ZAMAN SERİ ANALİZİNDE TEMEL KAVRAMLAR

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ZAMAN SERİ ANALİZİNDE TEMEL KAVRAMLAR"

Transkript

1 ZAMAN SERİ ANALİZİNDE TEMEL KAVRAMLAR 1

2 KAVRAMLAR Öngörü: Gelecek olayları ya da koşulları tahmin etmeye öngörü denir. Karar verme sürecinde vazgeçilmez bir unsurdur. Nitel(kalitatif) Yöntemler: Öngörü işlemi ile geçmişteki bilgilerden yararlanılarak geleceğe ait tahmin yapılmaktadır. Dolayısıyla, öngörü yöntemleri tecrübeye, kararlara, bilirkişilerin düşüncelerine dayanmaktadır. Bu tür öngörü yöntemlerine genel olarak nitel(kalitatif) yöntemler denir. 2

3 Nicel(kantitatif) Yöntemler: Öngörü yöntemleri sübjektif kararlardan ziyade elde edilen verilerin yapısını açıklayabilen modellere dayanırsa bu tür modellere dayanan öngörü yöntemlerine genel olarak nicel(kantitatif) yöntemler adı verilir. 3

4 Zaman serileri analizinin içerdiği yöntemler de nicel yöntemlerdir. Dolayısıyla, zaman serileri analizi zaman içinde düzenli aralıklarla gözlemlenen verilerin istatistiksel olarak incelenmesini ve gelecek dönemlerde elde edilebilecek verilerin öngörüsünün güvenilir bir şekilde yapılabilmesini içermektedir. 4

5 A. ZAMAN SERİSİ Kronolojik sırayla elde edilen verilere sahip değişkenlere zaman serisi adı verilmektedir. Genel olarak zaman serisi, T örneklem büyüklüğü olmak üzere z t, t= 1, 2,, T biçiminde gösterilir. Buna göre ilk gözlemlenen veri Z 1 ; ikinci gözlemlenen veri Z 2 ; son gözlemlenen veri Z T ile ifade edilir. 5

6 Zaman içinde sürekli olarak kaydedilebilen verilere sahip serilere sürekli zaman serileri, sadece belli aralıklarda elde edilebilen verilere sahip serilere de kesikli zaman serileri adı verilmektedir. Elektrik sinyalleri, voltaj, ses titreşimleri gibi mühendislik alanlarına ait seriler sürekli zaman serileri iken; faiz oranı, satış hacmi, üretim miktarı gibi iktisadi seriler kesikli zaman serileridir. 6

7 Örnek Dönem z t Tahmin İsmi Dönem z t Tahmin İsmi 1993 Dönem Dönem 1994 Öncesi İçi Tahmin Tahmin Dönem Dönem İçi Dışı Tahmin Tahmin Öngörü 7

8 B. ZAMAN SERİSİ VERİLERİ VE GRAFİKLERİ Ekonomik araştırmaların en önemli aşamalarından birisi, ekonomik modeli meydana getiren değişkenlerin rakamlarla ifade edilebilir hale getirilmesidir. Veri sağlanamayan konularda ampirik çalışmaların yapılması zor olacağı için öncelikle verilerin sınırları belirlenmelidir. Ekonometrik araştırmalar için veri toplama genellikle birkaç biçimde gerçekleştirilir. Bunlardan ilki önceden toplanmış bilgilerden yararlanmaktır. Bunlar daha çok istatistik bültenleri veya istatistik yıllıkları biçimindedir. 8

9 İkinci yöntem ise doğrudan doğruya gözlem yapma metodudur. Bu süreçte bir ölçme işlemi söz konusudur. Ölçme iki farklı biçimde yapılır. Araştırma konusu olan anakütle ya tamamen ölçülür ya da anakütlenin tamamının ölçülmesi çok güç olduğu, hatta imkansız olduğu durumlarda örneklem yardımıyla anakütlenin bir tahmini yapılır. Genellikle ikinci yöntem daha çok tercih edilmektedir. Zaman serisi verileri, değişkenlerin bir dönemden diğerine ardışık gözlendiği sayısal değerler hakkında bilgiler verir. Zaman serisi verileri genellikle günlük, haftalık, aylık, üç aylık, altı aylık, yıllık ve daha uzun dönemli aralıklarla derlenir ve toplanır. 9

10 FARKLI YAPIDAKİ ZAMAN SERİSİ ÖRNEKLERİ 1. Ekonomik ve finansal zaman serileri: İktisadi verilerin önemli bir bölümü zaman serilerinden ibarettir. Örneğin, günlük hisse senedi fiyatları, yıllık işsizlik oranları gibi dönemler itibariyle farklı alanlarda çok sayıda zaman serileri derlenir ve toplanır. 10

11 Şekil 1.1: yıllarına ait istihdam oranı verileri :01 08:04 08:07 08:10 09:01 09:04 ISTIHDAM 11

12 2. Fiziksel zaman serileri: Zaman serileri fen bilimlerinde, özellikle meteorolojide, denizcilik bilimlerinde ve coğrafyada çok sık gözlenir. Fen bilimlerinde gözlemlerin kayıtları daha çok sürekli bir yapıdadır. Örneğin, bir laboratuarda belirli bir sıcaklığın muhafaza edilmesi için nem oranı gibi bazı değişkenlerin sürekli ölçümleri birer zaman serisi oluşturur. 12

13 Şekil 1.2: 1955:1-1960:12 yıllarına ait sıcaklık verileri SICAKLIK 13

14 3. İşletme zaman serileri: Değişik dönemlerde işletmelerin satış analizleri önemli yararlar sağlar. Bu tür veriler daha çok pazarlama verileri olarak bilinir. İşletme veya pazarlama verileri ileriye yönelik işletme politikalarının belirlenmesinde ve satış önraporlarının hazırlanmasında etkin bir şekilde kullanılır. 14

15 Şekil 1.3: 1965:1-1970:12 yıllarına ait x firmasının soğutucu satış verileri SATIS 15

16 4. Demografik zaman serileri: Genellikle nüfus çalışmalarında ortaya çıkan zaman serileridir. Örneğin, yıllık ortalama nüfus artışı, yıllık ölüm ve doğum oranları bu sınıfa dahil edilebilir. Hükümetler orta ve uzun vadeli planlamalarında demografik verilerdeki değişmeleri dikkate alarak çeşitli ekonomik göstergeler için tahminlerde bulunabilir. 16

17 Şekil 1.4: yıllarına ait evlenme oranı verileri EVLILIK 17

18 5. Süreç kontrol verileri: Süreç kontrolünde ele alınan bir problem, sürecin kalitesini gösteren bir ölçüm yardımıyla bir üretim sürecinin çalışmalarındaki değişimlerin incelenmesi olarak alınabilir. Bu değişkenin ölçümleri belirlenen bir hedeften ne kadar ve hangi yönde sapma gösterdiğinin incelenmesi için zamana karşı bir grafik çizilir. Belirlenen bu hedeften sapmalar incelenerek gerekli düzeltmeler yapılmaya çalışılır. Bu tür zaman serisi problemlerinin çözümü istatistiksel kalite kontrol teknikleri adı altında ele alınır. 18

19 Şekil 1.5: Süreç kontrol grafiği 19

20 6. İkili süreç verileri: Bu tür verilerde gölemler 0 veya 1 gibi yalnızca iki değerden birini alır. Bu özelliğinden dolayı bu veriler ikili süreç olarak adlandırılır. İkili süreç verilerinde, örneğin herhangi bir elektronik cihazın açma/kapama düğmesinin açık veya kapalı olma durumuna göre bir ölçeklendirme yapılır. 20

21 Şekil 1.6: İkili süreç grafiği 21

22 7. Nokta süreç verileri: Zaman serilerinin farklı bir türü de belirli bir dönem içerisinde rassal olarak ortaya çıkan bir olaylar dizisi biçiminde oluşur. Örneğin havayolu ulaşımında bir yolcu uçağının bir yıllık bir dönem içerisinde arızalandığı ve bakım/onarıma alındığı aylar bir nokta süreç olarak gösterilebilir. Şekil 1.7: Nokta süreç grafiği 22

23 1. Mevsimsel ve Aylık Verilerin Yıllık Verilere Dönüştürülmesi Toplama Yöntemi: En sık uygulandığı alan kişilerin aylık kazançlarından yola çıkılarak yıllık kazancın bulunmasıdır. Örneğin; aylık 500 lira kazanan bir kişinin 500X12= 6000 lira olacağı açıktır. Eğer yıllık veri üzerinden analiz yapılacaksa artık her ay için 500 lira girilmeyecek onun yerine o yıla ait veri için 6000 lira yazılacaktır. 23

