLARIN PERFORMANSLARI BİRİM KÖK TESTLERİNDE YAPISAL KIRILMA ZAMANININ İÇSEL OLARAK BELİRLENMESİ PROBLEMİ: ALTERNATİF YAKLAŞIMLARIN PERFORMANSLARI Arş. Gör. Furkan EMİRMAHMUTOĞLU Yrd. Doç. Dr. Nezir KÖSE Arş. Gör. Yeliz YALÇIN

Detaylı

Basel II Geçiş Süreci Sıkça Sorulan Sorular

Basel II Geçiş Süreci Sıkça Sorulan Sorular Basel II Geçş Sürec Sıkça Sorulan Sorular Soru No: 71 Cevaplanma Tarh: 06.03.2012 İlgl Hüküm: --- Konu: Gayrmenkul İpoteğyle Temnatlandırılmış Alacaklar İçn KR510AS Formunun Doldurulmasına İlşkn Örnek

Detaylı

DENEY TASARIMI VE ANALİZİ

DENEY TASARIMI VE ANALİZİ 1 DENEY TASARIMI VE ANALİZİ 1.1. Varyans Analz 1.. Tek Yönlü Varyans Analz Model 1.3. İk Yönlü Varyans Analz Model Prof Dr. Leven ŞENYAY XII-1 İsask II Bundan öncek bölümlerde bell br araşırma sonucu elde

Detaylı

ROBİNSON PROJEKSİYONU

ROBİNSON PROJEKSİYONU ROBİNSON PROJEKSİYONU Cengzhan İPBÜKER ÖZET Tüm yerkürey kapsayan dünya hartalarının yapımı çn, kartografk lteratürde özel br öneme sahp olan Robnson projeksyonu dk koordnatlarının hesabı brçok araştırmacı

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Blgsayarla Görüye Grş Ders 8 Görüntü Eşleme Alp Ertürk alp.erturk@kocael.edu.tr Panorama Oluşturma Görüntüler eşlememz / çakıştırmamız gerekmektedr Panorama Oluşturma İk görüntüden özntelkler çıkar Panorama

Detaylı

ĐZENCE Temel Kavram ve Prenspler Tez Problem Sınır Değer Problem Green Fonsyonu Tanımı Çözüm Yalaşımları Sonuçlar

ĐZENCE Temel Kavram ve Prenspler Tez Problem Sınır Değer Problem Green Fonsyonu Tanımı Çözüm Yalaşımları Sonuçlar YÜKSEK ĐSANS TEZ SUNUŞU Çf Yay - Küle Ssemyle Brbrne Bağlanmış Çubuların Eğlme Treşmler Hazırlayan : a. üh. Güran Erdoğan ĐZENCE Temel Kavram ve Prenspler Tez Problem Sınır Değer Problem Green Fonsyonu

Detaylı

TEKNOLOJİ, PİYASA REKABETİ VE REFAH

TEKNOLOJİ, PİYASA REKABETİ VE REFAH TEKNOLOJİ, PİYASA REKABETİ VE REFAH Dr Türkmen Göksel Ankara Ünverstes Syasal Blgler Fakültes Özet Bu makalede teknoloj sevyesnn pyasa rekabet ve refah sevyes üzerndek etkler matematksel br model le ncelenecektr

Detaylı

DÜŞEY ELEKTRİK SONDAJI VERİLERİNİN YORUMU

DÜŞEY ELEKTRİK SONDAJI VERİLERİNİN YORUMU DÜŞEY ELEKTRİK SONDAJI VERİLERİNİN YORUMU Prof.Dr. Ahmet Tuğrul BAŞOKUR Jeofzk Mühendslğ Bölümü Mayıs 4 İletşm: Prof. Dr. Ahmet T. BAŞOKUR Ankara Ünverstes, Mühendslk Fakültes Jeofzk Mühendslğ Bölümü 6

Detaylı

Toplam Eşdeğer Deprem Yükünün Hesabı Bakımından 1975 Deprem Yönetmeliği İle 2006 Deprem Yönetmeliğinin Karşılaştırılması

