İntegralin Uygulamaları

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İntegralin Uygulamaları"

Transkript

1 Bölüm İntegrlin Uygulmlrı. Aln f ve g, [, b] rlığındki her x için f(x) g(x) eşitsizliğini sğlyn sürekli fonksiyonlr olmk üzere y = f(x), y = g(x) eğrileri, x = ve x = b düşey doğrulrı rsındki S bölgesini düşünelim. S bölgesinin A lnı A = olrk tnımlnır. g(x) = özel durumund S, f nin grfiğinin ltınd kln bölge olur. ( ) f(x) g(x) dx (.) f ve g nin pozitif olduğu durumd, (.) nin neden doğru olduğunu şekilden görebilirsiniz.

2 2 BÖLÜM. İNTEGRALIN UYGULAMALARI S = = ( ) ( ) y = f(x) in ltınd kln ln y = g(x) in ltınd kln ln f(x) dx g(x) dx = ( ) f(x) g(x) dx Örnek. Üstten y = e x, lttn y = x ve kenrlrdn x = ve x = ile sınırlı oln bölgenin lnını hesplyınız. Çözüm: Bölge, Şekil. de gösterilmiştir. Şekil.: Üst sınır eğrisi y = e x ve lt sınır eğrisi y = x dir. Dolyısıyl, (.) deki formülde f(x) = e x, g(x) = x, =, ve b = kullnırız: A = (e x x) dx = e x ] 2 x2 = e 2 = e.5

3 .. ALAN 3 Örnek 2. y = 2x x 2 ve y = x 2 prbolleriyle sınırlı oln bölgenin lnını bulunuz. Çözüm: Önce verilen denklemleri ortk çözerek, prbollerin kesiştikleri noktlrı buluruz. Bu durumd, x 2 = 2x x 2 vey 2x 2 2x = elde ederiz. Böylece, 2x(x ) = ve dolyısıyl x = vey x = buluruz. Kesişim noktlrı (, ) ve (, ) dir. Şekil.2 de gördüğümüz gibi üst ve lt sınırlr Şekil.2: yüst = 2x x 2 ve y lt = x 2 dir. Dolyısıyl toplm ln olur. A = (2x 2x 2 ) dx = 2 (x x 2 ) dx [ ] x 2 ( = 2 2 x3 = ) = 3 3

4 4 BÖLÜM. İNTEGRALIN UYGULAMALARI Bzı bölgelerle çlışmk için, x değişkenini y nin fonksiyonu olrk düşünmek gerekir. f ve g sürekli ve her c y d için f(y) g(y) olmk üzere, x = f(y), x = g(y), y = c ve y = d denklemleriyle sınırlı oln bölgenin lnı olur. A = d c ( ) f(y) g(y) dy Örnek 3. y = x doğrusu ve y 2 = 2x + 6 prbolüyle sınırlı oln bölgenin lnını bulunuz. Çözüm: İki denklemi ortk çözersek, kesişim noktlrını (, 2) ve (5, 4) olrk buluruz. Şekil.3: Prbolün denklemini x için çözeriz ve Şekil.3 den sğ ve sol sınır eğrilerini x sol = 2 y2 3 ve x sğ = y +

5 .. ALAN 5 olrk buluruz. İntegrli, uygun y değerleri y = 2 ve y = 4 rsınd hesplmlıyız. Böylece A = = (x sğ x sol ) dy [ (y + ) ( ] 2 y2 3) dy = 4 2 ( ) 2 y2 + y + 4 dy olrk buluruz. = 2 ( y 3 3 ) ] 4 + y y = 2 6 (64) ( ) = 8 3 Şekil.4: Örnekteki lnı, y yerine x e göre integrl lrk d bulbilirdik m bu durumd hesplmlr dh krmşık olurdu. Bölgeyi Şekil.4 de görüldüğü gibi, A ve A 2 diye ikiye yırmmız gerekirdi. Örnekte kullndığımız yöntem, çok dh bsit... Prmetrik eğrilerin Sınırldığı Alnlr F (x) olduğu zmn, dn b ye y = F (x) eğrisinin ltınd kln lnın A = Eğer eğri x = f(t), y = g(t), α t β F (x) dx olduğunu biliyoruz. prmetrik denklemleriyle tnımlnmışs, o zmn Belirli İntegrller İçin Yerine Koym Kurlı nı kullnrk, ln formülünü şöyle hesplybiliriz: A = y dx = β α g(t) f (t) dt y d α β g(t) f (t) dt

6 6 BÖLÜM. İNTEGRALIN UYGULAMALARI Örnek 4. x = r(θ sin θ) y = r( cos θ) sikliodinin bir yyının ltınd kln lnı bulunuz. (Bkz. Şekil.5) Şekil.5: Proof. Çözüm: Sikliodin bir yyı, θ 2π değerleriyle elde edilir. y = r( cos θ) ve dx = r( cos θ) dθ ile Yerine Koum Kurlı nı kullnırsk, A = 2π = r 2 y dx = 2π 2π r( cos θ)r( cos θ) dθ ( cos θ) 2 dθ = r 2 2π ( 2 cos θ + cos 2 θ)dθ = r 2 2π [ 2 cos θ + 2 ( + cos 2θ) ] dθ = r 2 [ 3 2 θ 2 sin θ + 4 sin 2θ ] 2π ( ) 3 = r 2 2 2π = 3πr 2 olrk buluruz.

7 .. ALAN 7 Alıştırmlr Aşğıd verilen grfiklerdeki trlı bölgelerin lnlrını hesplyınız.