24 Ortalama Yöntemi: Borsa verilerinde ya da istihdam sayısı ile ilgili verilerde uygulanabilmektedir. Örneğin, yeni kurulan bir şirkete yazın 32, kışın 40, ilkbaharda 15 ve sonbaharda 13 kişi alındığında bu şirketin o yıl her mevsim ortalama işe aldığı kişi sayısı ( )\4=25 kişi olur. Dolayısıyla, o yıla ait veri 25 olarak girilir. Burada yıllar karşılaştırılırken mevsim bazında işe alınan kişi sayısı üzerinde durulduğu bilinmelidir. 24

25 25

26 Örnek: Aylar Aylık Veri Ocak Şubat Mart Nisan Mayıs Haziran Temmuz Ağustos Eylül Ekim Kasım Aralık 100,8 94, ,1 93,9 88,9 103,1 106,2 101,6 103,8 105,1 114,3 26

27 Aylar Aylık Veri Mevsimsel Veri Mevsimler Ocak 100,8 Şubat 94,2 98,6 I Mart 101 Nisan 87,1 Mayıs 93,9 89,9 II Haziran 88,9 Temmuz 103,1 Ağustos 106,2 103,6 III Eylül 101,6 Ekim 103,8 Kasım 105,1 107,6 IV Aralık 114,3 27

28 2. Yıllık Verilerin Mevsimsel ve Aylık Verilere Dönüştürülmesi Tekrarlama Yöntemi: Bu yöntem ile yıllık veriler mevsimsel verilere dönüştürülecekse aynı veri 4 kez, yıllık veri aylık veriye dönüştürülecekse aynı veri 12 kez, mevsimsel veri aylık veriye dönüştürülecekse aynı veri 3 kez tekrarlanarak yazılır. Örneğin yaz verisi, Haziran, temmuz ve Ağustos ayları için ayrı ayrı 3 kez tekrarlanarak yazılır. 28

29 Eşit Adım Yöntemi: Adım 1: Art arda gelen iki dönemin verileri arasındaki fark bulunur: = Z II Z I Adım 2: Bu fark dönüştürülecek veriye göre dönem sayısına bölünür. Örneğin bu fark, yıllık veri mevsimsel veriye dönüştürülüyorsa 4 e, yıllık veri aylık veriye dönüştürülüyorsa 12 ye, mevsimsel veri aylık veriye dönüştürülüyorsa 3 e bölünür: = / dönem sayısı 29

30 Adım 3: değeri ilgilenilen dönemin verisine dönem sayısı kadar eklenerek veri mevsimsel ya da aylık veri biçimine dönüştürülür. Örneğin, mevsimsel veri aylık veriye dönüştürülüyorsa, oluşturulan yeni aylık veri; Z 1 = Z 1 (mevsimin ilk ayı) Z 2 = Z 1 + (mevsimin ikinci ayı) Z 3 = Z 2 + (mevsimin üçüncü ayı) biçiminde olur. 30

31 C. ZAMAN SERİSİ BİLEŞENLERİ Zaman Serisi bir dönemden diğerine değişkenlerin değerlerinin ardışık bir şekilde gözlendiği sayısal büyüklüklerdir. Özelliği ve yapısı ile bizzat kendisi geleceğin tahmininde kullanılan bir bilgi kaynağı olduğu gibi, aynı zamanda bir yöntem olmaktadır. Zaman serisi trend, mevsimsel dalgalanma, döngüsel dalgalanma ve düzensiz hareketlerden(hata terimi) oluşmaktadır. 31

32 Trend Trend, zamana göre gözlemlenen bir değişkenin uzun dönemde gösterdiği artış veya azalışa denir. Trend, iki şekilde ifade edilebilir: Doğrusal Trend Doğrusal Olmayan Trend 32

33 Trendli Zaman Serisi Kalıpları Zaman serilerinde trendli kalıplar genelde seride uzun süreli artışlar veya azalışları yansıtır. Trend değişmeleri bir serinin adeta ortalaması gibidir. Trendin ortaya çıkabilmesi için yaklaşık 15 ile 18 yıllık bir döneme ihtiyaç vardır. Trend başlangıç noktası olarak genelde ekonomide durgunluk döneminin seçilmesinde yarar vardır. Trend kalıpları artan, azalan veya değişmez olabileceği gibi doğrusal ve doğrusal olmayan bir kalıpta da ortaya çıkabilir. 33

34 Mevsimsel Dalgalanma Mevsim etkileri, 1 yıl içinde tamamlanan ve veride yıl bazında tekrarlanan değişmelerin seyri olarak ifade edilir. Bu dalgalanmanın uzunluğu periyodu verir. Mevsimsel verilerin periyodu genellikle 4, aylık verilerinki 12, günlük verilerin haftadaki iş sayısı durumuna göre 5, 6 ya da 7 olur. 34

35 Mevsimsel Zaman Serisi Kalıpları Genelde mevsimsel etkiler aylık dönemler itibariyle ortaya çıkar. Mevsimin etkisinde olan değişkenler yılın bazı dönemlerinde diğerlerine oranla daha yüksek veya daha düşük değerlere ulaşırlar. Örneğin, bir yılın belli dönemlerinde soğuk içeceklerin tüketiminin artması veya azalması, bazı dönemlerde doğalgaz kullanımının artması veya azalması, sıcaklık, düşen yağmur miktarı vs. gibi zaman serilerinde dönemsel olma özelliğine sahip olsalar bile ardışık dönemlerde tam olarak tekrarı söz konusu olmayabilir. 35

36 Mevsimsellik çok farklı şekillerde ortaya çıkabilir. Örneğin, bir yılın belirli mevsimlerinde, belirli aylarında, belirli haftalarında, bir çeyrek yılın belirli bir ayında, belirli bir haftasında, belirli bir gününde ortaya çıkabilir. Belirli mevsimlerde soğuk içecek talebinin artması veya azalması, Müslüman bir ülke için dini günler, bayramlar, ramazan ayı alışverişlerindeki artışlar, her yıl aynı günde kutlanan anneler günü, babalar günü, öğretmenler günü, günün belirli saatlerinde telefon görüşmelerindeki artışlar vb. mevsimsellik özelliğine örnek verilebilir. Mevsimsellik altı ay, üç ay, bir ay, bir hafta, bir gün ve bir saat gibi dönemleri kapsayabilir. Daha uzun süreli mevsimselliklere örnek olarak belirli yıllarda tekrarlanan olimpiyat oyunları ve diğer sportif etkinlikler verilebilir.

37 Şekil 1.10: 1990:1-1994:12 yıllarına ait aylık çimento üretim verileri CIMENTO

38 Döngüsel Dalgalanma(konjonktür) Döngüsel dalgalanma, 2-10 yıl veya daha uzun bir dönemde serinin seyrinde oluşan değişmelerdir ya da zaman serisindeki dalgalanmalar bir yıldan daha uzun dönemi kapsar şekilde seyir izliyorsa bu gidişat döngüsel dalgalanma olarak adlandırılır. 38

39 Konjonktürel Zaman Serisi Kalıpları Konjonktürel hareketler daha çok ekonominin veya sektörlerin refah ya da durgunluk (ekonomik kriz) dönemlerini içeren değişmelerdir. Refah dönemlerinde yatırımlar, üretimler, gelirler ve satışlar gibi ekonomik göstergeler bir süre için artış gösterir ve durgunluk dönemlerinde ise düşmeler baş gösterir. Genelde konjonktürel hareketler periyodik olmayan fakat 5 ile 8 yıllık dalgalanmalar ile tekrarlanır. Mevsimsel hareketlerde dönemler düzenli ve periyodik bir salınım gösterirken, konjonktürel hareketlerde dönemler düzensiz ve periyodik olmayan bir yapıdadır. Ayrıca konjonktürel hareketlerin ortalama uzunlukları mevsimsel dalgalanmalardan daha uzundur ve konjonktürün hacmi(genişliği) mevsimselliğe göre daha fazla bir değişkenliğe sahiptir.