Toplam Eşdeğer Deprem Yükünün Hesabı Bakımından 1975 Deprem Yönetmeliği İle 2006 Deprem Yönetmeliğinin Karşılaştırılması Fırat Ünv. Fen ve Müh. Bl. ergs Scence and Eng. J of Fırat Unv. 19 (2, 133-138, 2007 19 (2, 133-138, 2007 Toplam Eşdeğer eprem Yükünün Hesabı Bakımından 1975 eprem Yönetmelğ İle 2006 eprem Yönetmelğnn

Detaylı

KARMAŞIK SAYILAR. Derse giriş için tıklayın...

KARMAŞIK SAYILAR. Derse giriş için tıklayın... KARMAŞIK SAYILAR Derse grş çn tıklayın A Tanım B nn Kuvvetler C İk Karmaşık Sayının Eştlğ D Br Karmaşık Sayının Eşlenğ E Karmaşık Sayılarda Dört İşlem Toplama - Çıkarma Çarpma Bölme F Karmaşık Dülem ve

Detaylı

KAFES SİSTEMLERİN GERİLME, YER DEĞİŞTİRME, BURKULMA VE DOĞAL FREKANS KISITLARI ALTINDA OPTİMUM TASARIMI

KAFES SİSTEMLERİN GERİLME, YER DEĞİŞTİRME, BURKULMA VE DOĞAL FREKANS KISITLARI ALTINDA OPTİMUM TASARIMI KAFES SİSTEMLERİN GERİLME, YER DEĞİŞTİRME, BURKULMA VE DOĞAL FREKANS KISITLARI ALTINDA OPTİMUM TASARIMI Cem Celal TUTUM İ.T.Ü. ROTAM, Makne Yük. Müh. ÖZET: Bu çalışmada düzlemsel kafes sstemlern belrl

Detaylı

Üç Boyutlu Yapı-Zemin Etkileşimi Problemlerinin Kuadratik Sonlu Elemanlar ve Sonsuz Elemanlar Kullanılarak Çözümü

Üç Boyutlu Yapı-Zemin Etkileşimi Problemlerinin Kuadratik Sonlu Elemanlar ve Sonsuz Elemanlar Kullanılarak Çözümü ECAS Uluslararası Yapı ve Deprem Mühendslğ Sempozyumu, Ekm, Orta Doğu Teknk Ünverstes, Ankara, Türkye Üç Boyutlu Yapı-Zemn Etkleşm Problemlernn Kuadratk Sonlu Elemanlar ve Sonsuz Elemanlar Kullanılarak

Detaylı

DENEY TASARIMI VE ANALİZİ

DENEY TASARIMI VE ANALİZİ DENEY TASARIMI VE ANALİZİ Bundan öncek bölümlerde bell br araşırma sonucu elde edlen verlere dayanılarak populasyonu anıma ve paramere ahmnlerne yönelk yönemlerden söz edld. Burada se sözü edlecek olan,

Detaylı

Avrupa Birliği ve Türkiye de Mali Saydamlığın Panel Veri Yöntemi ile Analizi

Avrupa Birliği ve Türkiye de Mali Saydamlığın Panel Veri Yöntemi ile Analizi EGE AKADEMİK BAKIŞ / EGE ACADEMIC REVIEW Cl: Özel Sayı 0 ss. 59-73 Avrupa Brlğ ve Türkye de Mal Saydamlığın Panel Ver Yönem le Analz Fscal Transparency of he European Unon and Turkey wh Panel Daa Analyss

Detaylı

TEMEL DEVRE KAVRAMLARI VE KANUNLARI

TEMEL DEVRE KAVRAMLARI VE KANUNLARI TDK Temel Devre Kavramları ve Kanunları /0 TEMEL DEVRE KAVRAMLARI VE KANUNLARI GĐRĐŞ: Devre analz gerçek hayatta var olan fzksel elemanların matematksel olarak modellenerek gerçekte olması gereken sonuçların

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KAFES SİSTEMLERİN OPTİMUM TASARIMI. YÜKSEK LİSANS TEZİ Mak. Müh.