8 8 BÖLÜM. İNTEGRALIN UYGULAMALARI.2 Hcimler S yi bir düzlemle kesip, S nin kesiti dediğimiz düzlemsel bölgeyi elde ederek bşlycğız. x b olmk üzere, x-eksenine dik ve x noktsındn geçen P x düzlemindeki S nin kesitinin lnı A(x) olsun. (Bkz. Şekil.6. S yi x ten geçen bir bıçkl dilimlediğimizi ve bu dilimin lnını hespldığımız düşününüz.) x, dn b ye rttıkç, kesitin lnı A(x) değişecektir. Şekil.6: Tnım. S, x = ve x = b rsınd uznn bir cisim olsun. A sürekli bir fonksiyon olmk üzere, x den geçen ve x-eksenine dik oln P x düzlemindeki S nin kesitinin lnı A(x) ise, o zmn S nin hcmi olrk tnımlnır. V = V = A(x) dx A(x) dx formülünü kullndığımız zmn htırlmmız gereken önemli nokt, A(x) in, x den geçen ve x-eksenine dik dilimlemeyle elde edilen kesitin lnı olmsıdır. Örnek 5. Yrıçpı r oln bir kürenin hcminin V = 4 3 πr3 olduğunu gösteriniz. Çözüm: Küreyi, merkezi bşlngıç noktsınd olck şekilde yerleştirirsek (bkz. Şekil.7), P x düzlemiyle kürenin kesişimi, yrıçpı y = r 2 x 2 oln bir çember olur (Pisgor Teoremi nden). Dolyısıyl, bu kesitin lnı A(x) = πy 2 = π(r 2 x 2 )

9 .2. HACIMLER 9 Şekil.7: olur. = r ve b = r lrk hcim tnımını kullnırsk V = r r r A(x) dx = r r = 2π (r 2 x 2 ) dx ] r = 2π [r 2 x x3 = 2π 3 = 4 3 πr3 π(r 2 x 2 ) dx ) (r 3 r3 3 Örnek 6. y = x eğrisi, x-ekseni ve x = doğrusuyl sınırlnn bölgeyi x-ekseni çevresinde döndürmekle elde edilen cismin hcmini bulunuz. Şekil.8:

10 BÖLÜM. İNTEGRALIN UYGULAMALARI Şekil.9: Çözüm: Bölge, Şekil.8 d gösterilmiştir.eğer x-ekseni çevresinde döndürülürse, Şekil.9 deki cismi elde ederiz. x den geçen kesit, yrıçpı x oln bir çemberdir. Bu kesitin lnı A(x) = π( x) 2 = πx olur. Bu cisim x = ile x = rsınddır. Dolyısıyl hcmi ] V = A(x) dx = πx dx = π x2 = π 2 2 Örnek 7. y = x 3, y = 8 ve x = ile sınırlı oln bölgeyi y-ekseni çevresinde döndürerek elde edilen cismin hcmini bulunuz. Şekil.: Çözüm: Bölge, Şekil. de, cisim ise Şekil. de gösterilmiştir. Bölge y-ekseni çevresinde döndürüldüğü için y-eksenine dik biçimde dilimlemek ve integrli y ye göre lmk dh mntıklı olur. y yüksekliğindeki kesit, yrıçpı x oln çembersel bir disktir. x = 3 y olduğu için, y den geçen kesitin lnı A(y) = πx 2 = π( 3 y) 2 = πy 2/3

11 .2. HACIMLER Şekil.: Cisim, y = ve y = 8 rsınd kldığı için hcmi olrk bulunur. V = = π 8 A(y) dy = [ 3 5 y5/3 ] 8 8 = 96π 5 πy 2/3 dy Örnek 8. y = x ve y = x 2 eğrileriyle çevrili oln R bölgesi, x-ekseni çevresinde döndürülmüştür. Oluşn cismin hcmini bulunuz.

12 2 BÖLÜM. İNTEGRALIN UYGULAMALARI Şekil.2: Çözüm: y = x ve y = x 2 eğrileri, (, ) ve (, ) noktlrınd kesişir. Arlrındki bölge, dönel cisim ve x-eksenine dik oln kesit Şekil.2 de gösterilmiştir. P x düzlemindeki kesit, iç yrıçpı x 2 ve dış yrıçpı x oln bir hlk şeklindedir. Dolyısıyl, lnını bulmk için büyük çemberin lnındn küçük çemberin lnını çıkrırız. A(x) = πx 2 π(x 2 ) 2 = π(x 2 x 4 ) Bu durumd, elde ederiz. V = A(x) dx = π(x 2 x 4 ) dx [ ] x 3 = π 3 x5 = 2π Yy Uzunluğu Tnım 2. Prmetrik denklemleri x = f(t), y = g(t), t b, oln bir düzgün eğri, t prmetresi değerinden b değerine doğru rtrken tm olrk bir kez izleniyors, o zmn bu eğrinin uzunluğu (dx ) 2 ( ) dy 2 L = + dt dir. (.2) dt dt

13 .3. YAY UZUNLUĞU 3 Örnek 9. x = t 2, y = t 3 eğrisinin (, ) ve (4, 8) noktlrı rsındki yyının uzunluğunu bulunuz. Bkz Şekil.3 Şekil.3: Çözüm: t 2 değerlerinin, eğrinin (, ) ve (4, 8) noktlrı rsındki prçsını verdiğini x = t 2 ve y = t 3 denklemlerinden görüyoruz. Dolyısıyl, yy uzunluğu formülü L = 2 (dx ) 2 + dt ( dy dt ) 2 2 dt = (2t) 2 + (3t 2 ) 2 dt = 2 4t 2 + 9t 4 dt = 2 t 4 + 9t 2 dt = 2 t 4 + 9t 2 dt u = 4 + 9t 2 değişken değişikliğini yprsk, du = 8t dt olur. t = olduğund u = 3; t = 2 olduğund u = 4 dır. Böylece L = u du = 8 2 ] 4 3 u3/2 3 = 27 [ 4 3/2 3 3/2] = ( 8 3 ) 3 27 buluruz.

