Kredi Kart Taleplerinin De erlendirilmesinde Grup ve Bireysel Kredi Puanlama Modellerinin Karfl laflt r lmal Bir Analizi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Kredi Kart Taleplerinin De erlendirilmesinde Grup ve Bireysel Kredi Puanlama Modellerinin Karfl laflt r lmal Bir Analizi"

Transkript

1 Kredi Kart Taleplerinin De erlendirilmesinde Grup ve Bireysel Kredi Puanlama Modellerinin Karfl laflt r lmal Bir Analizi Hüseyin NCE* Bora AKTAN** Özet Kredilendirme, bankac l n en temel ifllevi olmakla birlikte ayn zamanda en riskli faaliyetlerinden biridir. Bu nedenle bankalar n, kredilendirme faaliyetlerini verimli ve kredilerin geri dönmemesinden do abilecek zararlar en az düzeyde tutulabilecek flekilde yürütmeleri gerekir. Bankalar, bu sebeple, son y llarda ayr flt rma analizi, logit ve probit modelleri ya da s n flama ve regresyon a açlar ve yapay sinir a lar gibi çeflitli teknikler yard m ile kredilendirme faaliyetlerinde h zl ve sa l kl karar verilmesini sa layan kredi puanlama sistemini kullanmaktad rlar. Bu çal flman n amac, grup modelleri ile bireysel kredi puanlama modellerin performanslar n n karfl laflt r lmas d r. Bu amaç do rultusunda, yapay sinir a lar ve karar a açlar teknikleri kullan larak gelifltirilmifl bireysel modeller ile Bagging ve Adaboost teknikleri ile elde edilmifl grup modelleri kullan lm flt r. Yap lan analiz ve de erlendirmeler sonucu grup kredi puanlama modellerinin bireysel modellere üstünlük sa lad görülmüfltür. Anahtar Kelimeler: Bankac l k, Banka Kredileri, Kredi Puanlama, Yapay Sinir A lar, S n fland rma ve Regresyon A açlar, Grup Modelleri JEL S n flamas : G21, G32, C44, C45 Abstract - A Comparative Analysis of Individual and Ensemble Credit Scoring Techniques in Evaluating Credit Card Loan Applications One of the main tasks of a bank is to lend money. As a financial intermediary, one of its roles is to reduce lending risks. Bank lending is an art as well as a science. Success depends on techniques used, knowledge and on an aptitude to assess both credit-worthiness of a potential borrower and the merits of the proposition to be financed. In recent years, banks have increasingly used credit-scoring techniques to evaluate the loan applications they receive from consumers. Credit-scoring techniques are usually based on discriminant models or related techniques, such as logit or probit models or neural networks, in which several variables are used jointly to set up a numerical score for each loan applicant. This study explores the performance of both individual models by using neural networks, and classification and regression trees and ensemble models by using Bagging and Adaboost techniques. Experimental studies using real world data sets have demonstrated that the ensemble models outperform the other credit scoring models. Keywords: Banking, Bank Lending, Credit-Scoring, Neural Networks, Classification and Regression Trees, Ensemble Models JEL Classification: G21, G32, C44, C45 * Doç. Dr., Gebze Yüksek Teknoloji Enstitüsü, flletme Fakültesi, flletme Bölümü ** Yrd. Doç. Dr, Yaflar Üniversitesi, ktisadi ve dari Bilimler Fakültesi, Finansman Bölümü BDDK Bankac l k ve Finansal Piyasalar Cilt:4, Say :1,

2 1. Girifl Kredilendirme bankac l n en temel ifllevi olmakla beraber ayn zamanda en riskli faaliyetlerinden biridir. Tasarruf sahiplerinden toplad mevduat kredi olarak kulland ran ve ülke ekonomileri aç s ndan büyük önem tafl yan bankalar n güvenilir, etkin ve verimli bir flekilde çal flmalar zorunlu olup, tahsis edilen kredilerin yasal faizleriyle birlikte bankalara geri dönüflü sistemin vazgeçilmez bir özelli idir (Seval, 1990; Berk, 2001; Blochlinger ve Leipold, 2006; Ayd n, 2006; Akgüç, 2007). Son y larda özellikle ticari bankalar, tüketici kredisi pazar ndaki h zl büyüme ve zorlu rekabet flartlar dolay s yla kredilendirme kararlar nda baflvurular n potansiyel riskini tespit edebilmek amac yla gerek finansal kurumlar n kendileri ve gerekse de araflt rmac lar taraf ndan gelifltirilmifl çeflitli de erleme modellerini yayg n olarak kullanmaya bafllam fllard r. (Ayd n, 2006; Vojtek ve Kocenda, 2006; Çinko, 2006; Zhao, 2007; Bodur ve Teker, 2005; Avery, Calem, v.d., 2004; Crook ve Banasik, 2004; Jacobson ve Roszbach, 2003; Karan ve Arslan, 2008; Ince ve Aktan, 2009). Önceleri, bankalar kredilendirme kararlar n verirken yaln zca finansal analistler taraf ndan ortaya konmufl ilke ve kurallardan faydalan rlard. Zaman içinde kredi talebinde bulunan kifli ya da kurum say s büyük bir h zla artt ndan hem ekonomik hem de insan gücü aç s ndan söz konusu talepleri de erlendirmek hemen hemen imkans z hale gelmeye bafllam flt r. Bu flekilde, gerek verimlilik gerekse insan zafiyetleri göz önüne al nd nda süratli ve bir o kadar da sa l kl kararlar n verilebilmesi için gerek finansal kurumlar gerekse de akademisyenler taraf ndan birçok say sal yöntem gelifltirilmifltir. Kredi kararlar n desteklemek için gelifltirilen istatistiksel metotlar, parametrik olmayan istatistiksel metotlar, yapay zeka yaklafl mlar na dayanan teknikler önerilmifltir (Thomas, 2000). Lee, Chiu, v.d., (2006) bu tekniklerin amac n, kredi için baflvuranlar borcunu ana para ve faiziyle geri ödeyebilecek durumda olan ödeme gücü yüksek kredi grubu veya büyük olas l kla geri ödeyemeyece i için reddedilen ödeme gücü zay f kredi grubu olarak ay rmak olarak belirtmektedir. Çinko (2006), kredi kart de erleme ifllevinin, geçmifl bilgilerden yararlan larak kredinin tahsis edilip edilmeyece i karar n n ortaya ç kar lmas dolay s yla, bunun klasik bir karar verme problemi olarak düflünülmesi gerekti i, bu sebepten dolay da gerçekte kredi de erlemenin bir çeflit veri madencili i (data-mining) oldu unu vurgulamaktad r. Kredi de erleme problemleri temel olarak daha genel ve genifl olarak tart fl lan s n fland rma problemleri içinde yer al r (Lee, Chiu, v.d., 2002). S n fland rma problemleri karar alma deste i, finansal tahminleme, doland r c l k ve sahtekarl klar n saptamas, pazarlama stratejisi, süreç kontrolü ve ilgili di er alanlarda genifl uygulama olana- na sahip olmas nedeniyle uzun zamand r ifl hayat nda önemli rol oynamaktad r (Chen, Han, v.d., 1996; Fayyad, Piatetsky-Shapiro, v.d., 1996; Lee, Chiu, v.d., 2006). S n fland rma problemleri istatistiki metotlardan yapay zeka algoritmalar na kadar de iflen farkl teknikler kullanarak çözülebilir. Kredi puanlama modellerini oluflturur- 76 Hüseyin nce, Bora Aktan

3 ken regresyon, do rusal ve do rusal olmayan ayr flt rma analizleri, logit ve probit modelleri içeren istatistiksel metotlardan genifl ölçüde faydalan lm flt r (Vojtek ve Koãenda, 2006; Lee, Chiu, v.d., 2002; Lee, Chiu, v.d., 2006). Uygulamada en popüler yöntemler do rusal ayr flt rma analizi, lojistik regresyon ve bunlar n türevleridir. Bu yöntemler di erlerine nazaran daha kolayd r ve hali haz rda yorumlanabilir basit sonuçlar verir. Fakat bu yöntemlerin kredi puanlama hesab uygulanmalar nda baz s n rlamalar söz konusudur. Öncelikle, bu yöntemler yüksek ölçülü girdilerle ve küçük örnek boyutlar yla ilgili problemlerde etkili de ildir. En önemlisi, bu teknikler do rusal ayr labilirlik ve normallik varsay mlar na dayan r. Dahas, model sürecine otomasyon uygulamak ve sürekli güncellenen bir ak fl sa lamak oldukça zordur. Yang a göre (2007), çevre ve popülasyon zaman içinde de ifltikçe statik modeller genelde bu duruma adapte olamazlar. Bu yüzden, bu tür modeller taslaklar ndan tekrar yap land r lmal d r. Bu klasik yöntemlere ek olarak, yapay zeka teknikleri kredi baflvurular n de erleme amac yla uygulanm flt r. Uygulamac lar ve araflt rmac lar kredi puan için, k- en yak n komflu (Henley ve Hand, 1996), karar a açlar (Lee, Chiu, v.d., 2006; Martens, Baesens, v.d., 2007), yapay sinir a lar (Lee, Chiu, v.d., 2002; Malhotra ve Malhotra, 2002; West, 2000), genetik programlama (Ong, Huang, v.d., 2005) ve destek vektör makinas modellerini (Martens, Baesens, v.d., 2007) içeren de iflik teknikler gelifltirmifllerdir. Lee, Chiu, v.d. (2006), bu tekniklerin, ba ml ve ba ms z de iflkenlerin karmafl k do rusal olmayan ba lant lar gösterdi i ayr flt rma analizleri ve lojistik regresyonda alternatif olarak kullan labilece ini öne sürmüfllerdir. Di er taraftan, yukar da say lan ve yapay zeka tekniklerini içeren bireysel kredi de- erleme modellerinin bir kombinasyonu olan gruplama tekniklerinin ard nda yatan fikir, her bir bileflen modelinin özelliklerini, veri kümesinde bulunan farkl örnekleri yakalamak için kullanmakt r. Hem teorik hem ampirik çal flmalar, do ruluklar art rmak için gruplanman n etkili bir yol olabildi ini göstermektedir (Pal, 2007). Bankac l k Düzenleme ve Denetleme Kurumu (BDDK) nun Kas m 2008 verilerine göre, dünyada geliflmekte olan piyasalar içinde yer alan ülkemiz bankac l k sektörünün milyon TL ye yükselen toplam kredileri içinde kredi kartlar dahil tüketici kredilerinin milyon TL (toplam kredilerin %32 si) lik bir hacime ulaflt, di er taraftan, içinde bulundu umuz ve ABD de bafllayarak küresel bir boyut kazanan kredi krizi (credit crunch) göz önüne al nd nda, kredilendirme kararlar n n ülke ekonomileri aç s ndan ne denli büyük bir önem arz etti ini bir kez daha ortaya ç kmaktad r. Çal flman n bu girifl bölümünden sonra kinci Bölüm de k saca kredilendirme kararlar nda kullan lan kredi puanlama (credit scoring) modelleri ile ilgili bir yaz n taramas yap larak yapay sinir a lar (neural networks), karar a açlar (decision trees) ve grup tekniklerinin (ensemble techniques) k sa bir özeti gözden geçirilecektir. Ayr fl- Kredi Kart Taleplerinin De erlendirilmesinde Grup ve Bireysel Kredi Puanlama Modellerinin Karfl laflt r lmal Bir Analizi 77