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KAFES SİSTEMLERİN OPTİMUM TASARIMI. YÜKSEK LİSANS TEZİ Mak. Müh. İSTANBUL TEKNİK ÜNİVERSİTESİ EN BİLİMLERİ ENSTİTÜSÜ KAES SİSTEMLERİN OPTİMUM TASARIMI YÜKSEK LİSANS TEZİ Mak. Müh. Cem Celal TUTUM Anablm Dalı : MAKİNA MÜHENDİSLİĞİ Programı : KATI CİSİMLERİN MEKANİĞİ

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Gülesen ÜSTÜNDAĞ BAZI PARAMETRİK OLMAYAN İSTATİSTİKSEL YÖNTEMLERİN İNCELENMESİ İSTATİSTİK ANABİLİM DALI ADANA, 005 ÇUKUROVA ÜNİVERSİTESİ

Detaylı

YÜKSEK PLANLAMA KURULU

YÜKSEK PLANLAMA KURULU YÜKSEK PLANLAMA KURULU Tarh : 4/02/2008 Karar No : 2008/T-5 Konu : Enerj KİT lernn Uygulayacağı Malye Bazlı Fyalandırma Mekanzmasının Usul ve Esasları Yüksek Planlama Kurulu nca; Enerj ve Tab Kaynaklar

Detaylı

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi Harta Teknolojler Elektronk Dergs Clt: 5, No: 1, 2013 (61-67) Electronc Journal of Map Technologes Vol: 5, No: 1, 2013 (61-67) TEKNOLOJİK ARAŞTIRMALAR www.teknolojkarastrmalar.com e-issn: 1309-3983 Makale

Detaylı

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI TERS PERSPEKTİF DÖNÜŞÜM İLE YÜZEY DOKUSU ÜRETİMİ

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI TERS PERSPEKTİF DÖNÜŞÜM İLE YÜZEY DOKUSU ÜRETİMİ İANBUL İCARE ÜNİERİEİ BİLGİAAR MÜHENDİLİĞİ BÖLÜMÜ BİLGİAAR İEMLERİ LABORAUARI ER PERPEKİF DÖNÜŞÜM İLE ÜZE DOKUU ÜREİMİ Bu deneyde, genel haları ile herhangi bir yüzeye bir dokunun kopyalanması üzerinde

Detaylı

ANADOLU ÜNivERSiTESi BiliM VE TEKNOLOJi DERGiSi ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY CiltNol.:2 - Sayı/No: 2 : 413-417 (2001)

ANADOLU ÜNivERSiTESi BiliM VE TEKNOLOJi DERGiSi ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY CiltNol.:2 - Sayı/No: 2 : 413-417 (2001) ANADOLU ÜNvERSTES BlM VE TEKNOLOJ DERGS ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY CltNol.:2 - Sayı/No: 2 : 413-417 (1) TEKNK NOTrrECHNICAL NOTE ELEKTRK ARK FıRıNıNDA TERMODNAMGN KNC YASASıNıN

Detaylı

Research Article / Araştırma Makalesi THEORETICAL AND EXPERIMENTAL DEFORMATION ANALYSIS OF CRANE BEAMS SUBJECTED TO MOVING LOAD

Research Article / Araştırma Makalesi THEORETICAL AND EXPERIMENTAL DEFORMATION ANALYSIS OF CRANE BEAMS SUBJECTED TO MOVING LOAD Sgma J Eng & Na Sc 33 (4), 015, 653-663 Sgma Journal Engneerng and Naural Scence Sgma Mühendlk ve Fen Blmler Derg Reearch Arcle / Araşırma Makale THEORETICAL AND EXPERIMENTAL DEFORMATION ANALYSIS OF CRANE