14 4 BÖLÜM. İNTEGRALIN UYGULAMALARI Kurl. Elimizdeki eğri y = f(x), x b denklemleriyle verilmişse, x değişkenini prmetre olrk lbiliriz. O zmn prmetrik denklemler x = x, y = f(x) olur ve denklem.2 biçimin lır. L = + ( ) dy 2 dx (.2) dx Örnek. xy = hiperbolünün (, ) noktsındn (2, /2) noktsın kdr oln prçsının uzunluğunu yklşık olrk hesplyınız. Çözüm: Elimizde olduğu için formül () den uzunluğu olrk elde ederiz. Kurl 2. L = 2 y = x + dy dx dx = dy dx = x x 4 dx =.32 Benzer biçimde bir eğrinin denklemi x = f(y), y b ise, y değişkenini prmetre olrk lbiliriz. O zmn prmetrik denklemler x = f(y), y = y olur ve uzunluk (dx ) 2 L = + dy (.3) dy olur. Formül (.2),() ve (.3) teki krekökten ötürü, yy uzunluğu hesbınd orty çıkn integrli kesin olrk hesplmk çoğu zmn çok zordur vey olnksızdır. Örnek. y 2 = x prbolünün (, ) noktsındn (, ) noktsın kdr oln yyının uzunluğunu bulunuz. Çözüm: x = y 2 olduğu için dx dy verir. L = = 2y olur ve formül (.3) (dx ) 2 + dy = 4y 2 + dy = dy

15 .4. BIR FONKSIYONUN ORTALAMA DEĞERI 5 Örnek 2. x = r(θ sin θ), y = r( cos θ) sikloidinin bir yyının uzunluğunu bulunuz. Şekil.4: Proof. Çözüm: Çözüm: Bir yyı θ 2π prmetre rlığıyl elde edildiğini dh önce görmüştük. dx dθ = r( cos θ) ve dy dθ = r sin θ olduğu için L = 2π (dx ) 2 + dθ ( ) dy 2 dθ dθ = = 2π 2π r 2 ( cos θ) 2 + r 2 sin 2 θ dθ r 2 ( 2 cos θ + cos 2 θ + sin 2 θ) dθ 2π = r 2( cos θ) dθ = 8r..4 Bir Fonksiyonun Ortlm Değeri Sonlu syıd y, y 2,, y n syılrının ortlm değerini hesplmk çok kolydır: y ort = y + y y n n Anck, sonsuz tne sıcklık ölçümünün olnklı olduğu bir durumd bir günün ortlm sıcklığını nsıl hesplycğız?

16 6 BÖLÜM. İNTEGRALIN UYGULAMALARI Bir sıcklık fonksiyonu T (t) nin grfiği ve ortlm sıcklık T ort için bir thmin şekil.5 de verilmiştir. Şekil.5: Burd t st cinsinden T C cinsinden ölçülmüştür. T (t) fonksiyonu t nındki sıcklığı gösteriyors, sıcklığın ortlm sıcklığ eşit olduğu belirli bir n olup olmdığını merk edebiliriz. Şekil.5 deki sıcklık fonksiyonu için böyle iki n olduğunu görüyoruz.genel olrk, bir f fonksiyonunun değerini tm olrk o fonksiyonun ortlm değerine eşit olduğu, yni f(c) = f ort olduğu bir c syısı vrmıdır. Theorem (İntegrller için Ortlm Değer Teoremi). f, [, b] rlığınd sürekli bir fonksiyon ise [, b] rlığınd f(c) = f ort = b f(x) dx eşitliğini yni eşitliğini sğlyn bir c syısı vrdır. f(x) dx = f(c)(b ) Örneğin f(x) = + x 2 fonksiyonu [, 2] rlığınd sürekli olduğu için, integrller için ortlm değer teoremine göre, [, 2] rlığınd 2 ( + x 2 ) dx = f(c)[2 ( )] eşitliğini sğlyn bir c syısı vrdır. Bu özel durumd, c syısını kesin olrk bulbiliriz. ] 2 [x + x3 = 3f(c) 3 eşitliğinden f(c) = f ort = 2 bulunur. Dolyısıyl + c 2 = 2 olduğundn c = ± olrk bulunur.

17 .4. BIR FONKSIYONUN ORTALAMA DEĞERI 7 Örnek 3. Bir cismin hızı şğıdki prmetrik denklemle verilmiştir.(t zmn) x = t, y = t 3/2 Hrekete bşlyıp 4sn hreket ederse, bu süre içerisindeki ortlm hızı nedir? Çözüm: Ortlm hız b y dx formulüyle bulunbilir. Prmetrik denklem kullnılırs x = t dx = dt Vort = ( ) 4 t 3/2 dt = t 5/2 4 = 6/ /2

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan KAT CİSİMLERİN HACİMLERİ Örnek...2 : =2, =4, =2, = 5 doğrulrı rsınd kln ölgenin O ekseni etrfınd 360 o döndürülm esi le oluşck ktı cism in hcm ini ulunuz İNTEGRAL İLE HACİM HESAB 1. X EKSENİNDE DÖNDÜRMELER

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

Bir Fonksiyonun İlkeli. fonksiyonuna I üzerinde f nin ilkeli denir.

Bir Fonksiyonun İlkeli. fonksiyonuna I üzerinde f nin ilkeli denir. Bir Fonksiyonun İlkeli Tanım: Eğer bir I aralığındaki her x için F (x) = f(x) ise, F fonksiyonuna I üzerinde f nin ilkeli denir. Bir Fonksiyonun İlkeli Örneğin, f = x 2 olsun. Eğer Kuvvet Kuralı nı aklımızda

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

LYS 2016 MATEMATİK ÇÖZÜMLERİ

LYS 2016 MATEMATİK ÇÖZÜMLERİ LYS 06 MATEMATİK ÇÖZÜMLERİ 6.. 5. 5. ( ) 8 6 65 buluruz. 5. 5 5 Doğru Cevp: C Şıkkı 8 7 ()... 9 buluruz. Doğru Cevp : D Şıkkı 9 8 8 9 8 9 8 9 9 9 9 9 8 buluruz. 8 8 8 8 8 Doğru Cevp : A Şıkkı (n )! (n

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır. LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

Örnek...1 : İNTEGRAL İNTEGRAL İLE ALAN HESABI UYARI 2 UYARI 3 ALAN HESABI UYARI 1 A 2 A 1. f (x )dx. = a. w w w. m a t b a z.

