Faraday Elektroliz Deneyi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Faraday Elektroliz Deneyi"

Transkript

1 Ünite 1: ATOMUN YAPISI 1. Bölüm: Atom ve Elektrik Michael Faraday 1830 larda sulu çözeltisinden elektrik akımı geçirilen maddenin kimyasal yapısında değişiklik meydana geldiğini saptamıştır. Böylece maddenin elektriksel yapısı hakkında ipuçları elde etmiştir. Soru: Maddenin elektriksel yapısını bilmek bize neyi kazandırır? Cevap: Böylece maddenin temel yapıtaşı olan atomun da daha küçük parçacıklardan oluştuğunu belirleyebiliriz. Faraday Elektroliz Deneyi Elektroliz: Elektrik enerjisi kullanılarak bileşikleri elementlerine ayırma işlemine elektroliz denir. Elektroliz edilecek madde sıvı veya çözelti halinde olmalıdır ve iyonlarına ayrışarak elektrik akımını iletmelidir. Elektrolit: Elektroliz edilecek sıvı veya çözelti halindeki maddelere elektrolit denir. Elektrolitler iyonlarının hareketiyle elektrik akımını iletirler. Asit ve Bazların sulu çözeltileri ile tuzların hem sulu çözeltileri hem de eriyikleri elektrolittir. Elektrot: Elektrolizde çözeltiye, çözeltiden etkilenmeyen iki metal çubuk daldırılır. Bu metal çubuklara elektrot denir. Elektrotlardan güç kaynağının (+) ucuna bağlananına anot, (-) ucuna bağlananına da katot adı verilir. Elektrolit çözeltinin katyonları (+) yüklü olduğu için (-) yüklü katot tarafından çekilir. Yani katyonlar katoda gider ve burada elektron alarak nötrleşirler. Böylece elektrolit bileşiğin

2 katyonu saf ve genellikle katı element olarak katot üzerinde birikir. Katodun kütlesi artar. Elektrolit çözeltinin anyonları (-) yüklü olduğu için (+) yüklü anot tarafından çekilir. Yani anyonlar anoda gider ve burada elektron vererek nötrleşirler. Böylece elektrolit bileşiğin anyonu saf ve genellikle gaz element olarak açığa çıkmış olur. Metal elektrot ta elektron kaybedip (+) yüklü iyon şeklinde çözeltiye geçtiği için anodun kütlesi azalır Katot tepkimesi: (indirgenme) Ag + + e - Ag (k) Anot tepkimesi: (yükseltgenme) Cl - Cl (g) + e - Net tepkime: Ag + + Cl - Ag (k) + Cl (g) M. Faraday elektrolit olan bir AgNO 3 çözeltisini elektroliz etmiştir ve temel sonuca ulaşmıştır: 1- Elektrotlarda toplanan madde miktarı (m) ile devreden geçen yük miktarı (Q) doğru orantılıdır. Bu da, m= A.I.t formülü ile hesaplanır. Burada A, maddeye bağlı bir sabit, I devreden geçen akım miktarı, t saniye cinsinden elektroliz süresi dir. Elekrik yük miktarı=q=i.t olduğuna göre, m= A.Q şeklinde yazılabilir. AgNO 3 çözeltisinden 1,118 mg Ag açığa çıkaran elektrik yük miktarı (Q) = 1 Coulomb tur Coulomb = 1 Faraday lık yük = 1 mol e - yükü =1 eşdeğer kütle (M A/a) (a=değerlik) Örneğin Al un 1 eşdeğer kütlesi = 7/3=9 gram Ca un 1 eşdeğer kütlesi = 40/ = 0 gram Na un 1 eşdeğer kütlesi = 3/1 = 3 gram - Farklı maddeler aynı miktar elektrik akımı ile elektroliz edildiğinde elektrotlarda toplanan madde miktarları elementin değerliğine (a) na bağlıdır. Örneğin, Hg(ClO 4) çözeltisinden (a= 1, Hg + ) 6,05 g Hg biriktirmek için gerekli elektrik yük miktarı Hg (ClO 4) çözeltisinden (a=, Hg + ) geçirildiğinde 1,10 g Hg birikir. Bir başka değişle bir metalin farklı bileşikleri aynı miktar elektrikle elektroliz edildiğinde elde edilen metalin kütleleri arasında basit bir katlı oran vardır. (1,10/6,05= gibi) SONUÇ: Elektroliz deneyinde devreden geçen akım anotta ve kattotta bir miktar madde oluşturduğuna göre elektrik enerjisi ve atom aynı + ve yüklü tanecikler içermektedir. Soru: CaF tuzunun eriyiği 9,65 Amper ile 400 saniye elektroliz ediliyor. Katotta toplanan maddenin kütlesini bulunuz. (Ca:40) 1. yol Q=I.t Q=9, = 3860 Coulomb

3 96500 Coulomb 40/ =0 gram Ca (M A /a) 3860 Coulomb? (=0,8 gram). yol Ca + + e - Ca (k) mol 1mol mol 40 gram Coulomb 1 mol elektron 3860 Coulomb? (=0,04 mol) mol elektron 40 gram Ca 0,04 mol elektron? (=0,8 gram) Soru: Sıvı MgCl 9.65 amperlik bir akımla ve 100 saniye süre ile elektroliz edilirse kattota kaç gram magnezyum (Mg) toplanır) (Mg:4)? Katot Işınları Gazlar normal koşullarda elektriği iletmez, ancak iki ucuna elektrot konmuş ve içindeki gaz basıncı düşürülmüş bir cam tüp yüksek voltajda bir elektrik akımına bağlandığında, katottan anoda doğru giden ışınların varolduğu gözlenmiştir(plücker,1858) da Goldstein bu ışınlara katot ışınları adını vermiştir. Thomson katot ışınlarının yalnızca sıradan parçacıklar değil, aslında o zamana dek bölünemez olduğu düşünülen atomun yapıtaşları olduğunu ortaya koymuştur. Katot ışınlarını elektrik ve manyetik alanda incelemeye devam eden Thomson bu ışınların elektrik alanda (+) plaka tarafından çekilip (-) plaka tarafından itildiğini gözlemlemiş ve katot ışınlarının (-) yüklü olduğunu ve yük/kütle oranını hesaplamıştır. Bu oran e/m = 1, Coulomb/gram dır. (Thomson elektrona ait yük/kütle oranını hesaplamış ancak yükü ve kütleyi ayrı ayrı hesaplayamamıştır.). Bu katot ışınlarına 1891 de G.J. Stoney tarafından elektron adı verilmiştir.

4 SONUÇ: Katot ışınları (-) yüklüdür. Katot ışınlarının özelliği tüpteki gazın ve elektrotların cinsine bağlı değildir. Katot ışınını oluşturan tanecikler hem maddenin hemde elektriğin yapısında vardır. R.A. Millikan Deneyi Thomson bir elektronun yük/kütle (e/m) oranını hesaplamış (1, Coulomb/gram )ancak yükü ve kütlesini ayrı ayrı hesaplayamamıştı. R.A. Millikan meşhur yağ damlası deneyi ile 1 elektronun yükünü -1, Coulomb olarak, Thomson un e/m formulünde yerine koyarak 1 elektronun kütlesini de 9, gram olarak hesaplamıştır. 1 elektronun kütlesi en küçük atom olan Hidrojenin kütlesinden1840 kat daha küçüktür de gerçekleştirilen Millikan deneyinde, çok küçük yağ damlacıkları, yüklü plakalar arasına püskürtülür ve X ışınları ile ışınlandırılır. X ışınlarının havadaki gaz taneciklerine çarparak kopardığı elektronlar, yağ tanecikleri tarafından tutulur ve onların (-) yüklenmesine neden olurlar. Düzenekte üst plaka (+), alt plaka (-) yüklendirilerek, (-) yüklü yağ damlacıklarının düşmesi durdurulabilir. Damlacığın kütlesi ve damlacığı durdurmak için plakalara uygulanacak yük bilinirse, her damlacık üzerindeki yük hesaplanabilir. Kanal Işınları Madde, dolayısıyla maddeyi oluşturan atomların elektrikçe nötr oldukları göz önünde tutulacak olursa, elektronları nörtleşecek sayıda pozitif elektrik miktarının atom içinde olması gerekir. Eğer katot ışınları tüpünde üstünde delikler açılmış bir katot kullanılırsa, tüpün katot arkasında kalan yüzeyinde ve katot ışınlarına ters yönde, ikinci bir ışıldama görülür. Çünkü tüpte elektron akımı sırasında katottan fırlayan elektronlar, nötral gaz atomları ile çarpışarak, onların elektron kaybetmesine ve pozitif yüklü parçacıklar haline gelmesine yol açarlar. Bu parçacıklar katot tarafından çekilir ve bir kısmı katot üzerindeki deliklerden geçerek tüpün yüzeyine çarpıp ışıldama yaparlar. Bunlara pozitif ışınlar veya kanal ışınları denir. Kanal ışınları ilk defa 1886 da E. Goldstein tarafından gözlenmiştir.

5 Kanal ışınlarını elektrik ve manyetik alanda inceleyen Thomson ve Wien bu pozitif yüklü parçacıkların e/m değerlerini bulmuşlardır. Bu oran tüpte kullanılan gazın cinsine göre değişkenlik göstermekle beraber tüpte Hidrojen gazı kullanıldığında en kesin sonuçlar elde edilmiştir. Daha sonra bu pozitif parçacıklara Wien proton adını vermiş ve 1 protonun yükünü +1, Coulomb olarak, kütlesini de 1, gram olarak hesaplamıştır. Bu kütle bir elektron kütlesinin 1840 katıdır. SONUÇ: Kanal ışınları (+) yüklüdür ve bu ışınları oluşturan taneciklere proton adı verilir. Kanal ışınlarının özelliği tüpteki gazın ve elektrotların cinsine bağlıdır. Bir protonun kütlesi bir elektronun kütlesinin yaklaşık 1840 katıdır. H. Moseley Deneyleri Moseley X ışınları ile yaptığı deneylerde farklı metallerin farklı X ışınları spektrumları (Fraunhofer spektrumu) verdiğini ve elementin atom kütlesi arttıkça yayınlanan ışının frekansınında arttığını gözlemledi. Bu farklılıktan her metalin farklı proton sayısına sahip olduğunu belirledi. Not: Çok yüksek elektriksel uyarmalarda atomlar X ışınları yayar. X ışınları frekanslarının atomun çekirdeğindeki yükün (protonun) özelliği olduğunu anladı. Buradan yola çıkarak atom numarasının atom çekirdeğinde bulunan (+) yüklerin sayısı olduğunu önerdi. Yani çekirdek yüküne proton sayısı, proton sayısına da atom numarası adını verdi. Elementlerin fiziksel ve kimyasal özelliklerinin atom kütlesine değil, proton sayısına bağlı olduğunu ifade etti. Kimyasal değişmelerde proton sayısının değişmediğini açıkladı. Nötr atomlarda proton sayısı elektron sayısına eşittir dedi. Elementleri periyodik cetvelde atom kütlesine göre değil atom numarasına göre yerleştirdi ve böylece eksik olan elementlerin büyük bir kısmı tespit edildi.. Bölüm: Atom Modellerinin Tarihsel Gelişimi Atom kavramına ait ilk tanımlama antik çağlarda henüz kimya bilimi ortaya çıkmadan önce ortaya atıldı. Bu dönemde denemeye değil, yalnız düşünceye dayalı ilk tanımlamayı Democritus adlı filozof yapmıştır. Democritus a göre atom; maddeleri oluşturan en küçük birimdi. Bu nedenle bu birimlere Yunancada bölünemez anlamına gelen atomos ismi verilmiştir. Dalton Atom Modeli: Katlı oranlar yasasını da bulan John Dalton bilimsel anlamda ilk kez atomu tanımlayan kişi olmuştur. Dalton atom modeli; Kütlenin Korunumu, Sabit Oranlar, Katlı Oranlar yasalarını destekler. Modelin Varsayımları: Her element atom adı verilen küçük ve bölünemez katı küresel taneciklerden oluşur.(bilardo topu modeli) Atomlar kimyasal tepkimelerde oluşamaz yada bölünemez. Bu nedenle kimyasal tepkimelerde reaktifler ve ürünlerin atom sayıları birbirine eşittir. Bir elementin tüm atomları birbirinin aynısıdır. Atomların farklı olması için farklı elementlere ait olması gerekir.