Detaylı

Örneklemeli K-ortalama Algoritması Kmeans with Sampling

Örneklemeli K-ortalama Algoritması Kmeans with Sampling Örneklemel K-oralama Algorması Kmeans wh Samplng Mehme Fah Amasyalı Blgsayar Mühendslğ Bölümü Yıldız Teknk Ünverses mfah@ce.yldz.edu.r Öze K-oralama algorması, kümeleme prolemlernn çözümünde en çok kullanılan

Detaylı

DÜ EY ELEKTRİK SONDAJI VERİLERİNİN YORUMU

DÜ EY ELEKTRİK SONDAJI VERİLERİNİN YORUMU DÜ EY ELEKTRİK SONDAJI VERİLERİNİN YORUMU Prof.Dr. Ahmet Tuğrul BA OKUR TMMOB JEOFİZİK MÜHENDİSLERİ ODASI EĞİTİM YAYINLARI NO: 5 ISBN 978-9944-89-969-7 Mll Müdafaa Cad. N: /7 Kızılay/ANKARA Tel: 3 48 4

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Berrn GÜLTAY YÜKSEK LİSANS TEZİ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI ADANA, 9 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU

Detaylı

Çok Barajlı Sistemde Gerçek Zamanlı Optimal İşletme *

Çok Barajlı Sistemde Gerçek Zamanlı Optimal İşletme * İMO Teknk Derg, 2011 5359-5385, Yazı 347 Çok Barajlı semde Gerçek Zamanlı Opmal İşleme * Mücah OPAN* ÖZ Bu çalışmada, çok amaçlı ve çok barajlı br su kaynakları ssem anımlanmışır. sem üzerne enerj ürem

Detaylı

Summary. Orijinal araştırma (Original article)

Summary. Orijinal araştırma (Original article) Türk. enomol. derg., 2011, 35 (2): 325-338 ISSN 1010-6960 Orjnal araşırma (Orgnal arcle) Sıfır değer ağırlıklı genelleşrlmş Posson regresyonu yardımıyla Van Gölü nde Nooneca vrds Delcour, 1909 (Hempera:

Detaylı

2.7 Bezier eğrileri, B-spline eğrileri

2.7 Bezier eğrileri, B-spline eğrileri .7 Bezer eğrler, B-splne eğrler Bezer eğrler ve B-splne eğrler blgsaar grafklernde ve Blgsaar Destekl Tasarım (CAD) ugulamalarında çok kullanılmaktadır.. B-splne eğrler sadece br grup ver noktası çn tanımlanan

Detaylı

Bölüm 9 FET li Yükselteçler

Bölüm 9 FET li Yükselteçler Bölüm 9 FET li Yükseleçler DENEY 9-1 Orak-Kaynaklı (CS) JFET Yükseleç DENEYİN AMACI 1. Orak kaynaklı JFET yükselecin öngerilim düzenlemesini anlamak. 2. Orak kaynaklı JFET yükselecin saik ve dinamik karakerisiklerini

Detaylı

ELEKTRİK DEVRE TEMELLERİ

ELEKTRİK DEVRE TEMELLERİ ELEKTRİK DEVRE TEMELLERİ Öğretm üyes: Doç. Dr. S. Özoğuz Tel: 85 36 9 e-posta: serdar@ehb.tu.edu.tr Ders saat: Pazartes,.-3. / D-4 İçndekler. Dere teors, toplu parametrel dereler, Krchhoff un gerlm e akım

Detaylı

Çelik Yapıların Öngörülen Göreli Kat Ötelemesi Oranına Göre Enerji Esaslı Tasarımı *

Çelik Yapıların Öngörülen Göreli Kat Ötelemesi Oranına Göre Enerji Esaslı Tasarımı * İO Teknk Derg, 01 5777-5798, Yazı 369 Çelk Yaıların Öngörülen Görel Kat Ötelemes Oranına Göre Enerj Esaslı Tasarımı * Onur ERTER* Özgür BOZDAĞ** ustafa DÜZGÜ*** ÖZ Günümüz yönetmelklernde yer alan ve yaıların

Detaylı

Açık Poligon Dizisinde Koordinat Hesabı

Açık Poligon Dizisinde Koordinat Hesabı Açık Polon Dzsnde Koordnat Hesabı Problem ve numaralı noktalar arasında açılacak tüneln doğrultusunu belrlemek amacıyla,,3,4, noktalarını çeren açık polon dzs tess edlmş ve şu ölçme değerler elde edlmştr.