Örnek...1 : İNTEGRAL İNTEGRAL İLE ALAN HESABI UYARI 2 UYARI 3 ALAN HESABI UYARI 1 A 2 A 1. f (x )dx. = a. w w w. m a t b a z. İNTEGRAL İLE ALAN HESABI UYARI =f() =f() =f() [,] rlığınd f() işret değiştiriors, f onksi on prçlr rılır =f() Şekilde =f() eğrisile ekseni ltınd kln lnı ulmk için eğrinin ltınd kln ölgei dikdörtgenlere

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

Işığın Yansıması ve Düzlem Ayna Çözümleri

Işığın Yansıması ve Düzlem Ayna Çözümleri 2 şığın Ynsımsı ve Düzlem Ayn Çözümleri 1 Test 1 1. 38 38 52 52 Ynsıyn ışının yüzeyin normli ile yptığı çıy ynsım çısı denir. Bu durumd ynsım çısı şekilde gösterildiği gibi 38 dir. 4. şıklı cisminin ve

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı Ankr Üniversitesi Mühendislik Fkültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Srı 2. Bölüm: Dirençli Devreler İçerik Temel Yslrın Doğrudn Uygulnışı Kynk Gösterimi ve Dönüşümü

Detaylı

c

c Mtemt ık Ol ımp ıytı Çlışm Sorulrı c www.sbelin.wordpress.com sbelinwordpress@gmil.com Bu çlışm kğıdınd mtemtik olimpiytlrı sınvlrın hzırlnn öğrenciler ve öğretmenler için hzırlnmış sorulr bulunmktdır.

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. SINIF TEST SORULARI. + işleminin sonucu kçtır? 5 5 A) 0 B) 0 C) 0 7 D) 0 9 E). y = x x + prbolünün y = x doğrusun en ykın noktsının koordintlrı toplmı

Detaylı

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi Andolu Üniversitesi Mühendislik Fkültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Plnlmsı 2015-2016 Güz Dönemi 2 Tesis (fcility) Tesis : Belli bir iş için kurulmuş ypı Tesis etmek :

Detaylı

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik)

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik) ÜÇGN LN Üçgende ln Şekilde verilen üçgeninde,, üçgenin köşeleri, [], [], [] üçgenin kenrlrıdır. c b üçgeninin kenrlrı dlndırılırken, her kenr krşısınd bulunn köşenin hrfi ile isimlendirilir. üçgeninin

Detaylı

Vektör - Kuvvet. Test 1 in Çözümleri 5. A) B) C) I. grubun oyunu kazanabilmesi için F 1. kuvvetinin F 2

Vektör - Kuvvet. Test 1 in Çözümleri 5. A) B) C) I. grubun oyunu kazanabilmesi için F 1. kuvvetinin F 2 7 Vektör - uvvet 1 Test 1 in Çözümleri 5. A) B) C) 1. 1 2 I. grubun oyunu kznbilmesi için 1 kuvvetinin 2 den büyük olmsı gerekir. A seçeneğinde her iki grubun uyguldığı kuvvetler eşittir. + + + D) E) 2.

Detaylı

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları... İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel

Detaylı

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000. Bir stıcı, elindeki mlın önce

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS LİMİT VE SÜREKLİLİK KONU ÖETLİ ÇÖÜMLÜ SORU BANKASI ANKARA İÇİNDEKİLER Limit Kvrmı ve Grfik Sorulrı... Limitle İlgili Bzı Özellikler...7 Genişletilmiş Reel Sılrd Limit... Bileşke Fonksionun Limiti...

Detaylı

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma DERS NOTU 01 Son Hli Değildir, tslktır: Ekleme ve Düzenlemeler Ypılck BİR SOSYAL BİLİM OLARAK İKTİSAT VE TEMEL KAVRAMLAR 1 Bugünki dersin işleniş plnı: 1. Değişkenler ve Eğriler: Mtemtiksel Htırltm...

Detaylı

Belirli ntegral Uygulamalar

Belirli ntegral Uygulamalar iv CHAPTER 4 Belirli ntegrl Uygulmlr Belirli integrlin b³lc uygulmlr ³unlrdr. (1) Uzunluk () Düzlemsel e rilerin uzunlu u (2) Aln (3) () Düzlemde iki e ri rsnd kln ln (b) Dönel yüzeylerin ln (4) Ortlm

Detaylı

a üstel fonksiyonunun temel özellikleri şunlardır:

a üstel fonksiyonunun temel özellikleri şunlardır: 1 Üstel Fonksiyon: >o, 1 ve herhngi bir reel syı olmk üzere f: fonksiyon denir. R fonksiyonun üstel R, f()= 1 2, f()= ve f()= f()= gibi tbnı sbit syı (pozitif ve 1 den frklı) ve üssü 4 değişken oln bu

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 19 Haziran Matematik Soruları ve Çözümleri

Lisans Yerleştirme Sınavı 1 (Lys 1) / 19 Haziran Matematik Soruları ve Çözümleri Lisns Yerleştirme Sınvı (Lys ) / 9 Hzirn Mtemtik Sorulrı ve Çözümleri. (x )(x + ) + (x )(x ) eşitliğini sğlyn x gerçel syılrının toplmı kçtır? A) B) C) 5 D) 6 5 E) 6 7 Çözüm (x )(x + ) + (x )(x ) (x ).[(x

Detaylı

Tanım : Merkezi orijin ve yarıçapı 1 birim olan çembere trigonometrik çember veya birim çember denir. y B(0,1) C(1,0)

Tanım : Merkezi orijin ve yarıçapı 1 birim olan çembere trigonometrik çember veya birim çember denir. y B(0,1) C(1,0) BÖLÜM TRİGONOMETRİ.. TRİGONOMETRİK BAĞINTILAR... BİRİM ÇEMBER Tnım : Merkezi orijin ve yrıçpı birim oln çembere trigonometrik çember vey birim çember denir. Trigonometrik çemberin denklemi + y dir.yni

Detaylı

η= 1 kn c noktasında iken A mesnedinin mesnet tepkisi (VA)

η= 1 kn c noktasında iken A mesnedinin mesnet tepkisi (VA) ölüm Đzosttik-Hipersttik-Elstik Şekil Değiştirme TESİR ÇİZGİSİ ÖRNEKLERİ Ypı sistemlerinin mruz kldığı temel yükler sit ve hreketli yüklerdir. Sit yükler için çözümler önceki konulrd ypılmıştır. Hreketli

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) 009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..