40 Şekil 1.11: yıllarına ait GSYİH verileri 1.6E E E E E E GSYIH

41 Düzensiz (rassal) Hareketler-hata terimi- Düzensiz(rassal) hareketler, zaman serisindeki düzensiz değişmelerdir ve diğer bileşenlerden hiçbiri bu değişmelerin nedeni olarak gösterilemez. Düzensiz(rassal) hareketlerin tanımlanabilir bir seyirleri yoktur. Serideki yanıltıcı hareketlerdir. Serinin diğer bileşenleri hesaplandığında geride kalan büyüklüklerdir. 41

42 Zaman serisi trend, mevsimsel dalgalanma, döngüsel dalgalanma ve düzensiz hareketlerden(hata terimi) oluşmaktadır. Zaman Serisi=f(Trend, Mevsimsel Dalgalanma, Döngüsel Dalgalanma, Düzensiz Hareketler) Yani kısaca Zaman serisi=izlenen seyir+hata terimi olur. 42

43 Geleneksel Zaman Serisi Ayrışım Yöntemleri; Toplamsal Ayrıştırma Yöntemi Çarpımsal Ayrıştırma Yöntemi Geleneksel zaman serisi ayrışım yönteminde, özellikle zaman serilerinin trend, konjonktürel ve mevsimsel hareketlerin etkisi altında kaldığı varsayılır. 43

44 Zaman serileri analizi, yalnızca serilerdeki trend, konjonktür ve mevsimsel etkileri arındırma amacını gütmez. Serilerin gelecekte alabilecekleri muhtemel değerleri önraporlamak ve serilerin temsil ettiği sistemi kontrol etmek gibi farklı amaçları da vardır. Zaman serisi verilerinin durağan olduğu varsayılır. Eğer bir zaman serisinin ortalaması, varyansı ve kovaryansı zaman boyunca sabit kalıyorsa, serinin durağan olduğu söylenebilir. 44

45 D. GECİKME SAYISI Zaman serilerinin verilerinin dönem kaydırılması sonucu zaman serilerinin gecikmelerine ait seriler elde edilir. Zaman serisi, z t serisinin; bir dönem gecikmeli serisi z t-1, iki dönem kaydırıldığında z t-2 iki dönem gecikmeli seri k dönem kaydırıldığında z t-k k dönem gecikmeli serisi oluşur. 45

46 Eğer orijinal zaman serisi trende sahip ise bu serinin k gecikmeli serisi orijinal seriyi k dönem sonrasından takip ederek yine trende sahip olacaktır. Aynı şekilde, mevsimselliğe sahip serilerin gecikmeleri de yine mevsimselliğe sahip olurlar. Sonuç olarak, serilerin gecikmeleri orijinal seriyle aynı yapıda olup yapısal bir değişiklik gecikmeli serilerde görülmez. 46

47 Bu bilgilerin k döneminin çok uzun seçilmediği varsayımı altında doğru olduğuna dikkat edilmelidir. k döneminin en çok gözlem sayısından iki eksiği kadar olabileceği de unutulmamalıdır. Aksi takdirde, oluşturulacak serinin en çok bir verisi olur ki bu durumda oluşturulan seri bir seri değil bir sabit olacaktır. Karmaşık modellerde işlemlerin kolay yapılabilmesi için Bz t = z t-1 biçiminde tanımlanan B gecikme sayacı kullanılmaktadır. Bu tanıma göre k gecikmeli serisi B k z t şeklinde gösterilir. 47

48 E. OTOKORELASYON FONKSİYONU 48

49 49

50 50

51 51

52 Gecikme sayılarına (k) karşılık otokorelasyon değerlerinin yer aldığı grafiğe otokorelasyon fonksiyonu grafiği ya da korelogram adı verilir. Bu grafikte x ekseninde gecikmeler, y ekseninde ise otokorelasyon değerleri yer almaktadır. Dolayısıyla, y ekseni (-1,1) aralığında olurken x ekseni sadece pozitif tamsayılara sahiptir. 52

53 F.KISMİ OTOKORELASYON FONKSİYONU Kısmi korelasyon katsayısı, diğer değişkenler sabit iken yani bu değişkenlerin etkilerinin olmadığı varsayıldığında iki değişken arasındaki ilişkinin miktarını verir. Kısmi otokorelasyon katsayısı ise diğer gecikmeli serilerin (z t-1, z t-2,, z t-k+1 ) etkileri ihmal edildiğinde z t ile z t+k serileri arasındaki ilişki miktarını verir. 53

54 54

55 55

56 Tüm gecikmelere ait kısmi otokorelasyon katsayısı değerleri kısmi otokorelasyon fonksiyonunu (PACF) oluşturmaktadır. Gecikme sayıları x ekseninde yer almak üzere kısmi otokorelasyon fonksiyonunun grafiğinde y eksenindeki kısmi otokorelasyon değerleri (-1,1) aralığında yer almaktadır. 56

57 57

58 G. FARK İŞLEMLERİ Zaman serisinin akışkanlı bir şekilde son değerlerinden belli bir dönem önceki değerlerinin çıkarılması işlemine fark işlemi denmektedir. Bu işlem özellikle serideki değişimin yönünü ve büyüklüğünün görebilmek amacıyla yararlıdır. Ayrıca fark işlemi sayesinde serideki trend ya da mevsimsel dalgalanmaları yok etmek mümkün olmaktadır. 58

59 Zaman serisinin birinci farkları; z t = z t z t-1 işlemiyle elde edilir. Bu işlem yapıldıktan sonra eğer seride halen trend var ise ikinci dereceden farklar uygulanır. Serinin ikinci farkları, birinci farklar uygulanılarak elde edilen serinin tekrar birinci farklarının alınmasıyla elde edilmektedir ve 2 z t =(1-B) 2 z t = z t z t-1 biçiminde gösterilmektedir. 59

60 İkinci farklar genellikle üstel fonksiyona sahip serilerin trentsiz hale getirilmesinde gerekmektedir. Bu tür serilerde eğrisel trend vardır. Uygulamalarda üçüncü farkın alınmasına gerek kalmamaktadır. Mevsimsel farklar işlemi genellikle periyodik serilerde yani periyoda sahip olan mevsimsel serilerde uygulanmaktadır. Bu işlem, serinin son verilerinden periyot kadar önceki verileri çıkartılarak yapılmaktadır. 60

61 Örneğin, periyot 12 iken birinci mevsimsel fark: 12 z t = z t -z t-12 = (1-B 12 ) z t olmakta, periyot 4 iken 4 z t = z t -z t-4 = (1-B 4 ) z t olmaktadır. Serideki mevsimsel hareket birinci mevsimsel farkların alınmasına rağmen hala etkin ise bu durumda seriye ikinci mevsimsel fark işlemi: s2 z t =(1-B s ) 2 z t = s z t s z t-s biçimindedir. 61

62 Burada s periyodu göstermektedir. Görüldüğü gibi, ikinci mevsimsel fark birinci mevsimsel fark serisinin tekrar birinci mevsimsel farkı olmaktadır. Dikkat edilirse mevsimsel fark, örneğin periyodu 12 olan aylık verilerde bir önceki yılın verisi son yılın aynı ayının verisinden çıkartılarak elde edilmektedir. Böylece yıldan yıla aylık değişimler incelenebilmektedir. Mevsimsel verilerde de mevsimsel değişimlerin incelenmesi mümkün olmaktadır. 62

63 H. DURAĞANLIK Eğer seri güçlü durağan ise serinin dağılım fonksiyonu zaman içinde değişmemeli, yani; F (z t1, z t2,, z tt ) = F (z t1+k, z t2+k,, z tt+k ) eşitliği sağlanmalıdır. Burada k gecikme sayısını göstermektedir. Bu özelliğin uygulamalarda sağlanabilmesi oldukça güçtür. Bu nedenle, durağanlık kavramı genellikle zayıf durağanlık biçiminde ele alınmaktadır. 63

64 Eğer bir seri durağan ise bu serinin beklenen değeri ve varyansı sabit, kovaryansı zamandan bağımsız sadece gecikme sayısına dayalı olmalıdır. Dolayısıyla; E(z t ) =µ V(z t ) = σ 2 cov(z t,z t+k ) = γ k eşitliklerinin hepsi sağlanmalıdır. 64

65 Eğer bir seri trende sahip ise bu serinin beklenen değeri ya da bir başka deyişle ortalama düzeyi (zamanla ortalama devamlı artıyor ya da azalıyor) genellikle zamana bağlı olacak ve serinin gözlemleri arasında da bir ilişki olacaktır. Yani, elde edilen son gözlem bir önceki ya da daha önceki gözlemlerden etkileniyor olacaktır. Dolayısıyla, yaklaşık tüm gecikmeler için, H 0 : r k = 0 yokluk hipotezi reddedilecektir. 65