Detaylı

Makine Öğrenmesi 6. hafta

Makine Öğrenmesi 6. hafta Makne Öğrenmes 6. hafta Yapay Snr Ağlarına Grş Tek katmanlı YSA lar Algılayıcı (Perceptron) Aalne (Aaptve Lnear Elemen Byolojk Snr Hücres Byolojk snrler ört ana bölümen oluşmaktaır. Bunlar: Denrt, Akson,

Detaylı

K-Ortalamalar Yöntemi ile Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelerin Belirlenmesi *

K-Ortalamalar Yöntemi ile Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelerin Belirlenmesi * İMO Teknk Derg, 2012 6037-6050, Yazı 383 K-Ortalamalar Yöntem le Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelern Belrlenmes * Mahmut FIAT* Fath DİKBAŞ** Abdullah Cem KOÇ*** Mahmud GÜGÖ**** ÖZ

Detaylı

Soğutucu Akışkan Karışımlarının Kullanıldığı Soğutma Sistemlerinin Termoekonomik Optimizasyonu

Soğutucu Akışkan Karışımlarının Kullanıldığı Soğutma Sistemlerinin Termoekonomik Optimizasyonu Soğutucu Akışkan arışımlarının ullanıldığı Soğutma Sstemlernn ermoekonomk Optmzasyonu * 1 Hüseyn aya, 2 ehmet Özkaymak ve 3 rol Arcaklıoğlu 1 Bartın Ünverstes akne ühendslğ Bölümü, Bartın, ürkye 2 arabük

Detaylı

TÜRKİYE DEKİ 22 BARALI 380 kv LUK GÜÇ SİSTEMİ İÇİN EKONOMİK DAĞITIM VE OPTİMAL GÜÇ AKIŞI YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ

TÜRKİYE DEKİ 22 BARALI 380 kv LUK GÜÇ SİSTEMİ İÇİN EKONOMİK DAĞITIM VE OPTİMAL GÜÇ AKIŞI YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING FACULTY MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 7 : 3 : 3 : 369-378

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

Çok Parçalı Basınç Çubukları

Çok Parçalı Basınç Çubukları Çok Parçalı Basınç Çubukları Çok parçalı basınç çubukları genel olarak k gruba arılır. Bunlar; a) Sürekl brleşk parçalardan oluşan çok parçalı basınç çubukları b) Parçaları arasında aralık bulunan çok

Detaylı

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre 1 DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cnemre 2 BİRİNCİ BÖLÜM HEDEF PROGRAMLAMA 1.1 Grş Karar problemler amaç sayısına göre tek amaçlı ve çok amaçlı

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

TÜRKİYE HİSSE SENEDİ PİYASASINDA RASYONEL KÖPÜKLER: SAKLI EŞ BÜTÜNLEŞME YAKLAŞIMI

TÜRKİYE HİSSE SENEDİ PİYASASINDA RASYONEL KÖPÜKLER: SAKLI EŞ BÜTÜNLEŞME YAKLAŞIMI TÜRKİYE HİSSE SENEDİ PİYASASINDA RASYONEL KÖPÜKLER: SAKLI EŞ BÜTÜNLEŞME YAKLAŞIMI ÖZ Şeref BOZOKLU * Fama ZEREN ** Bu çalışmada Borsa İsanbul hsse sened pyasasında rasyonel köpüklern varlığı Ocak 1998-Nsan

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Pamukkale Ünverstes Mühendslk Blmler Dergs, Clt 0, Sayı 3, 04, Sayfalar 85-9 Pamukkale Ünverstes Mühendslk Blmler Dergs Pamukkale Unversty Journal of Engneerng Scences PREFABRİK ENDÜSTRİ YAPIARININ ARMONİ

Detaylı