Detaylı

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır?

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır? 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000 6. Bir lstik çekilip uztıldığınd

Detaylı

ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN

ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN ÖZEL EGE ORTAOKULU ÜÇGENĠN ĠÇĠNDEKĠ GĠZEMLĠ ALTIGEN HAZIRLAYAN ÖĞRENCĠLER: Olçr ÇOBAN Sevinç SAYAR DANIġMAN ÖĞRETMEN: Gizem GÜNEL AÇIKSÖZ ĠZMĠR 2014 ĠÇĠNDEKĠLER 1. PROJENĠN AMACI... 2 2. GĠRĠġ... 2 3.

Detaylı

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK G O M T R İ www.kdemivizyon.com.tr. ÖÜM Prlelkenr ve şkenr örtgen. PRNR rşılıklı kenrlrı prlel oln dörtgenlere prlelkenr denir. [] // [] [] // [] = =. PRNRIN ÖZ İRİ. rşılıklı çılr eş ve rdışık çılr ütünlerdir.

Detaylı

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır.

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır. gösterilir. MUTLAK DEĞER Syı doğrusu üzerinde syısının sıfır oln uzklığın in mutlk değeri denir ve ile B O A 0 OA = OB =, 0 =, < 0 olrk tnımlnır. < 0 < y için y = y işleminin eşitini bulunuz. < 0 için

Detaylı

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160 8 ÖSS. Bir çiftlikte 800 koun 00 inek ve 600 mnd vrdır. Bu hvnlrın tümü bir dire grfikle gösterilirse ineklerle ilgili dilimin merkez çısı kç derece olur? A) 60 B) 0 C) 0 D) 0 E) 60 6. 0 - =p olduğun göre

Detaylı

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır?

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır? 987 ÖSS. Yukrıdki çıkrm işlemine göre, K+L+M toplmı şğıdkilerden hngisine dim eşittir? A) M B) L C) K M K 5. 4 işleminin sonucu kçtır? A) 0 B) C) 5 4 5. Aşğıdki toplm işleminde her hrf sıfırın dışınd fklı

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu Fonksionlr Konu Özeti. Köklü fonksionlrın en geniş tnım kümesi: f( f( n f( g( fonksionun en geniş tnım kümesi, g( koşulunu sğln noktlr kümesidir. f( f( n f( g( tüm reel sılrd tnımlıdır. fonksionu g( in

Detaylı

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız.

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız. Isınm Hreketleri şğıd verilenleri inceleyiniz. Yönlü çı: Trigonometrik irim Çember: Merkezi orjin, yrıçpı br oln çemberdir. O + yön éo Pozitif yönlü (Stin tersi) O yön éo Negtif yönlü (St yönü) O y x Denklemi:

Detaylı

Şekil 23.1: Düzlemsel bölgenin alanı

Şekil 23.1: Düzlemsel bölgenin alanı Bölüm Belirli İntegral Şekil.: Düzlemsel bölgenin alanı Düzlemde kare, dikdörtgen, üçgen, çember gibi iyi bilinen geometrik şekillerin alanlarını bulmak için uygun formüller kullanıyoruz. Ama, uygulamada

Detaylı

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr:

Detaylı

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir.

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir. FONKSİYONLAR Boş kümeden frklı oln A ve B kümeleri verildiğinde, A kümesindeki her elemnı B kümesindeki ir elemn krşı getiren ğıntıy A dn B ye fonksiyon denir. y=f(x) ile gösterilir. Bir diğer ifdeyle

Detaylı

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q Elektrosttik(Özet) Coulomb Yssı Noktsl bir q yükünün kendisinden r kdr uzktki bir Q yüküne uyguldığı kuvvet, şğıdki Coulomb yssı ile ifde edilir: F = 1 qq ˆr (1) r2 burd boşluğun elektriksel geçirgenlik

Detaylı

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir.

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir. 1 İNTEGRAL BİR FONKSİYONUN DİFERANSİYELİ Tanım: f: [a,b] R, x f(x) fonksiyonu (a,b) aralığında türevli olmak üzere, x değişkeninin değişme miktarı x ise f '(x). x ifadesine f(x) fonksiyonunun diferansiyeli

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinnd P. Beer E. Russell Johnston, Jr. Ders Notu: Hri ACAR İstnbul Teknik Üniveristesi Tel: 85 1 46 / 116 E-mil: crh@itu.edu.tr Web: http://tls.cc.itu.edu.tr/~crh

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =?

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =? Lisns Yerleştirme Sınvı (Ls ) 6 Hirn Mtemtik Sorulrının Çöümleri 8 sı tnınd verilen ( ) 8 sısının sı tnınd ılışı? Bu durumd ( ) 8 sısı önce tnın çevrilir Sonr tnınd ılır ( ) 8 8 8 8 Bun göre ( ) 8 ( )

Detaylı

JEODEZI. Referans Yüzeyi Dönel Elipsoidin Genel Özellikleri. Dönel Elipsoidin Geometrik Parametreleri

JEODEZI. Referans Yüzeyi Dönel Elipsoidin Genel Özellikleri. Dönel Elipsoidin Geometrik Parametreleri .0.013 1 JEODEZI.0.013 Referns Yüeyi Dönel Elipsidin Genel Öellikleri Dönel Elipsidin Gemetrik Prmetreleri Elips: iki nkty uklıklrı tplmı sbit ln nktlr kümesine denir. Bir elipsin küçük ekseni çevresinde

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 27 Kasım Matematik Sorularının Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 27 Kasım Matematik Sorularının Çözümleri Akdemik Personel ve Lisnsüstü Eğitimi Giriş Sınvı ALES / Sonbhr / Syısl II / 7 Ksım 0 Mtemtik Sorulrının Çözümleri. Bölüm şeklindeki kreköklü ifdenin pydsını krekökten kurtrmk için py ve pydyı, pydnın

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4.