66 Buradan, gecikmeler arasındaki ilişkiler önemli ise bu serinin durağan olmadığının anlaşılabileceği sonucu çıkmaktadır. Bu sonuca göre eğer ACF grafiğinde gecikmelere ait genelde önemli ilişkiler, yani iki güven sınırını geçen ilişkiler var ise «bu seri durağan değildir» denir. Dolayısıyla, uygulamalarda serinin durağan olup olmadığının kontrolü ACF grafikleri ile yapılmaktadır. 66

67 Eğer bir seri d kez farkı alınarak durağan hale geliyorsa bu serilere fark durağan serileri adı verilmektedir. Bu seriler, ayrıca d inci dereceden bütünleşik seriler adını da almakta ve I(d) biçiminde gösterilmektedir. Bu serilerin analizi Box-Jenkins modelleri kullanılarak yapılır. Eğer bir seri fark işlemiyle durağan hale getirilmiyor onun yerine regresyon analizi ile inceleniyorsa, başka bir deyişle regresyon varsayımlarını sağlıyorsa bu tür serilere trend durağan seriler denmektedir. 67

68 Örnek: Aşağıdaki ACF grafiğinden serinin durağan olup olmadığını tartışınız. 68

69 Örnek: Aşağıdaki ACF grafiğinden serinin durağan olup olmadığını tartışınız. 69

70 I. BEYAZ GÜRÜLTÜ SERİSİ Eğer bir seri beyaz gürültü serisi ise: E(z t ) =µ V(z t ) = σ 2 cov(z t,z t+k ) = 0 koşulları sağlanmalıdır. Beyaz gürültü serisi rasgele hareketlere sahip modellenemez bir seri iken durağan serilerin hareketlerinin belli bir sistematiği vardır ve bu nedenle modellenebilmektedir. 70

71 Beyaz gürültü serisinin tüm gecikmelerinden otokorelasyon ve kısmi otokorelasyon değerleri önemsizdir. Böylece; H 0 : r k = 0 ve H 0 : r kk = 0 yokluk hipotezleri tüm gecikmelerde kabul edilmektedir. Ancak uygulamalarda bazen güven sınırını biraz geçen ya da yokluk hipotezi kabul edilemeyen bir iki otokorelasyon değeri olduğu halde bu serilere de beyaz gürültü serisi denilebilmektedir. Fakat bu sınırı aşan otokorelasyon ya da kısmi otokorelasyon değeri kesinlikle ilk gecikmeye ait olmamalıdır. 71

72 72

73 73

74 Örnek: Aşağıda verilen ACF ve PACF grafiklerinden seriyi yorumlayınız. 74

75 J. HATA TERİMİ 75

76 K. ZAMAN SERİSİNİN DÜZLEŞTİRİLMESİ Mevsimsel, döngüsel veya düzensiz dalgalanmaları yok etme ya da belli bir miktar düzleştirme amacıyla basit hareketli ortalama ya da merkezsel hareketli ortalama işlemlerine ihtiyaç duyulmaktadır. 76

77 1. Basit hareketli ortalama 77

78 Serinin iyice düzleşmesi isteniyorsa k büyük seçilmeli, ancak seri yine dalgalanmalara sahip olsun deniliyorsa bu durumda k küçük seçilmelidir. Bunun yanında k değeri genellikle periyot ile aynı büyüklükte tercih edilmektedir. Ayrıca germe büyüdükçe kayıp gözlem sayısının da artacağı unutulmamalıdır. 78

79 2. Merkezsel Hareketli Ortalama Merkezsel hareketli ortalamanın basit hareketli ortalamadan farkı, kullanılan gözlemlerin seçimindedir. Basit hareketli ortalamada hep geçmiş dönemlere ait veriler kullanılırken, merkezsel hareketli ortalamada hem geçmiş hem de gelecek dönemlere ait veriler kullanılır. Örneğin, germe sayısı 5 iken, merkezsel hareketli ortalama değeri bulunmak isteniyorsa iki dönem önceki, iki dönem sonraki ve o dönemdeki verilerin ortalaması alınmaktadır. 79

80 80

81 81

82 82

83 L.ENDEKS SAYILAR Ekonomi ve işletme ile ilgili zaman serilerine ait birçok istatistikler endeks sayılar yapısında ifade edilir. Bunun nedeni endeks sayıların zaman serilerinin zaman içinde nasıl bir değişim gösterdiğinin kolay bir ölçümü olmasındandır. Bu ölçüm değerleri tüm alınan dönemlere ait verilerin belirlenen bir dönemin verisine oranının 100 ile çarpılmasından elde edilmektedir. 83

84 Belirlenen bu döneme temel dönem adı verilmektedir. Örneğin, TÜİK Türkiye verileri için 1994 yılını temel dönem olarak alırsa, Türkiye nin zaman serilerinin 1994 yılına ait endeks değerleri daima 100 olmaktadır. Bu seçim işlemi tamamen araştırmacının kararıdır. Fakat, araştırmacı ortalamaya yakın değere sahip veriye karşılık gelen bir dönemi temel dönem olarak seçmelidir. Uç değerlere sahip verilere karşılık gelen dönemler temel dönem olarak seçilmezler. 84

85 Zaman serileri analizinde yaygın olarak kullanılan üç tür endeks vardır. Bunlar, fiyatlarla ilgili zaman serileri verileri kullanılarak elde edilen fiyat indeksi, tüketilen ya da üretilen miktarlarla ilgili zaman serileri verileri kullanılarak hesaplanan miktar indeksi ve fiyatlarla miktarların çarpılmasından bulunan toplam satışlarla ilgili zaman serileri verilerinden yararlanarak elde edilen satış endeksidir. 85

86 1. Basit Endeks 86

87 2. Birleşik Endeks 87

88 3. Laspeyres Endeksi 88

89 4. Paasche Endeksi 89

90 5. İdeal Endeks 90

91 6. Temel Dönemin Değiştirilmesi 91

92 M. REEL KAVRAMI 92

93 N. KİŞİ BAŞINA KAVRAMI Gelir, gider, üretim, tüketim, harcama tasarruf gibi seriler tek başlarına yorum bakımından yeterli bir bilgiye sahip değillerdir. Örneğin, Türkiye nin geliri ile Kuveyt in gelirinin karşılaştırmak ve Türkiye nin gelirinin daha fazla olduğu sonucuna varmak anlamlı değildir, çünkü burada incelenmek istenen gelir düzeyi olduğundan bakılması gereken seri kişi başına düşen gelir olmalıdır. Kişi başına düşen gelir olmalıdır. Kişi başına düşen gelir serisine bakıldığında Kuveyt in gelir düzeyinin Türkiye nin gelir düzeyinden çok daha yüksek olduğu anlaşılır. 93

94 O. EKSİK VERİLERİN TAMAMLANMASI Zaman serileri analizinde gözlemlerin birbirine eşit aralıklarla elde edilmesi gerekmektedir. Bu özellikten dolayı çoğu zaman serilerinde eksik gözlem problemi yaşanabilmektedir. Bu problemin yaşanmaması için verilerin değişmeyen bir sistem içinde ya da büyük bir özenle gözlemlenmesi gerekmektedir. Eksik verilerle zaman serileri analizinin yapılması özellikle yorum bakımından birtakım sorunlara neden olduğundan bu eksik verilerin uygun bir yöntemle tahmin edilmesi gereklidir. 94

95 Bu yöntemler 4 farklı başlıkta toplanır: 1. Serini ortalamasının bulunması ve bu ortalama değerinin eksik gözlem yerine konulması. 2. Eksik verinin bulunduğu dönemlere hareketli ortalama işlemi uygulanarak eksik verinin tahmin edilmesi. 3. Bir önceki dönemin verisinin eksik gözlem yerine konulması. 4. Trend terimi (t) bağımsız değişken, zaman serisi bağımlı değişken olmak üzere regresyon uygulanarak eksik veri tahmin edilir. Burada T gözlem sayısı olmak üzere t=1, 2,, T biçiminde olduğu unutulmamalıdır. 95

96 Kaynak Kitaplar SPSS UYGULAMALI ZAMAN SERİLERİ ANALİZİNE GİRİŞ ; DR. CEM KADILAR EKONOMETRİK ZAMAN SERİLERİ ANALİZİ EVİEWS UYGULAMALI; PROF.DR. MUSTAFA SEVÜKTEKİN, ARAŞ.GÖR. MEHMET NARGELEÇEKENLER, NOBEL YAYIN DAĞITIM GELENEKSEL ZAMAN SERİSİ YÖNTEMLERİ; PROF.DR. IŞIL AKGÜL, DER YAYINLARI 96

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serileri IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere sahip değișkenlere zaman serisi adı verilmektedir. Genel olarak zaman serisi,

Detaylı

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr.