4 t rma analizi (discriminant analysis), lojistik regresyon (logistic regression), yapay sinir a lar ve s n fland rma ve regresyon a açlar (classification and regression trees) kullan larak yap lan kredi puanlama hesaplamalar n n bulgular Üçüncü Bölüm de tart fl lmaktad r. Son olarak, Dördüncü Bölüm çal flman n sonuç bölümünü oluflturmaktad r. 2. Araflt rma Yöntemi ve Yaz n Taramas Bireylerin/firmalar n finansal yükümlülü ünü beklendi i gibi yerine getirip getiremeyeceklerini tahmin etmek amac yla nicel ve nitel analizler yard m yla bir tak m kredi de erleme modelleri gelifltirilmifltir. Kredi de erleme modelleri kredi talebinde bulunanlar etkileyebilecek öznel ve nesnel faktörleri araflt r r. Bu Aflamada, kredi de erleme modelleri yaz n deste i ile k saca aç klanacakt r. Bilgi bilimine (Chen ve Liu, 2004), önemli katk lar olan yapay zeka teknikleri kredi puanlama hesab nda da uygulanabilir. Karar a açlar, yapay sinir a lar, genetik programlama ve k- en yak n komflu gibi baz yapay zeka teknikleri uygulamac lar ve araflt rmac lar taraf ndan kredi baflvurular n n de erlendirilmesi için gelifltirilmifltir (Malhotra ve Malhotra, 2002; West, 2000; Ong, Huang, v.d., 2005; Lee, Chiu, v.d., 2006; Lee ve Chen, 2005; Lee, Chiu, v.d., 2002). Bu çal flmada, yapay sinir a lar, s - n fland rma ve regresyon a açlar ve grup tekniklerine dayanan kredi de erleme modelleri gelifltirip karfl laflt r lacakt r Yapay Sinir A lar Yapay sinir a lar mühendislik, ticaret, öngörü alanlar yla ilgili bir çok problemi çözmede yayg n olarak kullan lm fl (Vellido, Lisboa, v.d., 1999; Lee, Chiu, v.d., 2006) finansta kredi puanlama hesaplar ile ilgili problemlere de uygulanm flt r (Lee, Chiu, v.d., 2006; Lee, Chiu, v.d., 2002). Nispeten basit ifllemli elementlerin (nodüllerin) yüksek derecede birbirine ba l a lar kullan larak girdileri istenilen ç kt lara dönüfltüren algoritmik prosedür olan Yapay Sinir A lar (YSA), do rusal olmayan regresyon ve s n fland rma modelleridir. Yapay sinir a hücresinde temel olarak d fl ortamdan ya da di er nöronlardan al nan veriler yani girdiler, a rl klar, toplama fonksiyonu, aktivasyon fonksiyonu ve ç kt lar bulunmaktad r. D fl ortamdan al nan veri, a rl klar arac l yla nörona ba lan r ve bu a rl klar ilgili girdinin etkisini belirler. Toplam fonksiyonu ise net girdiyi hesaplar; net girdi, girdilerin a rl kl toplam na eflittir. Aktivasyon fonksiyonu ifllem süresince net ç kt y hesaplar ve bu ifllem ayn zamanda nöron ç k fl n verir. Genelde aktivasyon fonksiyonu do rusal olmayan (non-lineer) bir fonksiyondur (Ince, 2006). A topolojisi sinir hücrelerinin organizasyonlar n ve ba lant türlerini verir. Hücreler bir seri katman üzerinde farkl katmanlardaki farkl hücrelerle ba lant l olacak flekilde ayarlan r. Girifl katman denilen ilk katman girdileri al r. Tek gizli katmanl bir yapay sinir a 78 Hüseyin nce, Bora Aktan

5 örne i fiekil 1 de verilmifltir (Crook, Edelman, v.d., 2007). Uygun a topolojisi (ör., gizli katmandaki gizli nöron say s ) afla daki eflitlikle sa lanabilir: h = n +m + α, α [1,10] (1) h, gizli birimlerin say s, n ve m s ras yla girdi ve ç kt lar n say s d r. fiekil 1: Üç Katmanl Bir YSA Girdi Katman Orta (Gizli) Katman Ç kt Katman Yapay sinir a lar, ileri beslemeli ve geri beslemeli a lar olarak farkl kategorilere ayr labilir. leri beslemeli a larda nöronlar sadece bir önceki katmandan girdi al p s - radaki katmana ç kt gönderebilirler. Çok katmanl yapay sinir a (MLP) e itmek için geri beslemeli algoritma (back propagation, BP) kullan r. En uygun a rl bulmak için, BP a hatas n en aza indirmeye çal fl r. Ö renme oran olarak adland r lan ad m büyüklü ü e itim bafllamadan önce belirlenmelidir. Bu oran s f r ile bir aras nda bir de erdir. Ö renme oran bu algoritma için çok önemlidir çünkü düflük de erler optimuma ulaflma öncesinde ifllem sürecini yavafllatmaya e ilimliyken daha büyük de- erler a da sapmalara sebep olur ve yak nsama yapamaz. Geri besleme algoritmas - n n baz varyasyonlar yerel minimuma ulaflma, a r kovaryans ve yapay sinir a nda bulunan detayl bilginin fazla ifllenmesi gibi zorluklar n üstesinden gelmek için önerilmifltir (Haykin, 1994; 1998) Karar A açlar Karar a açlar, çeflitli pazarlama uygulamalar (müflteri iliflkileri yönetimi, do rudan postalama), insan kaynaklar yönetimi (geçmiflte iflletmeye en faydal olan bireylerin özelliklerini kullanarak ifle alma süreçlerinin belirlenmesi), t p (t bbi gözlem verilerinden yararlanarak en etkin kararlar n verilmesi), hangi de iflkenlerin sat fllar etkiledi inin belirlenmesi, üretim yönetimi gibi uygulamalarda kullan lmaktad r (Akp - nar, 2000). Bunun yan nda Shen, v.d. (2007), kredi kart verileri ile sahtecilik tespiti için yap lan s n fland rma modeli çal flmas nda karar a açlar n n etkin olarak kullan ld n ve olumlu sonuçlar ortaya koydu u gözlemlemifltir. Yap lan bir baflka çal flma- Kredi Kart Taleplerinin De erlendirilmesinde Grup ve Bireysel Kredi Puanlama Modellerinin Karfl laflt r lmal Bir Analizi 79

6 da, bankan n sahtecilik tespit sistemi karar a ac teknikleri üzerinde gelifltirilmifl olup sistem sonuçlar oldukça baflar l olmufltur (Lee, Chiu, v.d., 2002; Lee, Chiu, v.d., 2006). Veri madencili i tekniklerinden biri olan karar a açlar firmalar n bilançolar - n n incelenmesinde kullan lm fl ve tahmin do rulu u olarak tatmin edici sonuçlar ortaya koymufltur (Kirkos, Spathis, v.d., 2007). Bunun yan nda ileride kavramsal olarak aç klanaca üzere grup, Bagging ve Boosting algoritmalar n n uygulamalar nda da karar a açlar teknikleri kullan lm flt r. Karar a ac, tümevar msal muhakeme kullanarak s n fland rma modeli oluflturmadaki farkl yöntemlerden biridir. Basit kural serileri uygulayarak oluflturulan verinin bölümlenmesini gösteren a aç fleklinde bir yap modeli oluflturur. Bu kurallar parçalanman n tekrar ifllemi yoluyla tahminlemede kullan labilir. Lee, Chiu, v.d. (2005) ne göre, karar a ac teorisi kredi de erleme için oldukça uygundur ve genifl alanda kullan l r. ID3, C4.5, S n fland rma ve Regresyon A açlar (CART) ve CHAID karar a açlar algoritmalar öngörü ve s n fland rma için kullan lm flt r. ID3 algoritmas Quinlan (1993), taraf ndan karar a ac üretmek için önerilmifltir. Bilgi kazanc teorisine dayan r. ID3 karar a açlar n branfllamaya nitelik olarak en uygun bilgi kazanc n belirler ki bu flekilde oluflturulan a açlar basit yap l olurlar (Zhao, 2007). Edinilen bilgi tüm veri setinin haricinde belli bafll nitelikler kullanarak karar a ac n n dü ümleri taraf ndan oluflturulan alt-a açlar n entropi katsay s ile hesaplanabilir. ID3 ün sak ncas edinilen bilgiyi nitelik seçmek için kural olarak kullanmas d r çünkü dalland rma daha yüksek nitelik de erleri üzerinde meyilli olacakt r. Bu olumsuzlu u ortadan kald rmak için ID3 ün bir uzant s ve revizyonu olan C4.5 önerilmifltir (Chang ve Chen, 2008). C4.5 algoritmalar bilgi kazanc -oran n niteli i bölümlemek için kullan r. Büyük boyutlardaki veri seti üzerinde çal flmak için C4.5 karar a ac algoritmas revize edilerek C5 algoritmas gelifltirilmifltir (Chang ve Chen, 2008). Buna ek olarak, h z aç s ndan C4.5 tan daha h zl d r ve haf za kullan m nda daha etkilidir. (Tso ve Yau, 2007) ya göre, C5 in C4.5 algoritmas na göre flu avantajlar vard r: (1) nominal parçalar için dü üm birlefltirme opsiyonu yoktur, (2) yanl fl s n fland rma maliyeti belirlenebilir; (3) destekleme ve çapraz-de erlendirme özellikleri mevcuttur; ve (4) a açlardan kural setleri oluflturmak için algoritmalar daha geliflmifltir. Bu algoritmalar n yan s ra, baz araflt rmac lar baflka karar a açlar teknikleri sunmufllard r. Bunlardan biri istatistiksel bir metot olan ve S n fland rma ve Regresyon A ac olarak bilinen Breiman, Friedman, v.d. (1984), taraf ndan gelifltirilen karar a ac tekni idir. Bu hem regresyon problemlerinin çözümü hem de s n fland rma için kullan lan tekrarlanan bir bölümlemedir. Temel olarak bir nesneyi iki veya daha çok popülasyonda s n fland rmak için kullan l r. S n fland rma ve Regresyon A ac algoritmas afla daki gibi üç aflamada özetlenebilir (Chang ve Chen, 2008): 1- Bu aflamada, tekrarlanan bölümleme tekni i de iflken seçmek ve ay rma ölçütü kullanarak noktalar ay rmak için kullan l r. Birçok bozukluk ve farkl l k ölçü- 80 Hüseyin nce, Bora Aktan

7 sü kullanarak en iyi belirleyici seçilir (Gini, ikiflerli, s ral ikiflerli ve en küçük kareler sapmas ). Bu ölçülerin nas l hesaplanaca ile ilgili detayl bilgiye Breiman, Friedman, v.d. (1984) dan ulafl labilir ki burada amaç, hedef de iflkene ba l olarak olabildi ince homojen veri alt setleri oluflturmakt r. 2- Büyük bir a aç tan mland ktan sonra, S n fland rma ve Regresyon A ac minimum maliyet karmafl kl n kapsayacak flekilde fazlal klar ç karma prosedürü uygular. Fazlal klar ç karma prosedürü, geliflmifl en büyük a açtan bafllay p tek bir a aç dü ümü kalana kadar süren bir ifllem içinde iç içe geçmifl a aç alt setleri temin eder. 3- Son aflamada, en düflük çapraz-de erli veya hata kriteri kullanarak en uygun a aç seçilir Gruplama (Ensemble) Teknikleri Ensemble n sözlük anlam ; birlik, grup, tak m d r. Oza, (2006) ensemble birkaç farkl yöntem ile yap lan tahminlerin kombinasyonunu veren fonksiyon fleklinde tan mlamaktad r. Bu yöntemde kar fl k bir hesaplama önce basit hesaplamalara bölünür. Sonra elde edilen çözümlerin birlefltirilmesiyle karmafl k sorun çözülür. Gruplama (ensemble) tekniklerinin ard nda yatan fikir, her bir bileflen modelinin tek özelliklerini, veri kümesinde bulunan farkl örnekleri yakalamak için kullanmakt r. Bir komisyonun üyelerini seçerken kullan lan temel mant k ile ensemble olufltururken kullan lan ayn d r (Oza, 2006). Komisyonun her bir üyesi kendi alan nda mümkün oldu u kadar yetenekli olmal, fakat üyeler birbirini tamamlay c olmal. E er üyeler birbirini tamamlay c olmazsa ve her konuda ayn fikirdeyseler, bu durumda bir komisyon oluflturmaya gerek yoktur ve tek bir üye yeterlidir. E er üyeler birbirini tamamlay c olursa, bu durumda bir veya birkaç üye hata yapt nda di er üyelerin bu hatay düzeltme olas l daha fazlad r. Hem teorik hem ampirik çal flmalar, do ruluklar art rmak için gruplanman n etkili bir yol olabildi ini göstermektedir. Özgün çal flmalar nda Bates ve Granger (1969), farkl tekniklerin do rusal bir kombinasyonunun, bireysel tekniklerden daha küçük bir hata varyans verece ini göstermifllerdir. O zamandan bu yana, pek çok araflt rmac gruplama veya bileflik tahminler üzerinde çal flmalarda bulunmufltur. Makridakis, Anderson, v.d. (1982), farkl tek modellerin birlefltirilmesinin, tahmin do rulu unu art rmada genel uygulama haline geldi ini bildirmifltir. Sonras nda, Pelikan, De Groot, v.d. (1992), zaman serileri tahmin do rulu unu art rmak amac yla, farkl ileri-beslemeli sinir a lar n toplamay önermifltir. Sürekli ba ml de iflkenli tahmin problemleri için grup tekniklerinin baz lar, do rusal grubu (örn.; basit ortalama a rl kl ortalama), y lmal regresyon ve do rusal olmayan grubu (örn, sinir a merkezli) içermektedir (Benediktsson, Sveinsson, v.d., 1997; Yu, Wang, v.d., 2005; Perrone ve Cooper, 1993; Breiman, 1996). Kredi Kart Taleplerinin De erlendirilmesinde Grup ve Bireysel Kredi Puanlama Modellerinin Karfl laflt r lmal Bir Analizi 81

