VERİ MADENCİLİĞİNE BAKIŞ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "VERİ MADENCİLİĞİNE BAKIŞ"

Transkript

1 VERİ MADENCİLİĞİNE BAKIŞ

2 İçerik Veri Madenciliği Neden Veri Madenciliği? Veri ve Veri Madenciliğinin Önemi Günümüzde Kullanılan Veri Madenciliğinin Çeşitli İsimleri Veri Madenciliği Nedir?

3 Neden Veri Madenciliği? Karar verici için verilen kararın doğruluğu, onun yeteneklerine, deneyimine ve bilgi birikimine olduğu kadar sahip olduğu veri kümesinin yeterliliğine de bağlıdır. Doğru karar vermede, verilerin toplanması, tasnif edilmesi, hazırlanması, analiz edilmesi ve doğru yorumlanması çok önemlidir. Ayrıca verilerin incelenmesi ile birlikte ilişkilerin ortaya çıkarılması da doğru karar verme için önemli bir rol oynar.

4 Neden Veri Madenciliği? Günümüzde karar süreçlerinin karmaşıklaşması ve sayısal olarak daha fazla veriye gereksiniminin ortaya çıkması ile büyük veri tabanlarındaki bilginin işlenmesi oldukça zor olmaya başlamıştır.

5 Neden Veri Madenciliği? Kurumlar ve işletmeler her kayıtlarını elektronik olarak biriktirmeye başlamış ve sayısal teknolojilerin gelişmesiyle birlikte akıl almaz derecede veri birikimi meydana gelmiştir. Veri tabanlarında ve veri ambarlarında depolanan veri yığınları arasından anlamlı ilişkilerin, kalıpların ve eğilimlerin ortaya çıkartılması ihtiyacı doğmuş, gelecek adına doğru tahminlerin yapılması önem kazanmıştır.

6 Neden Veri Madenciliği? Veri madenciliği (data mining) uygulamaları işte bu noktada, istatistiksel analiz ve modellemeler ile Makine öğrenimi artificial intelligence tekniklerinin kullanılması ile devreye girmiştir. Karmaşık örüntüleri algılama ve veriye dayalı akılcı kararlar verebilme becerisi kazandırmada, veri madenciliği; istatistik, makine öğrenimi, optimizasyon, veri ambarcılığı, uzman sistemler, örüntü tanıma, yapay zekâ, uyarlamalı denetim ve kuramsal bilgisayar bilimi ile ilişkilidir. Verinin içindeki bilginin ortaya çıkarılması için gelişmiş teknolojiler ve iş deneyimi birlikte kullanılmalıdır.

7 Veri Madenciliği İle İlişkili Alanlar

8 Neden Veri Madenciliği? Bilimsel veritabanlarının ve ağ sistemlerinin geliştirilmesiyle birlikte bankacılık, finans, ekonomi, sağlık, adli suçlar, güvenlik ve savunma gibi pek çok alanda veri madenciliği teknikleri geliştirilmeye başlanmış, tahmin analizleri, modellemeler ve yapay zekâ teknikleri alanlarında ciddi ilerleme kaydedilmiştir.

9 Veri ve Veri Madenciliğinin Önemi Günümüzde ekonomik sistemde veri ya da bilgi, mal ya da hizmet üretiminin faktörlerinden birisi olarak algılanmaktadır. Bu ise karar vericileri yanlış karar riskinden uzaklaşabilmek için, mümkün olduğunca fazla veriyi depolamaya zorlamaktadır. Ayrıca internetin yaygınlaşması, rekabetin önemli olması, kar marjlarının düşmesi ve müşteri memnuniyetinin zorlaşması, bu endişeyi daha da artırmaktadır. Bu durum ise doğru veriyi toplama ya da doğru veriye ulaşma zorunluluğunu ortaya çıkarmıştır. Artık veriye erişmek en az verinin kendisi kadar önemli bir faktör olarak karşımıza çıkmıştır.

10 Veri ve Veri Madenciliğinin Önemi Bilgisayarın yaşamımızda daha çok rol almasıyla, yapılan her işlem sayısal ortamda kayıt altına alınmaya başladı. Hastanelerde, belediyelerde veya ticarette yapılan her işlem artık veritabanlarında yerini almıştır. Hatta bir mağazaya, alışveriş merkezine girerken ya da çıkarken, bazen de yolda yürürken kameraya çekilen görüntüler bile bir veritabanı oluşturmaktadır. Bütün bunlar bir yığın halinde depolanırken içlerinde nasıl gizli bilgiler taşıdığı bilinmemektedir. Tüm bu veriler, veritabanlarında çıkarılmayı bekleyen değerli bir maden gibi durmaktadır. Bir bakıma çevremizde bir sürü veri varken, bu veriler bilgiye dönüşmeyi beklemektedir.

11 Veri ve Veri Madenciliğinin Önemi Günümüzde şirketlerin müşteri ile ilişkileri büyük ölçüde değişmiştir. İşletmelerde başarılı bir müşteri ilişkileri yönetimiyle, küresel bir dünyada ve giderek artan rekabetçi piyasalarda, işletmeler için yaşamsal önem taşıyan, müşteri için değer yaratmak, müşteri sadakati sağlamak ve bu konularda kurumsallaşmayı gerçekleştirmek mümkün olabilecektir.

12 Günümüzde Kullanılan Veri Madenciliğinin Çeşitli İsimleri Veri Madenciliği (Data mining) Veritabanlarında bilgi madenciliği (knowledge mining from databases), Bilgi çıkarımı (knowledge extraction), Veri ve örüntü analizi (data/pattern analysis), Veri arkeolojisi gibi, İş analitikleri (Business analytics)

13 Veri Madenciliği Nedir? Literatürde veri madenciliğine ilişkin bir çok tanım yapılmıştır. Bunlardan bazıları aşağıda verilmiştir. Veri madenciliği, veri ambarlarında tutulan çok çeşitli verilere dayanarak daha önce keşfedilmemiş verileri ortaya çıkarmak, bunlara karar vermek ve gerçekleştirmek için kullanma sürecidir. Anlamsız görünen veri yığını üzerinde birçok işlem yapılarak önemli ve anlamlı bilgilerin çıkarımına olanak sağlama sürecidir. Mevcut veri yığınları arasından anlamlı ilişkilerin, kalıpların ve eğilimlerin ortaya çıkartılmasıdır.

14 Veri Madenciliği Nedir? Veri madenciliği, önceden bilinmeyen ilişki ve eğilimlerin bulunması için bugünün endüstrisinde yaratılan büyük miktarlardaki veriyi analiz eden bir yoldur. Veri madenciliği büyük ve karmaşık verilerde beklenmeyen patikaların, değerli yapıların ve ilginç ilişkilerin keşfedilmesi bilimidir. Veri madenciliği, eldeki verilerden üstü kapalı, çok net olmayan, önceden bilinmeyen ancak potansiyel olarak kullanışlı bilginin çıkarılmasıdır.

15 Veri Tabanlarında Bilgi Keşfi Süreci HAN, J., KAMBER, M., PEI, J., Data Mining Consepts And Techniques, Morgan Kaufmann, USA, 2012, s.7.

16 Veri Madenciliğinde Kullanılan Yöntemler Veri madenciliği yöntemleri işlevlerine göre aşağıdaki gibi üç temel grupta tanımlanmaktadır. Sınıflama (Classification), Kümeleme (Clustering), Birliktelik kuralları ve sıralı örüntülerdir (Association rules and sequential patterns).

17 Referanslar Berry M, Linoff G., Data Mining Techniques For Marketing, Sales And Customer Support, John Wiley & Sons, New Jersey, U.S.A, Dasu, T. ve Johnson, T. (2003) Explarotary Data Mining and Data Cleaning. Ganesh, S. (2002) Data Mining: Should it be included in the Statistics cirriculum?, The Sixt International Conference on Teaching Statistics, Cape Town, South Africa, 7 12 July. Gürsakal N., (2006), Sözcük ve Sayı, SPSS Kamu Günü, 14 Nisan, SPSS Veri Madenciliği Çözümleri. Han J., Kamber M., Pei J. (2012), Data Mining, Concept and Techniques, Elsevier.