6 Bir bileşik oluşurken iki yada daha fazla element belli atom sayıları oranında bir araya gelir. Modelin Hataları/Eksikleri: Atomların katı, küresel, içi dolu tanecikler olması. (Günümüzde atomun boşluklu yapıya sahip olduğu bilinmektedir.) Bir elementin tüm atomlarının birbirinin aynısı olması. (Günümüzde aynı bir elementin izotopları olduğu bilinmektedir.) Atomların bölünemez olması. (Günümüzde fiziksel yada kimyasal yollarla olmasa da nükleeer yollarla atomların parçalanması mümkündür.) Thomson Atom Modeli: Elektronu keşfeden Thomson (elektronu - yüklü tanecikler olarak biliyordu. Elektron adı Goldstein tarafından verildi) O dönemde yapılan başka çalışmalardan protonların varlığını da bildiğinden atomun nötr özellik göstereceğinden emindi ve Dalton un eksiklerini gidermeyi hedefledi. Modelin Varsayımları: Atom; yaklaşık m çaplı, küre şeklinde, pozitif yüklü bir gövde içinde homojen olarak dağılmış elektronlardan oluşur. (üzümlü kek modeli) Proton ve elektronlar zıt yüklü parçacıklardır. Bir atomda proton ve elektron sayısı eşit olduğundan toplam yük sıfırdır. Elektronlar çok hafif olduğundan atomun kütlesini protonlar oluşturur. Modelin Hataları/Eksikleri: Kütle spektrometresi ile bir elementin izotopları keşfedildiğinden, izotop kavramına neden olan yani aynı elementin farklı kütlelere sahip izotoplarının var olmasına neden olan nötron taneciğinin varlığını ortaya koyamamıştır. Elektronların pozitif yüklü gövde içinde dağılmış olması. (Günümüzde bunun böyle olmadığı bilinmektedir.) Rutherford Atom Modeli

7 1909 yılında Ernest Rutherford, pozitif yüklü taneciklerolan α (alfa) ışınları demeti ile çok ince (0,0004 cm) altın bir levhayı bombardıman ederek atomun yapısını incelemiştir. Buna göre α (alfa) parçacıklarının büyük çoğunluğunun ince levhadan sapmadan geçtiğini, bazı α (alfa) parçacıklarının levhadan saparak geçtiğini ve α (alfa) ışınlarının küçük bir bölümünün de levhayı geçemeyerek sapmayla geri döndüklerini fark etti. Modelin Varsayımları: Atom kütlesinin neredeyse tamamı atomun merkezindeki çok küçük hacimli bir bölgede bulunur (çünkü az miktarda α (alfa) ışını geriye dönmüştür.). Bu bölgeye çekirdek denir. Atomun çekirdek dışında kalan ve çekirdek hacmine oranla çok büyük olan kısmı boşluktur. (Çünkü α (alfa) ışınlarının büyük bir kısmı levhadan geçmiştir.) Farklı element atomlarının çekirdeklerindeki proton sayıları da farklıdır. Protonların toplam kütlesi atom kütlesinin yaklaşık yarısına eşittir. Dolayısıyla çekirdekte protonlar dışında yüksüz taneciklerde bulunmalıdır. Sayıları protonlara eşit olan elektronlar ise çekirdeğin etrafında bulunur. Çekirdekte protonlarla eşit kütlede yüksüz taneciklerde bulunur. (bunu kanıtlayamamış sadece öngörmüştür.) Modelin Hataları/Eksikleri: Elektronların niçin çekirdek üzerine düşmediğini açıklayamamıştır. Yani elektronların çekirdek çevresindeki hareketleri açıklanamamıştır.

8 Not: Rutherford a göre çekirdek çevresinde dairesel hareket eden elektronlar bir ivme kazanır ve bu nedenle ışıma yaparlar. Yapılan bu ışıma, elektronun enerjisinin düşmesine neden olur ve elektron çekirdeğe yaklaşır. Bu olay sürekli devam ettiğinden atomların sürekli ışıma yapması ve bir süre sonra elektronun çekirdeğin üzerine düşmesi gerekirdi. Kısacası Rutherford Modelinde atomların kesikli çizgi spektrumları açıklanamamıştır. Atom spektrumlarını (ışıma grafiği) açıklayamamıştır. Farklı element atomlarının çekirdeklerindeki proton sayıları da farklıdır. Bu doğru olmakla birlikte nedenini açıklayamamıştır. Nötronun Keşfi 193 yılında James Chadwick yaptığı deneylerle farklı element atomlarının kütlesindeki farklılığı yaratan nötron parçacığının varlığını kanıtladı. Yüksüz olduğu için bulunması zor olan bu parçacığın kütlesi yaklaşık olarak protonun kütlesine eşittir (1, gram). Böylece çekirdeğin proton ve nötrondan oluştuğu kanıtlandı. SORULAR 1-

9 1-g -e 3-f 4-h 5-b 6-c 7-d 8-a 9-j 10-i

10 - CuSO 4 çözeltisi 5 amperlik akımla 0 dakika elektroliz ediliyor. Katotta kaç gram madde toplanır.? (Cu: 64) ( g Cu) 3- Erimiş NaCl bir süre elektroliz edildiğinde, katotta 9, gram Na açığa çıkıyor. Bu süre içersinde anotta açığa çıkan Cl gazı NŞA da kaç litre olur? (Na:3) (4,48 L) 4- Seri bağlanmış elektroliz kaplarının birincisinde AgNO 3, ikincisinde Cu(NO 3 ) çözeltileri bulunuyor. Belli bir süre elektroliz edildiğinde 1. kapta,16 gram Ag açığa çıkıyor.. kapta kaç gram Cu açığa çıkar? (Ag:108 Cu:64) (0,64 g Cu) (ip ucu: seri bağlı demek her iki kaptanda aynı miktar akım geçiyor) 5- Dalton Atom Modelinin eksik yönleri nelerdir? (Dalton atomun yapısı ve atom altı taneciklerin varlığı ile ilgilenmemiştir. Atomun bölünmezliğini savunmuş, ancak bugün için parçalanabildiğini bilmekteyiz. Bir elementin atomlarının şekil, kütle ve hacim bakımından aynı olduğunu savunmuştur. Bugün için izotop kavramı bu savı çürütmektedir.) 6- Thomson Atom Modeli ile Rutherford Atom Modeli arasındaki farkları yazınız. (Thomson atomun tümünün (+) yükten oluştuğunu ve elektronların bu (+) yük içersinde homojen dağıldığını benimsemiştir. Rutherford ise atomun kütlesinin ve (+) yükün çekirdek denilen küçük bir hacimde toplandığını ve elektronların çekirdek çevresindeki boşlukta yer aldığını benimsemiştir.) 7- Faraday kanunlarını yazınız. ( 1- elektroliz olayında anot ve katotta açığa çıkan gaz ya da toplanan madde miktarı devreden geçen elektrik akımıyla doğru orantılıdır. - Elektroliz devresinden 1 mol elektron geçtiğinde anot ve katotta 1 eşdeğer-gram madde toplanır yada çözünür. 3- Farklı maddeler aynı miktar elektrik akımı ile elektroliz edildiğinde elektrotlarda toplanan madde miktarları elementin değerliğine (a) na bağlıdır.) 8- Aşağıdaki ifadeleri D/Y olarak belirtiniz. Y ise doğrusunu yazınız. I. Dalton a göre kimyasal tepkimeler atomlarının yeniden düzenlenmeleri sonucu oluşur.(d) II. Rutherfor a göre Atom (+) yüklü çekirdeki ve çekirdek etrafında belirli dairesel yörüngelerde büyük bir hızla dolanan elektronlardan oluşmuştur.(y-rutherford a göre elektronlar çekirdek çevresinde bulunur.ancak elektronların dolandıkları yörünge ve hareket biçimi Bohr atom modelinde açıklanabilmiştir.) III. Thomson a göre Atom (+) yüklü bir küredir. (-) yüklü tanecikler bu küre içersinde homojen dağılmıştır. (D)

11 Elektromanyetik Işımanın Dalga Modeliyle Açıklanması: Atomlardan çeşitli şekilllerde çıkan ve dalgalar halinde ilerleyen enerji türüne elektromanyetik ışınlar denir (görünür ışık, radyo dalgaları, X-ışınları...gibi) Dalga Boyu ( ): Ardarda gelen dalgalarda tepe yada çukur noktası arasındaki mesafedir. Genlik (A): Bir tepe ve bir çukur noktası arasındaki mesafenin yarısıdır. Dalganın şiddeti, A ile orantılıdır. Frekans ( ): Belli bir noktadan 1 saniyede geçen dalga sayısıdır. Birimi Hertz (Hz) dir. Bütün elektromanyetik ışınların hızı (c) boşlukta (vakumda),99 x 10 8 m/s ( ~ km/s) dir. Hız (c)= dalga boyu( ) x frekans( ) Not: 1873 te James Clerk Maxwell görünür ışığın elektromanyetik dalgalardan oluştuğunu ortaya koydu. Maxwell kuramına göre bir elektromanyetik dalganın, bir elektrik alan biileşeni, bir de manyetik alan bileşeni bulunur. Bu iki bileşen aynı dalga boyu, aynı frekans ve dolayısıyla hıza sahiptirler. Sadece birbirine dik iki düzlemde yol alırlar. Spektroskopi: Elektromanyetik ışımanın maddeyle (atomlar ve moleküller) etkileşmesini konu alan bilim dalına spektroskopi, bu etkileşmenin incelendiği aletlere spektrometre, spektrometrelerden elde edilen grafiklere de spektrum denir. Elektromanyetik Dalga Spektrumu

12 Görünür bölge dalga boyları (mordan kırmızıya doğru) nm arasındadır. Tek bir dalga boyuna sahip ışığa monokromatik ışık (örneğin yeşil ışık), dalga boyları farklı ışınlardan oluşan ışığa çok renkli anlamına gelen polikromatik ışık (örneğin güneş ışığı) denir. Değişik maddelere ait alev analizleri incelendiğinde her maddenin kendine özgü bir alev rengi verdiği gözlenmiştir. Alev renklerinin farklı olması maddenin ısıtıldığında farklı frekanslarda ışık yaydığının göstergesidir. Bir dalga boyundan diğerine geçişin sürekli olduğu spektrumlara sürekli (kesiksiz) spektrum denir. Örneğin, beyaz ışık, bir prizmadan geçirilirse sürekli spektrum elde edilir. Renkler yani dalga boyları arasında kesintisiz bir geçiş vardır. Elementler, gaz yada buhar halinde gerekli yüksek sıcaklığa kadar ısıtılırsa bir ışıma yayımlar. Işımanın prizmadan geçirilmesi bir kesikli (çizgi) yayınma spektrumu verir. Çizgi spektrumunda elementler dolayısıyla atomlar görünür bölgenin değişik kesimlerinde parlak çizgiler oluşturur. Oluşan bu spektrumların nedeni maddelerin enerji (ısı, elektrik) aldıklarında kendine özgü dalga boylarında ışık yayımlamasıdır. Kısacası her elementin kendine özgü belirgin (yayınma) çizgi spektrumu vardır.

13 Her element atomunun kendine özgü bir yayınma spektrumu olduğu gibi birde soğurma (absorbsiyon) spektrumu vardır. Çünkü elementler hangi dalga boyunda ışıma yayıyorsa o dalga boyundaki ışımaları da soğurabilir. Elementlerin yayınma ve soğurma çizgi spektrumları birbirinin aynısıdır. Soğurma çizgi spektrumlarındaki soğurulan dalga boyları siyah çizgiler şeklinde görülür. Bunlara Fraunhofer çizgileri denir. Her elementin soğurma çizgi spektrumu birbirinden farklıdır. Yani her element farklı dalga boylarındaki ışımaları soğurur. Bundan yararlanarak maddelerin tanınması sağlanır ve atomun yapısı hakkında ip uçları elde edilir. Işığın dalga modeli ile açıklanabilen kavramlar, Yansıma Kırınım (Işığın cisimlerin kenarları çevresinde bükülmesi) Kırılma Girişim (interferans) (Elektromanyetik ışık dalgalarının üstüste binmesiyle oluşan desen) (Young Deneyi) dır. Işığın prizmada renklere ayrılması ve polarizasyon

14 Young Deneyi: Işığın dalga hareketi şeklinde olduğunu açıklayabilmek için Thomas Young tarafından şekildeki girişim deneyi yapılmıştır. Bu deney düzeneğinde bir ışık demeti, ortasında S 0 deliği bulunan levhaya çarptığında bu delik noktasal ışık kaynağı gibi davranarak ışık dalgaları yayar. Dalgalar A dan B levhasına gelir. B levhası üzerinde S 1 ve S delikleri yine etrafa ışık dalgaları yayar. Bu dalgalar birbiri üstüne geldiğinde (girişim), C ekranı üzerinde girişim çizgileri dediğimiz bir sıra aydınlık ve karanlık çizgi belirir. Young deneyinde bu şekilde ortaya çıkan çizgiler ışığın dalga özelliğini kanıtlar. Elektromanyetik Işımanın Parçacık Modeliyle Açıklanması: Elektromanyetik ışımanın dalga özelliği yanında parçacık yapısında olma özelliği de vardır. Işıma enerjisinin parçacık özelliği için Max Planck tarafından kuantum kuramı önerilmiştir. Burada enerjinin ancak belli bir büyüklük halinde alınıp verilebileceği belirtilmiştir. Belli bir büyüklük halinde alınıp verilebilen bu enerjiye kuantum, ışıma enerjisine ise kuantlaşmış enerji denir. Albert Einstein, 1905 te ışımayı oluşturan ve ışık hızıyla hareket ettiği kabul edilen bu kuantumları foton olarak isimlendirmiştir. O halde, ışıma enerjisi sürekli değil, kesikli bir biçimde yani belirli büyüklüklerdeki kuantumlar halinde alınıp verilebilir. Her kuantumun enerjisi, ışımanın frekansı ( ) ile doğru orantılıdır. Planck a göre herbir kuantumun taşıdığı enerji için, E=h bağıntısı kullanılır. Burada, h= planck sabiti=6,6x10-34 Joule-saniye dir. =frekans (1/saniye) tır. Işımanın frekansı arttıkça kuantumun(fotonun) enerjisi ve kuantumlardan oluşmuş enerji akımı olarak tanımlayabileceğimiz ışımanın enerjisi de artar.

15 kuantum=foton ışık enerjisi= dalga + foton Işığın tanecikli yapıda olduğunu kanıtlayan olaylar: Işığın doğrular boyunca yayılması ve ışık ışınlarının birbiri içinden geçmesi. Işığın yansıması Işığın yüzeylerde meydana getirdiği aydınlanma şiddeti Işık basıncı Işığın soğurulması Işığın tanecik modeli ile açıklanabilen olaylar; Siyah cisim ışıması Fotoelektrik olay dır. Siyah Cisim Işıması: (Planck ın çalışması) Üzerine gelen bütün ışınları soğuran cisimlere siyah cisim denir. Siyah cisim ısıtıldığında her çeşit dalga boyunda ışık yayar. Siyah cisim ısıtılıp görünür ışık yaydığında önce kırmızı renk görülür (görünür böllgedeki en uzun dalga boylu ışık). Sıcaklık arttırıldıkça turuncu ve sarıdan mora kadar ışıma devam eder; sonuçta tüm görünür bölge renklerini kapsayan beyaz ışık yayınlanmış olur. Siyah cisim ışımasında sıcaklık yükseldikçe cismin enerjisi artar, yayınlanan ışığın dalga boyu kısalır. Yayınlanan ışının şiddeti siyah cismin oluştuğu maddeye bağlı değildir. Siyah cisimden yayımlanan ışık prizmadan geçirildiğinde sürekli spektrum elde edilir. Fotoelektrik Olay: (Einstein ve Rudolf Hertz ın çalışması) Işık bir metal yüzeye çarpar ve yüzeyden elektron uzaklaşırsa fotoelektrik etki (olay) meydana gelir. Bir foton bir metal atomuna çarptığı zaman tüm enerjisini elektronlara verir fakat bir metalden elektron koparabilmek için ışımanın belirli bir frekansa eşit veya daha yüksek frekansta olması gerekir. Dolayısıyla metalden elektron koparabilmek için fotonun (ışığın) minimum bir enerjiye sahip olması gerekir. Işımanın şiddetinin (genliğinin) arttırılması fırlatılan elektron sayısını arttırır fakat enerjilerini değiştirmez. Fırlatılan elektronların enerjisi ışımanın frekansı ile doğru orantılıdır.

16 Işımanın frekansının (dolayısıyla enerjisinin) arttırılması fırlatılan elektronların hızını arttırır. Rydberg Eşitliği: Balmer ve Rydberg Hidrojenin görünür bölge yayınma spektrumundaki en uzun dalga boylu 3 çizginin (kırmızı, yeşil, mavi) dalga boylarını hesaplamaya yarayan bir eşitlik geliştirdiler. Bohr Atom Modeli Bohr, atom kuramını hidrojenin yayınma spektrumuna dayanarak ve Planck ın kuantum kuramını göz önüne alarak geliştirmiştir. Modelin Varsayımları: Bir atomda bulunan her elektron çekirdekten belirli uzaklıklarda küresel yörüngelerde (orbital) bulunabilir. Bu yörüngelere enerji düzeyi veya kabuk ta denir. Her yörünge belirli miktar enerjiye sahiptir. Yörüngeler K,L,M,N,O gibi harflerle gösterildiği gibi 1,,3,4,5, gibi rakamlara karşılık gelen bir n değeri ile de ifade edilebilir. Elektronlar çekirdek çevresinde dairesel yörüngeler izleyecek şekilde dönerler. Çekirdeğe en yakın olan 1. yörüngenin enerjisi diğer yörüngelere göre en düşüktür. Dolayısıyla 1. yörüngede bulunan bir elektronun enerjisi de diğer elektronlara göre en düşüktür. Çekirdekten uzaklaştıkça, yörüngenin ve o yörüngede yer alan elektronun

17 enerjisi de artar. Bir elektronun enerjisi ancak yörüngelerin enerji değeri kadar olabilir, yörüngelerin enerjileri arasında bir değer olamaz. Bir atomun elektronları en düşük enerji düzeyinde bulunmak ister. Bu düzeye temel hal düzeyi ismi verilir. Madde ısıtıldığında atomlarındaki elektronlar daha yüksek enerji düzeyine geçer. Bu durumdaki atomlar uyarılmış haldedir. Bir elektron, bir enerji düzeyinden bir başka enerji düzeyine, ışın (enerji) yayımlayarak ya da ışın (enerji) soğurarak geçiş yapabilir. Örneğin, yüksek enerjili bir yörüngede bulunan elektron düşük enerjili bir yörüngeye geçerken ışın (enerji) yayar. Bu enerji tabiki fotonlar halinde yayılır. Atomların geçiş yaptığı enerji düzeylerinin farkından yararlanarak yayımlanan yada absorblanan ışının frekans değerleri hesaplanabilir. Yayılan ışının frekansı atomun cinsine bağlıdır. Atomların farklı spektrum çizgileri oluşturmasının nedeni de budur. A Bir elektronun yayımladığı/absorbladığı ışının frekansı= = h Burada A=Sabit sayı=,18x10-18 Joule 1 n 1 ( iç n dis h= Planck sabiti= 6,6x10-34 Joule-saniye olmak üzere h A = 3,89x10 15 s -1 (Hertz) ) yazılabilir. Bir elektronun yayımladığı/absorbladığı ışının dalga boyu ( ) için, 1 A hc ) = R( ) yazılabilir. n ic n dis n ic n dis ( Burada A hc R =Rydberg sabiti=1,0979x10 7 m -1 dir. Bir elektronun yayımladığı/absorbladığı ışının enerjisi= Geçişin gerçekleştiği iki enerji düzeyi arasındaki enerji farkı ( E) için, c E h h A.( ),18x10 ( n n n n ic Burada A=Sabit sayı=,18x10-18 Joule dis ic dis ) Belirli bir yörüngede bulunan bir elektronun enerjisi (E) için,

18 E,18x10 18 Z n Burada Z= Atomun çekirdek yükü (proton sayısı) n= elektronun bulunduğu yörünge Soru:1 Hidrojen spektrumunda n=3 ten n= ye olan elektron geçişini temsil eden çizginin frekans ve dalga boyunu bulunuz. ( h A = 3,89x10 15 s -1, R =1,0979x10 7 m -1 ) Çözüm: frekans= = h A nm ) n 1 1 = 3,89 x10 15 ( ) 3 ( iç n dis 1 1 = R( ) =1,0979x10 7 ( ) n ic n dis 3 =0,45x10 15 s -1 =4,5x10 14 s =0,154 x10 7 ise, =6,56 x10-7 m =656 Soru: Uyarılmış bir Hidrojen atomunda elektronun n=4 ten n= enerji düzeyine geçmesi sonucu yayınlanacak olan fotonun enerjisini ve frekansını bulunuz. ( h A = 3,89x10 15 s -1, A=,18x10-18 J) Çözüm: A 1 1 frekans= = ( ) h n 1 1 = 3,89 x10 iç n 15 ( ) dis E A.( ),18x10 ( ) n ic n dis 4 =0,616x10 15 s -1 =6,16x10 14 s -1 = 0,409x10-18 =4,09x10-19 Joule Soru: 3 Hidrojen atomu uyarılarak elektronu 1. yörüngeden 6. yörüngeye ulaşıyor. Bu işlem için gerekli olan enerji kaç Joule dür? (A=,18x10-18 Joule) Çözüm: E A.( ),18x10 ( ) n ic n dis 1 6 =,1x10-19 Joule Gaz fazında temel haldeki bir atomdan bir elektronu tamamen koparmak için bir miktar enerji gerekir. Bu enerji atomun cinsine göre değişen bir değer olduğundan farklı atomlar için farklı değerler alır. Bu enerjiye o atom için iyonlaşma enerjisi denir. Örneğin Hidrojen atomunun

19 temel halde, n=1 yörüngesinde 1 tane elektron bulunur. Bu elektronun atomdan tamamen koparılması ve H + iyonu oluşturulması için gereken enerjiye hidrojen atomunun iyonlaşma enerjisi denir. Soru:4 Bir hidrojen atomunun iyonlaşma enerjisi kaç joule dür? (A=,18x10-18 J) Çözüm: Burada n iç =1 ve n dış = dur. Buna göre, E A.( ),18x10 ( n ic n dis 1 Soru:3 1 ) =,18x10-18 J Elektron yüksek enerjili bir katmandan, n=1 katmanına inerse morötesi (ultraviole) ışık şeklinde enerji yayınlanır. Lyman serisi adı verilen spektral seri meydana gelir. n= katmanına inerse görünür bölge ışık şeklinde enerji yayınlanır. Balmer serisi adı verilen spektral seri meydana gelir. n=3 katmanına inerse kızılötesi (IR, infrared) ışık şeklinde enerji yayınlanır. Paschen serisi adı verilen spektral seri meydana gelir. n=4 katmanına inerse kızılötesi (IR, infrared) ışık şeklinde enerji yayınlanır. Brackett serisi adı verilen spektral seri meydana gelir. n=5 katmanına inerse kızılötesi (IR, infrared) ışık şeklinde enerji yayınlanır. Pfund serisi adı verilen spektral seri meydana gelir.

20

21 Modelin Hataları/Eksikleri: Bohr atom modeli H atomu, He + ve Li + gibi tek elektronlu iyonların çizgi spektrumlarını açıklamak için kullanılır ancak daha fazla sayıda elektrona sahip atom ve iyonların davranışlarını ve spektrum çizgilerini açıklamakta yetersiz kalmıştır. Kuantum (Dalga) Mekaniğinin Tarihsel Gelişimi Louis de Broglie ve Schrödinger ışığın dalga ve tanecik teorilerini birleştirerek bugün ki dalga mekaniğinin temelini oluşturdular. Louis de Broglie bir fotonun enerjisini hesaplamak için Planck eşitliği (E=h ) ve Einstein eşitliğini (E=mc ) birleştirdi. Buna göre, E=h =mc Bu eşitlikler açıldığında, c olduğundan, h mc yazılabilir. Louis de Broglie fotonun dalga boyunun hesaplanması için kullanılan yukarıdaki eşitliğin maddesel bir taneciğin (örneğin elektronun) dalga boyunu hesaplamak içinde kullanılabileceğini söyledi. Buna göre, de Broglie eşitliği = Burada m=parçacığın kütlesi h=planck sabiti=6,6x10-34 Joule-saniye v=parçacığın hızı dır. h/mv de Broglie maddesel taneciklerle bir arada kabul edilen dalgalara madde dalgaları adını verdi. Not: 1 Mikrometre (µm)=10-6 m 1 Nanometre (nm)= 10-9 m 1 Angstrom (A 0 )= m 1 Pikometre (pm)= 10-1 m 1 Femtometre (fm)= m Soru 1: 1x10 6 m/s hızla hareket eden bir elektronun dalga boyunu hesaplayınız. Bu dalga elektromanyetik spektrumda hangi bölgede bulunur?(m elekton =9,1x10-31 kg, Planck sabiti(h)=6,6x10-34 Js(kgm s -1 )) Çözüm: h/mv=6,6x10-34 /9,1x10-31 x1x10 6 =7,x10-10 m=0,7nm (bu dalga boyu X-ışınlarının bulunduğu bölgede yer alır.) Soru :

22 91 kg lık kütleye sahip bir madde, ışık hızının beşte biri hızla hareket ederse dalga boyu kaç metre olur? (Işık hızı(c)=3x 10 8 m/s, Planck sabiti(h)=6,6x10-34 Js(kgm s -1 )) Çözüm: h/mv=6,6x10-34 /91x0,6x10 8 =1,x10-6 m Soru 3: Işık hızının %1 i kadar hızla hareket eden elektronlara eşlik eden dalganın dalga boyu kaç metre olur? (m elekton =9,1x10-31 kg, Işık hızı(c)=3x 10 8 m/s, Planck sabiti(h)=6,6x10-34 Js(kgm s -1 )) Çözüm: h/mv=6,6x10-34 /9,1x10-31 x3x10 6 =,4x10-10 m=0,4nm Soru 4: 10 pm lik de Broglie dalga boyunun ortaya çıkması için bir proton demeti hangi hıza sahip olmalıdır? (Planck sabiti(h)=6,6x10-34 Js(kgm s -1 ), m proton =1,67x10-7 kg, 1pm=10-1 m) Çözüm: h/mv ise, hız(v)=h/m =6,6x10-34 /1,67x10-7 x10x10-1 =3,96x10 4 m/s Soru 5: Dalga boyu 1 nm olan dalganın eşlik ettiği elektron demetinin hızı kaç m/s olmalıdır? ((m elekton =9,1x10-31 kg, Planck sabiti(h)=6,6x10-34 Js(kgm s -1 )) Çözüm: h/mv ise, hız(v)=h/m =6,6x10-34 /9,1x10-31 x1x10-9 =7,8x10 5 m/s C. Davisson ve L.H. Germer ile G.P.Thomson elektronların belirli açılarla saptıklarını (kırınım) deneysel olarak gösterdiler. Bu çalışmaları ile elektronların da X ışını gibi görüntüler oluşturduğunu gözlemleyerek elektronlarında ışık gibi dalgalar halinde ilerlediğini açıkladılar. Kısacası de Broglie nin ortaya attığı elektronun dalga hareketini ispatladılar.

23 Heisenberg kütlesi çok küçük hızı çok büyük olan taneciklerin (örneğin elektronlar) yerinin ve hızının aynı anda belirlenemeyeceğini ifade ederek, Heisenberg Belirsizlik İlkesi ni ortaya koydu. Elektronun dalga-tanecik özelliğinin sonucu olan Heisenberg belirsizlik ilkesine göre Bohr atom modelindeki temel hata, elektronun tek boyutlu bir yörüngede bulunduğunu söylemesidir. ATOMUN KUANTUM MODELİ Baş kuantum sayısı (n): Elektronun ait kabuğu veya enerji düzeyini belirtir. n= 1,,3,4...diye belirtilebileceği gibi n=1 için K, n= için L, n=3 için M ve n=4 için N harfiyle de belirtilebilir. N nin değeri büyüdükçe elektron çekirdekten uzaklaşır ve enerjisi artar. Bu enerji elektronu koparmak için gerekli enerji değildir. Çekirdekten uzaklığa bağlı olarak değişen potansiyel enerjidir. Açısal momentum (ikincil, yan, orbital) kuantum sayısı (l):

24 Bu kuantum sayısı bir enerji düzeyindeki alt kabukları gösterir. l=0,1,,3,...n-1 değerlerini alır. l=0=s alt kabuğu l=1=p alt kabuğu l==d alt kabuğu l=3=f alt kabuğu şeklinde harflerle de gösterilebilir. Manyetik kuantum sayısı (m l ): Orbitallerin manyetik alandaki yönelimleriyle ilgilidir. Bu sayı bir alt kabukta kaç tane orbitalin bulunduğunu gösterir. m l =-l,...,0,...+ l arasında değerler alır. Herbir l değeri için m l = l+1 tane orbital vardır. Baş kuantum sayısı (n) Yan Kuantum sayısı (l) (0,1,,3,...n-1) Manyetik kuantum sayısı (m l ) (-l,...,0,...+ l ) 1 0 (s) 0 s 0 (s) 0 s 1(p) -1, 0, +1 p x, p y, p z 0 (s) 0 s Manyetik kuantum sayısı (m l ) ( l+1) 1 tane s orbitali 1 tane s orbitali 3 tane p orbitali 1 tane s orbitali 3 1 (p) (d) -1, 0, +1 p x, p y, p z -,-1,0,+1,+ d xy, d xz, d yz, d x -y, d z 3 tane p orbitali 5 tane d orbitali 0 (s) 0 s 1 tane s orbitali 4 1 (p) (d) -1, 0, +1 p x, p y, p z -,-1,0,+1,+ d xy, d xz, d yz, d x -y, d z 3 tane p orbitali 5 tane d orbitali 3 (f) -3,-,-1,0,+1,+,+3 7 tane f orbitali f z3, f xz, f yz, f xyz, f z(x -y ), f x(x -3y ), f y(3x -y ) İlk 4 enerji seviyesine ait kuantum sayıları arasındaki ilişki Spin kuantum sayısı (m s ):

25 Elektronlar çekirdek etrafında dönerken aynı zamanda kendi etraflarında da dönerler. Elektronların kendi ekseni etrafında dönmesiyle ilgili kuantum sayısına denir. Bu sayı bir yöndeki dönme için +1/ ve diğer yöndeki dönme için -1/ değerini alır. Elektronların zıt yönlü dönüşü oluşturdukları manyetik alanın birbirini yok etmesi anlamına gelir. Bu durum elektronların orbitallerde kararlı olmasını sağlar. n =1 n = n =3 n =4 s (l=0) p (l=1) d (l=) f (l=3) m=0 m=0 m=±1 m=0 m=±1 m=± s p z p x p y d z d xz d yz d xy d x -y f z 3 f xz f yz f xyz m= 0 m=±1 m=± m=±3 f z(x - f x(x - f y(3x y ) 3y ) -y ) n =5 n =6 n =

26 Soru: n=3 enerji seviyesinde bulunan bütün elektronlara ait kuantum sayılarını yazınız. Çözüm: Baş Manyetik kuantum sayısı (m l ) kuantum (-l,...,0,...+ l ) sayısı (n) (alt kabuklardaki orbitaller) Yan Kuantum sayısı (l) (0,1,,3,...n-1) (alt kabuklar) 0 (s) 0 s Spin kuantum sayısı (m s ) 3 1 (p) (d) -1, 0, +1 p x, p y, p z -,-1,0,+1,+ d xy, d xz, d yz, d x -y, d z Herbir orbital için m s =-1/ veya m s =+1/ Soru: Aşağıdaki orbitallerden hangileri mümkündür? 1p X 3p 4d 3f X d X 4f s 3d Atomların Elektron Dizilişleri 1. Aufbau Kuralı: Elektronlar öncelikle enerjisi en az olan orbitali doldurur. Bir orbitalin enerjisi çekirdeğe yaklaştıkça azalır. Buna göre enerjisi en az olan orbital 1s orbitalidir. Aynı temel enerji düzeyindeki ( 1,,3,4, = K,L,M,N, den herhangi biri ) orbitallerin enerjileri arasındaki ilişki s < p < d < f şeklindedir.

27 Aynı yörüngedeki 3 tane p,5 tane d ve 7 tane f orbitallerinin enerjileri ise kendi aralarında birbirine eşittir.. Pauli Dışlama İlkesi: Bir orbitalde en fazla elektron bulunabilir. Bir orbitaldeki elektronun dört kuantum sayısı hiçbir zaman birbirinin aynısı olamaz. (bu elektronların en azından dönme hareketleri birbirinden farklı olduğundan m s kuantum sayıları farklıdır.) 3. Hund Kuralı: Aynı temel enerji düzeyindeki eş enerjili orbitallere elektronlar aynı spinli olmak üzere önce teker teker girer. Tüm orbitaller yarı dolu hale geldikten sonra orbitaller tam dolu hale geçmeye başlar. X: 1s s p 4

28 Orbitallerdeki enerji artış sırası Atomdaki elektron sayısı arttıkça obitallerdeki elektron bulutlarının birbirini itmeleri sonucu enerji artış sırasında bazı değişiklikler olur. Orbitallerin elektronla doluş sırasını bulmak için okun yönü takip edilir. 1s < s< p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f < 5d < 6p < Şekilde görüldüğü gibi elektronlar atomlara ait orbitallere n+ l kuantum sayılarına uygun sırayla doldurulur. Bu kurala n+ l kuralı ya da Kletchkowski-Madelung kuralı denir. n+ l değeri en küçük olan alt kabuğun enerjisi en düşüktür. Eğer n+ l değerleri eşitse elektron n değeri en küçük olan orbitale girer. 4. Küresel Simetri: Elektron dağılımında son orbitalin tam veya yarı dolma halidir. Kararlılık halidir. Tam dolu hali: s p 6 d 10 Yarı dolu hali: s 1 p 3 d 5 Soru: Aşağıda verilen elementlerin küresel simetri yapısında olup olmadığını araştırınız: 1X : 1s 1 Küresel simetri yapısındadır. 13Y: 1s s p 6 3s 3p 1 Küresel simetri yapısında değildir. 15Z: 1s s p 6 3s 3p 3 Küresel simetri yapısındadır. 18T: 1s s p 6 3s 3p 6 Küresel simetri yapısındadır. 30R: 1s s p 6 3s 3p 6 4s 3d 10 Küresel simetri yapısındadır. Not: 6B ve 1B grubu elementleri kendi iç bünyesindeki enerjinin bir kısmını kullanarak daha kararlı bir yapıya ulaşmak için elektron dağılımlarında s orbitalinden 1 elektron d orbitaline geçer. Küresel simetri yapısına ulaşmış olur. Bu olay uyarılma değildir. Çünkü dışarıdan enerji alınmamış ve daha kararlı yapıya ulaşılmıştır. Örnek: 4Cr: 1s s p 6 3s 3p 6 4s 3d 4 (yanlış) 4Cr: 1s s p 6 3s 3p 6 4s 1 3d 5 (doğru) Soru: 9 Cu ve 4 Mo elementlerinin elektron dağılımlarını da siz yapınız. 9Cu: 1s s p 6 3s 3p 6 4s 3d 9 (yanlış) 9Cu: 1s s p 6 3s 3p 6 4s 1 3d 10 (doğru) 4Mo 4Mo 5. Uyarılma: Bir atoma bir miktar enerji vererek son yörüngesindeki elektronların daha yüksek enerji düzeyindeki orbitallere aktarılması olayına uyarılma denir. Kararsızlık halidir. Enerji verme olayı kesilirse yüksek enerji düzeyine çıkan elektron aldığı enerjiyi vererek temel enerji düzeyine geçer. Örnek:

29 1H: 1s 1 temel enerji düzeyi 1H: s 1 uyarılmış hal 6C: 1s s p temel enerji düzeyi 6C: 1s s 1 p 3 uyarılmış hal 11Na: 1s s p 6 3s 1 temel enerji düzeyi 11Na: 1s s p 6 5s 1 uyarılmış hal 15P: 1s s p 6 3s 3p 3 temel enerji düzeyi 15P: 1s s p 6 3s 1 3p 3 3d 1 uyarılmış hal Not: Grup ve periyot temel enerji düzeyindeki elektron dağılımına göre yapılır. 6. İyonların elektron dizilimi:

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez.

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez. MODERN ATOM TEORİSİ ÖNCESİ KEŞİFLER Dalton Atom Modeli - Elementler atom adı verilen çok küçük ve bölünemeyen taneciklerden oluşurlar. - Atomlar içi dolu küreler şeklindedir. - Bir elementin bütün atomları

Detaylı

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM GENEL KİMYA ATOMUN ELEKTRON YAPISI Bohr atom modelinde elektronun bulunduğu yer için yörünge tanımlaması kullanılırken, kuantum mekaniğinde bunun yerine orbital tanımlaması kullanılır. Orbital, elektronun

Detaylı

Bölüm 8: Atomun Elektron Yapısı

Bölüm 8: Atomun Elektron Yapısı Bölüm 8: Atomun Elektron Yapısı 1. Elektromanyetik Işıma: Elektrik ve manyetik alanın dalgalar şeklinde taşınmasıdır. Her dalganın frekansı ve dalga boyu vardır. Dalga boyu (ʎ) : İki dalga tepeciği arasındaki

Detaylı

1. ATOMLA İLGİLİ DÜŞÜNCELER

1. ATOMLA İLGİLİ DÜŞÜNCELER 1. ATOMLA İLGİLİ DÜŞÜNCELER Democritus Maddenin tanecikli yapıda olduğunu ileri sürmüş ve maddenin bölünemeyen en küçük parçasına da atom (Yunanca a-tomos, bölünemez ) adını vermiştir Lavoisier Gerçekleştirdiği

Detaylı

Kimyafull Gülçin Hoca

Kimyafull Gülçin Hoca 1.ÜNİTE MODERN ATOM TEORİSİ 1. BÖLÜM: Atomla İlgili Düşünceler 1. Dalton Atom Modeli 2. Atom Altı Tanecikler Elektronun Keşfi Protonun Keşfi Nötronun Keşfi 0 Kimyafull Gülçin Hoca DALTON ATOM MODELİ Democritus

Detaylı

DEMOCRİTUS. Atom hakkında ilk görüş M.Ö. 400 lü yıllarda Yunanlı filozof Democritus tarafından ortaya konmuştur.

DEMOCRİTUS. Atom hakkında ilk görüş M.Ö. 400 lü yıllarda Yunanlı filozof Democritus tarafından ortaya konmuştur. ATOM TEORİLERİ DEMOCRİTUS DEMOCRİTUS Atom hakkında ilk görüş M.Ö. 400 lü yıllarda Yunanlı filozof Democritus tarafından ortaya konmuştur. Democritus, maddenin taneciklerden oluştuğunu savunmuş ve bu taneciklere

Detaylı

ATOM BİLGİSİ Atom Modelleri

ATOM BİLGİSİ Atom Modelleri 1. Atom Modelleri BÖLÜM2 Maddenin atom adı verilen bir takım taneciklerden oluştuğu fikri çok eskiye dayanmaktadır. Ancak, bilimsel bir (deneye dayalı) atom modeli ilk defa Dalton tarafından ileri sürülmüştür.

Detaylı

SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir.

SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir. . ATOMUN KUANTUM MODELİ SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir. Orbital: Elektronların çekirdek etrafında

Detaylı

ATOM MODELLERİ.

ATOM MODELLERİ. ATOM MODELLERİ THOMSON ATOM MODELİ ÜZÜMLÜ KEK MODELİ Kek pozitif yüklere, üzümler ise negatif yüklere benzetilmiştir. Thomson Atom Modeline göre; Atomun yapısında pozitif ve negatif yüklü tanecikler vardır.(+)

Detaylı

İNSTAGRAM:kimyaci_glcn_hoca

İNSTAGRAM:kimyaci_glcn_hoca MODERN ATOM TEORİSİ ATOMUN KUANTUM MODELİ Bohr atom modeli 1 H, 2 He +, 3Li 2+ vb. gibi tek elektronlu atom ve iyonların çizgi spektrumlarını başarıyla açıklamıştır.ancak çok elektronlu atomların çizgi

Detaylı

ATOM ATOMUN YAPISI 7. S I N I F S U N U M U. Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir.

ATOM ATOMUN YAPISI 7. S I N I F S U N U M U. Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. ATO YAP Atomu oluşturan parçacıklar farklı yüklere sahiptir Atomda bulunan yükler; negatif yükler ve pozitif yüklerdir Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir Atomu oluşturan

Detaylı

ATOMUN YAPISI VE PERIYODIK CETVEL

ATOMUN YAPISI VE PERIYODIK CETVEL ATOMUN YAPISI VE PERIYODIK CETVEL DALTON ATOM TEORISI - Tüm maddeler atomlardan yapılmıştır. - Farklı maddelerin atomlarıda birbirlerinden farklıdır. - Bir bileşiği oluşturan atomların kütleleri arasında

Detaylı

ATOMUN YAPISI ATOMUN ÖZELLİKLERİ

ATOMUN YAPISI ATOMUN ÖZELLİKLERİ ATOM Elementlerin özelliğini taşıyan, en küçük yapı taşına, atom diyoruz. veya, fiziksel ve kimyasal yöntemlerle daha basit birimlerine ayrıştırılamayan, maddenin en küçük birimine atom denir. Helyum un

Detaylı

... ANADOLU L SES E T M YILI I. DÖNEM 10. SINIF K MYA DERS 1. YAZILI SINAVI SINIFI: Ö RENC NO: Ö RENC N N ADI VE SOYADI:

... ANADOLU L SES E T M YILI I. DÖNEM 10. SINIF K MYA DERS 1. YAZILI SINAVI SINIFI: Ö RENC NO: Ö RENC N N ADI VE SOYADI: 2009-2010 E T M YILI I. DÖNEM 10. SINIF K MYA DERS 1. YAZILI SINAVI A 1. Plastik bir tarak saça sürtüldü ünde tara n elektrikle yüklü hale gelmesinin 3 sonucunu yaz n z. 2. Katot fl nlar nedir? Katot fl

Detaylı

ATOMUN YAPISI. Özhan ÇALIŞ. Bilgi İletişim ve Teknolojileri

ATOMUN YAPISI. Özhan ÇALIŞ. Bilgi İletişim ve Teknolojileri ATOMUN YAPISI ATOMLAR Atom, elementlerin en küçük kimyasal yapıtaşıdır. Atom çekirdeği: genel olarak nükleon olarak adlandırılan proton ve nötronlardan meydana gelmiştir. Elektronlar: çekirdeğin etrafında

Detaylı

Modern Atom Teorisi. Ünite

Modern Atom Teorisi. Ünite Ünite 1 Modern Atom Teorisi ATOMLA İLGİLİ DÜŞÜNCELER 8 ATOMUN KUANTUM MODELİ 19 PERİYODİK SİSTEM ve PERİYODİK ÖZELLİKLER 30 ELEMENTLERİN ÖZELLİKLERİ, YÜKSELTGENME BASAMAKLARI, BİLEŞİKLERİN ADLANDIRILMASI

Detaylı

Atomun Yapısı Boşlukta yer kaplayan, hacmi, kütlesi ve eylemsizliği olan her şeye madde denir. Maddeyi (elementi) oluşturan ve maddenin (elementin)

Atomun Yapısı Boşlukta yer kaplayan, hacmi, kütlesi ve eylemsizliği olan her şeye madde denir. Maddeyi (elementi) oluşturan ve maddenin (elementin) Atomun Yapısı Boşlukta yer kaplayan, hacmi, kütlesi ve eylemsizliği olan her şeye madde denir. Maddeyi (elementi) oluşturan ve maddenin (elementin) kendi özelliğini taşıyan en küçük yapı birimine atom

Detaylı

KİMYA ADF. Atomlarla İlgili Düşünceler ve Atom Modelleri ATOMLARLA İLGİLİ DÜŞÜNCELER VE ATOM MODELLERİ MADDENİN ELEKTRİK YAPISI

KİMYA ADF. Atomlarla İlgili Düşünceler ve Atom Modelleri ATOMLARLA İLGİLİ DÜŞÜNCELER VE ATOM MODELLERİ MADDENİN ELEKTRİK YAPISI KİMYA ÜNİTE 1: MODEN ATOM TEOİSİ Atomlarla İlgili Düşünceler ve Atom Modelleri ADF 01 ATOMLALA İLGİLİ DÜŞÜNCELE VE ATOM MODELLEİ Dalton Atom Modeli Elementler atom denilen en küçük partiküllerden oluşur.

Detaylı

ATOMUN YAPISI VE PERİYODİK ÖZELLİKLER

ATOMUN YAPISI VE PERİYODİK ÖZELLİKLER ATOMUN YAPISI VE PERİYODİK ÖZELLİKLER IŞIĞIN YAPISI Işığın; Dalga ve Parçacık olmak üzere iki özelliği vardır. Dalga Özelliği: Girişim, kırınım, polarizasyon, yayılma hızı, vb. Parçacık Özelliği: Işığın

Detaylı

1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ

1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ 1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ Bohr Modelinin Yetersizlikleri Dalga-Tanecik İkiliği Dalga Mekaniği Kuantum Mekaniği -Orbital Kavramı Kuantum Sayıları Yörünge - Orbital Kavramları

Detaylı

ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur.

ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur. DERS: KİMYA KONU : ATOM YAPISI ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur. Atom Modelleri Dalton Bütün maddeler atomlardan yapılmıştır.

Detaylı

ÇALIŞMA YAPRAĞI (KONU ANLATIMI)

ÇALIŞMA YAPRAĞI (KONU ANLATIMI) ÇALIŞMA YAPRAĞI (KONU ANLATIMI) ATOMUN YAPISI HAZIRLAYAN: ÇĐĞDEM ERDAL DERS: ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME DERS SORUMLUSU: PROF.DR. ĐNCĐ MORGĐL ANKARA,2008 GĐRĐŞ Kimyayı ve bununla ilgili

Detaylı

Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sahiptir. Atomda bulunan yükler;

Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sahiptir. Atomda bulunan yükler; Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sahiptir. Atomda bulunan yükler; negatif yükler ve pozitif yüklerdir. Atomu oluşturan parçacıklar:

Detaylı

Maddenin Tanecikli Yapısı

Maddenin Tanecikli Yapısı Maddenin Tanecikli Yapısı Maddenin Tanımı Kütlesi olan ve boşlukta yer kaplayan her şeye madde denir. Cisim nedir? Maddenin şekil almış halidir. Maddenin Halleri Maddeler doğada 3 halde bulunur: Katı maddeler

Detaylı

KİMYA -ATOM MODELLERİ-

KİMYA -ATOM MODELLERİ- KİMYA -ATOM MODELLERİ- ATOM MODELLERİNİN TARİHÇESİ Bir çok bilim adamı tarih boyunca atomun yapısı ile ilgili pek çok fikir ortaya atmış ve atomun yapısını tanımlamaya çalışmış-tır. Zaman içerisinde teknoloji

Detaylı

DEMOKRİTOS ATOM FİKRİ M.Ö

DEMOKRİTOS ATOM FİKRİ M.Ö DEMOKRİTOS ATOM FİKRİ M.Ö 500 lü yıllarda DEMOKRİTOS maddelerin bölünemez ve parçalanamaz anlamına gelen atom olarak adlandırılan taneciklerden oluştuğunu öne sürmüştür. DALTON ATOM TEORİSİ Dalton denel

Detaylı

Bohr Atom Modeli. ( I eylemsizlik momen ) Her iki tarafı mv ye bölelim.

Bohr Atom Modeli. ( I eylemsizlik momen ) Her iki tarafı mv ye bölelim. Bohr Atom Modeli Niels Hendrik Bohr, Rutherford un atom modelini temel alarak 1913 yılında bir atom modeli ileri sürdü. Bohr teorisini ortaya koyarak atomların çizgi spektrumlarının açıklanabilmesi için

Detaylı

Element atomlarının atom ve kütle numaraları element sembolleri üzerinde gösterilebilir. Element atom numarası sembolün sol alt köşesine yazılır.

Element atomlarının atom ve kütle numaraları element sembolleri üzerinde gösterilebilir. Element atom numarası sembolün sol alt köşesine yazılır. Atom üç temel tanecikten oluşur. Bunlar proton, nötron ve elektrondur. Proton atomun çekirdeğinde bulunan pozitif yüklü taneciktir. Nötron atomun çekirdeğin bulunan yüksüz taneciktir. ise çekirdek etrafında

Detaylı

Proton, Nötron, Elektron

Proton, Nötron, Elektron Atomun Yapısı Atom Atomu oluşturan parçacıklar farklı yüklere sahiptir. Farklı yüklere sahip bu parçacıklar birbirini etkileyerek bir arada bulunur ve atomu oluşturur. Atomda bulunan yükler negatif ve

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi. chem.libretexts.org

TOBB Ekonomi ve Teknoloji Üniversitesi. chem.libretexts.org 9. Atomun Elektron Yapısı Elektromanyetik ışıma (EMI) Atom Spektrumları Bohr Atom Modeli Kuantum Kuramı - Dalga Mekaniği Kuantum Sayıları Elektron Orbitalleri Hidrojen Atomu Orbitalleri Elektron Spini

Detaylı

Nötr (yüksüz) bir için, çekirdekte kaç proton varsa çekirdeğin etrafındaki yörüngelerde de o kadar elektron dolaşır.

Nötr (yüksüz) bir için, çekirdekte kaç proton varsa çekirdeğin etrafındaki yörüngelerde de o kadar elektron dolaşır. ATOM ve YAPISI Elementin özelliğini taşıyan en küçük parçasına denir. Atom Numarası Bir elementin unda bulunan proton sayısıdır. Protonlar (+) yüklü olduklarından pozitif yük sayısı ya da çekirdek yükü

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ Spektroskopiye Giriş Yrd. Doç. Dr. Gökçe MEREY SPEKTROSKOPİ Işın-madde etkileşmesini inceleyen bilim dalına spektroskopi denir. Spektroskopi, Bir örnekteki atom, molekül veya iyonların

Detaylı

Atom ve Elektrik. A) Yalnız I B) Yalnız II C) I ve II. D) II ve III E) I, II ve III

Atom ve Elektrik. A) Yalnız I B) Yalnız II C) I ve II. D) II ve III E) I, II ve III Siyah isim Işıması Siyah cisim ideal bir cisimdir ve üzerine gelen tüm ışımaları soğurur. 1. Üzerine düşen bütün ışınları absorplar. 2. Her dalga boyunda ışıma yapar. 3. Işıma şiddeti ve spektrumu sıcaklığa

Detaylı

ATOMUN YAPISI. Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir.

ATOMUN YAPISI. Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. ATOMUN YAPISI ATOMUN YAPISI Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomda bulunan yükler; negatif yükler ve pozitif yüklerdir. Atomu oluşturan parçacıklar: * Cisimden cisme

Detaylı

Kütlenin Korunumu Kanunu: Bir kimyasal reaksiyonda, reaksiyona giren maddelerin kütleleri toplamı, ürünlerin kütleleri toplamına eşittir.

Kütlenin Korunumu Kanunu: Bir kimyasal reaksiyonda, reaksiyona giren maddelerin kütleleri toplamı, ürünlerin kütleleri toplamına eşittir. Atom Teorileri 1 Atom Kuramı Milattan önce beşinci yüzyılda, yunan filozofu Democritus, bütün maddeleri, bölünemez veya kesilemez anlamında atomos olarak adlandırılan, çok küçük, bölünmez taneciklerden

Detaylı

kimya LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ İsmail GÜRDAL Öğrenci Kitaplığı

kimya LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ İsmail GÜRDAL Öğrenci Kitaplığı kimya SORU BANKASI İsmail GÜRDAL LYS KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ KONU ÖZETLERİ Öğrenci Kitaplığı kimya SORU BANKASI LYS EDAM Öğrenci Kitaplığı 37 EDAM ın yazılı izni olmaksızın, kitabın

Detaylı

a. Yükseltgenme potansiyeli büyük olanlar daha aktifdir.

a. Yükseltgenme potansiyeli büyük olanlar daha aktifdir. ELEKTROKİMYA A. AKTİFLİK B. PİLLER C. ELEKTROLİZ A. AKTİFLİK Metallerin elektron verme, ametallerin elektron alma yatkınlıklarına aktiflik denir. Yani bir metal ne kadar kolay elektron veriyorsa bir ametal

Detaylı

ELEMENTLERİN SEMBOLLERİ VE ATOM

ELEMENTLERİN SEMBOLLERİ VE ATOM ELEMENT VE SEMBOLLERİ SAF MADDE: Kendisinden başka madde bulundurmayan maddelere denir. ELEMENT: İçerisinde tek cins atom bulunduran maddelere denir. Yani elementlerin yapı yaşı atomlardır. BİLEŞİK: En

Detaylı

Maddenin Yapısına Giriş Ders-2 DOÇ. DR. ZEYNEP GÜVEN ÖZDEMİR EKİM 2017

Maddenin Yapısına Giriş Ders-2 DOÇ. DR. ZEYNEP GÜVEN ÖZDEMİR EKİM 2017 Maddenin Yapısına Giriş Ders-2 DOÇ. DR. ZEYNEP GÜVEN ÖZDEMİR EKİM 2017 Maddeden kuark a maddenin yapıtaşının serüveni Elementlerin Varlığının Keşfi Maddenin yapıtaşı arayışı M.Ö. 2000 lerde Eski Yunan

Detaylı

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz.

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz. Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz. Işık genellikle titreşen elektromanyetik dalga olarak düşünülür; bu suda ilerleyen dalgaya

Detaylı

ATOMUN KUANTUM MODELİ

ATOMUN KUANTUM MODELİ ATOMUN KUANTUM MODELİ 926 yıllarında Erwin Schrödinger Heisenberg den bağımsız olarak de Broglie nin hipotezinden ilham alarak tüm parçacıkların hareketinin hesaplanabileceği bir dalga mekaniği oluşturmuştur.

Detaylı

A. ATOMUN TEMEL TANECİKLERİ

A. ATOMUN TEMEL TANECİKLERİ ÜNİTE 3 MADDENİN YAPISI VE ÖZELLİKLERİ 1. BÖLÜM MADDENİN TANECİKLİ YAPISI 1- ATOMUN YAPISI Maddenin taneciklerden oluştuğu fikri yani atom kavramı ilk defa demokritus tarafından ortaya atılmıştır. Örneğin;

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Atom, birkaç türü birleştiğinde çeşitli molekülleri, bir tek türü ise bir kimyasal öğeyi oluşturan parçacıktır. Atom, elementlerin özelliklerini taşıyan en küçük yapı birimi olup çekirdekteki

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 Elektron Kütlesi 9,11x10-31 kg Proton Kütlesi Nötron Kütlesi 1,67x10-27 kg Bir kimyasal elementin atom numarası (Z) çekirdeğindeki

Detaylı

4. ELEKTROLİZ. Elektroliz kabı (beher), bakır elektrotlar, bakır sülfat çözeltisi, ampermetre, akım kaynağı, terazi (miligram duyarlıklı), kronometre.

4. ELEKTROLİZ. Elektroliz kabı (beher), bakır elektrotlar, bakır sülfat çözeltisi, ampermetre, akım kaynağı, terazi (miligram duyarlıklı), kronometre. 4. ELEKTROLİZ AMAÇLAR 1. Sıvı içinde elektrik akımının iletilmesini öğrenmek. 2. Bir elektroliz hücresi kullanarak bakırın elektro kimyasal eşdeğerinin bulunmasını öğrenmek. 3. Faraday kanunlarını öğrenerek

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Testin 1 in Çözümleri 1. B manyetik alanı sabit v hızıyla hareket ederken,

Detaylı

Yrd.Doç.Dr. Emre YALAMAÇ. Yrd.Doç.Dr. Emre YALAMAÇ İÇERİK

Yrd.Doç.Dr. Emre YALAMAÇ. Yrd.Doç.Dr. Emre YALAMAÇ İÇERİK İÇERİK Elementlere, Bileşiklere ve Karışımlara atomik boyutta bakış Dalton Atom Modeli Atom Fiziğinde Buluşlar - Elektronların Keşfi - Atom Çekirdeği Keşfi Günümüz Atom Modeli Kimyasal Elementler Periyodik

Detaylı

Kütlenin Korunumu Kanunu: Bir kimyasal reaksiyonda, reaksiyona giren maddelerin kütleleri toplamı, ürünlerin kütleleri toplamına eşittir.

Kütlenin Korunumu Kanunu: Bir kimyasal reaksiyonda, reaksiyona giren maddelerin kütleleri toplamı, ürünlerin kütleleri toplamına eşittir. Atom Teorileri 1 Atom Kuramı Milattan önce beşinci yüzyılda, yunan filozofu Democritus, bütün maddeleri, bölünemez veya kesilemez anlamında atomos olarak adlandırılan, çok küçük, bölünmez taneciklerden

Detaylı

KİM-117 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü

KİM-117 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü KİM-117 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü Bu slaytlarda anlatılanlar sadece özet olup ayrıntılı bilgiler ve örnek çözümleri derste verilecektir. BÖLÜM 4 PERİYODİK SİSTEM

Detaylı

FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım

FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım devreleri Manyetik alanlar Akım nedeniyle oluşan manyetik

Detaylı

3. Maddenin Hallerinin Tanecikli Yapısı 4.Maddeyi Oluşturan Tanecikler

3. Maddenin Hallerinin Tanecikli Yapısı 4.Maddeyi Oluşturan Tanecikler 3. Maddenin Hallerinin Tanecikli Yapısı 4.Maddeyi Oluşturan Tanecikler 1.MADDENİN YAPI TAŞLARI-ATOMLAR Atom:Maddeyi oluşturan en küçük yapı taşıdır. Maddenin Sınıflandırılması 1.Katı 2.Sıvı 3.Gaz 1.Katı

Detaylı

FİZİK 4. Ders 6: Atom Enerjisinin Kuantalanması

FİZİK 4. Ders 6: Atom Enerjisinin Kuantalanması FİZİK 4 Ders 6: Atom Enerjisinin Kuantalanması Atom Enerjisinin Kuantalanması Atom Spektrumları Atom Modelleri Bohr Atom Modeli Atomun yapısı ve Laserler Dalga Parçacık İkilemi Tüm fizikçiler fotoelektrik

Detaylı

HAZIRLAYAN Mutlu ŞAHİN. Hacettepe Fen Bilgisi Öğretmenliği DENEY NO: 5 DENEYİN ADI: SUYUN ELEKTRİK ENERJİSİ İLE AYRIŞMASI

HAZIRLAYAN Mutlu ŞAHİN. Hacettepe Fen Bilgisi Öğretmenliği DENEY NO: 5 DENEYİN ADI: SUYUN ELEKTRİK ENERJİSİ İLE AYRIŞMASI HAZIRLAYAN Mutlu ŞAHİN Hacettepe Fen Bilgisi Öğretmenliği DENEY NO: 5 DENEYİN ADI: SUYUN ELEKTRİK ENERJİSİ İLE AYRIŞMASI DENEYİN AMACI: ELEKTRİK ENERJİSİNİ KULLANARAK SUYU KENDİSİNİ OLUŞTURAN SAF MADDELERİNE

Detaylı

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri 7 Büyük Patlama ve Evrenin Oluşumu 225 Test 1 in Çözümleri 1. Elektrikçe yüksüz parçacıklar olan fotonların kütleleri yoktur. Işık hızıyla hareket ettikleri için atom içerisinde bulunamazlar. Fotonlar

Detaylı

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1 BÖLÜM 2 ATOMİK YAPI İÇERİK Atom yapısı Bağ tipleri 1 Atomların Yapıları Atomlar başlıca üç temel atom altı parçacıktan oluşur; Protonlar (+ yüklü) Nötronlar (yüksüz) Elektronlar (-yüklü) Basit bir atom

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Etkinlik A nın Yanıtları 1. Elektromanyetik spektrum şekildeki gibidir.

Detaylı

1.ÜNİTE: MODERN ATOM TEORİSİ

1.ÜNİTE: MODERN ATOM TEORİSİ 1.ÜNİTE: MODERN ATOM TEORİSİ 1.BÖLÜM: ATOMLA İLGİLİ DÜŞÜNCELER Atom Kavramını İlk Kim Kullandı? Eski Yunanlılarda, maddenin sonsuza kadar bölünmesinin veya artık daha fazla bölünmesinin mümkün olmadığı

Detaylı

Elektromanyetik Işıma Electromagnetic Radiation (EMR)

Elektromanyetik Işıma Electromagnetic Radiation (EMR) Elektromanyetik Işıma Electromagnetic Radiation (EMR) Elektromanyetik ışıma (ışık) bir enerji şeklidir. Işık, Elektrik (E) ve manyetik (H) alan bileşenlerine sahiptir. Light is a wave, made up of oscillating

Detaylı

PERİYODİK CETVEL-ÖSS DE ÇIKMIŞ SORULAR

PERİYODİK CETVEL-ÖSS DE ÇIKMIŞ SORULAR PERİODİK CETVEL-ÖSS DE ÇIKMIŞ SORULAR 1. Bir elementin periyodik cetveldeki yeri aşağıdakilerden hangisi ile belirlenir? A) Atom ağırlığı B) Değerliği C) Atom numarası D) Kimyasal özellikleri E) Fiziksel

Detaylı

Radyoaktif elementin tek başına bulunması, bileşik içinde bulunması, katı, sıvı, gaz, iyon halinde bulunması radyoaktif özelliğini etkilemez.

Radyoaktif elementin tek başına bulunması, bileşik içinde bulunması, katı, sıvı, gaz, iyon halinde bulunması radyoaktif özelliğini etkilemez. RADYOAKTİFLİK Kendiliğinden ışıma yapabilen maddelere radyoaktif maddeler denir. Radyoaktiflik çekirdek yapısıyla ilişkilidir. Radyoaktif bir atom hangi bileşiğin yapısına girerse o bileşiği radyoaktif

Detaylı

Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü

Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü 101537 RADYASYON FİZİĞİ Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü TEMEL KAVRAMLAR Radyasyon, Elektromanyetik Dalga, Uyarılma ve İyonlaşma, peryodik cetvel radyoaktif bozunum

Detaylı

Bazı cisimler pozitif (+) ya da negatif (-) elektrik yükü taşırlar. Her ikisi de pozitif ya da negatif yüklü iki cisim birbirini iterken, zıt yüklü

Bazı cisimler pozitif (+) ya da negatif (-) elektrik yükü taşırlar. Her ikisi de pozitif ya da negatif yüklü iki cisim birbirini iterken, zıt yüklü ATOMUN YAPISI 1 Bazı cisimler pozitif (+) ya da negatif (-) elektrik yükü taşırlar. Her ikisi de pozitif ya da negatif yüklü iki cisim birbirini iterken, zıt yüklü iki cisim birbirini çeker. Bütün maddeler

Detaylı

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işını oluşumu Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI OLUŞUMU Hızlandırılmış elektronların anotla etkileşimi ATOMUN YAPISI VE PARÇACIKLARI Bir elementi temsil eden en küçük

Detaylı

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1 BÖLÜM 2 ATOMİK YAPI İÇERİK Atom yapısı Bağ tipleri 1 Atomların Yapıları Atomlar başlıca üç temel atom altı parçacıktan oluşur; Protonlar (+ yüklü) Nötronlar (yüksüz) Elektronlar (-yüklü) Basit bir atom

Detaylı

bu küre içerisine gömülmüş haldedir.

bu küre içerisine gömülmüş haldedir. Maddenin yapı taşları atomlar Boşlukta yer kaplayan, hacmi, kütlesi ve eylemsizliği olan her şeye madde denir. Maddeyi oluşturan ve maddenin kendi özelliğini taşıyan en küçük yapı birimin atom denir. Katı,

Detaylı

BÖLÜM 7. ENSTRÜMENTAL ANALİZ YÖNTEMLERİ Doç.Dr. Ebru Şenel

BÖLÜM 7. ENSTRÜMENTAL ANALİZ YÖNTEMLERİ Doç.Dr. Ebru Şenel BÖLÜM 7. ENSTRÜMENTAL ANALİZ YÖNTEMLERİ 1. SPEKTROSKOPİ Bir örnekteki atom, molekül veya iyonların bir enerji düzeyinden diğerine geçişleri sırasında absorplanan veya yayılan elektromanyetik ışımanın,

Detaylı

Maddeyi Oluşturan Tanecikler

Maddeyi Oluşturan Tanecikler Maddeyi Oluşturan Tanecikler a) Saf Madde : Kendine özgü fiziksel ve kimyasal özellikleri olan, ayırt edici özellikleri bulunan ve bu ayırt edici özellikleri sabit olan maddelere saf madde denir. Elementler

Detaylı

MADDENİN YAPISI VE ÖZELLİKLERİ

MADDENİN YAPISI VE ÖZELLİKLERİ MADDENİN YAPISI VE ÖZELLİKLERİ 1. Atomun Yapısı KONULAR 2.Element ve Sembolleri 3. Elektronların Dizilimi ve Kimyasal Özellikler 4. Kimyasal Bağ 5. Bileşikler ve Formülleri 6. Karışımlar 1.Atomun Yapısı

Detaylı

ELEKTROKİMYA II. www.kimyahocam.com

ELEKTROKİMYA II. www.kimyahocam.com ELEKTROKİMYA II ELEKTROKİMYASAL PİLLER Kendiliğinden gerçekleşen redoks tepkimelerinde elektron alışverişinden yararlanılarak, kimyasal bağ enerjisi elektrik enerjisine dönüştürülebilir. Kimyasal enerjiyi,

Detaylı

7. Sınıf Fen ve Teknoloji

7. Sınıf Fen ve Teknoloji KONU: Atomun Yapısı Saçlarımızın elektriklenmesi, araba kapısına çarpan parmak uçlarımızın elektriksel yük boşalmasından dolayı karıncalanması, cam çubuğun kumaşa sürtüldükten sonra kâğıdı çekmesi, kazağımızı

Detaylı

PERİYODİK CETVEL

PERİYODİK CETVEL BÖLÜM4 W Periyodik cetvel, elementlerin atom numaraları esas alınarak düzenlenmiştir. Bu düzenlemede, kimyasal özellikleri benzer olan (değerlik elektron sayıları aynı) elementler aynı düşey sütunda yer

Detaylı

Tanecik adı. Kütle (kg) Sembol Elektrik yükü. 1, kg 9, kg 1, kg. Proton P + + Elektron e - - Nötron n 0 0

Tanecik adı. Kütle (kg) Sembol Elektrik yükü. 1, kg 9, kg 1, kg. Proton P + + Elektron e - - Nötron n 0 0 ATOMUN YAPISI Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sa-hiptir. Atomda bulunan yükler; negatif yükler ve pozitif yüklerdir. Atomu

Detaylı

Tanecik adı. Sembol Elektrik yükü. Kütle (kg) Proton P + + 1, kg Elektron e - - 9, kg Nötron n 0 0 1,6748.

Tanecik adı. Sembol Elektrik yükü. Kütle (kg) Proton P + + 1, kg Elektron e - - 9, kg Nötron n 0 0 1,6748. ATOMUN YAPISI Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sa-hiptir. Atomda bulunan yükler; negatif yükler ve pozitif yüklerdir. Atomu

Detaylı

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 )

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 ) 5.111 Ders Özeti #4 Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 ) Ders #5 için Okuma: Bölüm 1.3 (3. Baskıda 1.6 ) Atomik Spektrumlar, Bölüm 1.7 de eģitlik 9b ye kadar (3. Baskıda

Detaylı

ELEKTRONLAR ve ATOMLAR

ELEKTRONLAR ve ATOMLAR BÖLÜM 3 ELEKTRONLAR ve ATOMLAR 1 Kapsam 1.0 Radyasyon Enerjisinin Doğası ve Karakteristiği 2.0 Fotoelektrik Etki 3.0 ER: Dalga Özelliği 4.0 Dalgaboyu, Frekans, Hız ve Genlik 5.0 Elektromanyetik Spektrum

Detaylı

Maddeyi Oluşturan Tanecikler

Maddeyi Oluşturan Tanecikler Maddeyi Oluşturan Tanecikler a) Saf Madde : Kendine özgü fiziksel ve kimyasal özellikleri olan, ayırt edici özellikleri bulunan ve bu ayırt edici özellikleri sabit olan maddelere saf madde denir. Elementler

Detaylı

h 7.1 p dalgaboyuna sahip bir dalga karakteri de taşır. De Broglie nin varsayımı fotonlar için,

h 7.1 p dalgaboyuna sahip bir dalga karakteri de taşır. De Broglie nin varsayımı fotonlar için, DENEY NO : 7 DENEYİN ADI : ELEKTRONLARIN KIRINIMI DENEYİN AMACI : Grafit içinden kırınıma uğrayan parçacıkların dalga benzeri davranışlarının gözlemlenmesi. TEORİK BİLGİ : 0. yüzyılın başlarında Max Planck

Detaylı

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM MADDENİN YAPISI VE ÖZELLİKLERİ ATOM ATOMUN YAPISI Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sa-hiptir. Atomda bulunan yükler; negatif

Detaylı

Atomda bulunan yükler; negatif yükler ve pozitif yüklerdir.

Atomda bulunan yükler; negatif yükler ve pozitif yüklerdir. Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sahiptir. Atomda bulunan yükler; negatif yükler ve pozitif yüklerdir. Atomu oluşturan parçacıklar:

Detaylı

Bu ürünün bütün hakları. ÇÖZÜM DERGİSİ YAYINCILIK SAN. TİC. LTD. ŞTİ. ne aittir. Tamamının ya da bir kısmının ürünü yayımlayan şirketin

Bu ürünün bütün hakları. ÇÖZÜM DERGİSİ YAYINCILIK SAN. TİC. LTD. ŞTİ. ne aittir. Tamamının ya da bir kısmının ürünü yayımlayan şirketin Bu ürünün bütün hakları ÇÖÜM DERGİSİ AINCILIK SAN. TİC. LTD. ŞTİ. ne aittir. Tamamının ya da bir kısmının ürünü yayımlayan şirketin önceden izni olmaksızın fotokopi ya da elektronik, mekanik herhangi bir

Detaylı

MADDENİN YAPISI ve ÖZELLİKLERİ

MADDENİN YAPISI ve ÖZELLİKLERİ MADDENİN YAPISI ve ÖZELLİKLERİ ÜNİTE : MADDENİN YAPISI ve Üniteye Giriş ÖZELLİKLERİ Her madde kendinden küçük atomlardan oluşmuştur. Ancak her madde aynı atomlardan oluşmamıştır. Maddeyi oluşturan atomlar

Detaylı

Katoda varan pozitif iyonlar buradan kendilerini nötrleyecek kadar elektron alırlar.

Katoda varan pozitif iyonlar buradan kendilerini nötrleyecek kadar elektron alırlar. ELEKTROLİZ Şekilde verilen kapta saf su var iken, anahtar kapatıldığında lamba yanmaz. Saf suyun içine H 2 SO 4, NaCI, NaOH gibi suda iyonlarına ayrışan maddelerden herhangi biri katıldığında lamba ışık

Detaylı

ATOM BİLGİSİ I ÖRNEK 1

ATOM BİLGİSİ I  ÖRNEK 1 ATOM BİLGİSİ I Elementlerin özelliklerini ta ıyan en küçük yapıta ı atomdur. Son çözümlemede, bütün maddelerin atomlar toplulu u oldu unu söyleyebiliriz. Elementler, aynı tür atomlardan, bile ik ve karı

Detaylı

Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a

Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a Kuantum Mekaniği Düşüncesinin Gelişimi Dalga Mekaniği Olarak da Adlandırılır Atom, Molekül ve Çekirdeği Açıklamada Oldukça Başarılıdır Kuantum

Detaylı

KİMYA 10 DERS NOTLARI ATOM VE ELEKTRİK

KİMYA 10 DERS NOTLARI ATOM VE ELEKTRİK KİMYA 10 DERS NOTLARI ATOM VE ELEKTRİK Madde ve Elektriksel Yük Maddelerin elektrikli yapıda olduğu eski çağlardan beri bilinmektedir. Örneğin antik dönemde Greekler yüne sürülen kehribar taşının(ağaç

Detaylı

ELEKTRON DİZİLİMİ PAULİ DIŞLAMA İLKESİ:

ELEKTRON DİZİLİMİ PAULİ DIŞLAMA İLKESİ: ELEKTRON DİZİLİMİ PAULİ DIŞLAMA İLKESİ: Bir atomdaki herhangi iki elektronun dört kuantum sayısı aynı olamaz. Bir atomun n,l,ml, kuant sayıları aynı olsa bile m s spin kuantum sayıları farklı olacaktır.

Detaylı

Fotovoltaik Teknoloji

Fotovoltaik Teknoloji Fotovoltaik Teknoloji Bölüm 3: Güneş Enerjisi Güneşin Yapısı Güneş Işınımı Güneş Spektrumu Toplam Güneş Işınımı Güneş Işınımının Ölçülmesi Dr. Osman Turan Makine ve İmalat Mühendisliği Bilecik Şeyh Edebali

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A S 2 FİZİ TESTİ. Bu testte 0 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Fizik Testi için ayrılan kısmına işaretleyiniz.. Aşağıdakilerden hangisi momentum birimidir? joule joule A) B) newton saniye weber

Detaylı

ATOM MODELLERİ BERNA AKGENÇ

ATOM MODELLERİ BERNA AKGENÇ ATOM MODELLERİ BERNA AKGENÇ DEMOCRITOS Atom hakkında ilk görüş M.Ö. 400 lü yıllarda Yunanlı filozof Democritus tarafından ortaya konmuştur. Democritus, maddenin taneciklerden oluştuğunu savunmuş ve bu

Detaylı

Ders Müfredatı. Gerekli Kaynaklar. Gerekli Kaynaklar. Gerekli Kaynaklar. Atomun Yapısı. MÜHENDİSLİK KİMYASI DERS NOTLARI Yrd. Doç. Dr.

Ders Müfredatı. Gerekli Kaynaklar. Gerekli Kaynaklar. Gerekli Kaynaklar. Atomun Yapısı. MÜHENDİSLİK KİMYASI DERS NOTLARI Yrd. Doç. Dr. Ders Müfredatı MÜHENDİSLİK KİMYASI DERS NOTLARI Yrd. Doç. Dr. Atilla EVCİN Madde Atomun Yapısı ve Periyodik Sistem Kimyasal Bağlar Sembol, Formül ve Denklemler Stokiyometri Gazlar Katılar Sıvılar Çözeltiler

Detaylı

1. ÜNİTE: MODERN ATOM TEORİSİ İyon Yükleri ve Yükseltgenme Basamakları

1. ÜNİTE: MODERN ATOM TEORİSİ İyon Yükleri ve Yükseltgenme Basamakları 1. ÜNİTE: MODERN ATOM TEORİSİ 1.7. İyon Yükleri ve Yükseltgenme Basamakları Yüksüz bir atomun yapısındaki pozitif (+) yüklü protonlarla negatif () yüklü elektronların sayıları birbirine eşittir. Yüksüz

Detaylı

Elektrik Yük ve Elektrik Alan

Elektrik Yük ve Elektrik Alan Bölüm 1 Elektrik Yük ve Elektrik Alan Bölüm 1 Hedef Öğretiler Elektrik yükler ve bunların iletken ve yalıtkanlar daki davranışları. Coulomb s Yasası hesaplaması Test yük kavramı ve elektrik alan tanımı.

Detaylı

BÖLÜM III METAL KAPLAMACILIĞINDA KULLANILAN ÖRNEK PROBLEM ÇÖZÜMLERİ

BÖLÜM III METAL KAPLAMACILIĞINDA KULLANILAN ÖRNEK PROBLEM ÇÖZÜMLERİ BÖLÜM III METAL KAPLAMACILIĞINDA KULLANILAN ÖRNEK PROBLEM ÇÖZÜMLERİ Faraday Kanunları Elektroliz olayı ile ilgili Michael Faraday iki kanun ortaya konulmuştur. Birinci Faraday kanunu, elektroliz sırasında

Detaylı

ATOM YAPISI ve MODELLERİ. Kimya Ders Notu

ATOM YAPISI ve MODELLERİ. Kimya Ders Notu ATOM YAPISI ve MODELLERİ Kimya Ders Notu ATOM ve ELEKTRİK Bir elementin bütün özelliklerini taşıyan en küçük yapı taşına atom denir. Maddelerin tüm fiziksel ve kimyasal özellikleri atomun elektrik yapısı

Detaylı

İSRAFİL ARSLAN KİM ÖĞR. YGS ÇALIŞMA KİMYA SORULARI I

İSRAFİL ARSLAN KİM ÖĞR. YGS ÇALIŞMA KİMYA SORULARI I İSRAFİL ARSLAN KİM ÖĞR. YGS ÇALIŞMA KİMYA SORULARI I D) Elmas E) Oltu taşı 1. I. Civa II. Kil III. Kireç taşı Yukarıdaki maddelerden hangileri simyacılar tarafından kullanılmıştır? D) II ve III E) I, II

Detaylı

İÇİNDEKİLER -BÖLÜM / 1- -BÖLÜM / 2- -BÖLÜM / 3- GİRİŞ... 1 ÖZEL GÖRELİLİK KUANTUM FİZİĞİ ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ...

İÇİNDEKİLER -BÖLÜM / 1- -BÖLÜM / 2- -BÖLÜM / 3- GİRİŞ... 1 ÖZEL GÖRELİLİK KUANTUM FİZİĞİ ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ... İÇİNDEKİLER ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ... viii -BÖLÜM / 1- GİRİŞ... 1 -BÖLÜM / 2- ÖZEL GÖRELİLİK... 13 2.1. REFERANS SİSTEMLERİ VE GÖRELİLİK... 14 2.2. ÖZEL GÖRELİLİK TEORİSİ... 19 2.2.1. Zaman Ölçümü

Detaylı

Serüveni 2.ÜNİTE:ATOM VE PERİYODİK SİSTEM ATOMUN BÖLÜNEBİLİRLİĞİ ATOM ALTI TANECİKLER

Serüveni 2.ÜNİTE:ATOM VE PERİYODİK SİSTEM ATOMUN BÖLÜNEBİLİRLİĞİ ATOM ALTI TANECİKLER Serüveni 2.ÜNİTE:ATOM VE PERİYODİK SİSTEM ATOMUN BÖLÜNEBİLİRLİĞİ ATOM ALTI TANECİKLER ATOMUN BÖLÜNEBİLİRLİĞİ: ATOM ALTI TANECİKLER SÜRTÜNME İLE ELEKTRİKLENME ELEKTROLİZ DENEYİ FARADAY SÜRTÜNME İLE ELEKTRİKLENME:

Detaylı

KİMYA. davranış. umunu, reaksiyonlar sırass. imleri (enerji. vs..) gözlem ve deneylerle inceleyen, açıklayan a

KİMYA. davranış. umunu, reaksiyonlar sırass. imleri (enerji. vs..) gözlem ve deneylerle inceleyen, açıklayan a KİMYA Maddenin yapısını, özelliklerini, farklı koşullardaki davranış ışlarını,, bir maddeden diğer bir madde oluşumunu, umunu, reaksiyonlar sırass rasındaki değişimleri imleri (enerji vs..) gözlem ve deneylerle

Detaylı

Serüveni PERİYODİK ÖZELLİKLER DEĞİŞİMİ

Serüveni PERİYODİK ÖZELLİKLER DEĞİŞİMİ Serüveni PERİYODİK ÖZELLİKLER DEĞİŞİMİ PERİYODİK ÖZELLİKLERİN DEĞİŞİMİ ATOM YARIÇAPI Çekirdeğin merkezi ile en dış kabukta bulunan elektronlar arasındaki uzaklık olarak tanımlanır. Periyodik tabloda aynı

Detaylı

kitabı olarak önerilen, Erdik ve Sarıkaya nın

kitabı olarak önerilen, Erdik ve Sarıkaya nın PERİYODİK CETVEL Aşağıda verilen özet bilginin ayrıntısını, ders kitabı olarak önerilen, Erdik ve Sarıkaya nın Temel Üniversitesi Kimyası" Kitabı ndan okuyunuz. Modern periyotlu dizge, elementleri artan

Detaylı