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr. Zaman Serileri-1 If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere

Detaylı

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ 1 A. GİRİŞ Gözlemlerin belirli bir dönem için gün, hafta, ay, üç ay, altı ay, yıl gibi birbirini izleyen eşit aralıklarla yapılması ile elde edilen seriler zaman

Detaylı

ÜSTEL DÜZLEŞTİRME YÖNTEMİ

ÜSTEL DÜZLEŞTİRME YÖNTEMİ ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik

Detaylı

ZAMAN SERİSİ SÜREÇLERİ Durağan ve Durağan Olmayan Zaman Serileri

ZAMAN SERİSİ SÜREÇLERİ Durağan ve Durağan Olmayan Zaman Serileri ZAMAN SERİSİ SÜREÇLERİ Durağan ve Durağan Olmayan Zaman Serileri 1 Zaman Serileri Analizi Zaman Serisi Modelleri Veri Üretme Süreci(DGP) Stokastik Süreçler Durağan Stokastik Süreçler Durağan Stokastik

Detaylı

ZAMAN SERİLERİNDE REGRESYON ANALİZİ

ZAMAN SERİLERİNDE REGRESYON ANALİZİ ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip

Detaylı

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci DOĞRUSAL ZAMAN SERİSİ MODELLERİ Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci Tek Değişkenli Zaman Serisi Modelleri Ekonomik verilerin analizi ile ekonomik değişkenlerin gelecekte alabilecekleri

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

ALIŞTIRMA 1 ULUSAL SINAİ ENDEKS

ALIŞTIRMA 1 ULUSAL SINAİ ENDEKS ALIŞTIRMA 1 ULUSAL SINAİ ENDEKS Bu çalışmada Ulusal Sınai Endeks serisiyle ilgili analizler yapılacaktır. Öncelikle seri oluşturulur. Data dan Define Dates e girilir oradan weekly,days(5) işaretlenir ve

Detaylı

009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

İSTATİSTİK I KISA ÖZET KOLAYAOF

İSTATİSTİK I KISA ÖZET KOLAYAOF DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ. İSTATİSTİK I KISA ÖZET KOLAYAOF 2 Kolayaof.com

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Hareketli Ortalama Modelleri MA(q) Süreci

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Hareketli Ortalama Modelleri MA(q) Süreci DOĞRUSAL ZAMAN SERİSİ MODELLERİ Durağan ARIMA Modelleri: Hareketli Ortalama Modelleri MA(q) Süreci Hareketli Ortalama Süreci:MA(q) Hareketli Ortalama sürecini yapısını ortaya koymak için önce hisse senedi

Detaylı

Tahminleme Yöntemleri

Tahminleme Yöntemleri PAU ENDÜSTRİ MÜHENDİSLİĞİ IENG 318 - Üretim Planlama ve Kontrolü Tahminleme Yöntemleri 2012-2013 Bahar Yarıyılı 1 İçerik 1. Talep Tahmini Kavramı 2. Talep Tahminlerinin Kullanım Yeri 3. Talep Tahmin Modelleri

Detaylı

Tahminleme Yöntemleri-2

Tahminleme Yöntemleri-2 PAU ENDÜSTRİ MÜHENDİSLİĞİ IENG 318 - Üretim Planlama ve Kontrolü 1 Tahminleme Yöntemleri-2 İçerik 1. Mevsimsel Değişim Bazlı Teknik 2. Box-Jenkins Modelleri 3. Tahmin Yöntemlerini Uygulamada Dikkat Edilmesi

Detaylı

İSTATİSTİK STATISTICS (2+0) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI

İSTATİSTİK STATISTICS (2+0) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI İSTATİSTİK STATISTICS (+) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI KONU BAŞLIKLARI :. İSTATİSTİĞE GİRİŞ. VERİLERİN DÜZENLENMESİ. MERKEZİ EĞİLİM ÖLÇÜLERİ.

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

Sürelerine Göre Tahmin Tipleri

Sürelerine Göre Tahmin Tipleri Girişimcilik Bölüm 5: Talep Tahmini scebi@ktu.edu.tr 5.1. Talep Tahmini Tahmin: Gelecek olayları önceden kestirme bilim ve sanatı. İstatistiksel Tahmin: Geçmiş verileri matematiksel modellerde kullanarak

Detaylı

ALIŞTIRMA 2 GSYİH. Toplamsal Ayrıştırma Yöntemi

ALIŞTIRMA 2 GSYİH. Toplamsal Ayrıştırma Yöntemi ALIŞTIRMA 2 GSYİH Bu çalışmamızda GSYİH serisinin toplamsal ve çarpımsal ayrıştırma yöntemine göre modellenip modellenemeyeceği incelenecektir. Seri ilk olarak toplamsal ayrıştırma yöntemine göre analiz

Detaylı

İÇİNDEKİLER 1. GİRİŞ...

İÇİNDEKİLER 1. GİRİŞ... İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel

Detaylı

Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu

Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu Prof. Dr. Ahmet BurçinYERELİ Hacettepe Üniversitesi, İktisadi ve İdari Bilimler Fakültesi,

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

Ekonometrinin Konusu ve Yöntembilimi. Ekonometri Nedir? Ekonometrinin Konusu ve Yöntembilimi. Ekonometri 1 Konu 4 Sürüm 2,0 (Ekim 2011)

Ekonometrinin Konusu ve Yöntembilimi. Ekonometri Nedir? Ekonometrinin Konusu ve Yöntembilimi. Ekonometri 1 Konu 4 Sürüm 2,0 (Ekim 2011) Ekonometri Nedir? ve Yöntembilimi Ekonometri 1 Konu 4 Sürüm 2,0 (Ekim 2011) Ders Planı ve Yöntembilimi 1 ve Yöntembilimi Sözcük Anlamı ile Ekonometri Ekonometri Sözcük anlamı ile ekonometri, ekonomik ölçüm

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

İSTATİSTİK I. Giriş. Bölüm 1 Temel Terimler ve Tanımlar İSTATİSTİKLER

İSTATİSTİK I. Giriş. Bölüm 1 Temel Terimler ve Tanımlar İSTATİSTİKLER İSTATİSTİK I Bölüm 1 Temel Terimler ve Tanımlar 1 2 Giriş İSTATİSTİKLER Genel olarak araştırmalarda, büyük veri gruplarının içinden daha küçük veri grupları seçilerek büyük veri gruplarının hakkında bilgi

Detaylı

Nedensel Modeller Y X X X

Nedensel Modeller Y X X X Tahmin Yöntemleri Nedensel Modeller X 1, X 2,...,X n şeklinde tanımlanan n değişkenin Y ile ilgili olmakta; Y=f(X 1, X 2,...,X n ) şeklinde bir Y fonksiyonu tanımlanmaktadır. Fonksiyon genellikle aşağıdaki

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

Ders Planı: - Talep Yapıları. - Tahmin Etmede Önemli Kararlar. - Yargısal Yöntemler. - Nedensel Yöntemler: Doğrusal Regresyon

Ders Planı: - Talep Yapıları. - Tahmin Etmede Önemli Kararlar. - Yargısal Yöntemler. - Nedensel Yöntemler: Doğrusal Regresyon Ders Planı: - Talep Yapıları - Tahmin Etmede Önemli Kararlar - Yargısal Yöntemler - Nedensel Yöntemler: Doğrusal Regresyon - Zaman Serisi Yöntemleri - Zaman Serisi Yönteminin Seçimi - Çoklu Tekniklerin

Detaylı

Son Çeyrekte Büyüme Hız Kazandı

Son Çeyrekte Büyüme Hız Kazandı Ekonomik Görünüm ve Tahminler: Ocak 2011 13 Ocak 2011 Son Çeyrekte Büyüme Hız Kazandı Zümrüt İmamoğlu* ve Barış Soybilgen Yönetici Özeti TÜİK'in açıkladığı rakamlara göre, sanayi üretimi (SÜE) ve ihracat