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4. IV. HTTİN TTIŞ MTEMTİK YRIŞMSI u test 30 sorudn oluşmktdır. İREYSEL YRIŞM SORULRI 1. 4 3 + 1 4. 3 3 + = + 1 + 1 denkleminin çözüm kümesi şğıdkilerden hngisidir? ) 5 3 ) ) 3 D) 13 3 ) { 0 } ) { 1} ) { }

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı., b olduğun göre, b. b ifdesinin değeri şğıdkilerden hngisidir?,,,9 8... b b ifdesinin eşiti şğıdkilerden hngisidir?.. Bun göre, verilior. ifdesinin değeri kçtır? 8. b b c 8 c d

Detaylı

İntegral Alma Teknikleri

İntegral Alma Teknikleri Bölüm İnegrl Alm Teknikleri. Yerine Koym Kurlı Kurl. u g(x) değer kümesi I rlığı oln ürevlenebilir bir fonksiyon ve f fonksiyonu I rlığınd sürekliyse, f(g(x)) g (x) f(u) du (.) olur. Örnek. x 3 cos(x 4

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

UZAYDA VEKTÖRLER / TEST-1

UZAYDA VEKTÖRLER / TEST-1 UZAYDA VEKTÖRLER / TEST-. A(,, ) ve B(,, ) noktlrı rsındki uklık kç birimdir? 6. A e e e B e e e AB vektörü ile nı doğrultud ıt öndeki birim vektör şğıdkilerden ( e e e ). A(, b, ) B(,, ) noktlrı ve U

Detaylı

İntegral Kavramı ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr.Vakıf CAFEROV

İntegral Kavramı ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr.Vakıf CAFEROV İntegrl Kvrmı Yzr Prof.Dr.Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; elirli ve elirsiz integrl kvrmlrını öğrenecek, elirli integrlin geometrik nlmını görecek, integrl teknikleri ile tnışcksınız.

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı 8. sısının pozitif tek tmsı bölenlerinin sısı kçtır? 8. olmk üzere; kesrinin değeri şğıdkilerden hngisi olmz?. (8!) sısının sondn kç bsmğı sıfırdır? 8. ifdesinin sonucu kçtır? (

Detaylı

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin 4 () ve (bb) iki bsmklı syılr, () ve 1 x=15! +1 y=15!+16 olmk üzere, (bbb) üç bsmklı syılrdır x ile y rsınd kç tne sl syı vrdır? A)0 B)1 C) D) 3 E) 4 b + bb + bbb = 6 olduğun göre, b çrpımı en çok kçtır?

Detaylı

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur?

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur? 986 ÖSS. (0,78+0,8).(0,3+0,7) Yukrıdki işlemin sonucu nedir? B) C) 0, D) 0, E) 0,0. doğl syısı 4 ile bölünebildiğine göre şğıdkilerden hngisi tek syı olbilir? Yukrıdki çrpm işleminde her nokt bir rkmın

Detaylı

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC ÜÇGNLR TRİGONOMTRİK ÖZLLİKLR. Kosinüs Teoremi: Herhngi ir üçgeninin, kenr uzunluklrı,, ise; = +... os = +... os = +... os İspt: Şekilde görüldüğü üçgeni, köşesi ile orijin, kenrı ile ekseni ile çkışk şekilde

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı.,, z rdışık pozitif tmsılr ve z olmk üzere; z olduğun göre, kçtır? C). olduğun göre, ifdesinin değeri şğıdkilerden hngisidir? C) 8 6., b, c Z olmk üzere; b c bc c b olduğun göre,,

Detaylı

Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A.

Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A. eneme - / Mt MTEMTİK ENEMESİ. c - m. c - m -.., bulunur. y. 7, + 7 y + + 00 y + + + y + +, y lınr ı.. ^ - h. ^ + h. ^ + h ^ - h. ^ + h - & & bulunur.. ΩΩΩΩΔφφφ ΩΩφφ ΩΩΔφ 0 evp. ise ^ h ^h 7 ise ^ 7h b

Detaylı

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu OĞRU ÇILR Temel Kvrmlr ve oğrud çılr Nokt: Nokt geometrinin en temel terimidir. ni, boyu vey yüksekliği yoktur. İnce uçlu bir klemin kğıt üzerinde bırktığı iz olrk düşünebilirsiniz. oğru: üz, klınlığı

Detaylı

ÖZEL EGE LİSESİ PEDAL DÖRTGENLERİNDE GEOMETRİK EŞİTSİZLİKLER

ÖZEL EGE LİSESİ PEDAL DÖRTGENLERİNDE GEOMETRİK EŞİTSİZLİKLER ÖZEL EGE LİEİ PEDAL DÖRTGENLERİNDE GEOMETRİK EŞİTİZLİKLER HAZIRLAYAN ÖĞRENCİLER: Güneş BAŞKE Zeynep EZER DANIŞMAN ÖĞRETMEN: ereny ŞEN İZMİR 06 İçindekiler yf. Giriş.... Amç.... Ön Bilgiler...... 3. Yöntem....

Detaylı

LOGARİTMA Test -1. olduğuna göre, x kaçtır? olduğuna göre, x aşağıdakilerden hangisidir? A) 3 B) 9 C) 16 D) 64 E) 81.