8 Hansen, McDonald, v.d. (1992), birkaç yapay sinir a ndan oluflan bir grup kullan larak bir yapay sinir a modelinin genellefltirme kapasitesinin önemli ölçüde art r - labilece ini bulgulam flt r. Ço u zaman, s n fland rma problemlerinden dolay, yeni örnekleri tasnif etmek için genel anlamda ço unluk oylamas na (majority voting) göre, bir grup sistemi birtak m yollarla bireysel s n flama kararlar n birlefltirmektedir. Temel düflünce, bir tak m modelleri (uzmanlar ) e itmek ve oy kullanmalar na izin vermek. Ço unluk oylamas yönteminde, bütün ba ms z modellere ayn derecede önem verilmektedir. Modelleri birlefltirmenin bir di er flekli, ba ms z modellerin yetersiz ölçüde önemle e itildi i a rl kl oylama yoludur. Bu, baz a rl klar ba ms z modeller taraf ndan verilen tahmine ba lay p birlefltirmekle gerçekleflmektedir. Olmeda ve Fernandez (1997), bir genetik algoritman n ba ms z modellerin optimum kombinasyonunu belirledi i genetik algoritma merkezli bir grup sistemi ortaya koymufllard r; bu flekilde do ruluk maksimuma ç kar lm flt r. Zhou, Wu, v.d. (2002), gruplanan yapay sinir a lar modeli üzerinde kapsaml bir çal flma yürütmüfl ve bir grup oluflturmak için bir tak m sinir a lar n kullanman n tüm sinir a lar n kullanmaktan daha iyi oldu unu öne sürmüfltür. Bunun yan s ra, sinir a lar n n grubun parças haline gelmesi için sinir a lar mevcut dizisinden seçiminde kullan labilecek bir yaklafl m önermifllerdir. Ayr ca genetik algoritma, a rl klar bileflen a lar na atamak için kullan lm flt r. fiekil 2: Grup Sistem Tasar m Yapay Sinir A lar (YSA) Karar A açlar (KA) Bulan k Sistemler (DENFIS) Destek Vektör Makinalar (DVM) Regresyon Çubuklar (MARS) Belirli bir veri kümesi için bir ak ll teknik türü di erini geçmekte ve farkl bir veri kümesi kullan ld nda sonuçlar tamamen z t olabilmektedir. Hiçbir ço unlu u kay- YSA-KA-DENFIS- DVM-MARS Ç kt Notlar: YSA: Neural Networks, KA: Decision Trees, DENFIS: Dynamic evolving neuro-fuzzy inference system, DVM: Support Vector Machines MARS: Multivariate adaptive regression splines. 82 Hüseyin nce, Bora Aktan

9 betmemek ve ak ll tekniklerin avantajlar n toplamak için bir grup, her birine mutlak öncelik düzeyi verilmesiyle bütün ba ms z ak ll tekniklerin ç kt lar n kullanmakta ve bir hakem yard m yla ç kt sa lamaktad r. Bu çal flmada, farkl yap daki yapay sinir a lar modelleri, karar a açlar grupland r larak performanslar bireysel modeller ile karfl laflt r lacakt r. 3. Uygulama Grup ve yapay sinir a lar, karar a açlar gibi bireysel teknikler kullan larak gelifltirilen kredi de erleme modellerinin performanslar n karfl laflt rmak için bir finansal kurumdan al nan kredi kart verileri kullan lm flt r. Veri seti sekiz tane aç klay c de iflken ve bir tane ba ml de iflken içermektedir. Aç klay c de iflkenler s ras ile cinsiyet, yafl, medeni durumu, e itim durumu, meslek, gelir, müflteri türü ve baflka bankalardan ald kredi kart say s d r. Ba ml de iflken ise müflterinin kredi durumunu (iyi veya kötü) gösteren de iflkendir. Veri setinde 1422 müflterinin bilgileri bulunmaktad r. Bunlar içerisinden, veri setinin yaklafl k %70 i yani 990 müflteri rassal olarak seçilmifl ve model parametrelerini tahmin etmek için e itim seti olarak geri kalan k s m ise, modellerin performans n de erlendirmek için kullan lm flt r. lk olarak yapay sinir a ve karar a ac modeli oluflturulacak ve bunlarla ilgili elde edilen sonuçlar verilecek, daha sonra ise grup teknikleri ile oluflturulan modelden ç kacak sonuçlar ile karfl laflt r lacakt r. Çal flmada kullan lan yapay sinir a için optimum verimi sa layacak topolojiyi belirlemedeki en önemli sorun gizli katmanda bulunan nöron say s n n belirlemektedir. Lee, Chiu, v.d. (2002) e göre kompleks sistemler tek gizli katmanl yapay sinir a ile modellenebilir. Crook, Edelman, v.d. (2007), gizli katmandaki nöron say s n belirlemek için Denklem 1 de verilen formülü önermifllerdir. Ayr ca, optimum topolojiyi oluflturmak için genetik algoritmalarda önerilmektedir. Bu çal flmada gizli katman say s ve nöron say s n belirlemek için genetik algoritmalardan faydalan lm flt r (Ong, Huang, v.d., 2005). Neurosolution yaz l m kullan larak en uygun topoloji seçilmifltir. Gizli katmandaki nöron say s 13 olarak belirlenmifltir. Algoritman n sonuca ulaflma kriteri olarak hata kareleri ortalamas n n karekökü (RMSE) den küçük veya iterasyon say s 5000 seçilmifltir. Tablo 1, e itim ve test seti için elde edilen tahmin sonuçlar n göstermektedir. Söz konusu tabloda görüldü ü gibi e itim ve test seti için do ru tahmin etme oran s ras ile %65.9 ve %66.9 olarak elde edilmifltir. E itim setinde iyi kredi puan na sahip 165 müflteri kötü krediye sahip müflteri olarak s n fland r lm flt r. Ayr ca kötü kredi puan na sahip 173 müflteri iyi kredi puan na sahip olarak s n fland r lm flt r. Test setinde ise, iyi kredi puan na sahip 74 müflteri kötü kredi puan na sahip olarak ve kötü kredi puan na sahip 69 müflteri iyi kredi puan na sahip olarak s n fland r lm flt r. Kredi Kart Taleplerinin De erlendirilmesinde Grup ve Bireysel Kredi Puanlama Modellerinin Karfl laflt r lmal Bir Analizi 83

10 Tablo 1: E itim ve Test Seti için YSA Kullan larak Elde Edilen S n fland rma Sonuçlar Tahmin Tahmin Gerçek Kötü Kötü 329(%67) 165(%33) 143(%66) 74(%34) Kötü 173(%35) 323(%65) 69(%33) 146(%67) Kredi de erlendirme modeli olarak CHAID karar a ac tekni i seçilmifltir. Bu model en çok kullan lan tekniklerden birisidir. Elde edilen sonuçlar Tablo 2 de verilmifltir. Buna göre, e itim ve test seti için do ru tahmin etme oran s ras ile %67.1 ve %62.4 tür. E itim setinde iyi kredi puan na sahip 232 müflteri kötü kredi puan na sahip müflteri olarak s n fland r lm flt r. Ayr ca kötü kredi puan na sahip 105 müflteri iyi kredi puan na sahip olarak s n fland r lm flt r. Test setinde ise, iyi kredi puan na sahip 102 müflteri kötü kredi puan na sahip olarak ve kötü kredi puan na sahip 48 müflteri iyi kredi puan na sahip olarak s n fland r lm flt r. Tablo 2: E itim ve Test Seti için Karar A açlar Kullan larak Elde Edilen S n fland rma Sonuçlar Tahmin Tahmin Gerçek Kötü Kötü 270(%54) 232(%46) 107(%51) 102(%49) Kötü 105(%20) 416(%80) 48(%20) 142(%80) Araflt rmac lar çeflitli türlerde gruplama modeli önermifllerdir (Zhou, Wu, vd., 2002; West, Dellana, v.d., 2005). Bu çal flmada Adaboost ve Bagging teknikleri kullan larak gelifltirilmifl kredi de erleme modelleri kullan lacakt r. Bu teknikler ile ilgili ayr nt l bilgi (Tsai ve Wu, 2008; Zhou, Wu, v.d., 2002; West, Dellana, v.d., 2005) bulunabilir. 1 1 Bagging Bootstrap Aggregating kelimelerinin birlefliminden oluflmufltur. Uygulanmas kolay ve iyi sonuçlar veren bir algoritmad r (bkz Breiman, 1996). Özellikle veri say s az ise kullan l r. Farkl e itim veri alt kümeleri, yenisiyle de ifltirme (replacement) yöntemi ile e itim setinden elde edilir. Her bir veri alt kümesi farkl s n fland r c lar e itmek için kullan l r. Yapay sinir a lar ve karar a açlar nda kolayl kla uygulanabilirler. Boosting ise, Schapire (1990) in tan mlad bir algoritmad r. Bagging te oldu u gibi boosting te de ensemble oluflturan s n fland r c lar verilerin tekrar örneklenmesi (resample) yöntemi ile elde edilmekte ve daha sonra ço unluk oylar ile birlefltirilmektedir. Boosting te tekrar örnekleme ile her bir ard fl k s n fland r c için en çok ö retici e itim seti elde edilmeye çal fl l r y l nda boosting algoritmalar ndan en çok kullan lan olan AdaBoost algoritmas ( bkz. Freund and Schapire, 1997) gelifltirilmifltir. 84 Hüseyin nce, Bora Aktan

11 Destek vektör makinalar, yapay sinir a lar ve karar a açlar kullan larak oluflturulan Adaboost ve bagging gruplama modelleri oluflturulmufltur. Destek vektör makinalar ile oluflturulan Bagging ve Adaboost modeli di erlerinden daha iyi sonuç vermifltir. Tablo 3 ve 4 bu modeller kullan larak elde edilen bulgular göstermektedir. Tablo 3: E itim ve Test Seti için Bagging Metodu Kullan larak Elde Edilen S n fland rma Sonuçlar Tablo 3 de görüldü ü gibi e itim ve test seti için do ru tahmin etme oran s ras ile %87.5 ve %70.9 tür. E itim setinde iyi kredi puan na sahip müflterilerin %11 i kötü kredi puan na sahip müflteri olarak s n fland r lm flt r. Ayr ca, kötü kredi puan na sahip müflterilerin %14 ü iyi kredi puan na sahip müflteri olarak s n fland r lm flt r. Test setinde ise, iyi kredi puan na sahip 61 müflteri kötü kredi puan na sahip olarak ve kötü kredi puan na sahip 63 müflteri iyi kredi puan na sahip olarak s n fland r lm flt r. Tablo 4: E itim ve Test Seti için Adaboost Metodu Kullan larak Elde Edilen S n fland rma Sonuçlar Tahmin Tahmin Tahmin Gerçek Kötü Kötü 439(%89) 55(%11) 156(%72) 61(%28) Kötü 68(%14) 422(%86) 63(%30) 147(%70) Tahmin Gerçek Kötü Kötü 438(%89) 56(%11) 135(%62) 82(%38) Kötü 63(%14) 427(%86) 33(%33) 141(%67) Adaboost metodu da Bagging tekni ine benzer sonuçlar vermifltir. E itim ve test seti için do ru tahmin etme oranlar s ras ile %87.9 ve %64.6 olarak hesaplanm flt r. Buna ek olarak, e itim setinde iyi kredi puan na sahip müflterilerin %11 i kötü kredi puan na sahip müflteri olarak s n fland r lm flt r. Ayr ca kötü kredi puan na sahip müflterilerin %14 ü iyi kredi puan na sahip müflteri olarak s n fland r lm flt r. Test setinde ise, iyi kredi puan na sahip 82 müflteri kötü kredi puan na sahip olarak ve kötü kredi puan na sahip 33 müflteri iyi kredi puan na sahip olarak s n fland r lm flt r. Kredi Kart Taleplerinin De erlendirilmesinde Grup ve Bireysel Kredi Puanlama Modellerinin Karfl laflt r lmal Bir Analizi 85