Detaylı

BAKANLAR KURULU SUNUMU

BAKANLAR KURULU SUNUMU BAKANLAR KURULU SUNUMU Murat Çetinkaya Başkan 12 Aralık 2016 Ankara Sunum Planı Küresel Gelişmeler İktisadi Faaliyet Dış Denge Parasal ve Finansal Koşullar Enflasyon 2 Genel Değerlendirme Yılın üçüncü

Detaylı

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

Ekonomik Görünüm ve Tahminler: Nisan 2015

Ekonomik Görünüm ve Tahminler: Nisan 2015 Ekonomik Görünüm ve Tahminler: Nisan 215 BÜYÜME DÜŞMEYE DEVAM EDİYOR Zümrüt İmamoğlu* ve Barış Soybilgen ** 13 Nisan 215 Yönetici Özeti Mevsim ve takvim etkisinden arındırılmış Sanayi Üretim Endeksi (SÜE)

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık - I Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kes1rim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmak7r. ü Bu anlamda, anakütleden çekilen

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

ARIMA MODELLERİ KULLANILARAK YAPILAN ENERJİ TÜKETİMİ TAHMİN ÇALIŞMASI

ARIMA MODELLERİ KULLANILARAK YAPILAN ENERJİ TÜKETİMİ TAHMİN ÇALIŞMASI ARIMA MODELLERİ KULLANILARAK YAPILAN ENERJİ TÜKETİMİ TAHMİN ÇALIŞMASI Mehmet KURBAN 1 Ümmühan BAŞARAN FİLİK 2 Sevil ŞENTÜRK 3 1,2 Elektrik ve Elektronik Mühendisliği Bölümü, Mühendislik-Mimarlık Fakültesi,

Detaylı

Eğitim / Danışmanlık Hizmetinin Tanımı

Eğitim / Danışmanlık Hizmetinin Tanımı Eğitim / Danışmanlık Hizmetinin Tanımı 1. Proje Kapsamında Eğitim Talep Edilmiş ise, Eğitimin İçeriği Hakkında bilgi veriniz. Ekonometri alanı iktisat teorisi, işletme, matematik ve istatistiğin birleşmesiyle

Detaylı

Ekonomik Görünüm ve Tahminler: Ekim 2014

Ekonomik Görünüm ve Tahminler: Ekim 2014 Ekonomik Görünüm ve Tahminler: Ekim 2014 ILIMLI BÜYÜME DEVAM EDİYOR Zümrüt İmamoğlu* ve Barış Soybilgen ** 24 Ekim 2014 Yönetici Özeti Mevsim ve takvim etkisinden arındırılmış Sanayi Üretim Endeksi (SÜE)

Detaylı

FİNANSAL YÖNETİM. Finansal Planlama Nedir?

FİNANSAL YÖNETİM. Finansal Planlama Nedir? FİNANSAL YÖNETİM FİNANSAL PLANLAMA Yrd.Doç.Dr. Serkan ÇANKAYA Finansal analiz işletmenin geçmişe dönük verilerine dayanmaktaydı ancak finansal planlama ise geleceğe yönelik hareket biçimini belirlemeyi

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( )

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( ) İKİ DEĞİŞKENLİ OLASILIK Rassal bir deneme yapılmakta ve farklı iki olay ile ilgilenilmektedir. A 1, A 2,,A i olayları bağdaşmaz ve bütünü kapsayıcıdır. B 1, B 2,,B j olayları bağdaşmaz ve bütünü kapsayıcıdır.

Detaylı

HANEHALKI İŞGÜCÜ ANKETİNDE YAPILAN YENİ DÜZENLEMELERE İLİŞKİN AÇIKLAMALAR

HANEHALKI İŞGÜCÜ ANKETİNDE YAPILAN YENİ DÜZENLEMELERE İLİŞKİN AÇIKLAMALAR HANEHALKI İŞGÜCÜ ANKETİNDE YAPILAN YENİ DÜZENLEMELERE İLİŞKİN AÇIKLAMALAR (1) Türkiye İstatistik Kurumu, işgücü piyasasının temel veri kaynağını oluşturan hanehalkı işgücü araştırmasını1988 yılından beri,

Detaylı

Su Ürünlerinde Temel İstatistik. Ders 2: Tanımlar

Su Ürünlerinde Temel İstatistik. Ders 2: Tanımlar Su Ürünlerinde Temel İstatistik Ders 2: Tanımlar Karakter Araştırma yada istatistiksel analizde ele alınan ünitenin yapısal (morfolojik, fizyolojik, psikolojik, estetik, vb.) özellikleridir. Tüm karakterler

Detaylı

Ekonometrinin Konusu ve Yöntembilimi. Ekonometri Nedir? Ekonometrinin Konusu ve Yöntembilimi. Ekonometri 1 Konu 4 Sürüm 2,0 (Ekim 2011)

Ekonometrinin Konusu ve Yöntembilimi. Ekonometri Nedir? Ekonometrinin Konusu ve Yöntembilimi. Ekonometri 1 Konu 4 Sürüm 2,0 (Ekim 2011) Ekonometri Nedir? ve Yöntembilimi Ekonometri 1 Konu 4 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) lisansı

Detaylı

İşgücü Piyasası Görünümü: Ekim 2017

İşgücü Piyasası Görünümü: Ekim 2017 İşgücü Piyasası Görünümü: Ekim 2017 16 Ekim 2017 İŞSİZLİKTE BEKLENMEDİK ARTIŞ Seyfettin Gürsel *, Mine Durmaz Aslan ve Yazgı Genç*** Yönetici Özeti Mevsim etkilerinden arındırılmış işgücü verilerine göre

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

MAKROEKONOMİ - 2. HAFTA

MAKROEKONOMİ - 2. HAFTA MAKROEKONOMİ - 2. HAFTA Ekonomik Faaliyetlerin Döngüsü Mal ve Hizmetler C HANEHALKLARI Tüketim Harcamaları Faktör Ödemeleri B A FİRMALAR Üretim Faktörleri GSYH ÖLÇME YÖNTEMLERI Üretim Yöntemi: Firmaların

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

Zaman Serisi Verileriyle Regresyon Analizi

Zaman Serisi Verileriyle Regresyon Analizi Zaman Serisi Verileriyle Regresyon Analizi Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi Iktisat Bölümü Textbook: Introductory Econometrics (4th ed.) J. Wooldridge 13 Mart 2013 Ekonometri II: Zaman Serisi

Detaylı

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A 2Q 10 BS 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek tablolar ve f ormüller bu kita p ç ığın sonunda ver-ilmiştir. 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre cevaplandırılacaktır

Detaylı

BÖLÜM 9. Ekonomik Dalgalanmalara Giriş

BÖLÜM 9. Ekonomik Dalgalanmalara Giriş BÖLÜM 9 Ekonomik Dalgalanmalara Giriş Çıktı ve istihdamdaki kısa dönemli dalgalanmalara iş çevrimleri diyoruz Bu bölümde ekonomik dalgalanmaları açıklamaya çalışıyoruz ve nasıl kontrol edilebileceklerini

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

KONU 1: TÜRKİYE EKONOMİSİNDE ( ) İŞGÜCÜ VERİMLİLİĞİ ve YATIRIMLAR İLİŞKİSİ (DOĞRUSAL BAĞINTI ÇÖZÜMLEMESİ) Dr. Halit Suiçmez(iktisatçı-uzman)

KONU 1: TÜRKİYE EKONOMİSİNDE ( ) İŞGÜCÜ VERİMLİLİĞİ ve YATIRIMLAR İLİŞKİSİ (DOĞRUSAL BAĞINTI ÇÖZÜMLEMESİ) Dr. Halit Suiçmez(iktisatçı-uzman) KONU 1: TÜRKİYE EKONOMİSİNDE (1987-2007) İŞGÜCÜ VERİMLİLİĞİ ve YATIRIMLAR İLİŞKİSİ (DOĞRUSAL BAĞINTI ÇÖZÜMLEMESİ) Dr. Halit Suiçmez(iktisatçı-uzman) NE YAPILDI? ÖZET - Bu çalışmada, işgücü verimliliği

Detaylı

İktisadi Yönelim Anketi ve Reel Kesim Güven Endeksi ne İlişkin Yöntemsel Açıklama