Veri Ambarları ve Veri Madenciliği (ISE 350) Ders Detayları

Veri Ambarları ve Veri Madenciliği (ISE 350) Ders Detayları Veri Ambarları ve Veri Madenciliği (ISE 350) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Uygulama Saati Saati Laboratuar Saati Kredi AKTS Veri Ambarları ve Veri Madenciliği ISE 350 Bahar 3 0 0 3 6 Ön

Detaylı

VERİ MADENCİLİĞİ İLE DEPREM VERİLERİNİN ANALİZİ

VERİ MADENCİLİĞİ İLE DEPREM VERİLERİNİN ANALİZİ VERİ MADENCİLİĞİ İLE DEPREM VERİLERİNİN ANALİZİ N. Duru -1, M. Canbay -1 Posta Adresi: 1- Kocaeli Üniversitesi Müh.Fak. Bilgisayar Mühendisliği 2- Kocaeli Üniversitesi Müh.Fak. Jeofizik Mühendisliği E-posta:

Detaylı

Apriori Algoritması ile Teknik Seçmeli Ders Seçim Analizi

Apriori Algoritması ile Teknik Seçmeli Ders Seçim Analizi Apriori Algoritması ile Teknik Seçmeli Ders Seçim Analizi Emre Güngör 1,2, Nesibe Yalçın 1,2, Nilüfer Yurtay 3 1 Bilecik Şeyh Edebali Üniversitesi, Bilgisayar Mühendisliği Bölümü, 11210, Merkez, Bilecik

Detaylı

Veritabanı, Veri Madenciliği, Veri Ambarı, Veri Pazarı

Veritabanı, Veri Madenciliği, Veri Ambarı, Veri Pazarı Veritabanı, Veri Madenciliği, Veri Ambarı, Veri Pazarı Başkent Üniversitesi Bilgisayar Mühendisliği Yönetim Bilişim Sistemleri (Bil 483) 20394676 - Ümit Burak USGURLU Veritabanı Veri tabanı düzenli bilgiler

Detaylı

SAP FORUM İSTANBUL Discover Simple Kararlarınızı ileri analitiklerle aydınlatın

SAP FORUM İSTANBUL Discover Simple Kararlarınızı ileri analitiklerle aydınlatın SAP FORUM İSTANBUL Discover Simple Kararlarınızı ileri analitiklerle aydınlatın Konuşmacı Adı : Beyhan BOYACIOGLU Firma Adı : METRIC Yazılım Use this title slide only with an image Gündem İleri Analiz

Detaylı

İş Analitiği'ne Netezza ile Yüksek Performans Katın

İş Analitiği'ne Netezza ile Yüksek Performans Katın İş Analitiği'ne Netezza ile Yüksek Performans Katın Umut ŞATIR İleri Analitik Çözüm Mimarı 2012 IBM Corporation Netezza and IBM Business Analytics Baştan sona bir İş Analitiği çözümü Performans Kolaylık

Detaylı

PARALEL VERİ MADENCİLİĞİ ALGORİTMALARI. BAŞARIM 09, 15-18 Nisan 2009, ODTÜ, Ankara

PARALEL VERİ MADENCİLİĞİ ALGORİTMALARI. BAŞARIM 09, 15-18 Nisan 2009, ODTÜ, Ankara PARALEL VERİ MADENCİLİĞİ ALGORİTMALARI BAŞARIM 09, 15-18 Nisan 2009, ODTÜ, Ankara Veri Madenciliğine Genel Bir Bakış Veri Madenciliğinin Görevleri Sınıflama Seri Sınıflama Algoritmaları Paralel Sınıflama

Detaylı

VERİ MADENCİLİĞİ MODELLERİ VE UYGULAMA ALANLARI

VERİ MADENCİLİĞİ MODELLERİ VE UYGULAMA ALANLARI VERİ MADENCİLİĞİ MODELLERİ VE UYGULAMA ALANLARI *Öğr. Gör. Serhat ÖZEKES Abstract: The major reason that data mining became one of the hottest current technologies of the information age is the wide availability

Detaylı

Web Madenciliği Teknikleri

Web Madenciliği Teknikleri Web Madenciliği Teknikleri Abdullah BAYKAL*,Cengiz COŞKUN** * Dicle Üniversitei Fen-Edebiyat Fakültesi Matematik Bölümü, baykal@dicle.edu.tr ** Dicle Üniversitesi Bilgi-İşlem Daire Başkanlığı, ccoskun@dicle.edu.tr

Detaylı

Bölüm 1. Giriş. Öğretim üyesi: Doç. Dr. Suat Özdemir E-posta: suatozdemir@gazi.edu.tr. Websayfası: http://ceng.gazi.edu.tr/~ozdemir/teaching/dm

Bölüm 1. Giriş. Öğretim üyesi: Doç. Dr. Suat Özdemir E-posta: suatozdemir@gazi.edu.tr. Websayfası: http://ceng.gazi.edu.tr/~ozdemir/teaching/dm Bölüm 1. Giriş http://ceng.gazi.edu.tr/~ozdemir Ders bilgileri Öğretim üyesi: E-posta: suatozdemir@gazi.edu.tr Websayfası: http://ceng.gazi.edu.tr/~ozdemir/teaching/dm Bütün duyuru, ödev, vb. için ders

Detaylı

Birliktelik Kuralları Analizi. Yard. Doç. Dr. Derya BİRANT Prof. Dr. Alp KUT

Birliktelik Kuralları Analizi. Yard. Doç. Dr. Derya BİRANT Prof. Dr. Alp KUT İş Zekası Çözümleri için i Çok Boyutlu Birliktelik Kuralları Analizi Yard. Doç. Dr. Derya BİRANT Prof. Dr. Alp KUT İçerik 1 Veri Madenciliği 2 Birliktelik Kuralları Analizi 3 Uygulama 4 Algoritma 5 Sonuçlar

Detaylı

VERİ MADENCİLİĞİNDE KARAR AĞACI ALGORİTMALARI İLE BİLGİSAYAR VE İNTERNET GÜVENLİĞİ ÜZERİNE BİR UYGULAMA

VERİ MADENCİLİĞİNDE KARAR AĞACI ALGORİTMALARI İLE BİLGİSAYAR VE İNTERNET GÜVENLİĞİ ÜZERİNE BİR UYGULAMA Endüstri Mühendisliði Dergisi Cilt: 5 Sayý: 3-4 Sayfa: (-19) Makale VERİ MADENCİLİĞİNDE KARAR AĞACI ALGORİTMALARI İLE BİLGİSAYAR VE İNTERNET GÜVENLİĞİ ÜZERİNE BİR UYGULAMA Aslı ÇALIŞ, Sema KAYAPINAR*,

Detaylı

APRIORI ALGORİTMASI İLE ÖĞRENCİ BAŞARISI ANALİZİ

APRIORI ALGORİTMASI İLE ÖĞRENCİ BAŞARISI ANALİZİ APRIORI ALGORİTMASI İLE ÖĞRENCİ BAŞARISI ANALİZİ Murat KARABATAK 1, Melih Cevdet İNCE 2 1 Fırat Üniversitesi Teknik Eğitim Fakültesi Elektronik Bilgisayar Eğitimi Bölümü 2 Fırat Üniversitesi Mühendislik

Detaylı

Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü. Bilgisayar Mühendisliği

Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü. Bilgisayar Mühendisliği Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü Bilgisayar Mühendisliği Bilgisayar Mühendisliği Günümüzde, finans, tıp, sanat, güvenlik, enerji gibi bir çok sektör, bilgisayar mühendisliğindeki gelişimlerden

Detaylı

GENCAY KARAMAN. gencay@gencaykaraman.com gencaykaraman@gmail.com. DBA & Data Mining/Business Intelligence Specialist

GENCAY KARAMAN. gencay@gencaykaraman.com gencaykaraman@gmail.com. DBA & Data Mining/Business Intelligence Specialist Veri Madenciliği ile Çapraz Satış ve Risk Yönetimi Churn analyse, Cross selling, Fraud Detection, Risk Management, Customer Segmentation, Targeted ads, Sales Forecast GENCAY KARAMAN gencay@gencaykaraman.com

Detaylı

Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, Sayı 33, Ağustos 2012 165 VERİ MADENCİLİĞİ VE LİSANSÜSTÜ ÖĞRENCİ VERİLERİ ÜZERİNE BİR UYGULAMA

Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, Sayı 33, Ağustos 2012 165 VERİ MADENCİLİĞİ VE LİSANSÜSTÜ ÖĞRENCİ VERİLERİ ÜZERİNE BİR UYGULAMA Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, Sayı 33, Ağustos 2012 165 VERİ MADENCİLİĞİ VE LİSANSÜSTÜ ÖĞRENCİ VERİLERİ ÜZERİNE BİR UYGULAMA Mehmet Ali ALAN, Yrd. Doç. Dr., Cumhuriyet Üniversitesi,

Detaylı

İş Süreçlerinin Yeniden Yapılandırılması (IE 320) Ders Detayları

İş Süreçlerinin Yeniden Yapılandırılması (IE 320) Ders Detayları İş Süreçlerinin Yeniden Yapılandırılması (IE 320) Ders Detayları Ders Adı Ders Dönemi Ders Kodu Saati Uygulama Saati Laboratuar Kredi AKTS Saati İş Süreçlerinin Yeniden Yapılandırılması IE 320 Seçmeli

Detaylı

1. Oracle Data Miner 11g Release 2 Kurulumu Aşamaları

1. Oracle Data Miner 11g Release 2 Kurulumu Aşamaları 1. Oracle Data Miner 11g Release 2 Kurulumu Aşamaları Uyarı 1: Kuruluma başlamadan önce Oracle 11g Release 2 veritabanı kurulumunu eksiksiz bir şekilde gerçekleştirmiş olmanız beklenmektedir. İlgili kurulum

Detaylı

LOGO İş Zekası çözümü ile kurumsal raporlama ve analizler. Cem Yılmaz Genel Müdür LOGOBI Yazılım

LOGO İş Zekası çözümü ile kurumsal raporlama ve analizler. Cem Yılmaz Genel Müdür LOGOBI Yazılım LOGO İş Zekası çözümü ile kurumsal raporlama ve analizler Cem Yılmaz Genel Müdür LOGOBI Yazılım Hakkımızda LOGOBI Yazılım A.Ş. iş zekası alanında faaliyet gösteren, Türkiye de sahip olduğu yüzlerce müşterinin

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Genel bilgiler Değerlendirme Arasınav : 25% Ödevler : 15% Final Projesi : 30% Final Sınavı : 30%

Detaylı

Yrd. Doç. Dr. Semra Erpolat

Yrd. Doç. Dr. Semra Erpolat Anadolu Üniversitesi Sosyal Bilimler Dergisi Anadolu University Journal of Social Sciences Otomobil Yetkili Servislerinde Birliktelik Kurallarının Belirlenmesinde Apriori ve FP-Growth Algoritmalarının

Detaylı

Öğr.Gör.İnan ÜNAL Tunceli Üniversitesi Bilgisayar Mühendisliği Bölümü

Öğr.Gör.İnan ÜNAL Tunceli Üniversitesi Bilgisayar Mühendisliği Bölümü Öğr.Gör.İnan ÜNAL Tunceli Üniversitesi Bilgisayar Mühendisliği Bölümü Büyük miktardaki veriler içerisinden önemli olanlarını bulup çıkarmaya veri Madenciliği denir. Veri madenciliği bir sorgulama işlemi

Detaylı

Dr. Hidayet Takçı. Veri Madenciliği Dersi G Y T E Dr. Hidayet Takçı 10/05/2008 1

Dr. Hidayet Takçı. Veri Madenciliği Dersi G Y T E Dr. Hidayet Takçı 10/05/2008 1 Birinci Saat Veri Madenciliği: Giriş Dr. Hidayet Takçı Veri Madenciliği Dersi G Y T E Dr. Hidayet Takçı 10/05/2008 1 Neden Veri Madenciliği? Ticari Bakış Açısı Çok miktarda veri toplanmış ve ambarlanmıştır.

Detaylı

Veri Madenciliği Projelerinin Yaşam Döngüsü - 1

Veri Madenciliği Projelerinin Yaşam Döngüsü - 1 Veri Madenciliği Projelerinin Yaşam Döngüsü - 1 Özet : Bu makalemizde Veri Madenciliği projelerinin yaşam döngüsünü inceleyeceğiz.veri Madenciliği projelerinde takip edilmesi gereken başlıca adımları ve

Detaylı

IBM Big Data. Emre Uzuncakara emre@tr.ibm.com Big Data Sales. 2009 IBM Corporation

IBM Big Data. Emre Uzuncakara emre@tr.ibm.com Big Data Sales. 2009 IBM Corporation IBM Big Data Emre Uzuncakara emre@tr.ibm.com Big Data Sales Büyük Veri Nedir? Hız Hacim 12 terabyte Günlük Tweet verisi Ürün Analizi 350 5 Çeşitlilik milyon Ticari hareket - saniyede Potansiyel suistimal

Detaylı

VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI

VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI 10 Aralık 2011, Cumartesi Fen ve Mühendislik Alanlarındaki Çeşitli Araştırma Projelerinden Örneklemeler İçerik

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Sigma Vol./Cilt 26 Issue/Sayı 1 Araştırma Makalesi / Research Article CHURN ANALYSIS AND CUSTOMER SEGMENTATION OF A COSMETICS

Detaylı

Veri Madenciliği Yöntemleriyle İGDAŞ Çağrı Merkezi Veri Analizi VE Kalite Fonksiyon Yayılımı Yöntemiyle Süreç İyileştirme Çalışması

Veri Madenciliği Yöntemleriyle İGDAŞ Çağrı Merkezi Veri Analizi VE Kalite Fonksiyon Yayılımı Yöntemiyle Süreç İyileştirme Çalışması Veri Madenciliği Yöntemleriyle İGDAŞ Çağrı Merkezi Veri Analizi VE Kalite Fonksiyon Yayılımı Yöntemiyle Süreç İyileştirme Çalışması Nilay Kurşunoğlu, PwC Yönetim Danışmanlığı Biz Kimiz? Orhan Cem Sorumlu

Detaylı

VERİ MADENCİLİĞİ (Birliktelik Kuralları) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Birliktelik Kuralları) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Birliktelik Kuralları) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Birliktelik Kurallarının Tanımı Destek ve Güven Ölçütleri Apriori Algoritması Birliktelik Kuralları (Association

Detaylı

Sigortacılık Sektöründe Müşteri İlişkileri Yönetimi İçin Birliktelik Kuralı Kullanılması

Sigortacılık Sektöründe Müşteri İlişkileri Yönetimi İçin Birliktelik Kuralı Kullanılması DOI: 10.7240/mufbed.56489 Sigortacılık Sektöründe Müşteri İlişkileri Yönetimi İçin Birliktelik Kuralı Kullanılması Buket DOĞAN 1, Bahar Erol 2, Ali Buldu 3 1,3 Marmara Üniversitesi, Teknoloji Fakültesi,

Detaylı

UYGULAMALI VERİ MADENCİLİĞİ SEKTÖREL ANALİZLER

UYGULAMALI VERİ MADENCİLİĞİ SEKTÖREL ANALİZLER Yrd. Doç. Dr. Umman Tuğba Şimşek Gürsoy UYGULAMALI VERİ MADENCİLİĞİ SEKTÖREL ANALİZLER ISBN 978-605-364-040-0 Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. 2012, Pegem Akademi Bu kitabın

Detaylı

inde Sepet Analizi Uygulamaları Market Basket Analysis for Data Mining

inde Sepet Analizi Uygulamaları Market Basket Analysis for Data Mining Veri Madenciliğ inde Sepet Analizi Uygulamaları Market Basket Analysis for Data Mining Mehmet Aydın Ula ş, Ethem Alpaydın (Boğaziçi Üniversitesi Bilgisayar Mühendisliği) Nasuhi Sönmez, Ataman Kalkan (GİMA

Detaylı

2. SÜREKLİ DENETİME İLİŞKİN GENEL BİLGİLER

2. SÜREKLİ DENETİME İLİŞKİN GENEL BİLGİLER İÇİNDEKİLER İÇİNDEKİLER... v TABLO LİSTESİ... xi ŞEKİL LİSTESİ... xiii KISALTMALAR... xiv 2. SÜREKLİ DENETİME İLİŞKİN GENEL BİLGİLER... 4 2.1. SÜREKLİ DENETİMİN TANIMI... 4 2.2. SÜREKLİ DENETİM İLE GELENEKSEL

Detaylı

Satış ve Pazarlama Süreçlerinizde Müşteri Verisinin Rolü Nedir? Her hakkı saklıdır

Satış ve Pazarlama Süreçlerinizde Müşteri Verisinin Rolü Nedir? Her hakkı saklıdır Satış ve Pazarlama Süreçlerinizde Müşteri Verisinin Rolü Nedir? Her hakkı saklıdır İçerik Crede hakkında Müşteri verisi anketi sonuçları Genel çıktılar Anahtar bulgular 2 Hakkımızda Crede Danışmanlık,

Detaylı

ÖĞRENCİ SEÇME SINAVINDA (ÖSS) ÖĞRENCİ BAŞARIMINI ETKİLEYEN FAKTÖRLERİN VERİ MADENCİLİĞİ YÖNTEMLERİYLE TESPİTİ

ÖĞRENCİ SEÇME SINAVINDA (ÖSS) ÖĞRENCİ BAŞARIMINI ETKİLEYEN FAKTÖRLERİN VERİ MADENCİLİĞİ YÖNTEMLERİYLE TESPİTİ 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS 09), 13-15 Mayıs 2009, Karabük, Türkiye ÖĞRENCİ SEÇME SINAVINDA (ÖSS) ÖĞRENCİ BAŞARIMINI ETKİLEYEN FAKTÖRLERİN VERİ MADENCİLİĞİ YÖNTEMLERİYLE TESPİTİ

Detaylı

Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı

Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı cse@akdeniz.edu.tr Antalya, 2015 2 Özet Akdeniz Üniversitesi tanıtım filmi Neden Bilgisayar Mühendisliği Bilgisayar Mühendisi

Detaylı

Konular. VERİ MADENCİLİĞİ Giriş. Problem Tanımı. Veri Madenciliği: Tarihçe. Veri Madenciliği Nedir? Bilgi Keşfi

Konular. VERİ MADENCİLİĞİ Giriş. Problem Tanımı. Veri Madenciliği: Tarihçe. Veri Madenciliği Nedir? Bilgi Keşfi VERİ MADENCİLİĞİ Giriş Yrd. Doç. Dr. Şule Gündüz Öğüdücü 1 2 Problem Tanımı Veri Madenciliği: Tarihçe teknolojinin gelişimiyle bilgisayar ortamında ve veritabanlarında tutulan veri miktarının da artması

Detaylı

Bilgisayar ve İnternet Tutumunun E-Belediyecilik Güvenliği Algısına Etkilerinin İncelenmesi

Bilgisayar ve İnternet Tutumunun E-Belediyecilik Güvenliği Algısına Etkilerinin İncelenmesi Bilgisayar ve İnternet Tutumunun E-Belediyecilik Güvenliği Algısına Etkilerinin İncelenmesi Tuna USLU Gedik Üniversitesi İş Sağlığı ve Güvenliği Programı Özel Gebze Doğa Hastanesi Sağlık Hizmetleri A.Ş.

Detaylı

AFYON KOCATEPE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ / FEN BİLİMLERİ ENSTİTÜSÜ DERS TANITIM FORMU

AFYON KOCATEPE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ / FEN BİLİMLERİ ENSTİTÜSÜ DERS TANITIM FORMU AFYON KOCATEPE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ / FEN BİLİMLERİ ENSTİTÜSÜ DERS TANITIM FORMU Dersin Kodu ve Adı: JFM 611- Coğrafi Bilgi Sisteminde Veri Kalitesi Ve Güvenilirliği Yarıyıl Teorik Uygulama

Detaylı

YÖNETİM BİLİŞİM SİSTEMLERİ BÖLÜMÜ YENİ DERS MÜFREDATI (1) FAKÜLTESİ: İŞLETME FAKÜLTESİ / BUSINESS SCHOOL

YÖNETİM BİLİŞİM SİSTEMLERİ BÖLÜMÜ YENİ DERS MÜFREDATI (1) FAKÜLTESİ: İŞLETME FAKÜLTESİ / BUSINESS SCHOOL (3) SINIFI: 1. Yıl Güz Dönemi MIS101 BİLGİSAYAR PROGRAMLAMA 1 COMPUTER PROGRAMMING 1 Z 3-0 4 BUS101 BİLİM VE TEKNOLOJİ TARİHİ HISTORY OF SCIENCE AND TECHNOLOGY Z 3-0 4 BUS103 İŞLETMECİLER İÇİN MATEMATİK

Detaylı

Veri Madenciliğinde Bir Uzman Sistem Tasarımı

Veri Madenciliğinde Bir Uzman Sistem Tasarımı Akademik Bilişim 09 - XI. Akademik Bilişim Konferansı Bildirileri 11-13 Şubat 2009 Harran Üniversitesi, Şanlıurfa Veri Madenciliğinde Bir Uzman Sistem Tasarımı Ömer Akgöbek 1, Fuat Çakır 2 1 Harran Üniversitesi,

Detaylı

Yapay Zeka (Artificial Intelligence): Bir makinenin kendi tecrübelerinden öğrenme ve bu tecrübelere dayanan kararlar verme yeteneğidir(s.l6).

Yapay Zeka (Artificial Intelligence): Bir makinenin kendi tecrübelerinden öğrenme ve bu tecrübelere dayanan kararlar verme yeteneğidir(s.l6). Türk Kütüphaneciliği 6, 4 (1992) Uzman Sistemler Serap Kurbanoğlu* Giriş Günümüzde giderek büyüyen bir hızla gelişen Uzman Sistemlerin (Expert Systems) geçmişi çok eskiye dayanmamaktadır. Yapay zeka (Artificial

Detaylı

VERİ MADENCİLİĞİ KAVRAMI VE GELİŞİM SÜRECİ

VERİ MADENCİLİĞİ KAVRAMI VE GELİŞİM SÜRECİ VERİ MADENCİLİĞİ KAVRAMI VE GELİŞİM SÜRECİ Sertaç ÖĞÜT Görsel İletişim Tasarımı Bölümü, İletişim Fakültesi Yeditepe Üniversitesi, İSTANBUL Giriş Günümüzde bilişim sistemlerinin hayatın hemen hemen her

Detaylı

VERİ MADENCİLİĞİNİN BİLEŞENLERİ

VERİ MADENCİLİĞİNİN BİLEŞENLERİ VERİ MADENCİLİĞİNİN BİLEŞENLERİ VERİ MADENCİLİĞİNİN BİLEŞENLERİ İstatistiksel Veri Analizi Makine Öğrenimi Örüntü Tanıma Yapay Zeka Veri Tabanları Uzman Sistemler Veri Görselleştirme Yüksek Hızlı Hesaplama

Detaylı

VII. ULUSLARARASI BALKAN BÖLGESİ DÜZENLEYİCİ YARGI OTORİTELERİ KONFERANSI 28-30 MAYIS 2012, İSTANBUL

VII. ULUSLARARASI BALKAN BÖLGESİ DÜZENLEYİCİ YARGI OTORİTELERİ KONFERANSI 28-30 MAYIS 2012, İSTANBUL VII. ULUSLARARASI BALKAN BÖLGESİ DÜZENLEYİCİ YARGI OTORİTELERİ KONFERANSI 28-30 MAYIS 2012, İSTANBUL Yeni Teknolojiler ve Bunların Yargıda Uygulanmaları Türkiye Cumhuriyeti Hâkimler ve Savcılar Yüksek

Detaylı

WEB SAYFALARINA İLİŞKİN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMA YÖNTEMİ

WEB SAYFALARINA İLİŞKİN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMA YÖNTEMİ WEB SAYFALARINA İLİŞKİN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMA YÖNTEMİ Doç.Dr Erhan Akyazı Marmara Üniversitesi Bilişim Bölümü eakyazi@marmara.edu.tr Şafak Kayıkçı Marmara Üniversitesi Bilişim Bölümü safak@safakkayikci.com

Detaylı

Üniversite Öğrencilerinin Đnterneti Eğitimsel Amaçlar Đçin Kullanmalarını

Üniversite Öğrencilerinin Đnterneti Eğitimsel Amaçlar Đçin Kullanmalarını Üniversite Öğrencilerinin Đnterneti Eğitimsel Amaçlar Đçin Kullanmalarını Etkileyen Faktörlerin Veri Madenciliği Yöntemleriyle Tespiti Ahmet Selman BOZKIR 1, Bilge GÖK 2 ve Ebru SEZER 3 1 Hacettepe Üniversitesi

Detaylı

Yönetim Bilişim Sistemleri (Karma) - 1. yarıyıl. 380000000001101 Hukukun Temelleri Fundamentals of Law 2 0 0 2 2 5 TR

Yönetim Bilişim Sistemleri (Karma) - 1. yarıyıl. 380000000001101 Hukukun Temelleri Fundamentals of Law 2 0 0 2 2 5 TR - - - - - Bölüm Seçin - - - - - Gönder Yönetim Bilişim Sistemleri (Karma) - 1. yarıyıl 141000000001101 Akademik ve Sosyal Oryantasyon Academic and Social Orientation 1 0 0 1 0 1 TR 380000000001101 Hukukun

Detaylı

ÖĞRETMEN ADAYLARININ PROBLEM ÇÖZME BECERİLERİ

ÖĞRETMEN ADAYLARININ PROBLEM ÇÖZME BECERİLERİ ÖĞRETMEN ADAYLARININ PROBLEM ÇÖZME BECERİLERİ Doç. Dr. Deniz Beste Çevik Balıkesir Üniversitesi Necatibey Eğitim Fakültesi Güzel Sanatlar Eğitimi Bölümü Müzik Eğitimi Anabilim Dalı beste@balikesir.edu.tr

Detaylı

BĠYOLOJĠ EĞĠTĠMĠ LĠSANSÜSTÜ ÖĞRENCĠLERĠNĠN LĠSANSÜSTÜ YETERLĠKLERĠNE ĠLĠġKĠN GÖRÜġLERĠ

BĠYOLOJĠ EĞĠTĠMĠ LĠSANSÜSTÜ ÖĞRENCĠLERĠNĠN LĠSANSÜSTÜ YETERLĠKLERĠNE ĠLĠġKĠN GÖRÜġLERĠ 359 BĠYOLOJĠ EĞĠTĠMĠ LĠSANSÜSTÜ ÖĞRENCĠLERĠNĠN LĠSANSÜSTÜ YETERLĠKLERĠNE ĠLĠġKĠN GÖRÜġLERĠ Osman ÇİMEN, Gazi Üniversitesi, Biyoloji Eğitimi Anabilim Dalı, Ankara, osman.cimen@gmail.com Gonca ÇİMEN, Milli

Detaylı

DERS BİLGİLERİ. İşletmeye Giriş BBA 101 Güz 3, 0, 0 3 6

DERS BİLGİLERİ. İşletmeye Giriş BBA 101 Güz 3, 0, 0 3 6 DERS BİLGİLERİ Ders Kodu Yarıyıl T+U+L Saat Kredi AKTS İşletmeye Giriş BBA 101 Güz 3, 0, 0 3 6 Ön Koşul Dersleri - Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu Dersin Koordinatörü Dersi

Detaylı

Dr. Necati Ercan Özgencil Email: ozgencil@hotmail.com Office: D-235 Seyrek Phone: 0-232-3550000 Dahili: 2329

Dr. Necati Ercan Özgencil Email: ozgencil@hotmail.com Office: D-235 Seyrek Phone: 0-232-3550000 Dahili: 2329 Dr. Necati Ercan Özgencil Email: ozgencil@hotmail.com Office: D-235 Seyrek Phone: 0-232-3550000 Dahili: 2329 B.S. Yıldız Technical University, 1996 Electronics & Communication Eng. M.S. Syracuse University,

Detaylı

Toplum Tabanlı Bir Çalışmada Çoklu Uygunluk Analizi ve Kümeleme Analizi ile Sağlık Kurumu Seçimi

Toplum Tabanlı Bir Çalışmada Çoklu Uygunluk Analizi ve Kümeleme Analizi ile Sağlık Kurumu Seçimi Toplum Tabanlı Bir Çalışmada Çoklu Uygunluk Analizi ve Kümeleme Analizi ile Sağlık Kurumu Seçimi Aslı SUNER 1 Can Cengiz ÇELİKOĞLU 2 Özet Çoklu Uygunluk Analizi, kategorik değişkenlerin yorumlanmasını

Detaylı

Veri Madenciliği Yöntemlerini Kullanarak Anemi Sınıflandırılmasına Yönelik Bir Uygulama

Veri Madenciliği Yöntemlerini Kullanarak Anemi Sınıflandırılmasına Yönelik Bir Uygulama Veri Madenciliği Yöntemlerini Kullanarak Anemi Sınıflandırılmasına Yönelik Bir Uygulama Betül Merve Fakı 1, Başar Öztayşi 2 1 Bursa Teknik Üniversitesi, Endüstri Mühendisliği Bölümü, Bursa 2 İstanbul Teknik

Detaylı

İşletmenin en çok ve an az ziyaret aldığı zamanları belirleme

İşletmenin en çok ve an az ziyaret aldığı zamanları belirleme TEKNOLOJIMIZ En son görüntü işleme teknolojilerini kullanarak, istenilen her noktada, geçen insanları sayar,detaylı sayma raporlarını ofisinize kadar getirir.mağazalarda, alışveriş merkezlerinde,her türlü

Detaylı

Madenlerde Yaşanan İş Kazaları ve Sonuçları Üzerine Bir Değerlendirme Selin Arslanhan Araştırmacı

Madenlerde Yaşanan İş Kazaları ve Sonuçları Üzerine Bir Değerlendirme Selin Arslanhan Araştırmacı Madenlerde Yaşanan İş Kazaları ve Sonuçları Üzerine Bir Değerlendirme Selin Arslanhan Araştırmacı Hüseyin Ekrem Cünedioğlu Araştırmacı TEPAV Değerlendirme Notu Temmuz 2010 Özet Türkiye maden sektörünün

Detaylı

ÜNAK 2009. Bildiriler Kitabı

ÜNAK 2009. Bildiriler Kitabı ÜNAK 2009 Bilgi Çağında Varoluş: Fırsatlar ve Tehditler Sempozyumu 01-02 Ekim 2009 - Yeditepe Üniversitesi, İstanbul Bildiriler Kitabı Editörler Aytaç YILDIZELİ Doç.Dr. Aykut ARIKAN Arş.Gör. Tolga ÇAKMAK

Detaylı

MÜFREDAT DERS LİSTESİ

MÜFREDAT DERS LİSTESİ MÜFREDAT DERS LİSTESİ MÜHENDİSLİK FAK. / BİLGİSAYAR MÜHENDİSL / 2010 BİLGİSAYAR MÜHENDİSLİĞİ Müfredatı 0504101 Matematik I Calculus I 1 GÜZ 4 5 Z 0504102 Genel Fizik I General Physics I 1 GÜZ 4 4 Z 0504103

Detaylı

DERS TANITIM BİLGİLERİ

DERS TANITIM BİLGİLERİ DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS Kalite Planlama ve Kontrol ES4136 4/ Bahar (3+0+0) 3 4 Dersin Dili : Türkçe Dersin Seviyesi : Lisans, Zorunlu Dersin Önkoşulu

Detaylı

Veritabanı Dersi. Teoriden Pratiğe. Çağıltay N.E., Tokdemir G. Veritabanı Sistemleri Dersi -Bölüm XXVI: Veri Ambarı Çağıltay, N., Tokdemir, G.

Veritabanı Dersi. Teoriden Pratiğe. Çağıltay N.E., Tokdemir G. Veritabanı Sistemleri Dersi -Bölüm XXVI: Veri Ambarı Çağıltay, N., Tokdemir, G. Veritabanı Dersi Teoriden Pratiğe Çağıltay N.E., Tokdemir G. Veritabanı Sistemleri Dersi -Bölüm XXVI: Veri Ambarı Çağıltay, N., Tokdemir, G. BÖLÜM 26 İş Zekası ve Veri Ambarları İş Zekası Karar Verme Süreci

Detaylı

LİSE TÜRÜ VE LİSE MEZUNİYET BAŞARISININ, KAZANILAN FAKÜLTE İLE İLİŞKİSİNİN VERİ MADENCİLİĞİ TEKNİĞİ İLE ANALİZİ

LİSE TÜRÜ VE LİSE MEZUNİYET BAŞARISININ, KAZANILAN FAKÜLTE İLE İLİŞKİSİNİN VERİ MADENCİLİĞİ TEKNİĞİ İLE ANALİZİ LİSE TÜRÜ VE LİSE MEZUNİYET BAŞARISININ, KAZANILAN FAKÜLTE İLE İLİŞKİSİNİN VERİ MADENCİLİĞİ TEKNİĞİ İLE ANALİZİ Y.Ziya AYIK Abdulkadir ÖZDEMİR ** Uğur YAVUZ *** Özet: Kurumların veritabanı boyutlarının,

Detaylı

İstatistiksel Analizlerinizde ve Veri Madenciliği Çalışmalarınızda SPSS Kullanımı

İstatistiksel Analizlerinizde ve Veri Madenciliği Çalışmalarınızda SPSS Kullanımı İstatistiksel Analizlerinizde ve Veri Madenciliği Çalışmalarınızda SPSS Kullanımı Gündemimiz AIMS Hakkında IBM SPSS Analitik Çözüm Platformu IBM SPSS Statistics Uygulamaları IBM SPSS Modeler Uygulamaları

Detaylı

Bilgi Çağında Kütüphane

Bilgi Çağında Kütüphane Bilgi Çağında Kütüphane Gürcan Banger 27 Mart 2006 Yunus Emre Kültür Merkezi Değişen Dünya 1950 li yıllara kadar üretim için sermaye, işgücü, enerji ve hammadde önemli girdiler olarak kabul ediliyordu.

Detaylı

Öğrenim Bilgisi. Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü (2000) Uygulamalı İstatistik

Öğrenim Bilgisi. Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü (2000) Uygulamalı İstatistik Sema BEHDİOĞLU E-posta : sema.behdioglu@dpu.edu.tr Telefon : 0 (274) 265 20 31-2116 Öğrenim Bilgisi Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü (2000) Uygulamalı İstatistik Yüksek Anadolu

Detaylı

VERİ KAYNAKLARI. Bilgi sisteminin öğelerinden biride veri

VERİ KAYNAKLARI. Bilgi sisteminin öğelerinden biride veri VERİ KAYNAKLARI YÖNETİMİ İ İ 5. ÜNİTE GİRİŞ Bilgi sisteminin öğelerinden biride veri yönetimidir. Geleneksel yada çağdaş, birinci yada ikinci elden derlenen veriler amaca uygun veri formlarında tutulur.

Detaylı

Ticari Kararlarda Yeni Nesil Çözümler

Ticari Kararlarda Yeni Nesil Çözümler Ticari Kararlarda Yeni Nesil Çözümler 13 Ekim 2015 Intercontinental Otel İstanbul Mehmet Pişkin Satış ve Pazarlama Direktörü 2 Amerika Tarihi Bir Zamanlar Amerika da Batıda altın var! yeni kurulan kasabalar

Detaylı

Kamu Sektörü İçin SAP Karar Destek Sistemleri Zirvesi. Gökhan NALBANTOĞLU / CEO, Ereteam 9 Aralık 2014, Salı

Kamu Sektörü İçin SAP Karar Destek Sistemleri Zirvesi. Gökhan NALBANTOĞLU / CEO, Ereteam 9 Aralık 2014, Salı Kamu Sektörü İçin SAP Karar Destek Sistemleri Zirvesi Gökhan NALBANTOĞLU / CEO, Ereteam 9 Aralık 2014, Salı Gündem Biz Kimiz? Geçmişten Günümüze, Ereteam Neden Karar Destek Sistemleri? Kamu Kurumlarının

Detaylı

GENETİK ALGORİTMA YÖNTEMİYLE INTERNET ERİŞİM KAYITLARINDAN BİLGİ ÇIKARILMASI

GENETİK ALGORİTMA YÖNTEMİYLE INTERNET ERİŞİM KAYITLARINDAN BİLGİ ÇIKARILMASI GENETİK ALGORİTMA YÖNTEMİYLE INTERNET ERİŞİM KAYITLARINDAN BİLGİ ÇIKARILMASI Resul DAŞ 1, İbrahim TÜRKOĞLU 2, Mustafa POYRAZ 3 1 Fırat Üniversitesi, Enformatik Bölümü, 23119, ELAZIĞ, rdas@firat.edu.tr

Detaylı

GT Türkiye İşletme Risk Yönetimi Hizmetleri. Sezer Bozkuş Kahyaoğlu İşletme Risk Yönetimi, Ortak CIA, CFE, CFSA, CRMA, CPA sezer.bozkus@gtturkey.

GT Türkiye İşletme Risk Yönetimi Hizmetleri. Sezer Bozkuş Kahyaoğlu İşletme Risk Yönetimi, Ortak CIA, CFE, CFSA, CRMA, CPA sezer.bozkus@gtturkey. GT Türkiye İşletme Risk Hizmetleri Sezer Bozkuş Kahyaoğlu İşletme Risk, Ortak CIA, CFE, CFSA, CRMA, CPA sezer.bozkus@gtturkey.com İşletme Risk Hakkında Risk, iş yaşamının ayrılmaz bir parçasıdır ve kaçınılmazdır.

Detaylı

MOBİLYA PERAKENDE SATIŞ SEKTÖRÜNDE VERİ MADENCİLİĞİ UYGULAMASI

MOBİLYA PERAKENDE SATIŞ SEKTÖRÜNDE VERİ MADENCİLİĞİ UYGULAMASI Akademik Sosyal Araştırmalar Dergisi, Yıl: 4, Sayı: 22, Mart2016, s. 385-394 Yüksel YURTAY 1 Oğuz YAVUZYILMAZ 2 Nihal Zuhal BACINOĞLU 3 MOBİLYA PERAKENDE SATIŞ SEKTÖRÜNDE VERİ MADENCİLİĞİ UYGULAMASI Özet

Detaylı

BÜYÜK ÖLÇEKLİ VERİ TABANLARINDA BİLGİ KEŞFİ

BÜYÜK ÖLÇEKLİ VERİ TABANLARINDA BİLGİ KEŞFİ BÜYÜK ÖLÇEKLİ VERİ TABANLARINDA BİLGİ KEŞFİ Şühedanur KAVURKACI 1, Zeynep GÜRKAŞ AYDIN 2, Rüya ŞAMLI 3 1,2,3 İstanbul Üniversitesi Bilgisayar Mühendisliği Bölümü 1 sskavurkaci@gmail.com, 2 zeynepg@istanbul.edu.tr,

Detaylı

Marketing Intelligence Maturity Model (MiM 2 )

Marketing Intelligence Maturity Model (MiM 2 ) Marketing Intelligence Maturity Model (MiM 2 ) 2 Yazarlar Hakkında Efe Aras 2000 yılından beri Visilabs in kurucu ortağı olarak görev yapmaktadır. İTÜ Jeofizik Mühendisliği ni bitirdi. Sayısal Yöntemlerde

Detaylı

PAPATYA YAYINCILIK EĞİTİM Bilgisayar Sis. San. ve Tic. A.Ş. Veri Madenciliği Yöntemleri Dr. Yalçın ÖZKAN -II-

PAPATYA YAYINCILIK EĞİTİM Bilgisayar Sis. San. ve Tic. A.Ş. Veri Madenciliği Yöntemleri Dr. Yalçın ÖZKAN -II- Dr. Yalçın ÖZKAN Dr. Yalçın ÖZKAN PAPATYA YAYINCILIK EĞİTİM Bilgisayar Sis. San. ve Tic. A.Ş. Ankara Caddesi, Prof. Fahreddin Kerim Gökay Vakfı İşhanı Girişi, No: 11/3, Cağaloğlu (Fatih)/İstanbul Tel

Detaylı

Bilgisayar Mühendisliği. Bilgisayar Mühendisliğine Giriş 1

Bilgisayar Mühendisliği. Bilgisayar Mühendisliğine Giriş 1 Bilgisayar Mühendisliği Bilgisayar Mühendisliğine Giriş 1 Mühendislik Nedir? Mühendislik, bilim ve matematiğin yararlı cihaz ve sistemlerin üretimine uygulanmasıdır. Örn: Elektrik mühendisleri, elektronik

Detaylı

Biyokimya ve Hemogram Laboratuvar Test Sonuçlarının Lojistik Regresyon Yöntemiyle Analizi

Biyokimya ve Hemogram Laboratuvar Test Sonuçlarının Lojistik Regresyon Yöntemiyle Analizi Biyokimya ve Hemogram Laboratuvar Test Sonuçlarının Lojistik Regresyon Yöntemiyle Analizi Kemal AKYOL 1, Baha ŞEN 2, Elif ÇALIK 3 1 Karabük Üniversitesi, Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği

Detaylı

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması 1 Emre DANDIL Bilecik Ş. Edebali Üniversitesi emre.dandil@bilecik.edu.tr +90228 214 1613 Sunum İçeriği Özet Giriş

Detaylı

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U+L Saat Kredi AKTS. Etik ve Sosyal Sorumluluk BBA 208 Bahar 3, 0, 0 3 5. Ön Koşul Dersleri - İngilizce

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U+L Saat Kredi AKTS. Etik ve Sosyal Sorumluluk BBA 208 Bahar 3, 0, 0 3 5. Ön Koşul Dersleri - İngilizce DERS BİLGİLERİ Ders Kodu Yarıyıl T+U+L Saat Kredi AKTS Etik ve Sosyal Sorumluluk BBA 208 Bahar 3, 0, 0 3 5 Ön Koşul Dersleri - Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu Dersin Koordinatörü

Detaylı

- Seçmeli Ders - - - - - 8. - Seçmeli Ders - - - - - 8. - Seçmeli Ders - - - - - 8. - Seçmeli Ders - - - - - 8

- Seçmeli Ders - - - - - 8. - Seçmeli Ders - - - - - 8. - Seçmeli Ders - - - - - 8. - Seçmeli Ders - - - - - 8 Öğretim Planı Dönemi I Adı - - - - - - 8 - - - - - - 8 - - - - - - 8 - - - - - - 8 Toplam AKTS 32 Dönemi II Adı BUS797 Master Seminar Zorunlu 0 2 0 0 6 ISL797 Yüksek Lisans Seminer Zorunlu 0 2 0 0 4 ISL740

Detaylı

Olasılık ve İstatistik (IE 220) Ders Detayları

Olasılık ve İstatistik (IE 220) Ders Detayları Olasılık ve İstatistik (IE 220) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistik IE 220 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin

Detaylı

SİSTEM ANALİZİ VE TASARIMI. Sistem Analizi -Bilgi Sistemleri-

SİSTEM ANALİZİ VE TASARIMI. Sistem Analizi -Bilgi Sistemleri- SİSTEM ANALİZİ VE TASARIMI Sistem Analizi -Bilgi Sistemleri- Bilgi Sistemi Bilgi sistemi, karar vericiler için verileri işleyerek bilgi sağlayan çoğunlukla bilgisayara dayalı sistemlerdir. Bilgi sistemi

Detaylı

Denetleme Kurumu. BASEL II ve TEKNOLOJĐ. Ahmet Türkay VARLI Bilgi Yönetimi Daire Başkanı 31.05.2005

Denetleme Kurumu. BASEL II ve TEKNOLOJĐ. Ahmet Türkay VARLI Bilgi Yönetimi Daire Başkanı 31.05.2005 Bankacılık k Düzenleme D ve Denetleme Kurumu BASEL II ve TEKNOLOJĐ Ahmet Türkay VARLI Bilgi Yönetimi Daire Başkanı 31.05.2005 Sunumda yer alan görüşler tamamen sunum yapan kişiye ait olup, kurumsal anlamda

Detaylı

VERİ MADENCİLİĞİ VE ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM SİSTEMİNDE BİR UYGULAMA

VERİ MADENCİLİĞİ VE ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM SİSTEMİNDE BİR UYGULAMA VERİ MADENCİLİĞİ VE ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM SİSTEMİNDE BİR UYGULAMA Yard. Doç. Dr. Sinan Aydın Anadolu Üniversitesi snaydin@anadolu.edu.tr Prof. Dr. Ali Ekrem Özkul Anadolu Üniversitesi aeozkul@anadolu.edu.tr

Detaylı

T.C. EKONOMİ BAKANLIĞI ULUSLARARASI REKABETÇİLİĞİN GELİŞTİRİLMESİNİN DESTEKLENMESİ (UR-GE)

T.C. EKONOMİ BAKANLIĞI ULUSLARARASI REKABETÇİLİĞİN GELİŞTİRİLMESİNİN DESTEKLENMESİ (UR-GE) 1 T.C. EKONOMİ BAKANLIĞI ULUSLARARASI REKABETÇİLİĞİN GELİŞTİRİLMESİNİN DESTEKLENMESİ (UR-GE) Türkiye, artan dış ticaret hacmi ve ekonomik performansı ile dünya ekonomisinde önemli bir aktör haline gelmiştir.

Detaylı

MESLEKİ TERMİNOLOJİ I 1. HAFTA YAZILIM MÜH. TEMEL KAVRAMLAR

MESLEKİ TERMİNOLOJİ I 1. HAFTA YAZILIM MÜH. TEMEL KAVRAMLAR YAZILIM: SOFTWARE Yazılım (Software): Yazılım sadece bir bilgisayar programı değildir. Basılı veya elektronik ortamdaki her tür dokümanı da içeren ürün. Dokümanlar yazılım mühendislerine ve son kullanıcıya

Detaylı

SOSYAL BİLİMLER ENSTİTÜSÜ/İŞLETME ANABİLİM DALI (DR) SOSYAL BİLİMLER ENSTİTÜSÜ/İŞLETME ANABİLİM DALI (YL) (TEZLİ)

SOSYAL BİLİMLER ENSTİTÜSÜ/İŞLETME ANABİLİM DALI (DR) SOSYAL BİLİMLER ENSTİTÜSÜ/İŞLETME ANABİLİM DALI (YL) (TEZLİ) SONER AKKOÇ DOÇENT Adres ÖZGEÇMİŞ YÜKSEKÖĞRETİM KURULU Dumlupınar Üniversitesi Uygulamalı Bilimler Yüksekokulu Evliya Çelebi Yerleşkesi KÜTAHYA 10.04.2014 Telefon E-posta 2742652031-4631 Doğum Tarihi 26.11.1978

Detaylı

91-03-01-517 YAPAY ZEKA (Artificial Intelligence)

91-03-01-517 YAPAY ZEKA (Artificial Intelligence) 91-03-01-517 YAPAY ZEKA (Artificial Intelligence) Dersi Veren Öğretim Üyesi Y. Doç. Dr. Aybars UĞUR Ders Web Sayfası : http://yzgrafik.ege.edu.tr/~ugur 27.09.2009 Y. Doç. Dr. Aybars UĞUR (517 Yapay Zeka)

Detaylı

İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İŞLETME BÖLÜMÜ DERS PROGRAMI

İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İŞLETME BÖLÜMÜ DERS PROGRAMI İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ ETME BÖLÜMÜ DERS PROGRAMI BİRİNCİ YIL 1.YARIYIL DERS LİSTESİ 101 Genel Muhasebeye Giriş I Zorunlu 3+0 3 4 105 Hukukun Temel Kavramları Zorunlu 3+0 3 4 İKT 101 İktisada

Detaylı

Pazar Liderliği Disiplinleri. İlişki. Liderliği. Fiyat. Ürün Liderliği. Liderliği. Üretim Anlayışı. Ürün Anlayışı. Anlayışı. Satış. Pazarlama Anlayışı

Pazar Liderliği Disiplinleri. İlişki. Liderliği. Fiyat. Ürün Liderliği. Liderliği. Üretim Anlayışı. Ürün Anlayışı. Anlayışı. Satış. Pazarlama Anlayışı Sektörde Rekabet Dayanakları H a y r e t t i n Z E N G İ N Pazarlama Anlayışındaki Değişim Üretim Anlayışı Ürün Anlayışı Satış Anlayışı Pazarlama Anlayışı Sosyal Pazarlama Anlayışı İli lişkisel Pazarlama

Detaylı

ÖZGEÇMİŞ SONA MARDİKYAN

ÖZGEÇMİŞ SONA MARDİKYAN ÖZGEÇMİŞ SONA MARDİKYAN (04.03.2015) Hisar Kampüs 34342 R. Hisarüstü, İSTANBUL E-mail : mardikya@boun.edu.tr URL Ofis Tel : +90 212 359 6942 Faks : +90 212 287 3297 Öğrenim Durumu: : http://www.mis.boun.edu.tr/mardikyan/

Detaylı

T.C. MESLEKİ YETERLİLİK KURUMU MESLEK STANDARDI HAZIRLAMA BAŞVURU FORMU

T.C. MESLEKİ YETERLİLİK KURUMU MESLEK STANDARDI HAZIRLAMA BAŞVURU FORMU MESLEK STANDARDI HAZIRLAMA BAŞVURU FORMU Dosya No 1) :MYK-SHK-... 05/10/2007 tarih ve 26664 sayı ile Resmi Gazetede yayımlanan Ulusal Meslek Standartlarının Hazırlanması Hakkında Yönetmeliğin 7/2 Maddesine

Detaylı

Analitiğin Gücü ile Üretkenliğinizi Arttırın. Umut ŞATIR GÜRBÜZ Tahmine Dayalı Analitik Çözüm Mimarı, CEE 29.05.2013

Analitiğin Gücü ile Üretkenliğinizi Arttırın. Umut ŞATIR GÜRBÜZ Tahmine Dayalı Analitik Çözüm Mimarı, CEE 29.05.2013 Analitiğin Gücü ile Üretkenliğinizi Arttırın Umut ŞATIR GÜRBÜZ Tahmine Dayalı Analitik Çözüm Mimarı, CEE 29.05.2013 Tahmine Dayalı Analitik Tahmine Dayalı Analitik bugünün koşulları ve gelecek aktivitelerden

Detaylı

MEKATRONĐK K TE LERĐ UYGULAMALAR. Uludağ Üniversitesi Mühendislik Mimarlık Fakültesi MAK4089 MEKATRONĐĞE GĐRĐŞ. Doç.Dr.

MEKATRONĐK K TE LERĐ UYGULAMALAR. Uludağ Üniversitesi Mühendislik Mimarlık Fakültesi MAK4089 MEKATRONĐĞE GĐRĐŞ. Doç.Dr. Gizliliğinizi korumaya yardımcı olmak için, PowerPoint bu dış resmin otomatik olarak karşıdan yüklenmesini önledi. Bu resmi karşıdan yükleyip görüntülemek için, Đleti Çubuğu'nda Seçenekler'i tıklatın ve

Detaylı

Destek ve sevgilerini eksik etmeyen Ailem ve sevgili yeğenlerim Emre ve Bengisu ya. iii

Destek ve sevgilerini eksik etmeyen Ailem ve sevgili yeğenlerim Emre ve Bengisu ya. iii Destek ve sevgilerini eksik etmeyen Ailem ve sevgili yeğenlerim Emre ve Bengisu ya. iii iv v İçindekiler Sunuş... vii Önsöz... ix 1. Giriş...1 1.1 İstanbul Menkul Kıymetler Borsası...2 2. Testler ve Test

Detaylı

Stratejik Planlama ve Politika Geliştirmede Katılımcılık

Stratejik Planlama ve Politika Geliştirmede Katılımcılık Stratejik Planlama ve Politika Geliştirmede Katılımcılık Kutluhan TAŞKIN Kurumsal ve Stratejik Yönetim Dairesi Başkanı Kamuda Katılım: İngiltere Örneği Paneli 4 Nisan 2012 1 Stratejik Yönetim Araştırması

Detaylı

İş Zekası ve Veri Ambarı Sistemleri. Nergiz Ercil Çağıltay

İş Zekası ve Veri Ambarı Sistemleri. Nergiz Ercil Çağıltay İş Zekası ve Veri Ambarı Sistemleri Nergiz Ercil Çağıltay BÖLÜM 3 Bilgi kartopu gibi yuvarlandıkça büyür. L. Sidney İş Zekası Gereksinimleri Organizasyonun gelişimi nasıl olmuştur? Şu an organizasyonun

Detaylı

İleri Bilgisayar Mimarileri (COMPE 532) Ders Detayları

İleri Bilgisayar Mimarileri (COMPE 532) Ders Detayları İleri Bilgisayar Mimarileri (COMPE 532) Ders Detayları Ders Adı İleri Bilgisayar Mimarileri Ders Kodu COMPE 532 Dönemi Ders Uygulama Saati Saati Laboratuar Saati Kredi AKTS Güz 3 0 0 3 7.5 Ön Koşul Ders(ler)i

Detaylı

BİLGİSAYAR PROGRAMCILIĞI

BİLGİSAYAR PROGRAMCILIĞI BİLGİSAYAR PROGRAMCILIĞI 22.Haz.2015 - Pazartesi 11:00 Grafik Animasyon I hş 202 22.Haz.2015 - Pazartesi 13:00 Bilişim Hukuku ha 208 22.Haz.2015 - Pazartesi 14:00 Arama Motoru Optimizasyonu hş 202 23.Haz.2015

Detaylı

SPSS & AKILLI KURUMLAR. Dr. Tülin GÜZEL ÖZDEMİR SPSS Türkiye Genel Müdür tguzel@spss.com.tr

SPSS & AKILLI KURUMLAR. Dr. Tülin GÜZEL ÖZDEMİR SPSS Türkiye Genel Müdür tguzel@spss.com.tr SPSS & AKILLI KURUMLAR Dr. Tülin GÜZEL ÖZDEMİR SPSS Türkiye Genel Müdür tguzel@spss.com.tr Tarihte Yaşanan Devrimler Tarımsal Kalkınma Devrimi Tarihte Yaşanan Devrimler Endüstriyel Kalkınma Devrimi Tarihte

Detaylı