12 kinci olarak bireysel modeller ile gruplama modelleri karfl laflt r lm flt r. Yukar da verilen bilgilerde de görülece i gibi gruplama tekni i ile oluflturulan modeller bireysel tekniklerden daha iyi sonuç vermifltir. Bunun en temel nedeni, gruplama modellerinin birden fazla bireysel teknik içermesinden kaynaklanan ve dolay s yla hatal sonuç bulma olas l ndaki düflüfltür. 5. Sonuç Kredi puanlama, s n fland rma yöntemlerinin yard m ile kredilendirme sürecinde daha süratli ve sa l kl karar verilmesini sa lamaktad r. Bu makalede grup teknikleri ile oluflturulan kredi de erleme modelleri ile bireysel kredi de erleme modelleri karfl laflt r lm flt r. Özellikle, ticari bankalar aras ndaki rekabetin oldukça yo un olmas sebebiyle kredi de erleme bu kurulufllar için hayati öneme sahiptir. Her geçen gün daha fazla finansal hizmet veren kurumlar daha etkin ve verimli stratejiler gelifltirmek için çaba sarf etmekte, bu nedenle, farkl yap da kredi de erleme modelleri gelifltirmeye çal flmaktad rlar. Bu amaçla, bilgi teknolojisi ve modelleme tekniklerindeki geliflmeler daha ileri modelleri oluflturmaya olanak sa lamaktad r. Geleneksel tekniklerin yerini, yapay zeka teknikleri veya melez kredi de erleme modelleri alm flt r. Bu çal flman n amac, gruplama modelleri ile bireysel kredi de erleme modellerin performanslar n n karfl laflt r lmas d r. Bu amaç do rultusunda, yapay sinir a lar ve karar a açlar teknikleri kullan larak gelifltirilmifl bireysel modeller ile Bagging ve Adaboost tekni i ile elde edilmifl gruplama modelleri kullan lm flt r. Yap lan analiz ve de erlemeler sonucu grup kredi de erleme modellerinin bireysel modellere üstünlük sa lad bulgulanm flt r. 86 Hüseyin nce, Bora Aktan

13 Kaynakça 1. Akgüç, Ö.. (2007). Banka Yönetimi ve Performans Analizi. Aray fl Bas m ve Yay nc l k: stanbul. 2. Akp nar, H.. (2000). Veri Tabanl Bilgi Keflfi ve Veri Madencili i..ü. flletme Fakültesi Dergisi, 29 (1): Avery, R. B., Calem, P. S. ve Canner, G. B.. (2004). Consumer Credit Scoring: Do Situational Circumstances Matter? Journal of Banking and Finance, 28: Ayd n, N. (Ed.). (2006). Bankac l k Uygulamalar. Anadolu Üniversitesi Yay n, No Bates, J.M. ve Granger, C.W.J.. (1969). The Combination of Forecasts. Operational Research Quarterly, 20 (4): Bankac l k Denetleme ve Düzenleme Kurumu, (2009) Ayl k Bülten Ocak Benediktsson, J. A., Sveinsson, J. R., Ersoy, O. K. ve Swain, P. H.. (1997). Parallel Consensual Neural Networks. IEEE Transactions on Neural Networks, 8: Berk, N.. (2001). Bankac l kta Pazara Yönelik Kredi Talebi, Beta Bas m Yay n: stanbul. 9. Blochlinger, A. ve Leippold, M.. (2006). Economic Benefit of Powerful Credit Scoring. Journal of Banking and Finance, 30: Bodur, C. ve Teker, S.. (2005). Credit Scoring of Companies: Application to the ISEM Companies. TÜ Dergisi/b, 2(1): Breiman, L., Friedman, J. H., Olshen, R. A. ve Stone, C. J.. (1984). Classification and Regression Trees. Wadsworth and Brooks/Cole, Montery. 12. Breiman, L.. (1996). Bagging Predictors. Machine Learning, 24 (3): Chang, C. L. ve Chen, C. H.. (2008). Applying Decision Tree and Neural Network to Increase Quality of Dermatologic Diagnosis. Expert Systems with Applications, 3(6): Chen, M. S., Han, J. ve Yu, P. S.. (1996). Data Mining: An Overview From a Database Perspective. IEEE Trans. Knowledge Data Engineering, 8(6): Chen, S. Y. ve Liu, X.. (2004). The Contribution of Data Mining to Information Science. Journal of Information Science, 30(6): Çinko, M.. (2006). Kredi Kart De erlendirme Tekniklerinin Karfl laflt r lmas. stanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, 5 (9): Crook, J. ve Banasik, J.. (2004). Does Reject Inference Really Improve the Performance of Application Scoring Models? Journal of Banking and Finance, 28: Crook, J. N., Edelman, D. B. ve Thomas, L. C.. (2007). Recent Developments in Consumer Credit Risk Assessment. European Journal of Operational Research, No.183. Kredi Kart Taleplerinin De erlendirilmesinde Grup ve Bireysel Kredi Puanlama Modellerinin Karfl laflt r lmal Bir Analizi 87

14 19. Fayyad, U., Piatetsky-Shapiro, G. ve Smyth, P.. (1996). The KDD Process for Extracting Useful Knowledge From Volumes of Data. Communications of the ACM, 39: Freund, Y. ve Schapire, R. E.. (1997). Decision-Theoretic Generalization of on-line Learning and application to Boosting. Journal of Computer and System Sciences, 55 (1): Hansen, J., McDonald J. ve Slice, J.. (1992). Artificial Intelligence and Generalized Qualitative Response Models: an Empirical Test on Two Audit Decision-Making Domains. Decision Science, 23: Haykin, S.. (1994). Neural Networks. Macmillan College Publishing Company Inc, New York. 23. Haykin, S.. (1998). Neural Networks: A Comprehensive Foundation. 2e. Prentice Hall, Upper Saddle River, NJ. 24. Henley, W. E. ve Hand, D. J.. (1996). Ak-Nearest Neighbor Classifier for Assessing Consumer Credit Risk. Statistician, 44 (1): Ince, H.. (2006). Yapay Sinir A lar n n Portföy Yönetiminde Kullan lmas. ktisat flletme ve Finans, 21 (4): Ince, H. ve Aktan, B.. (2009). A Comparison of Data Mining Techniques for Credit Scoring in Banking: A Managerial Perspective. Journal of Business Economics and Management, 10(3): Jacobson, T. ve Roszbach, K.. (2003). Bank Lending Policy, Credit Scoring and Value at Risk. Journal of Banking and Finance, 27: Karan, M. B. ve Arslan, O.. (2008). Consumer Credit Risk Factors of Turkish Households, Bank and Bank Systems, 3(1): Kirkos, E., Spathis, C. ve Manolopoulos, Y.. (2007). Data Mining Techniques for the Detection of Fraudulent Financial Statements. Expert Systems with Applications, 32 (4): Lee, H., Jo, H. ve Han, I.. (1997). Bankruptcy Prediction Using Case-Based Reasoning, Neural Networks and Discriminant Analysis. Expert Systems with Applications, 13: Lee, T. S., Chiu, C. C., Lu, C. J. ve Chen, I.F.. (2002). Credit Scoring Using the Hybrid Neural Discriminant Technique. Expert Systems with Applications, 23: Lee, T. S. ve Chen, I. F.. (2005). A Two-Stage Hybrid Credit Scoring Model Using Artificial Neural Networks and Multivariate Adaptive Regression Splines. Expert Systems with Applications, 28: Lee, T. S., Chiu, C. C., Chou, Y. C. ve Lu, C. J.. (2006). Mining the Customer Credit Using Classification and Regression Tree and Multivariate Adaptive Regression Splines. Computational Statistics and Data Analysis, 50: Makridakis, S., Anderson, A., Carbone, R., Fildes, R., Hibdon, M., Lewandowski, R., Newton, J., Parzen, E. ve Winkler, R.. (1982). The Accuracy of Extrapolation (time series) Methods: Results of a Forecasting Competition. Journal of Forecasting, 1 (2): Hüseyin nce, Bora Aktan

15 35. Malhotra, R. ve Malhotra, D. K.. (2002). Differentiating Between Good Credits and Bad Credits Using Neuro-Fuzzy Systems. European Journal of Operational Research, 136(1): Martens, D., Baesens, B., Van Gestel, T. ve Vanthienen, J.. (2007). Comprehensible Credit Scoring Models Using Rule Extraction From Support Vector Machines. European Journal of Operational Research, 183(3): Olmeda, I. ve Fernandez, E.. (1997). Hybrid Classifiers for Financial Multicriteria Decision Making: The Case of Bankruptcy Prediction. Computational Economics, 10: Ong, C. S., Huang, J. J. ve Tzeng, G. H.. (2005). Building Credit Scoring Models Using Genetic Programming. Expert Systems with Applications, 29(1): Oza, N. C.. (2006). Ensemble Data Mining Methods, Encyclopedia of Data Warehousing and Mining. Idea Group Reference, pp Quinlan, J. R.. (1993). C4.5: Programs for machine learning. Morgan Kaufman, San Francisco, CA. 41. Pal, M.. (2007). Ensemble Learning with Decision Tree for Remote Sensing Classification. Proceedings of World Academy of Science Engineering and Technology, 26(December): Pelikan, E., De Groot, C. ve Wurtz, D.. (1992). Power Consumption in West-Bohemia: Improved Forecasts Decorrelating Connectionist Networks. Neural Network World, No.2, Perrone, M. P. ve Cooper, L. N. (1993). When Networks Disagree: Ensemble Methods for Hybrid Neural Netwoks. Neural Networks for speech and Image Processing, Chapman Hall, Schapire, R. E.. (1990). The Strength of Weak Learnability. Machine Learning, 5(2): Shen, A., Tong, R. ve Deng, Y.. (2007). Application of Classification Models on Credit Card Fraud Detection. School of Management, Graduate University of the Chinese Academy of Sciences, China, Seval, B.. (1990). Kredilendirme Süreci ve Kredi Yönetimi..Ü. flletme Fakültesi, Muhasebe Enstitüsü Yay n No.59: stanbul. 47. Thomas, L. C.. (2000). A Survey of Credit and Behavioral Scoring: Forecasting Financial Risk of Lending to Consumers. International Journal of Forecasting, 16: Tsai, C. F. ve Wu, J. W.. (2008). Using Neural Network Ensembles for Bankruptcy Prediction and Credit Scoring. Expert Systems with Applications, 34(4): Tso, K. F. G. ve Yau, K. K. W.. (2007). Predicting Electricity Energy Consumption: A Comparison of Regression Analysis, Decision Tree and Neural Networks. Energy, 32: Vellido, A., Lisboa, P. J. G. ve Vaughan, J.. (1999). Neural Networks in Business: A Survey of Applications ( ). Expert Systems with Applications, 17: Kredi Kart Taleplerinin De erlendirilmesinde Grup ve Bireysel Kredi Puanlama Modellerinin Karfl laflt r lmal Bir Analizi 89

16 51. Vojtek, M. ve Koãenda, E.. (2006). Credit Scoring Methods. Finance a úvûr- Czech Journal of Economics and Finance, 56: West, D.. (2000). Neural Network Credit Scoring Models. Computers and Operational Research, 27: West, D., Dellana, S. ve Qian, J.. (2005). Neural Network Ensemble Strategies for Financial Decision Applications. Computers & Operations Research, 32: Yang, Y.. (2007). Adaptive Credit Scoring with Kernel Learning Methods. European Journal of Operational Research, 183(3): Yu, L., Wang, S. Y. ve Lai, K. K.. (2005). A Novel Non-Linear Ensemble Forecasting Model Incorporating GLAR and ANN for Foreign Exchange Rates. Computers and Operations Research, 32 (10): Zhao, H.. (2007). A Multi-Objective Genetic Programming Approach to Developing Pareto Optimal Decision Trees. Decision Support Systems, 43: Zhou, Z. H., Wu, J. ve Tang, W.. (2002). Ensembling Neural Networks: Many Could be Better Than All. Artificial Intelligence,137 (1-2): Hüseyin nce, Bora Aktan

Animasyon Tabanl Uygulamalar n Yeri ve Önemi

Animasyon Tabanl Uygulamalar n Yeri ve Önemi Otomasyon Sistemleri E itiminde Animasyon Tabanl Uygulamalar n Yeri ve Önemi Murat Ayaz Kocaeli Üniversitesi Teknik E itim Fakültesi, Elektrik E itimi Koray Erhan Kocaeli Üniversitesi, Teknoloji Fakültesi,

Detaylı

BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1

BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1 1 BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1 Belli bir özelliğe yönelik yapılandırılmış gözlemlerle elde edilen ölçme sonuçları üzerinde bir çok istatistiksel işlem yapılabilmektedir. Bu işlemlerin bir kısmı

Detaylı

Uluslararas De erleme K lavuz Notu, No.9. Pazar De eri Esasl ve Pazar De eri D fl De er Esasl De erlemeler için ndirgenmifl Nakit Ak fl Analizi

Uluslararas De erleme K lavuz Notu, No.9. Pazar De eri Esasl ve Pazar De eri D fl De er Esasl De erlemeler için ndirgenmifl Nakit Ak fl Analizi K lavuz Notlar Uluslararas De erleme K lavuz Notu, No.9 Pazar De eri Esasl ve Pazar De eri D fl De er Esasl De erlemeler için ndirgenmifl Nakit Ak fl Analizi 1.0 Girifl 1.1 ndirgenmifl nakit ak fl ( NA)

Detaylı

KREDİ KARTI DEĞERLENDİRME TEKNİKLERİNİN KARŞILAŞTIRILMASI

KREDİ KARTI DEĞERLENDİRME TEKNİKLERİNİN KARŞILAŞTIRILMASI İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi Yıl:5 Sayı:9 Bahar 2006/1 s.143-153 KREDİ KARTI DEĞERLENDİRME TEKNİKLERİNİN KARŞILAŞTIRILMASI Murat ÇİNKO * ÖZET Finansal kurumlar tarafından birçok

Detaylı

İKİNCİ BÖLÜM EKONOMİYE GÜVEN VE BEKLENTİLER ANKETİ

İKİNCİ BÖLÜM EKONOMİYE GÜVEN VE BEKLENTİLER ANKETİ İKİNCİ BÖLÜM EKONOMİYE GÜVEN VE BEKLENTİLER ANKETİ 120 kinci Bölüm - Ekonomiye Güven ve Beklentiler Anketi 1. ARAfiTIRMANIN AMACI ve YÖNTEM Ekonomiye Güven ve Beklentiler Anketi, tüketici enflasyonu, iflsizlik

Detaylı

SÜREÇ YÖNETİMİ VE SÜREÇ İYİLEŞTİRME H.Ömer Gülseren > ogulseren@gmail.com

SÜREÇ YÖNETİMİ VE SÜREÇ İYİLEŞTİRME H.Ömer Gülseren > ogulseren@gmail.com SÜREÇ YÖNETİMİ VE SÜREÇ İYİLEŞTİRME H.Ömer Gülseren > ogulseren@gmail.com Giriş Yönetim alanında yaşanan değişim, süreç yönetimi anlayışını ön plana çıkarmıştır. Süreç yönetimi; insan ve madde kaynaklarını

Detaylı

MALAT SANAY N N TEMEL GÖSTERGELER AÇISINDAN YAPISAL ANAL Z

MALAT SANAY N N TEMEL GÖSTERGELER AÇISINDAN YAPISAL ANAL Z MALAT SANAY N N TEMEL GÖSTERGELER AÇISINDAN YAPISAL ANAL Z Nisan 2010 ISBN 978-9944-60-631-8 1. Bask, 1000 Adet Nisan 2010 stanbul stanbul Sanayi Odas Yay nlar No: 2010/5 Araflt rma fiubesi Meflrutiyet

Detaylı

Araflt rma modelinin oluflturulmas. Veri toplama

Araflt rma modelinin oluflturulmas. Veri toplama 21 G R fi Araflt rman n amac na ba l olarak araflt rmac ayr ayr nicel veya nitel yöntemi kullanabilece i gibi her iki yöntemi bir arada kullanarak da araflt rmas n planlar. Her iki yöntemin planlama aflamas

Detaylı

Tablo 3.3. TAKV YES Z KANAL SAC KALINLIKLARI (mm)

Tablo 3.3. TAKV YES Z KANAL SAC KALINLIKLARI (mm) 3. KANAL KONSTRÜKS YONU Türk Standart ve fiartnamelerinde kanal konstrüksiyonu üzerinde fazla durulmam flt r. Bay nd rl k Bakanl fiartnamesine göre, bas nç s - n fland rmas na ve takviye durumuna bak lmaks

Detaylı

Uygulama Önerisi 1110-2: ç Denetim Yöneticisi- Hiyerarflik liflkiler

Uygulama Önerisi 1110-2: ç Denetim Yöneticisi- Hiyerarflik liflkiler Uygulama Önerileri 59 Uygulama Önerisi 1110-2: ç Denetim Yöneticisi- Hiyerarflik liflkiler Uluslararas ç Denetim Meslekî Uygulama Standartlar ndan Standart 1110 un Yorumu lgili Standart 1110 Kurum çi Ba

Detaylı

AR-GE YETENE DE ERLEND R LMES ESASLARI (*)

AR-GE YETENE DE ERLEND R LMES ESASLARI (*) AR-GE YETENE DE ERLEND R LMES ESASLARI (*) Amaç Madde 1. Bu Esaslar, kurulufllar n teknolojik AR-GE yapma yetene inin TÜB TAK taraf ndan de erlendirilmesine iliflkin usul ve esaslar belirlemektedir. Kapsam

Detaylı

G ünümüzde bir çok firma sat fllar n artt rmak amac yla çeflitli adlar (Sat fl

G ünümüzde bir çok firma sat fllar n artt rmak amac yla çeflitli adlar (Sat fl 220 ÇEfi TL ADLARLA ÖDENEN C RO PR MLER N N VERG SEL BOYUTLARI Fatih GÜNDÜZ* I-G R fi G ünümüzde bir çok firma sat fllar n artt rmak amac yla çeflitli adlar (Sat fl Primi,Has lat Primi, Y l Sonu skontosu)

Detaylı

TÜRK YE B L MSEL VE TEKNOLOJ K ARAfiTIRMA KURUMU DESTEK PROGRAMLARI BAfiKANLIKLARI KURULUfi, GÖREV, YETK VE ÇALIfiMA ESASLARINA L fik N YÖNETMEL K (*)

TÜRK YE B L MSEL VE TEKNOLOJ K ARAfiTIRMA KURUMU DESTEK PROGRAMLARI BAfiKANLIKLARI KURULUfi, GÖREV, YETK VE ÇALIfiMA ESASLARINA L fik N YÖNETMEL K (*) TÜRK YE B L MSEL VE TEKNOLOJ K ARAfiTIRMA KURUMU DESTEK PROGRAMLARI BAfiKANLIKLARI KURULUfi, GÖREV, YETK VE ÇALIfiMA ESASLARINA L fik N YÖNETMEL K (*) Amaç ve Kapsam Madde 1- Bu Yönetmelik, Türkiye Bilimsel

Detaylı

TeSLA Projesi: öğrenme ortamları için uyarlanabilen ve güvenilir bir e-değerlendirme sistemi

TeSLA Projesi: öğrenme ortamları için uyarlanabilen ve güvenilir bir e-değerlendirme sistemi Açıköğretim Uygulamaları ve Araştırmaları Dergisi AUAd auad.anadolu.edu.tr TeSLA Projesi: öğrenme ortamları için uyarlanabilen ve güvenilir bir e-değerlendirme sistemi Yrd.Doç.Dr. Serpil KOÇDAR a Prof.Dr.

Detaylı

Merkezi Sterilizasyon Ünitesinde Hizmet çi E itim Uygulamalar

Merkezi Sterilizasyon Ünitesinde Hizmet çi E itim Uygulamalar Merkezi Sterilizasyon Ünitesinde Hizmet çi E itim Uygulamalar Hmfl. Sevgili GÜREL Emekli, Ac badem Sa l k Grubu Ac badem Hastanesi, Merkezi Sterilizasyon Ünitesi, STANBUL e-posta: sgurkan@asg.com.tr H

Detaylı

LABORATUVARIN DÖNER SERMAYE EK ÖDEME SİSTEMİNE ETKİSİ. Prof. Dr. Mehmet Tarakçıoğlu Gaziantep Üniversitesi

LABORATUVARIN DÖNER SERMAYE EK ÖDEME SİSTEMİNE ETKİSİ. Prof. Dr. Mehmet Tarakçıoğlu Gaziantep Üniversitesi LABORATUVARIN DÖNER SERMAYE EK ÖDEME SİSTEMİNE ETKİSİ Prof. Dr. Mehmet Tarakçıoğlu Gaziantep Üniversitesi Bir etkinliğin sonucunda elde edilen çıktıyı nicel ve/veya nitel olarak belirleyen bir kavramdır.

Detaylı

K atma de er vergisi, harcamalar üzerinden al nan vergilerin en geliflmifl ve

K atma de er vergisi, harcamalar üzerinden al nan vergilerin en geliflmifl ve ÖZEL MATRAH fiekl NE TAB ALKOLLÜ ÇK SATIfiLARINDA SON DURUM H.Hakan KIVANÇ Serbest Muhasebeci Mali Müflavir I. G R fi K atma de er vergisi, harcamalar üzerinden al nan vergilerin en geliflmifl ve modern

Detaylı

TMS 19 ÇALIfiANLARA SA LANAN FAYDALAR. Yrd. Doç. Dr. Volkan DEM R Galatasaray Üniversitesi Muhasebe-Finansman Anabilim Dal Ö retim Üyesi

TMS 19 ÇALIfiANLARA SA LANAN FAYDALAR. Yrd. Doç. Dr. Volkan DEM R Galatasaray Üniversitesi Muhasebe-Finansman Anabilim Dal Ö retim Üyesi 1 2. B Ö L Ü M TMS 19 ÇALIfiANLARA SA LANAN FAYDALAR Yrd. Doç. Dr. Volkan DEM R Galatasaray Üniversitesi Muhasebe-Finansman Anabilim Dal Ö retim Üyesi 199 12. Bölüm, TMS-19 Çal flanlara Sa lanan Faydalar

Detaylı

1 OCAK 31 ARALIK 2009 ARASI ODAMIZ FUAR TEŞVİKLERİNİN ANALİZİ

1 OCAK 31 ARALIK 2009 ARASI ODAMIZ FUAR TEŞVİKLERİNİN ANALİZİ 1 OCAK 31 ARALIK 2009 ARASI ODAMIZ FUAR TEŞVİKLERİNİN ANALİZİ 1. GİRİŞ Odamızca, 2009 yılında 63 fuara katılan 435 üyemize 423 bin TL yurtiçi fuar teşviki ödenmiştir. Ödenen teşvik rakamı, 2008 yılına

Detaylı

Türkiye Odalar ve Borsalar Birli i. 3. Ödemeler Dengesi

Türkiye Odalar ve Borsalar Birli i. 3. Ödemeler Dengesi Türkiye Odalar ve Borsalar Birli i 3. Ödemeler Dengesi 2003 y l nda 8.037 milyon dolar olan cari ifllemler aç, 2004 y l nda % 91,7 artarak 15.410 milyon dolara yükselmifltir. Cari ifllemler aç ndaki bu

Detaylı

Kendimiz Yapal m. Yavuz Erol* 16 Sütunlu Kayan Yaz

Kendimiz Yapal m. Yavuz Erol* 16 Sütunlu Kayan Yaz Kendimiz Yapal m Yavuz Erol* 16 Sütunlu Kayan Yaz Bu yaz da 8 sat r, 16 sütundan oluflan LED li kayan yaz projesi anlat l yor. Projenin en önemli özelli i gerek donan m gerekse yaz l m olarak basit olmas.

Detaylı

dan flman teslim ald evraklar inceledikten sonra nsan Kaynaklar Müdürlü ü/birimine gönderir.

dan flman teslim ald evraklar inceledikten sonra nsan Kaynaklar Müdürlü ü/birimine gönderir. TÜB TAK BAfiKANLIK, MERKEZ VE ENST TÜLERDE ÇALIfiIRKEN YÜKSEK L SANS VE DOKTORA Ö REN M YAPANLARA UYGULANACAK ESASLAR (*) Amaç ve Kapsam Madde 1- Bu Esaslar n amac ; Türkiye Bilimsel ve Teknolojik Araflt

Detaylı

2. Projelerle bütçe formatlar n bütünlefltirme

2. Projelerle bütçe formatlar n bütünlefltirme 2. Projelerle bütçe formatlar n bütünlefltirme Proje bütçesi haz rlarken dikkat edilmesi gereken üç aflama vard r. Bu aflamalar flunlard r: Kaynak belirleme ve bütçe tasla n n haz rlanmas Piyasa araflt

Detaylı

2008 1. Çeyrek Finansal Sonuçlar. Konsolide Olmayan Veriler

2008 1. Çeyrek Finansal Sonuçlar. Konsolide Olmayan Veriler 2008 1. Çeyrek Finansal Sonuçlar Konsolide Olmayan Veriler Rakamlarla Halkbank 70 y l Kooperatif ve KOB kredilerinde 70 y ll k tecrübe ve genifl müflteri taban Halkbank n rekabette kuvvetli yönleridir.

Detaylı

C. MADDEN N ÖLÇÜLEB L R ÖZELL KLER

C. MADDEN N ÖLÇÜLEB L R ÖZELL KLER C. MADDEN N ÖLÇÜLEB L R ÖZELL KLER 1. Patates ve sütün miktar nas l ölçülür? 2. Pinpon topu ile golf topu hemen hemen ayn büyüklüktedir. Her iki topu tartt n zda bulaca n z sonucun ayn olmas n bekler misiniz?

Detaylı

ÜN TE II L M T. Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler

ÜN TE II L M T. Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler ÜN TE II L M T Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler MATEMAT K 5 BU BÖLÜM NELER AMAÇLIYOR? Bu bölümü çal flt n zda (bitirdi inizde), *Bir

Detaylı

SOSYAL BİLİMLER ENSTİTÜSÜ/İŞLETME ANABİLİM DALI (DR) SOSYAL BİLİMLER ENSTİTÜSÜ/İŞLETME ANABİLİM DALI (YL) (TEZLİ)

SOSYAL BİLİMLER ENSTİTÜSÜ/İŞLETME ANABİLİM DALI (DR) SOSYAL BİLİMLER ENSTİTÜSÜ/İŞLETME ANABİLİM DALI (YL) (TEZLİ) SONER AKKOÇ DOÇENT Adres ÖZGEÇMİŞ YÜKSEKÖĞRETİM KURULU Dumlupınar Üniversitesi Uygulamalı Bilimler Yüksekokulu Evliya Çelebi Yerleşkesi KÜTAHYA 10.04.2014 Telefon E-posta 2742652031-4631 Doğum Tarihi 26.11.1978

Detaylı

Yrd. Doç. Dr. Nurullah UÇKUN YATIRIMLARDA STRATEJ K KARAR VERME SÜREC

Yrd. Doç. Dr. Nurullah UÇKUN YATIRIMLARDA STRATEJ K KARAR VERME SÜREC Yrd. Doç. Dr. Nurullah UÇKUN YATIRIMLARDA STRATEJ K KARAR VERME SÜREC STANBUL-2010 Yay n No : 2332 flletme-ekonomi Dizisi : 386 1. Bas m - Mart 2009 2. Bas m - Nisan 2010 ISBN 978-605 - 377-253 - 8 Copyright

Detaylı

Uluslararas De erleme Uygulamas 2 Borç Verme Amac na Yönelik De erleme

Uluslararas De erleme Uygulamas 2 Borç Verme Amac na Yönelik De erleme Uluslararas De erleme Uygulamas 2 Borç Verme Amac na Yönelik De erleme Girifl Kapsam Tan mlar Muhasebe Standartlar yla lgisi Uygulama Tart flma Aç klama Yükümlülü ü Standartlardan Ayr lma Hükümleri Yürürlük

Detaylı

S STEM VE SÜREÇ DENET M NDE KARfiILAfiILAN SORUNLAR VE ÇÖZÜM ÖNER LER

S STEM VE SÜREÇ DENET M NDE KARfiILAfiILAN SORUNLAR VE ÇÖZÜM ÖNER LER S STEM VE SÜREÇ DENET M NDE KARfiILAfiILAN SORUNLAR VE ÇÖZÜM ÖNER LER Erol LENGERL / Akis Ba ms z Denetim ve SMMM A.fi. 473 474 2. Salon - Paralel Oturum VIII - Sistem ve Süreç Denetiminde Karfl lafl lan

Detaylı

YÖNTEM 1.1. ÖRNEKLEM. 1.1.1. Örneklem plan. 1.1.2. l seçim ölçütleri

YÖNTEM 1.1. ÖRNEKLEM. 1.1.1. Örneklem plan. 1.1.2. l seçim ölçütleri BÖLÜM 1 YÖNTEM Bu çal flma 11, 13 ve 15 yafllar ndaki gençlerin sa l k durumlar ve sa l k davran fllar n saptamay hedefleyen, kesitsel tan mlay c ve çok uluslu Health Behavior in School Aged Children,

Detaylı

NSAN KAYNAKLARI NSAN KAYNAKLARI 2009 YILI ODA FAAL YET RAPORU

NSAN KAYNAKLARI NSAN KAYNAKLARI 2009 YILI ODA FAAL YET RAPORU NSAN KAYNAKLARI NSAN KAYNAKLARI 2009 YILI ODA FAAL YET RAPORU 36 nsan Kaynaklar SMMMO Kurumsallaflma çal flmalar çerçevesinde; 2008 y l nda nsan Kaynaklar Birimi oluflturulmufltur. nsan Kaynaklar Biriminin

Detaylı

KDV BEYAN DÖNEM, TAKV M YILININ ÜÇER AYLIK DÖNEMLER OLAN MÜKELLEFLER

KDV BEYAN DÖNEM, TAKV M YILININ ÜÇER AYLIK DÖNEMLER OLAN MÜKELLEFLER KDV BEYAN DÖNEM, TAKV M YILININ ÜÇER AYLIK DÖNEMLER OLAN MÜKELLEFLER Bülent SEZG N* 1-G R fi Katma de er vergisinde vergilendirme dönemi, 3065 Say l Katma De- er Vergisi Kanununun 39 uncu maddesinin 1

Detaylı

F inans sektörleri içinde sigortac l k sektörü tüm dünyada h zl bir büyüme

F inans sektörleri içinde sigortac l k sektörü tüm dünyada h zl bir büyüme S GORTA KOM SYON G DER BELGES mali ÇÖZÜM 171 Memifl KÜRK* I-G R fi: F inans sektörleri içinde sigortac l k sektörü tüm dünyada h zl bir büyüme göstermifltir. Geliflmifl ekonomilerde lokomotif rol üstlenen

Detaylı

2007 YILI VE ÖNCES TAR H BASKILI HAYVANCILIK B LG S DERS K TABINA L fik N DO RU YANLIfi CETVEL

2007 YILI VE ÖNCES TAR H BASKILI HAYVANCILIK B LG S DERS K TABINA L fik N DO RU YANLIfi CETVEL 2007 YILI VE ÖNCES TAR H BASKILI HAYVANCILIK B LG S DERS K TABINA L fik N DO RU YANLIfi CETVEL NOT: Düzeltmeler bold (koyu renk) olarak yaz lm flt r. YANLIfi DO RU 1. Ünite 1, Sayfa 3 3. DÜNYA HAYVAN POPULASYONU

Detaylı

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ Deneyde dolu alan tarama dönüşümünün nasıl yapıldığı anlatılacaktır. Dolu alan tarama

Detaylı

Veri Toplama Yöntemleri. Prof.Dr.Besti Üstün

Veri Toplama Yöntemleri. Prof.Dr.Besti Üstün Veri Toplama Yöntemleri Prof.Dr.Besti Üstün 1 VERİ (DATA) Belirli amaçlar için toplanan bilgilere veri denir. Araştırmacının belirlediği probleme en uygun çözümü bulabilmesi uygun veri toplama yöntemi

Detaylı

H. Atilla ÖZGENER* Afla daki ikinci tabloda ise Türkiye elektrik üretiminde yerli kaynakl ve ithal kaynakl üretim yüzdeleri sunulmufltur.

H. Atilla ÖZGENER* Afla daki ikinci tabloda ise Türkiye elektrik üretiminde yerli kaynakl ve ithal kaynakl üretim yüzdeleri sunulmufltur. Mevcut Kaynaklar Kullan lmas na Ra men 2020 li Y llarda Türkiye de Elektrik Enerjisi Aç Olabilir mi? H. Atilla ÖZGENER* I. Türkiye nin Elektrik Enerjisi Durumunun Saptanmas Türkiye nin elektrik enerjisi

Detaylı

Schindler Grup nsan Kaynaklar Politikas

Schindler Grup nsan Kaynaklar Politikas Schindler Grup nsan Kaynaklar Politikas Girifl Schindler Kurumsal nsan Kaynaklar ( K) politikas, Schindler'in çal flanlar ile ilgili önceliklerini tan mlamaktad r. Bu belge, Navigator kitapç nda anlat

Detaylı

ISI At f Dizinlerine Derginizi Kazand rman z çin Öneriler

ISI At f Dizinlerine Derginizi Kazand rman z çin Öneriler ISI At f Dizinlerine Derginizi Kazand rman z çin Öneriler Metin TUNÇ Seçici Olun ISI' n editoryal çal flanlar her y l yaklafl k olarak 2,000 dergiyi de erlendirmeye tabi tutmaktad r. Fakat de erlendirilen

Detaylı

Mehmet TOMBAKO LU* * Hacettepe Üniversitesi, Nükleer Enerji Mühendisli i Bölümü

Mehmet TOMBAKO LU* * Hacettepe Üniversitesi, Nükleer Enerji Mühendisli i Bölümü Nükleer Santrallerde Enerji Üretimi ve Personel E itimi Mehmet TOMBAKO LU* Girifl Sürdürülebilir kalk nman n temel bileflenlerinden en önemlisinin enerji oldu unu söylemek abart l olmaz kan s nday m. Küreselleflen

Detaylı

B anka ve sigorta flirketlerinin yapm fl olduklar ifllemlerin özelli i itibariyle

B anka ve sigorta flirketlerinin yapm fl olduklar ifllemlerin özelli i itibariyle B anka ve sigorta flirketlerinin yapm fl olduklar ifllemlerin özelli i itibariyle bu ifllemlerin üzerinden al nan dolayl vergiler farkl l k arz etmektedir. 13.07.1956 tarih 6802 say l Gider Vergileri Kanunu

Detaylı

BELGES Z MAL BULUNDURULMASI VEYA H ZMET SATIN ALINMASI NEDEN YLE KDV SORUMLULU U

BELGES Z MAL BULUNDURULMASI VEYA H ZMET SATIN ALINMASI NEDEN YLE KDV SORUMLULU U BELGES Z MAL BULUNDURULMASI VEYA H ZMET SATIN ALINMASI NEDEN YLE KDV SORUMLULU U Cengiz SAZAK* 1.G R fi Bilindi i üzere Katma De er Vergisi harcamalar üzerinden al n r ve nihai yüklenicisi, (di er bir

Detaylı

SICAKLIK VE ENTALP KONTROLLÜ SERBEST SO UTMA UYGULAMALARININ KAR ILA TIRILMASI

SICAKLIK VE ENTALP KONTROLLÜ SERBEST SO UTMA UYGULAMALARININ KAR ILA TIRILMASI Türk Tesisat Mühendisleri Derne i / Turkish Society of HVAC & Sanitary Engineers 8. Uluslararası Yapıda Tesisat Teknolojisi Sempozyumu / 8. International HVAC +R Technology Symposium 12-14 Mayıs 2008,

Detaylı

6. SINIF MATEMAT K DERS ÜN TELEND R LM fi YILLIK PLAN

6. SINIF MATEMAT K DERS ÜN TELEND R LM fi YILLIK PLAN GEOMETR Geometrik Cisimler Uzunluklar Ölçme 6. SINIF MATEMAT K DERS ÜN TELEND R LM fi YILLIK PLAN 1. Prizmalar n temel elemanlar n belirler. Tabanlar n n karfl l kl köflelerini birlefltiren ayr tlar tabanlara

Detaylı

NTERNET ÇA I D NAM KLER

NTERNET ÇA I D NAM KLER Mustafa Emre C VELEK NTERNET ÇA I D NAM KLER www.internetdinamikleri.com STANBUL-2009 Yay n No : 2148 letiflim Dizisi : 55 1. Bas m - stanbul - Haziran 2009 ISBN 978-605 - 377-066 - 4 Copyright Bu kitab

Detaylı

GALATA YATIRIM A.Ş. Halka Arz Fiyat Tespit Raporu DEĞERLENDİRME RAPORU SAN-EL MÜHENDİSLİK ELEKTRİK TAAHHÜT SANAYİ VE TİCARET A.Ş.

GALATA YATIRIM A.Ş. Halka Arz Fiyat Tespit Raporu DEĞERLENDİRME RAPORU SAN-EL MÜHENDİSLİK ELEKTRİK TAAHHÜT SANAYİ VE TİCARET A.Ş. 22-11-2013 Fiyat Tespit Raporu DEĞERLENDİRME RAPORU İş bu rapor, Galata Yatırım A.Ş. tarafından, Sermaye Piyasası Kurulu nun 12/02/2013 tarihli ve 5/145 sayılı kararında yer alan; payları ilk kez halka

Detaylı

OKUL BAZLI BÜTÇELEME KILAVUZU

OKUL BAZLI BÜTÇELEME KILAVUZU Üst Politika Belgelerinde Okul Bazlı Bütçe: Amaç: OKUL BAZLI BÜTÇELEME KILAVUZU 1. Onuncu Kalkınma Planı (2014-2018) 154- Okul idarelerinin bütçeleme süreçlerinde yetki ve sorumlulukları artırılacaktır.

Detaylı

Yrd. Doç. Dr. Olcay Bige AŞKUN. İşletme Yönetimi Öğretim ve Eğitiminde Örnek Olaylar ile Yazınsal Kurguları

Yrd. Doç. Dr. Olcay Bige AŞKUN. İşletme Yönetimi Öğretim ve Eğitiminde Örnek Olaylar ile Yazınsal Kurguları I Yrd. Doç. Dr. Olcay Bige AŞKUN İşletme Yönetimi Öğretim ve Eğitiminde Örnek Olaylar ile Yazınsal Kurguları II Yay n No : 2056 Hukuk Dizisi : 289 1. Bas Kas m 2008 - STANBUL ISBN 978-975 - 295-953 - 8

Detaylı

Gelece in Bilgi flçilerini Do ru Seçmek: Araflt rma Görevlisi Al m Süreci Örne i

Gelece in Bilgi flçilerini Do ru Seçmek: Araflt rma Görevlisi Al m Süreci Örne i Uluslararas Yüksekö retim Kongresi: Yeni Yönelifller ve Sorunlar (UYK-2011) 27-29 May s 2011, stanbul; 2. Cilt / Bölüm XI / Sayfa 1359-1364 Gelece in Bilgi flçilerini Do ru Seçmek: Araflt rma Görevlisi

Detaylı

Ders 3: SORUN ANAL Z. Sorun analizi nedir? Sorun analizinin yöntemi. Sorun analizinin ana ad mlar. Sorun A ac

Ders 3: SORUN ANAL Z. Sorun analizi nedir? Sorun analizinin yöntemi. Sorun analizinin ana ad mlar. Sorun A ac Ders 3: SORUN ANAL Z Sorun analizi nedir? Sorun analizi, toplumda varolan bir sorunu temel sorun olarak ele al r ve bu sorun çevresinde yer alan tüm olumsuzluklar ortaya ç karmaya çal fl r. Temel sorunun

Detaylı

B02.8 Bölüm Değerlendirmeleri ve Özet

B02.8 Bölüm Değerlendirmeleri ve Özet B02.8 Bölüm Değerlendirmeleri ve Özet 57 Yrd. Doç. Dr. Yakup EMÜL, Bilgisayar Programlama Ders Notları (B02) Şimdiye kadar C programlama dilinin, verileri ekrana yazdırma, kullanıcıdan verileri alma, işlemler

Detaylı

KORELASYON VE REGRESYON ANALİZİ

KORELASYON VE REGRESYON ANALİZİ KORELASON VE REGRESON ANALİZİ rd. Doç. Dr. S. Kenan KÖSE İki ya da daha çok değişken arasında ilişki olup olmadığını, ilişki varsa yönünü ve gücünü inceleyen korelasyon analizi ile değişkenlerden birisi

Detaylı

ORHAN YILMAZ (*) B- 3095 SAYILI YASADA YAPILAN DE fi KL KLER:

ORHAN YILMAZ (*) B- 3095 SAYILI YASADA YAPILAN DE fi KL KLER: YASAL TEMERRÜT FA Z ORHAN YILMAZ (*) A- G R fi: Bilindi i üzere, gerek yasal kapital faizi ve gerekse yasal temerrüt faizi yönünden uygulanmas gereken hükümler, 19.12.1984 gün ve 18610 say l Resmi Gazete

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ Adı Soyadı: Fevzi Serkan ÖZDEMİR Doğum Tarihi: 06 Ekim 1981 Öğrenim Durumu: Derece Bölüm/Program Üniversite Yıl Lisans İktisat Anadolu Üniversitesi 2003 Y. Lisans Muhasebe

Detaylı

Anonim Verilerin Lenovo ile Paylaşılması. İçindekiler. Harmony

Anonim Verilerin Lenovo ile Paylaşılması. İçindekiler. Harmony Anonim Verilerin Lenovo ile Paylaşılması İçindekiler Anonim Verilerin Lenovo ile Paylaşılması... 1 Harmony... 1 Lenovo Companion 3.0... 2 Lenovo Customer Engagement Service... 3 Lenovo Experience Improvement

Detaylı

standartlar Standartlar ve Sertifikalar sertifika

standartlar Standartlar ve Sertifikalar sertifika standartlar Standartlar ve Sertifikalar sertifika Standartlar ve Sertifikalar.1. Genel Önceki bölümlerde paslanmaz çeliklere ait pek çok özellikler, standartlar ve karfl l klar hakk nda baz bilgiler verilmiflti.

Detaylı

4/A (SSK) S GORTALILARININ YAfiLILIK AYLI INA HAK KAZANMA KOfiULLARI

4/A (SSK) S GORTALILARININ YAfiLILIK AYLI INA HAK KAZANMA KOfiULLARI 4/A (SSK) S GORTALILARININ YAfiLILIK AYLI INA HAK KAZANMA KOfiULLARI Resul KURT* I. G R fi Ülkemizde 4447 say l Kanunla, emeklilikte köklü reformlar yap lm fl, ancak 4447 say l yasan n emeklilikte kademeli

Detaylı

MOTORLU TAfiIT SÜRÜCÜLER KURSLARINDA KATMA DE ER VERG S N DO URAN OLAY

MOTORLU TAfiIT SÜRÜCÜLER KURSLARINDA KATMA DE ER VERG S N DO URAN OLAY MOTORLU TAfiIT SÜRÜCÜLER KURSLARINDA KATMA DE ER VERG S N DO URAN OLAY brahim ERCAN * 1- GENEL B LG : Motorlu tafl t sürücüleri kurslar, 5580 say l Özel Ö retim Kurumlar Kanunu kapsam nda motorlu tafl

Detaylı

BA IMSIZ DENET M ULUSLARARASI DENET M STANDARTLARI KAPSAMINDA

BA IMSIZ DENET M ULUSLARARASI DENET M STANDARTLARI KAPSAMINDA ULUSLARARASI DENET M STANDARTLARI KAPSAMINDA BA IMSIZ DENET M Doç.Dr. Lerzan KAVUT stanbul Üniversitesi flletme Fakültesi Doç.Dr. Oktay TAfi stanbul Teknik Üniversitesi flletme Fakültesi Dr. Tuba fiavli

Detaylı

30 > 35. nsan Kaynaklar. > nsan Kaynaklar Yönetimi > Personel E itimleri > Personel Otomasyonu

30 > 35. nsan Kaynaklar. > nsan Kaynaklar Yönetimi > Personel E itimleri > Personel Otomasyonu 30 > 35 nsan Kaynaklar > nsan Kaynaklar Yönetimi > Personel E itimleri > Personel Otomasyonu > nsan Kaynaklar Personele Göre fl De il, fle Göre Personel. stanbul Büyükflehir Belediyesi, Personele Göre

Detaylı

Aile flirketleri, kararlar nda daha subjektif

Aile flirketleri, kararlar nda daha subjektif Dr. Yeflim Toduk Akifl Aile flirketleri, kararlar nda daha subjektif flirket birleflmeleri ve sat nalmalar, türkiye deki küçük iflletmelerden, dev flirketlere kadar her birinin gündeminde olmaya devam

Detaylı

Yol (km) a) 50 cm 2 m b) 140 km 1040 m c) 8000 m 8 km

Yol (km) a) 50 cm 2 m b) 140 km 1040 m c) 8000 m 8 km .2 Uzunluklar Ölçme Kilometre 1. Grafik: Servis Arac n n Ald Yollar 1. Yandaki grafik, okul servis arac n n bir hafta boyunca ald yolu (km) göstermektedir. Grafi e göre afla daki sorular cevaplay n z.

Detaylı

.. 95. Çeviren: Dr. Almagül sina

.. 95. Çeviren: Dr. Almagül sina .. 95 Türkiye ile Kazakistan: Karfl l kl Kazan mlara Dayal Bir flbirli i Bektas Mukhamejanov * Çeviren: Dr. Almagül sina Kazakistan ba ms zl n kazand ndan itibaren, d fl politika stratejisinde çok yönlü

Detaylı

Daha fazla seçenek için daha iyi motorlar

Daha fazla seçenek için daha iyi motorlar Daha fazla seçenek için daha iyi motorlar Kollmorgen, Universal Robots'un daha hafif ve daha güçlü olmasını sağlıyor Altı eksenli robotlar; örneğin, işleme ve üretim tesislerinde kullanılmaktadır. Bu robotlar,

Detaylı

Ekonometri 2 Ders Notları

Ekonometri 2 Ders Notları Ekonometri 2 Ders Notları A. TALHA YALTA TÜRKİYE BİLİMLER AKADEMİSİ AÇIK DERS MALZEMELERİ PROJESİ SÜRÜM 2.0 EKİM 2011 İçindekiler 1 Dizey Cebirinin Gözden Geçirilmesi 1 1.1 Dizeylere İlişkin Temel Kavramlar..................

Detaylı

İçindekiler. 2. Zaman Verilerinin Belirlenmesi 47

İçindekiler. 2. Zaman Verilerinin Belirlenmesi 47 İçindekiler 1. Süreç Verileri Yönetimine Giriş 1 1 Giriş 3 2 Temel Bilgiler 5 2.1 Refa ya göre süreç yönelimli zaman verileri yönetimi anlayışı 5 2.2 Standart süreçte veriler 8 2.2.1 Yönetim verileri 9

Detaylı

PROMOSYON VE EfiANT YON ÜRÜNLER N GEL R VE KURUMLAR VERG S LE KATMA DE ER VERG S KANUNLARI KARfiISINDAK DURUMU

PROMOSYON VE EfiANT YON ÜRÜNLER N GEL R VE KURUMLAR VERG S LE KATMA DE ER VERG S KANUNLARI KARfiISINDAK DURUMU PROMOSYON VE EfiANT YON ÜRÜNLER N GEL R VE KURUMLAR VERG S LE KATMA DE ER VERG S KANUNLARI KARfiISINDAK DURUMU Aytaç ACARDA * I G R fi flletmeler belli dönemlerde sat fllar n artt rmak ve iflletmelerini

Detaylı

BİLGİSAYAR DESTEKLİ BİR DİL PROGRAMI -Türkçe Konuşma - Tanıma Sistemi-

BİLGİSAYAR DESTEKLİ BİR DİL PROGRAMI -Türkçe Konuşma - Tanıma Sistemi- BİLGİSAYAR DESTEKLİ BİR DİL PROGRAMI -Türkçe Konuşma - Tanıma Sistemi- Prof. Dr. Fatih KİRİŞÇİOĞLU Bilgisayarlı Dil Uzmanı Erkan KARABACAK Proje Sorumlusu Çetin ÇETİNTÜRK Tanımlar : Konuşma Tanıma : Dil

Detaylı

Yay n No : 1700 flletme-ekonomi Dizisi : 196. 1. Bask Ocak 2007 - STANBUL

Yay n No : 1700 flletme-ekonomi Dizisi : 196. 1. Bask Ocak 2007 - STANBUL I Doç.Dr. Faz l GÜLER T E M E L STAT ST K II Yay n No : 1700 flletme-ekonomi Dizisi : 196 1. Bask Ocak 2007 - STANBUL ISBN 978-975 - 295-594 - 3 Copyright Bu kitab n bu bas s n n Türkiye deki yay n haklar

Detaylı

Araştırma Notu 15/177

Araştırma Notu 15/177 Araştırma Notu 15/177 02 Mart 2015 YOKSUL İLE ZENGİN ARASINDAKİ ENFLASYON FARKI REKOR SEVİYEDE Seyfettin Gürsel *, Ayşenur Acar ** Yönetici özeti Türkiye İstatistik Kurumu (TÜİK) tarafından yapılan enflasyon

Detaylı

KAVRAMLAR. Büyüme ve Gelişme. Büyüme. Büyüme ile Gelişme birbirlerinden farklı kavramlardır.

KAVRAMLAR. Büyüme ve Gelişme. Büyüme. Büyüme ile Gelişme birbirlerinden farklı kavramlardır. KAVRAMLAR Büyüme ve Gelişme Büyüme ile Gelişme birbirlerinden farklı kavramlardır. Büyüme Büyüme, bedende gerçekleşen ve boy uzamasında olduğu gibi sayısal (nicel) değişikliklerle ifade edilebilecek yapısal

Detaylı

KÜRESEL GELİŞMELER IŞIĞI ALTINDA TÜRKİYE VE KUZEY KIBRIS TÜRK CUMHURİYETİ EKONOMİSİ VE SERMAYE PİYASALARI PANELİ

KÜRESEL GELİŞMELER IŞIĞI ALTINDA TÜRKİYE VE KUZEY KIBRIS TÜRK CUMHURİYETİ EKONOMİSİ VE SERMAYE PİYASALARI PANELİ KÜRESEL GELİŞMELER IŞIĞI ALTINDA TÜRKİYE VE KUZEY KIBRIS TÜRK CUMHURİYETİ EKONOMİSİ VE SERMAYE PİYASALARI PANELİ 12 NİSAN 2013-KKTC DR. VAHDETTIN ERTAŞ SERMAYE PIYASASI KURULU BAŞKANI KONUŞMA METNİ Sayın

Detaylı

Baflkanl n, Merkez : Türkiye Bilimsel ve Teknik Araflt rma Kurumu Baflkanl na ba l Marmara Araflt rma Merkezi ni (MAM),

Baflkanl n, Merkez : Türkiye Bilimsel ve Teknik Araflt rma Kurumu Baflkanl na ba l Marmara Araflt rma Merkezi ni (MAM), TÜRK YE B L MSEL VE TEKN K ARAfiTIRMA KURUMU YAYIN YÖNETMEL (*) B R NC BÖLÜM Amaç, Kapsam, Dayanak ve Tan mlar Amaç ve Kapsam Madde 1. Bu Yönetmelik ile; Baflkanl k, Merkez ve Enstitülere ait tüm yay nlar

Detaylı

JET MOTORLARININ YARI-DĐNAMĐK BENZETĐŞĐMĐ ve UÇUŞ ŞARTLARINA UYGULANMASI

JET MOTORLARININ YARI-DĐNAMĐK BENZETĐŞĐMĐ ve UÇUŞ ŞARTLARINA UYGULANMASI makale JET MOTORLARININ YARI-DĐNAMĐK BENZETĐŞĐMĐ ve UÇUŞ ŞARTLARINA UYGULANMASI Bekir NARĐN *, Yalçın A. GÖĞÜŞ ** * Y.Müh., TÜBĐTAK-SAGE ** Prof. Dr., Orta Doğu Teknik Üniversitesi, Havacılık ve Uzay Mühendisliği

Detaylı

Analiz aşaması sıralayıcı olurusa proje yapımında daha kolay ilerlemek mümkün olacaktır.

Analiz aşaması sıralayıcı olurusa proje yapımında daha kolay ilerlemek mümkün olacaktır. Analiz Raporu Kısa Özet Her geçen gün eczanecilik sektörü kendi içerisinde daha da yarışır hale geliyor. Teknolojinin getirdiği kolaylık ile eczane otomasyonu artık elinizin altında. Çoğu eczacılar hastalarına

Detaylı

TÜRK BORÇLAR VE TÜRK T CARET KANUNU TASARILARI

TÜRK BORÇLAR VE TÜRK T CARET KANUNU TASARILARI YAZILAR TÜRK BORÇLAR VE TÜRK T CARET KANUNU TASARILARI PROF. DR. ERDO AN MORO LU (*) Türk Borçlar Kanunu Tasar s ndan sonra Türk Ticaret Kanunu Tasar s da Türkiye Büyük Millet Meclisi ne sunulmufl bulunmaktad

Detaylı

Doç. Dr. Cemal Niyazi SÖKMEN*

Doç. Dr. Cemal Niyazi SÖKMEN* Yeni Nükleer Reaktörler: Tasar m Kriterleri Doç. Dr. Cemal Niyazi SÖKMEN* Girifl: Nükleer reaktörler halen dünyadaki elektrik üretiminin %16-17 sini sa lamaktad rlar. 50 y l aflk n bir geçmifle sahip nükleer

Detaylı

Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon

Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon Levent ÖZBEK Fikri ÖZTÜRK Ankara Üniversitesi Fen Fakültesi İstatistik Bölümü Sistem Modelleme ve Simülasyon Laboratuvarı 61 Tandoğan/Ankara

Detaylı

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ Ezgi Özkara a, Hatice Yanıkoğlu a, Mehmet Yüceer a, * a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü, Malatya, 44280 myuceer@inonu.edu.tr

Detaylı

KÜÇÜK VE ORTA ÖLÇEKLİ İŞLETMELERİ GELİŞTİRME VE DESTEKLEME İDARESİ BAŞKANLIĞI (KOSGEB) KOBİ VE GİRİŞİMCİLİK ÖDÜLLERİ UYGULAMA ESASLARI

KÜÇÜK VE ORTA ÖLÇEKLİ İŞLETMELERİ GELİŞTİRME VE DESTEKLEME İDARESİ BAŞKANLIĞI (KOSGEB) KOBİ VE GİRİŞİMCİLİK ÖDÜLLERİ UYGULAMA ESASLARI KÜÇÜK VE ORTA ÖLÇEKLİ İŞLETMELERİ GELİŞTİRME VE DESTEKLEME İDARESİ BAŞKANLIĞI (KOSGEB) KOBİ VE GİRİŞİMCİLİK ÖDÜLLERİ UYGULAMA ESASLARI BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar Amaç MADDE 1- Bu uygulama

Detaylı

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı Mehmet Ali Çavuşlu Özet Yapay sinir ağlarının eğitiminde genellikle geriye

Detaylı

15.402 dersinin paketlenmesi

15.402 dersinin paketlenmesi 15.402 dersinin paketlenmesi 1 Büyük Resim: 2. Kısım - Değerleme A. Değerleme: Serbest Nakit akışları ve Risk 1 Nisan Ders: Serbest Nakit akışları Değerlemesi 3 Nisan Vaka: Ameritrade B. Değerleme: AOSM

Detaylı

Deprem Yönetmeliklerindeki Burulma Düzensizliği Koşulları

Deprem Yönetmeliklerindeki Burulma Düzensizliği Koşulları Deprem Yönetmeliklerindeki Burulma Düzensizliği Koşulları Prof. Dr. Günay Özmen İTÜ İnşaat Fakültesi (Emekli), İstanbul gunayozmen@hotmail.com 1. Giriş Çağdaş deprem yönetmeliklerinde, en çok göz önüne

Detaylı

Hart Walker, gövde deste i ve dengeli tekerlek sistemi sayesinde, geliflim düzeyi uygun olan çocuklar n, eller serbest flekilde yürümesini sa lar.

Hart Walker, gövde deste i ve dengeli tekerlek sistemi sayesinde, geliflim düzeyi uygun olan çocuklar n, eller serbest flekilde yürümesini sa lar. Cerebral palsi gibi hareket ve postüral kontrol bozukluklar na yol açan hastal klar olan çocuklar, hastal klar n n derecesine ba l olarak yürüme güçlü ü çekmekte veya hiç yürüyememektedir. Hart Walker,

Detaylı

stanbul Kültür Üniversitesi, Türkiye

stanbul Kültür Üniversitesi, Türkiye 215 ROMANYA LE BULGAR STAN IN AB YE EKONOM K ENTEGRASYONU Yrd. Doç. Dr. Mesut EREN stanbul Kültür Üniversitesi, Türkiye 1. Girifl Avrupa Birli i nin 5. ve son genifllemesi 2004 y l nda 10 Orta ve Do u

Detaylı

RAN SLÂM CUMHUR YET ANKARA KÜLTÜR MÜSTEfiARLI I WEB S TES H ZMETE AÇILDI www.irankulturevi.com

RAN SLÂM CUMHUR YET ANKARA KÜLTÜR MÜSTEfiARLI I WEB S TES H ZMETE AÇILDI www.irankulturevi.com NTERNET S TES TANITIMI RAN SLÂM CUMHUR YET ANKARA KÜLTÜR MÜSTEfiARLI I WEB S TES H ZMETE AÇILDI www.irankulturevi.com ran slâm nk lâb n n 25. y ldönümü münasebetiyle hizmete aç lan ran slâm Cumhuriyeti

Detaylı

Söke İlçesinde Pnömatik Ekim Makinaları Talep Projeksiyonunun Belirlenmesi*

Söke İlçesinde Pnömatik Ekim Makinaları Talep Projeksiyonunun Belirlenmesi* 91 Söke İlçesinde Pnömatik Ekim Makinaları Talep Projeksiyonunun Belirlenmesi* Hakan Destici (1) Cengiz Özarslan (2) (1) Söke Ziraat Odası, Söke / Aydın (2) ADÜ Ziraat Fakültesi Tarım Makinaları Bölümü,

Detaylı

KULLANILMIfi B NEK OTOMOB L TESL MLER N N KDV KANUNU KARfiISINDAK DURUMU

KULLANILMIfi B NEK OTOMOB L TESL MLER N N KDV KANUNU KARfiISINDAK DURUMU KULLANILMIfi B NEK OTOMOB L TESL MLER N N KDV KANUNU KARfiISINDAK DURUMU Bülent SEZG N* 1-G R fi: Bilindi i üzere 3065 say l Katma De er Vergisi Kanununun Verginin konusunu teflkil eden ifllemler bafll

Detaylı

ANKARA EMEKLİLİK A.Ş GELİR AMAÇLI ULUSLARARASI BORÇLANMA ARAÇLARI EMEKLİLİK YATIRIM FONU ÜÇÜNCÜ 3 AYLIK RAPOR

ANKARA EMEKLİLİK A.Ş GELİR AMAÇLI ULUSLARARASI BORÇLANMA ARAÇLARI EMEKLİLİK YATIRIM FONU ÜÇÜNCÜ 3 AYLIK RAPOR ANKARA EMEKLİLİK A.Ş GELİR AMAÇLI ULUSLARARASI BORÇLANMA ARAÇLARI EMEKLİLİK YATIRIM FONU ÜÇÜNCÜ 3 AYLIK RAPOR Bu rapor Ankara Emeklilik A.Ş Gelir Amaçlı Uluslararası Borçlanma Araçları Emeklilik Yatırım

Detaylı

MESLEK MENSUPLARI AÇISINDAN TÜRK YE DENET M STANDARTLARININ DE ERLEND R LMES

MESLEK MENSUPLARI AÇISINDAN TÜRK YE DENET M STANDARTLARININ DE ERLEND R LMES MESLEK MENSUPLARI AÇISINDAN TÜRK YE DENET M STANDARTLARININ DE ERLEND R LMES Ahmet AKIN / TÜRMOB Yönetim Kurulu Üyesi 387 388 Genel Oturum III - Meslek Mensuplar Aç s ndan Türkiye Denetim Standartlar n

Detaylı

Kukla Değişkenlerle Bağlanım

Kukla Değişkenlerle Bağlanım Kukla Değişkenlerle Bağlanım Kukla Değişken Kullanım Şekilleri Ekonometri 1 Konu 29 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0

Detaylı

BAfiVURU FORMU. Lütfen Kat lmak stedi iniz Kategoriyi flaretleyiniz:

BAfiVURU FORMU. Lütfen Kat lmak stedi iniz Kategoriyi flaretleyiniz: AMPD ÖDÜLLER 2008 BAfiVURU FORMU AMPD 2008 Ödülleri Program nda yer almak için lütfen afla daki k sa formu doldurup AMPD Merkezi ne ulaflt r n z. Size daha detayl doküman ve kat l m formu gönderilecektir.

Detaylı

Kocaeli Üniversitesi ktisadi ve dari Bilimler Fakültesi Ö retim Üyesi. 4. Bas

Kocaeli Üniversitesi ktisadi ve dari Bilimler Fakültesi Ö retim Üyesi. 4. Bas 1 Prof. Dr. Yunus Kishal Kocaeli Üniversitesi ktisadi ve dari Bilimler Fakültesi Ö retim Üyesi Tekdüzen Hesap Sistemi ve Çözümlü Muhasebe Problemleri 4. Bas Tekdüzen Muhasebe Sistemi Uygulama Tebli leri

Detaylı

www.mercedes-benz.com.tr Mercedes-Benz Orijinal Ya lar

www.mercedes-benz.com.tr Mercedes-Benz Orijinal Ya lar www.mercedes-benz.com.tr Mercedes-Benz Orijinal Ya lar Kazand ran Güç Mercedes-Benz orijinal ya lar arac n z üreten uzmanlar taraf ndan, gelifltirilmifltir. Mercedes-Benz in dilinden en iyi Mercedes-Benz

Detaylı

BU DAY, UN. nteraktif e-dergi Say : 1 / 2012 NEWS. ve SEKTÖRÜMÜZ.

BU DAY, UN. nteraktif e-dergi Say : 1 / 2012 NEWS. ve SEKTÖRÜMÜZ. nteraktif e-dergi Say : 1 / 2012 BU DAY, UN ve SEKTÖRÜMÜZ. Ülkemizdeki bu day ve un sektörümüz y ldan y la geliflim göstermektedir. Ülkemizin bu day yetifltirilme elveriflligi, un fabrikalar m z n teknolojik

Detaylı

RİSKLİ YAPILAR ve GÜÇG

RİSKLİ YAPILAR ve GÜÇG RİSKLİ YAPILAR ve GÜÇG ÜÇLENDİRME ÇALIŞMALARI Doç.. Dr. Ercan ÖZGAN Düzce Üniversitesi YAPILARDA OLU AN R SKLER N NEDENLER GENEL OLARAK 1. Tasar m ve Analiz Hatalar 2. Malzeme Hatalar 3. çilik Hatalar

Detaylı