İktisadi Yönelim Anketi ve Reel Kesim Güven Endeksi ne İlişkin Yöntemsel Açıklama İktisadi Yönelim Anketi ve Reel Kesim Güven Endeksi ne İlişkin Yöntemsel Açıklama İstatistik Genel Müdürlüğü Reel Sektör Verileri Müdürlüğü İçindekiler I- Amaç... 3 II- Çerçeve... 3 III- Kapsam... 3 IV-

Detaylı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı DENEY 0 Bölüm 1 - Ölçme ve Hata Hesabı Amaç: Ölçüm metodu ve cihazına bağlı hata ve belirsizlikleri anlamak, fiziksel bir niceliği ölçüp hata ve belirsizlikleri tespit etmek, nedenlerini açıklamak. Genel

Detaylı

İstatistik. Temel Kavramlar Dr. Seher Yalçın 1

İstatistik. Temel Kavramlar Dr. Seher Yalçın 1 İstatistik Temel Kavramlar 26.12.2016 Dr. Seher Yalçın 1 Evren (Kitle/Yığın/Popülasyon) Herhangi bir gözlem ya da inceleme kapsamına giren obje ya da bireylerin oluşturduğu bütüne ya da gruba Evren veya

Detaylı

Ekonomi Bülteni. 9 Mayıs 2016, Sayı: 19. Yurt Dışı Gelişmeler Yurt İçi Gelişmeler Finansal Göstergeler Haftalık Veri Akışı

Ekonomi Bülteni. 9 Mayıs 2016, Sayı: 19. Yurt Dışı Gelişmeler Yurt İçi Gelişmeler Finansal Göstergeler Haftalık Veri Akışı Ekonomi Bülteni, Sayı: 19 Yurt Dışı Gelişmeler Yurt İçi Gelişmeler Finansal Göstergeler Haftalık Veri Akışı Ekonomik Araştırma ve Strateji Dr. Saruhan Özel Ezgi Gülbaş Orhan Kaya İnci Şengül 1 DenizBank

Detaylı

SEKTÖREL GELİŞMELER İÇİNDEKİLER Otomotiv. Beyaz Eşya. İnşaat. Turizm. Enerji. Diğer Göstergeler. Sektörel Gelişmeler /Ekim

SEKTÖREL GELİŞMELER İÇİNDEKİLER Otomotiv. Beyaz Eşya. İnşaat. Turizm. Enerji. Diğer Göstergeler. Sektörel Gelişmeler /Ekim SEKTÖREL GELİŞMELER İÇİNDEKİLER Otomotiv İç Tüketim Göstergesi Olan Otomobil İç Satışları Üçüncü Çeyrekte Artmaya Devam Etti. Beyaz Eşya İç Tüketim Göstergesi Olan Beyaz Eşya İç Satışlar Üçüncü Çeyrekte

Detaylı

12,00 10,00 8,00 6,00 4,00 2,00 0,00

12,00 10,00 8,00 6,00 4,00 2,00 0,00 EKONOMİ BÜLTENİ EKONOMİK ARAŞTIRMALAR BİRİMİ 01-15 KASIM 2013 SAYI:61 Yurt İçi Gelişmeler TÜFE yıllık bazda % 7,71 e geriledi. TÜFE, Eylül ayında bir önceki aya göre %1,80 artış gözlenirken; bir önceki

Detaylı

7. Orta Vadeli Öngörüler

7. Orta Vadeli Öngörüler 7. Orta Vadeli Öngörüler Bu bölümde tahminlere temel oluşturan varsayımlar özetlenmekte, bu çerçevede üretilen orta vadeli enflasyon ve çıktı açığı tahminleri ile para politikası görünümü önümüzdeki üç

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 ÜNİTE:1 İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2 Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 Ortalamalar, Değişkenlik ve Dağılma Ölçüleri ÜNİTE:4 Endeksler ÜNİTE:5

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

VERİ SETİNE GENEL BAKIŞ

VERİ SETİNE GENEL BAKIŞ VERİ SETİNE GENEL BAKIŞ Outlier : Veri setinde normal olmayan değerler olarak tanımlanır. Ders: Kantitatif Yöntemler 1 VERİ SETİNE GENEL BAKIŞ Veri setinden değerlendirme başlamadan çıkarılabilir. Yazım

Detaylı

Büyüme Değerlendirmesi : Çeyrek

Büyüme Değerlendirmesi : Çeyrek Büyüme Değerlendirmesi : 2015 1. Çeyrek 10 Haziran 2015 NET İHRACAT BÜYÜMEYİ SIRTLADI Seyfettin Gürsel, Zümrüt İmamoğlu ve Barış Soybilgen Yönetici özeti TÜİK'in bugün açıkladığı rakamlara göre Gayri Safi

Detaylı

FİYATLAR GENEL DÜZEYİ VE MİLLİ GELİR DENGESİ

FİYATLAR GENEL DÜZEYİ VE MİLLİ GELİR DENGESİ FİYATLAR GENEL DÜZEYİ VE MİLLİ GELİR DENGESİ Bu bölümde Fiyatlar genel düzeyi (Fgd) ile MG dengesi arasındaki ilişkiler incelenecek. Mg dengesi; Toplam talep ile toplam arzın kesiştiği noktada bulunacaktır.

Detaylı

İşgücü Piyasası Görünümü: Eylül 2017

İşgücü Piyasası Görünümü: Eylül 2017 İşgücü Piyasası Görünümü: Eylül 2017 15 Eylül 2017 HİZMET İSTİHDAMI İŞSİZLİĞİ DÜŞÜRDÜ Seyfettin Gürsel * ve Mine Durmaz Yönetici Özeti Mevsim etkilerinden arındırılmış işgücü verilerine göre tarım dışı

Detaylı

HABER BÜLTENİ 05.01.2015 Sayı 9

HABER BÜLTENİ 05.01.2015 Sayı 9 HABER BÜLTENİ 05.01.2015 Sayı 9 Konya Sanayi Odası (KSO) ve Türkiye Ekonomi Politikaları Araştırma Vakfı (TEPAV) işbirliğinde gerçekleştirilen Konya İmalat Sanayi Güven Endeksi Anketi, Türkiye nin, yerel

Detaylı

Hareketli Ortalama ile Mevsimsel Ayrıştırma (Yöntem-2)

Hareketli Ortalama ile Mevsimsel Ayrıştırma (Yöntem-2) Tahmin Yöntemleri Hareketli Ortalama ile Mevsimsel Ayrıştırma (Yöntem-2) Mevsimsel etkenin tahmininde kullanılan diğer bir yöntem de N dönemlik hareketli ortalamaların alınmasıdır. Burada N değeri aynı

Detaylı

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir.

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir. BÖLÜM 1: FREKANS DAĞILIMLARI 1.1. Giriş İstatistik, rasgelelik içeren olaylar, süreçler, sistemler hakkında modeller kurmada, gözlemlere dayanarak bu modellerin geçerliliğini sınamada ve bu modellerden

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

2012 Nisan ayında işsizlik oranı kuvvetli bir düşüş ile 2012 Mart ayına göre 0,9 puan azalarak % 9 seviyesinde

2012 Nisan ayında işsizlik oranı kuvvetli bir düşüş ile 2012 Mart ayına göre 0,9 puan azalarak % 9 seviyesinde 1 16-31 Temmuz 2012 SAYI: 41 MÜSİAD Araştırmalar ve Yayın Komisyonu İşsizlikte Belirgin Düşüş 2012 Nisan ayında işsizlik oranı kuvvetli bir düşüş ile 2012 Mart ayına göre 0,9 puan azalarak % 9 seviyesinde

Detaylı

Kantitatif Tahmin Yöntemleri. Yrd.Doç.Dr. S.Kerem AYTULUN

Kantitatif Tahmin Yöntemleri. Yrd.Doç.Dr. S.Kerem AYTULUN Kantitatif Tahmin Yöntemleri Yrd.Doç.Dr. S.Kerem AYTULUN Tahmin Nedir? Günlük hayatta bilinçli veya bilinçsiz birçok tahminde bulunuruz. Hava durumu, trafik, sınav soruları, kişisel ilişkiler... Peki Firmalar???

Detaylı

MESLEK KOMİTELERİ DURUM TESPİT ANKETİ

MESLEK KOMİTELERİ DURUM TESPİT ANKETİ SONUÇLARI DURUM TESPİT ANKETİ MESLEK KOMİTELERİ Temmuz 15 Ekonomik Araştırmalar Şubesi 1 1 1 s 8 6 97,6 SANAYİ GELİŞİM ENDEKSİ 66,3 81,4 18, 15,2 SANAYİ GELİŞİM ENDEKSİ (SGE) (Üretim, İç Satışlar, İhracat,

Detaylı

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir?