LOGARİTMA Test -1. olduğuna göre, x kaçtır? olduğuna göre, x aşağıdakilerden hangisidir? A) 3 B) 9 C) 16 D) 64 E) 81. LOGARİTMA Test -. olduğun göre, şğıdkilerden log log log. log olduğun göre, kçtır? 6 6 8. olduğun göre, şğıdkilerden 6. logm olduğun göre, m kçtır? log log log 6 log 6. olduğun göre, şğıdkilerden log log

Detaylı

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90 G O M T R İ. ÖLÜM Üçgende çılr. ÜÇGN oğrusl olmyn üç noktyı birleştiren doğru prçlrının birleşim kümesine üçgen denir. ış çı ış çı ış çı. ÇILRIN GÖR ÜÇG N ÇŞİTLR İ r çılı Üçgen Üç çının ölçüsü de 90 den

Detaylı

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1 YGS-YS GOMTRİ ÖZT ÇÖZÜMRİ TST 1 1. 1. y 1 1 + 1 1ʺ 1 1ʹ 17 0ʹ 1 1ʹ ʹ + ʹ 1ʺ ʹ + ʹ 1ʺ 7 0ʹ 1ʺ 0 0ʹ 1ʺ bulunur. 1 y < + 1 y dir. y < 7 + 1 < 7 0 < < 1 in en büyü tm syı değeri 17 in en üçü tm syı değeri

Detaylı

b göz önünde tutularak, a,

b göz önünde tutularak, a, 3.ALT GRUPLAR Tnım 3.. bir grup ve G, nin boş olmyn bir lt kümesi olsun. Eğer ( ise ye G nin bir lt grubu denir ve G ile gösterilir. ) bir grup Not 3.. ) grubunun lt grubu olsun. nin birimi ve nin birimi

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Haziran Matematik I Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 17 Haziran Matematik I Soruları ve Çözümleri Öğrenci Seçme Sınvı (Öss) / 7 Hzirn 007 Mtemtik I Sorulrı ve Çözümleri.. 7 işleminin sonucu kçtır? A) B) 9 C) D) E) Çözüm. 7..9.. + işleminin sonucu kçtır? 4 8 A) 8 B) 8 C) 8 D) 4 E) 4 Çözüm + 4 8 8 4+

Detaylı

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2 1. 1 =? Lys 1 7. x + y = (6k) (x k) + y = (k 5) olduğuna göre x y =?. 6 a.b = ise a + 1 b. b 1 a =? 1k 8. x ve y birbirinden farklı pozitif gerçel sayılar olmak üzere, x y y x. x.y = (x y) ise x y =?.

Detaylı

2 olur. ADI: SOYADI: DERS: MATEMATĐK KONU: KESĐK PĐRAMĐT KONU ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN

2 olur. ADI: SOYADI: DERS: MATEMATĐK KONU: KESĐK PĐRAMĐT KONU ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN 1)KESĐK PĐRAMĐT: Bir pirmit, tbn prlel bir düzlem ile kesildiğinde, tbn düzlemi ile kesit üzei rsınd kln kısım kesik pirmit denir. KESĐK PĐRAMĐDĐN YANAL YÜZ ALANI: Bir düzgün kesik pirmidin nl lnı, lt

Detaylı

TEST 16-1 KONU DÜZLEM AYNA. Çözümlerİ ÇÖZÜMLERİ

TEST 16-1 KONU DÜZLEM AYNA. Çözümlerİ ÇÖZÜMLERİ OU 6 Ü Çözümler. TST 6-,7 ÇÖÜR,6 5. Bir cismin görüntüsünün nerede görüneceğini bkn kişinin bulunduğu yer belirlemez. nin görüntüsü nolu noktd olduğu için her iki gözlemci ynı yerde görür. V 3,5 6. 7 kez

Detaylı

POLİNOMLARIN ÇARPANLARA AYRILMASI

POLİNOMLARIN ÇARPANLARA AYRILMASI POLİNOMLARIN ÇARPANLARA AYRILMASI Tnım: P ( ) polinomu Q ( ) polinomun bölündüğünde bölüm B ( ), Kln ( ) 0 durumd, P ( ) = Q( ). B( ) yzılır. K = olsun. Bu Q ( ) ve B ( ) polinomlrın P ( ) polinomunun

Detaylı

H. Turgay Kaptanoğlu. (2) t bir gerçel sayı ise, ta tb = t(a. Geometri derslerinden (eğer orta öğrenimde. ise bu A B = B A verir; bu simetri

H. Turgay Kaptanoğlu. (2) t bir gerçel sayı ise, ta tb = t(a. Geometri derslerinden (eğer orta öğrenimde. ise bu A B = B A verir; bu simetri DIŞBÜKEY FONKSİYONLAR H. Turgy Kptnoğlu A. Dışbükey Kümeler Geometri derslerinden eğer ort öğrenimde hâlâ geometri dersi klmışs düzlemdeki dışbükey şekillerin nsıl şeyler olduklrı hkkınd bir fikrimiz vrdır.

Detaylı

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK MTEMTİK KPSS ÇEVİR KONU - ÇEVİR SORU MTEMTİK EDİTÖR Turgut MEŞE YZR İdris DOĞN ütün hklrı Editör Yyınlrın ittir. Yyınevinin izni olmksızın, kitbın tümünün vey bir kısmının bsımı, çoğltılmsı ve dğıtımı

Detaylı

Türev Uygulamaları. 4.1 Bağımlı Hız

Türev Uygulamaları. 4.1 Bağımlı Hız Bölüm 4 Türev Uygulamaları 4.1 Bağımlı Hız Eğer bir balonun içine hava pompalarsak, balonun hem yarıçapı hem de hacmi artar ve artış hızları birbirine bağımlıdır. Fakat, hacmin artış hızını doğrudan ölçmek

Detaylı

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler Ünite ÜSTEL VE LOGARİTMİK FONKSİYONLAR f() g() log.. Üstel Fonksion / / / /.. Logritm Fonksionu.. Üstel ve Logritmik Denklem ve Eşitsizlikler . ÜNİTE: ÜSTEL ve LOGARİTMİK FONKSİYONLAR KAZANIM ve İÇERİK.

Detaylı

http://www.metinyayinlari.com Metin Yayınları

http://www.metinyayinlari.com Metin Yayınları İNTEGRAL İÇ KAPAK B kitın ütün ın hklrı sklıdır. Tüm hklrı, zrlr ve METİN YAYINLARI n ittir. Kısmen de ols lıntı pılmz. Metin, içim ve sorlr, ımln şirketin izni olmksızın, elektronik, meknik, fotokopi

Detaylı

T 35 ZAMBAK MERAKLISINA TESTLERİ(GEO): ÇÖZÜM: ŞekildeIBCI=8, IACI=4,m(B)= a,m(c)= q ve = 180 olduğuna göre IABI kaç br dir? A)4 B)5 C)6 D)8 E)10

T 35 ZAMBAK MERAKLISINA TESTLERİ(GEO): ÇÖZÜM: ŞekildeIBCI=8, IACI=4,m(B)= a,m(c)= q ve = 180 olduğuna göre IABI kaç br dir? A)4 B)5 C)6 D)8 E)10 1) Z RII Rİ(GO): 0 0 ŞekildeII=, II=,m()=,m()= ve + = 10 olduğun göre II kç br dir? ) )5 ) ) )10 ÇÖZÜ-1: 0 5 5 5 0 105 ile yi birleştirelim. @ (.. eşliği) olur. ikizkenr olur.unlr göre çılrı simgelendirirsek

Detaylı

Hacimler ve Çift Katlı İntegraller

Hacimler ve Çift Katlı İntegraller Hacimler ve Çift Katlı İntegraller Kapalı bir Hacimler ve Çift Katlı İntegraller R [a, b] [c, d] {(x, y) R 2 a x b, c y d} dikdörtgeninde tanımlı iki değişkenli bir f fonksiyonunu göz önüne alalım ve önce

Detaylı

Cebir Notları Mustafa YAĞCI, Eşitsizlikler

Cebir Notları Mustafa YAĞCI, Eşitsizlikler www.mustfygci.com.tr, 4 Cebir Notlrı Mustf YAĞCI, ygcimustf@yhoo.com Eşitsizlikler S yılr dersinin sonund bu dersin bşını görmüştük. O zmnlr dın sdece birinci dereceden denklemleri içeren mnsınd Bsit Eşitsizlikler

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra;

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra; MATEMATİK Üslü Syılr Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK 5.Hft Hedefler Bu üniteyi çlıştıktn sonr; Gerçel syılrd üslü işlemler ypbilecek, Üslü denklem ve üslü eşitsizlikleri çözebileceksiniz.

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

TÜBİTAK BİDEB LİSE ÖĞRETMENLERİ-FİZİK, KİMYA, BİYOLOJİ, MATEMATİK- PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYI (LİSE-4 *ÇALIŞTAY 2014+)

TÜBİTAK BİDEB LİSE ÖĞRETMENLERİ-FİZİK, KİMYA, BİYOLOJİ, MATEMATİK- PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYI (LİSE-4 *ÇALIŞTAY 2014+) TÜBİTAK BİDEB LİSE ÖĞRETMENLERİ-FİZİK, KİMYA, BİYOLOJİ, MATEMATİK- PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYI (LİSE-4 *ÇALIŞTAY 014+) MATEMATİK PROJE ÖNERİSİ GRUP YILDIZ PROJE ADI Yıldızlrın Döndürülmesi İle

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :, b, R ve 0 olmk üzere denklem denir. b = 0 denklemine, ikini dereeden bir bilinmeyenli Bu denklemde, b, gerçel syılrın

Detaylı

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24.

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24. DENKLEM ÇÖZME + + = 0 + = 0 + = 0 + y = 0 İkinci dereceden ir ilinmeyenli denklemdir. İkinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden İki ilinmeyenli

Detaylı

[ AN ] doğrusu açıortay olduğundan;

[ AN ] doğrusu açıortay olduğundan; . Bir havuzu bir musluk 6 saatte, başka bir musluk 8 saatte dolduruyor. Bu iki musluk kapalı iken, havuzun altında bulunan üçüncü bir musluk, dolu havuzu saatte boşaltabiliyor. Üç musluk birden açılırsa,boş

Detaylı

2. BÖLÜM AKIŞKANLARIN STATİĞİ

2. BÖLÜM AKIŞKANLARIN STATİĞİ . BÖLÜM AKIŞKANLARIN STATİĞİ Akışknlr mekniğinin birçok probleminde reket yoktur. Bu tip problemlerde durn bir kışkn içinde bsınç dğılımı ve bu bsınç dğılımının ktı yüzeylere ve yüzen vey dlmış cisimlere

Detaylı

1996 ÖYS. Çözüm 1: Çözüm 3: 1. gün x a 2.gün x+5 kitap a sayfa ise 3x+15= 3 3.gün x+10 4.gün x+15 5.gün x+20 Ve 6.gün x+25 hepsi 6x+75=a oluyor.

1996 ÖYS. Çözüm 1: Çözüm 3: 1. gün x a 2.gün x+5 kitap a sayfa ise 3x+15= 3 3.gün x+10 4.gün x+15 5.gün x+20 Ve 6.gün x+25 hepsi 6x+75=a oluyor. 99 ÖYS. Bir sınıftki örencilerin 5 nin fzlsı kız örencidir. Sınıft erkek öğrenci olduğun göre, kız öğrencilerin syısı kçtır? A) B) 8 C) D) E) Çözüm : Sınıftki öğrencilere 5x dersek x+ kızlr ve geri klnlr

Detaylı

2002 ORTA ÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVI MATEMATİK TESTİ 10. 10 10. aşağıdakilerden hangisidir? A) 0,01 B) 0,1 C) 10 D) 100

2002 ORTA ÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVI MATEMATİK TESTİ 10. 10 10. aşağıdakilerden hangisidir? A) 0,01 B) 0,1 C) 10 D) 100 22 ORTA ÖĞRETİ URUARI ÖĞRECİ EÇE VE YEREŞTİRE IAVI ATEATİ TETİ 1. 3 2 1 1. 1 1. 1 : işleminin sonucu 7 1. 1 1 şğıdkilerden hngisidir? A),1 B),1 C) 1 D) 1 2. O P R T U V Yukrıdki syı doğrusund birbirine

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI ., ÖZEL EGE LİSESİ OKULLR RSI 8. MTEMTİK YRIŞMSI 8. SINI TEST SORULRI 5. 0,0008.0 b 0,0000.0 ise; b.0 kç bsmklı bir sıdır? olduğun göre, ifdesinin değeri şğıdkilerden hngisine eşittir? ) 80 ) 8 ) 8 ) 8

Detaylı