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? 9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? Ardışık bağımlılık sorunu, hata terimleri arasında ilişki olmadığı (E(u i,u j ) = 0, i j) varsayımının geçerli olmamasıdır.

Detaylı

tepav Nisan2011 N DEĞERLENDİRMENOTU 2008 Krizinin Kadın ve Erkek İşgücüne Etkileri Türkiye Ekonomi Politikaları Araştırma Vakfı

tepav Nisan2011 N DEĞERLENDİRMENOTU 2008 Krizinin Kadın ve Erkek İşgücüne Etkileri Türkiye Ekonomi Politikaları Araştırma Vakfı DEĞERLENDİRMENOTU Nisan2011 N201127 tepav Türkiye Ekonomi Politikaları Araştırma Vakfı Ayşegül Dinççağ 1 Araştırmacı, Ekonomi Etütleri Hasan Çağlayan Dündar 2 Araştırmacı, Ekonomi Etütleri 2008 Krizinin

Detaylı

Finansal Yatırım ve Portföy Yönetimi. Ders 5

Finansal Yatırım ve Portföy Yönetimi. Ders 5 Finansal Yatırım ve Portföy Yönetimi Ders 5 FİNANSIN TEMEL SORULARI: Riski nasıl tanımlarız ve ölçeriz? Farklı finansal ürünlerin riskleri birbirleri ile nasıl alakalıdır? Riski nasıl fiyatlarız? RİSK

Detaylı

İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL oda no: 303 (T4 / EEM)

İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL oda no: 303 (T4 / EEM) İşaret ve Sistemler İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL aakgul@sakarya.edu.tr oda no: 303 (T4 / EEM) Kaynaklar: 1. Signals and Systems, Oppenheim. (Türkçe versiyonu: Akademi Yayıncılık)

Detaylı

TÜRKİYE EKONOMİSİ MAKRO EKONOMİK GÖSTERGELER (NİSAN 2015)

TÜRKİYE EKONOMİSİ MAKRO EKONOMİK GÖSTERGELER (NİSAN 2015) TÜRKİYE EKONOMİSİ MAKRO EKONOMİK GÖSTERGELER (NİSAN 2015) Hane Halkı İşgücü İstatistikleri 2014 te Türkiye de toplam işsizlik %10,1, tarım dışı işsizlik ise %12 olarak gerçekleşti. Genç nüfusta ise işsizlik

Detaylı

İSTATİSTİK VE OLASILIK SORULARI

İSTATİSTİK VE OLASILIK SORULARI İSTATİSTİK VE OLASILIK SORULARI SORU 1 Meryem, 7 arkadaşı ile bir voleybol maçına katılmayı planlamaktadır. Davet ettiği arkadaşlarından herhangi bir tanesinin EVET deme olasılığı 0,8 ise, en az 3 arkadaşının

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

DURGUNLUK VE MALİYE POLİTİKASI

DURGUNLUK VE MALİYE POLİTİKASI 1 DURGUNLUK VE MALİYE POLİTİKASI Durgunluk Tanımı Toplam arz ile toplam talep arasındaki dengesizlik talep eksikliği şeklinde ortaya çıkmakta, toplam talebin uyardığı üretim düzeyinin o ekonominin üretim

Detaylı

İMALAT SANAYİ EĞİLİM ANKETLERİ VE GELECEĞİN TAHMİNİ

İMALAT SANAYİ EĞİLİM ANKETLERİ VE GELECEĞİN TAHMİNİ İ&tanbul Üniversitesi İktisat Fakültesi Ord. Prof.'Şükrü Baban'a Armağan İstanbul - 1984 İMALAT SANAYİ EĞİLİM ANKETLERİ VE GELECEĞİN TAHMİNİ Dr. Süleyman Özmucur" (*) 1. GİRİŞ: Bu makalenin amacı Devlet

Detaylı

Temel Kavramlar. Bağlanım Çözümlemesi. Temel Kavramlar. Ekonometri 1 Konu 6 Sürüm 2,0 (Ekim 2011)

Temel Kavramlar. Bağlanım Çözümlemesi. Temel Kavramlar. Ekonometri 1 Konu 6 Sürüm 2,0 (Ekim 2011) Bağlanım Çözümlemesi Temel Kavramlar Ekonometri 1 Konu 6 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

Detaylı

Endüstri Mühendisliğine Giriş

Endüstri Mühendisliğine Giriş Endüstri Mühendisliğine Giriş 5 ve 19 Aralık 2012, Şişli-Ayazağa, İstanbul, Türkiye. Yard. Doç. Dr. Kamil Erkan Kabak Endüstri Mühendisliği Bölümü,, Şişli-Ayazağa, İstanbul, Türkiye erkankabak@beykent.edu.tr

Detaylı

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir?

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir? İSTATİSTİK Bir sonuç çıkarmak ya da çözüme ulaşabilmek için gözlem, deney, araştırma gibi yöntemlerle toplanan bilgiye veri adı verilir. Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin

Detaylı

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Elektrik devrelerinde ölçülebilen büyüklükler olan; 5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Akım Gerilim Devrede bulunan kaynakların tiplerine göre değişik şekillerde olabilir. Zamana bağlı

Detaylı

Ekonomik Büyüme ve Tahminler: Ağustos Ekonomik Büyümede Sürpriz. 12 Ağustos Ozan Bakış 1. Yönetici Özeti. Tüketim

Ekonomik Büyüme ve Tahminler: Ağustos Ekonomik Büyümede Sürpriz. 12 Ağustos Ozan Bakış 1. Yönetici Özeti. Tüketim Ekonomik Büyüme ve Tahminler: Ağustos 2016 12 Ağustos 2016 Ekonomik Büyümede Sürpriz Ozan Bakış 1 1 BETAM, ozan.bakis@eas.bau.edu.tr Yönetici Özeti 2016 yılının ilk çeyreğine kıyasla öncü göstergelerde

Detaylı

İşgücü Piyasası Görünümü: Ağustos 2017

İşgücü Piyasası Görünümü: Ağustos 2017 Tarım dışı işgücü ve istihdam (bin kişi) Tarım dışı işsizlik oranı İşgücü Piyasası Görünümü: Ağustos 2017 15 Ağustos 2017 İŞSİZLİK DÜŞÜŞÜNDE DURAKLAMA Seyfettin Gürsel * ve Melike Kökkızıl Yönetici Özeti

Detaylı

SEKTÖREL GELİŞMELER İÇİNDEKİLER Otomotiv. Beyaz Eşya. İnşaat. Ana Metal. Turizm. Enerji. Diğer Göstergeler. Sektörel Gelişmeler /Mart

SEKTÖREL GELİŞMELER İÇİNDEKİLER Otomotiv. Beyaz Eşya. İnşaat. Ana Metal. Turizm. Enerji. Diğer Göstergeler. Sektörel Gelişmeler /Mart SEKTÖREL GELİŞMELER İÇİNDEKİLER Otomotiv Şubat ta Otomotiv İç Satışlarda Hızlı Artış, Otomobil Satışlarından Kaynaklanıyor. Şubat ta Ticari Araç Satışları Gerilerken Ağır Ticari Araç Satışları Sınırlı

Detaylı

Ekonomik Görünüm ve Tahminler: Temmuz 2014

Ekonomik Görünüm ve Tahminler: Temmuz 2014 Ekonomik Görünüm ve Tahminler: Temmuz 2014 11 Temmuz 2014 CARİ AÇIK HIZLA AZALIYOR Zümrüt İmamoğlu* ve Barış Soybilgen ** Yönetici Özeti Mevsim ve takvim etkisinden arındırılmış Sanayi Üretim Endeksi (SÜE)

Detaylı

TÜRKONFED KOBİ PERSPEKTİFİ MAYIS 2016

TÜRKONFED KOBİ PERSPEKTİFİ MAYIS 2016 TÜRKONFED KOBİ PERSPEKTİFİ MAYIS 2016 KOBİ Perspektifi Gelir Tarafını Etkileyecek Makroekonomik Göstergeler Maliyet Kalemlerini Etkileyecek Ekonomik ve Finansal Gelişmeler 2010 Ç1 2010 Ç2 2010 Ç3 2010

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı