Büyük Veri ve Endüstri Mühendisliği

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Büyük Veri ve Endüstri Mühendisliği"

Transkript

1 Büyük Veri ve Endüstri Mühendisliği Mustafa Gökçe Baydoğan Endüstri Mühendisliği Bölümü Boğaziçi Üniversitesi İstanbul Yöneylem Araştırması/Endüstri Mühendisliği Doktora Öğrencileri Kolokyumu Nisan 2016

2 Başlıklar Veri / Veri Madenciliği Klasik Veri Analizi ve Veri Madenciliği Büyük Veri ve Potansiyel Araştırma Konuları Tavsiyeler 2

3 Veri / Veri Madenciliği Büyük hacimli verilerden üstü kapalı (implicit), çok net olmayan (non-trivial), önceden bilinmeyen ancak potansiyel olarak kullanışlı örüntülerin (pattern) veya bilginin çıkarılmasıdır. Örnek: Twitter verisi kullanarak kamuoyu yoklama 3

4 Kayıt zamanı atılan tweetlerin incelenmesi 2014 yılı Bahar döneminde Boğaziçi Üniversitesi kayıt döneminde ne oldu? Analizler R istatistik dili kullanarak yapıldı. #boun içeren tweetleri al ve önişlemeye tabi tut Linkleri at Küçük harfe çevir Noktalama işaretlerini at... 4

5 Kayıt zamanı atılan tweetlerin incelenmesi Kelime Bulutu 5

6 Kayıt zamanı atılan tweetlerin incelenmesi İçerik anlama? Kümeleme (clustering) kullanarak hangi kelimeler birlikte gözüktü D2 Document 1 Document2 I 1 1 Like 1 0 Hate 0 1 Databases D1 6

7 Veri madenciliği Ne yaptık? Kayıt haftası öğrenciler rahatsız (kota, izin vb. sebepler) Kümeleme #boun içeren tweetler Temizlik (link at, küçük harfe çevir, vb) Sayısal olarak ifade et (döküman-terim matrisi) 7

8 Klasik Veri Analizi ve Veri Madenciliği Hipotez ortaya atarak veri toplama Araçlar ANOVA F testleri, t testleri vb. 8

9 Klasik Veri Analizi ve Veri Madenciliği Süreç veri üretiyor, başlangıçta belirli bir hipotez yok (bir fikir olsa da) 9

10 Klasik Veri Madenciliği Problemleri Gözetimsiz (Unsupervised) Öğrenme Amaç veriyi anlamak Kümeleme Kural çıkarma (sıralı, sırasız) Görselleştirme Gözetimli (Supervised) Öğrenme Amaç tahmin yapmak Regresyon (sürekli bir sonucu tahmin etme) Sınıflandırma (kesikli bir sonucu tahmin etme) 10

11 Büyük Veri Popüler bir buzzword ama çok yeni bir kavram değil Temel amaç: Algoritmik karmaşıklığı düşük algoritmalar geliştirmek (hafıza ve işlemci gereksinimleri açısından) 11

12 Büyük Veri ve Uygulamalar Farklı kaynaklardan gelen bilgiyi birleştirmek Örnek: İnternetten öde ve izle talebinin tahmini Bahis istatistikleri Süper lig istatistikleri İzlenme sayıları Google Trends Hava durumu 12

13 Büyük Veri ve Uygulamalar Öde ve izle talebi BJK - TS BJK - GS FB - TS FB - GS FB - BJK GS - TS GS - BJK TS - FB GS - FB BJK - FB TS - GS BJK - TS BJK - GS FB - TS FB - GS FB - BJK GS - TS GS - BJK TS - FB GS - FB BJK - FB TS - GS 13

14 Büyük Veri ve Uygulamalar Talep tahmini Klasik regresyon problemi ama Varsayımsal sorunlar Kirli veri Çoklu eşdoğrusallık (Multicollinearity) Lineer olmayan ilişkiler Etkileşim etkileri... Potansiyel çözümler ve araştırma alanları Cezalı (Penalized) regresyon yaklaşımları Değişken sayısı azaltma 14

15 Büyük Veri ve Uygulamalar Talep tahmini Cezalı (Penalized) regresyon 15

16 Büyük Veri ve Uygulamalar Algoritmik ticaret Bitcoin piyasası (Bitcoin ve Ethereum) https://poloniex.com/exchange#btc_eth API var Geçmiş veri ışığında, kural tabanlı algoritmalar? 16

17 Büyük Veri ve Uygulamalar Alışveriş sitelerinde kullanıcı tercihlerini anlama (Clickstream Verisi) Bir kategorideki ürünler (örneğin laptop) Özellikleri Fiyat Renk İşlemci... Kriterler Her kullanıcının (ya da bir kullanıcı kümesinin) fayda fonksiyonunu modelleme Sitede gezinti bilgisi tercih konusunda fikir verir mi? Büyük veri? Promosyon Hava durumu Reklam Kredi kartı kampanyaları... 17

18 Büyük Veri ve Uygulamalar Google reklamlarında anahtar kelimlere verilen teklif miktarı optimizasyonu 18

19 Büyük Veri ve Uygulamalar Google reklamlarında anahtar kelimlere verilen teklif miktarı optimizasyonu Büyük veri Deney tasarımı ile veri toplama Sezonsallık (saatlik, günlük ve benzeri) Talep tahmini Pekiştirmeli Öğrenme (Reinforcement learning) 19

20 Büyük Veri ve Uygulamalar Öznitelik öğrenme (Feature/Representation Learning) Görüntü uzayda bir vektör ile ifade edilir 20

21 Büyük Veri ve Uygulamalar Görüntü işleme ve veri küçültme Elimizdeki görüntüleri kullanarak jenerik görüntüler bulabilir miyiz? Jenerik görüntülerin doğrusal bir kombinasyonu ile asıl görüntüye dönebilir miyiz? (Encoding ve Decoding) 21

22 Büyük Veri ve Uygulamalar Kereste yamukluk tahmini Kurutma öncesi yaş odun görüntüleri Yamukluğa sebep olan alanların tespiti Bow Crook Kurutma sonrası ölçümler yapılır 22

23 Büyük Veri ve Uygulamalar Kereste yamukluk tahmini 200 k n X

24 Büyük Veri ve Uygulamalar Görüntü işleme Hareket algılama (motion recognition) Video t adet zaman üzerinde değişen görüntü Çok değişkenli bir zaman serisi Doğrusal olmayan ve korelasyonu yüksek Hareket modellenebilir mi? 24

25 Tavsiyeler Kod yazma, yeni bir dil öğrenme Uygulama motivasyonu Parelel algoritmalar Parametresi az, basit algoritmalar Derin öğrenme (deep learning) 25

26 Teşekkürler Sorular ve Yorumlar e-posta web 26

Kümeleme Algoritmaları. Tahir Emre KALAYCI

Kümeleme Algoritmaları. Tahir Emre KALAYCI Tahir Emre KALAYCI 2010 Gündem En önemli gözetimsiz öğrenme (unsupervised learning) problemi olarak değerlendirilmektedir Bu türdeki diğer problemler gibi etiketsiz veri kolleksiyonları için bir yapı bulmakla

Detaylı

VERİ MADENCİLİĞİNE BAKIŞ

VERİ MADENCİLİĞİNE BAKIŞ VERİ MADENCİLİĞİNE BAKIŞ İçerik Veri Madenciliği Neden Veri Madenciliği? Veri ve Veri Madenciliğinin Önemi Günümüzde Kullanılan Veri Madenciliğinin Çeşitli İsimleri Veri Madenciliği Nedir? Neden Veri Madenciliği?

Detaylı

Alanya Alaaddin Keykubat UniversityInternational Relations Office

Alanya Alaaddin Keykubat UniversityInternational Relations Office Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Bilgisayar Mühendisliği (Örgün Öğretim) Diploma Programı 2016 Müfredatı 1 BLG109 Üniversite'de Yaşam Kültürü ve Bilgisayar Mühendisliğine İntibak 1

Detaylı

Uzaktan Algılama Uygulamaları

Uzaktan Algılama Uygulamaları Aksaray Üniversitesi Uzaktan Algılama Uygulamaları Doç.Dr. Semih EKERCİN Harita Mühendisliği Bölümü sekercin@aksaray.edu.tr 2010-2011 Bahar Yarıyılı Uzaktan Algılama Uygulamaları GÖRÜNTÜ İŞLEME TEKNİKLERİ

Detaylı

İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik

İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik Tekrar Konular İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik 1. Uygulamalar ve tanımlamalar 2. Örüntü tanıma sistemleri ve bir örnek 3. Bayes karar teorisi 4. En yakın komşu sınıflandırıcıları

Detaylı

Veri Bilim - Yapay Öğrenme Yaz Okulu, 2017 Matematiksel Temeller ve Vaka Çalışmaları

Veri Bilim - Yapay Öğrenme Yaz Okulu, 2017 Matematiksel Temeller ve Vaka Çalışmaları Veri Bilim - Yapay Öğrenme Yaz Okulu, 2017 Matematiksel Temeller ve Vaka Çalışmaları Boğaziçi Üniversitesi, TETAM, Kandilli, İstanbul Konu ve Kapsam Bu yaz okulunda veri bilim ve yapay öğrenme alanında

Detaylı

BÜYÜK VERI UYGULAMALARı DERS 3. Doç. Dr. Yuriy Mishchenko

BÜYÜK VERI UYGULAMALARı DERS 3. Doç. Dr. Yuriy Mishchenko 1 BÜYÜK VERI UYGULAMALARı DERS 3 Doç. Dr. Yuriy Mishchenko BÜYÜK VERI ÇERÇEVESI Mevcut, genel biçim ve çeşitli veriler Bir genel veri modelleme yaklaşımı SAKLI İLİŞKİLER İş kararları MAKİNE ÖĞRENME 2 BÜYÜK

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

Dijital Dönüşüm Adımları

Dijital Dönüşüm Adımları Dijital Dönüşüm Adımları Başlarken 1 GÖRSEL YENİLİKLER Türkiye Eğitim Gönüllüleri Vakfının dijital dünyasının görsel olarak yenilenme süreci 2 ALTYAPI & KULLANIM Yenilenen ve aktif kullanıma geçen modellerin

Detaylı

SELÇUK ÜNİVERSİTESİ SEYDİŞEHİR MESLEK YÜKSEKOKULU BİLGİSAYAR TEKNOLOJİLERİ BÖLÜMÜ BİLGİSAYAR PROGRAMCILIĞI PROGRAMI DERS DAĞILIM ÇİZELGESİ (2010)

SELÇUK ÜNİVERSİTESİ SEYDİŞEHİR MESLEK YÜKSEKOKULU BİLGİSAYAR TEKNOLOJİLERİ BÖLÜMÜ BİLGİSAYAR PROGRAMCILIĞI PROGRAMI DERS DAĞILIM ÇİZELGESİ (2010) SELÇUK ÜNİVERSİTESİ SEYDİŞEHİR MESLEK YÜKSEKOKULU BİLGİSAYAR TEKNOLOJİLERİ BÖLÜMÜ BİLGİSAYAR PROGRAMCILIĞI PROGRAMI DERS DAĞILIM ÇİZELGESİ (2010) 1. SINIF GÜZ YARIYILI 6913130 Atatürk İlkeleri ve İnkılap

Detaylı

Google Görüntülü Reklam Ağı.Hedefleme

Google Görüntülü Reklam Ağı.Hedefleme Google Görüntülü Reklam Ağı.Hedefleme seçenekleri. Hedefleme seçeneğiniz. Google Görüntülü Reklam Ağı Nedir? (GDN), reklamlarınızı yerleştirebileceğiniz reklam alanlarına sahip web sitesi ağıdır, ilgi

Detaylı

Seo Eğitimi (300 Sattlik Eğitim) Seo. Genel Amaçları. Seo da Kullanılan Terimler. Nedir? Nasıl Çalışır? Nasıl Olmalıdır?

Seo Eğitimi (300 Sattlik Eğitim) Seo. Genel Amaçları. Seo da Kullanılan Terimler. Nedir? Nasıl Çalışır? Nasıl Olmalıdır? Seo Eğitimi (300 Sattlik Eğitim) Seo Genel Amaçları Seo da Kullanılan Terimler Nedir? Nasıl Çalışır? Nasıl Olmalıdır? Sitenizi Google 'a kaydetmek. Meta Tag Meta Tag kullanımları Dinamik yapılı meta tag

Detaylı

GALATASARAY ÜNİVERSİTESİ

GALATASARAY ÜNİVERSİTESİ 1 MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2016/2017 ÖĞRETİM YILI DERS PROGRAMI Not 1 : Fransızca Hazırlık sınıfından gelen ve Fransızca seviye tespit sınavında başarısız olan

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

Altan ÇOLAK Hoşgeldiniz

Altan ÇOLAK Hoşgeldiniz Altan ÇOLAK Hoşgeldiniz E-Ticaretinizden edineceğiniz dönüşümlerinizi etkileyebilecek 12 Madde ve Adwords de işinizi kolaylaştıracak yenilikler. E-ticaret Sitelerinde Dönüşümü Arttırabilen Bazı Tavsiyeler

Detaylı

GALATASARAY ÜNİVERSİTESİ

GALATASARAY ÜNİVERSİTESİ 1 MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2017/2018 ÖĞRETİM YILI DERS PROGRAMI Not 1 : Fransızca Hazırlık sınıfından gelen ve Fransızca seviye tespit sınavında başarısız olan

Detaylı

R ile Programlamaya Giriş ve Uygulamalar

R ile Programlamaya Giriş ve Uygulamalar R ile Programlamaya Giriş ve Uygulamalar İçerik R ye genel bakış R dili R nedir, ne değildir? Neden R? Arayüz Çalışma alanı Yardım R ile çalışmak Paketler Veri okuma/yazma İşleme Grafik oluşturma Uygulamalar

Detaylı

HALKLA İLİŞKİLER VE TANITIM PROGRAMI DERS İÇERİKLERİ

HALKLA İLİŞKİLER VE TANITIM PROGRAMI DERS İÇERİKLERİ HALKLA İLİŞKİLER VE TANITIM PROGRAMI DERS İÇERİKLERİ I.YARIYIL Atatürk İlkeleri ve İnkılâp Tarihi I (2 0 2) : İnkılâp ve benzeri kavramlar. Osmanlı Devletinin son dönemlerinde batılılaşma adına yapılan

Detaylı

Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü. Bilgisayar Mühendisliği

Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü. Bilgisayar Mühendisliği Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü Bilgisayar Mühendisliği Bilgisayar Mühendisliği Günümüzde, finans, tıp, sanat, güvenlik, enerji gibi bir çok sektör, bilgisayar mühendisliğindeki gelişimlerden

Detaylı

Örüntü Tanıma (COMPE 467) Ders Detayları

Örüntü Tanıma (COMPE 467) Ders Detayları Örüntü Tanıma (COMPE 467) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Örüntü Tanıma COMPE 467 Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2016/2017 ÖĞRETİM YILI 1. YARIYIL FİNAL SINAVI PROGRAMI 1. SINIF

MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2016/2017 ÖĞRETİM YILI 1. YARIYIL FİNAL SINAVI PROGRAMI 1. SINIF BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 1. SINIF 2 Ocak Pazartesi 3 Ocak Salı 4 Ocak Çarşamba 5 Ocak Perşembe 6 Ocak Cuma Bilgisayar Mühendisliğine Giriş Fransızca I Sınıf: 118-222 Kimya I Sınıf: 118-231-314 BİLGİSAYAR

Detaylı

İŞLETME ANABİLİM DALI ORTAK DOKTORA PROGRAMI DERS İÇERİKLERİ. Dersin Adı Kod Yarıyıl T+U AKTS. Dersin Adı Kod Yarıyıl T+U AKTS

İŞLETME ANABİLİM DALI ORTAK DOKTORA PROGRAMI DERS İÇERİKLERİ. Dersin Adı Kod Yarıyıl T+U AKTS. Dersin Adı Kod Yarıyıl T+U AKTS İŞLETME ANABİLİM DALI ORTAK DOKTORA PROGRAMI DERS İÇERİKLERİ 1. Yıl - GÜZ DÖNEMİ İleri Düzeyde Araştırma Yöntemleri I ISL801 1 3 + 0 6 Araştırma süreci (problem belirleme, araştrıma konusu ve hipotezni

Detaylı

DERS BİLGİLERİ. Uygulamalı İşletme İstatistiği BBA 282 Bahar 3+0+0 3 5

DERS BİLGİLERİ. Uygulamalı İşletme İstatistiği BBA 282 Bahar 3+0+0 3 5 DERS BİLGİLERİ Ders Kodu Yarıyıl T+U+L Saat Kredi AKTS Uygulamalı İşletme İstatistiği BBA 282 Bahar 3+0+0 3 5 Ön Koşul Dersleri - Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu Dersin

Detaylı

Yapı Kredi Bankası Ar-Ge Çalışmaları Araştırma, Vizyon ve Uygulama. Eğitmen: Onur AĞIN

Yapı Kredi Bankası Ar-Ge Çalışmaları Araştırma, Vizyon ve Uygulama. Eğitmen: Onur AĞIN Yapı Kredi Bankası Ar-Ge Çalışmaları Araştırma, Vizyon ve Uygulama Eğitmen: Onur AĞIN 2016 Biz Kimiz? Kuruluş 9Eylül 2013 14 Kişilik bir Takım 11 Ar-Ge Mühendisi 2 Ar-Ge Koordinatörü 1 Müdür Yenilik Prototip

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

D.Saati AKTS Zorunlu Ders (Z) 23 28 Meslek Dersi (M) 60 62 Seçmeli Ders (S) 13 30 TOPLAM 96 120

D.Saati AKTS Zorunlu Ders (Z) 23 28 Meslek Dersi (M) 60 62 Seçmeli Ders (S) 13 30 TOPLAM 96 120 SELÇUK ÜNİVERSİTESİ SEYDİŞEHİR MESLEK YÜKSEKOKULU BİLGİSAYAR TEKNOLOJİLERİ BÖLÜMÜ BİLGİSAYAR PROGRAMCILIĞI PROGRAMI NORMAL ÖĞRETİM DERS DAĞILIM ÇİZELGESİ 1. SINIF GÜZ YARIYILI ( I. YARIYIL) 1 6913130 Atatürk

Detaylı

VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI

VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ VERİ MADENCİLİĞİ VE SOSYAL AĞ ANALİZİ ARAŞTIRMA LABORATUVARI 10 Aralık 2011, Cumartesi Fen ve Mühendislik Alanlarındaki Çeşitli Araştırma Projelerinden Örneklemeler İçerik

Detaylı

Akademik İngilizce II (ENG102) Ders Detayları

Akademik İngilizce II (ENG102) Ders Detayları Akademik İngilizce II (ENG102) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Akademik İngilizce II ENG102 Bahar 2 2 0 4 3,5 Ön Koşul Ders(ler)i ENG101 Dersin

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

Kesikli Programlama (IE 506) Ders Detayları

Kesikli Programlama (IE 506) Ders Detayları Kesikli Programlama (IE 506) Ders Detayları Ders Adı Ders Dönemi Ders Uygulama Laboratuar Kredi AKTS Kodu Saati Saati Saati Kesikli Programlama IE 506 Güz 3 0 0 3 7.5 Ön Koşul Ders(ler)i Dersin Dili Dersin

Detaylı

2) Lineer olmayan denklem çözümlerini bilir 1,2,4 1

2) Lineer olmayan denklem çözümlerini bilir 1,2,4 1 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Numerik Analiz BIL222 4 3+0 3 5 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Zorunlu / Yüz Yüze Dersin

Detaylı

Olasılık ve İstatistik II (IE 202) Ders Detayları

Olasılık ve İstatistik II (IE 202) Ders Detayları Olasılık ve İstatistik II (IE 202) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistik II IE 202 Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Olasılık

Detaylı

Doğrusal Programlama (IE 502) Ders Detayları

Doğrusal Programlama (IE 502) Ders Detayları Doğrusal Programlama (IE 502) Ders Detayları Ders Adı Ders Dönemi Ders Uygulama Laboratuar Kredi AKTS Kodu Saati Saati Saati Doğrusal Programlama IE 502 Güz 3 0 0 3 7.5 Ön Koşul Ders(ler)i Dersin Dili

Detaylı

Ders Kodu Dersin Adı Dersin Ġntibak Durumu

Ders Kodu Dersin Adı Dersin Ġntibak Durumu ENDÜSTRĠ SĠSTEMLERĠ MÜHENDĠSLĠĞĠ BÖLÜMÜ ĠNTĠBAK ÇĠZELGESĠ 2010-2011 1.SINIF / GÜZ DÖNEMĠ IUE100 Akademik ve Sosyal Oryantasyon CS 115 Programlamaya Giriş I Bu ders 1. Sınıf güz döneminden 2. Sınıf güz

Detaylı

GOOGLE AdWords REKLAMLARI

GOOGLE AdWords REKLAMLARI Örnek Sunum GOOGLE AdWords REKLAMLARI Kullanılabilir Google Reklam Biçimleri Arama Ağı Reklamları Görüntülü Reklam Ağı YouTube Reklamları ve tüm reklam biçimlerinde kullanılabilen Görüntülü ReMarketing

Detaylı

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Doç.Dr.Mehmet Hakan Satman mhsatman@istanbul.edu.tr İstanbul Üniversitesi 2014.10.22 Doç.Dr.Mehmet Hakan Satmanmhsatman@istanbul.edu.tr Tedarik Zinciri

Detaylı

Smart Commerce Proje Teklifi

Smart Commerce Proje Teklifi Proje Teklifi Code Brother Ship Trading Ltd. Lefkoşa 1. Giriş Smart Commerce, profesyonel bir alt yapı ile ürünlerini sergileyip isterlerse banka havalesi, kapıda ödeme sistemi ve kredi kartı ile de satış

Detaylı

TrueView ile Video için Google AdWords.

TrueView ile Video için Google AdWords. TrueView ile Video için Google AdWords. Reklam videonuzu izleyen kişilerş için ödeme yapın. YouTube'un Boyutu ve Kapsamı. #1 Çevrimiçi video sitesi #2 En büyük arama motoru (Google'dan sonra) #3 En büyük

Detaylı

MÜHENDİSLİK FAKÜLTESİ / ENSTİTÜSÜ / YÜKSEKOKULU BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ /ABD LİSANS PROGRAMI - 1 ( yılı ve sonrasında birinci

MÜHENDİSLİK FAKÜLTESİ / ENSTİTÜSÜ / YÜKSEKOKULU BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ /ABD LİSANS PROGRAMI - 1 ( yılı ve sonrasında birinci MÜHENDİSLİK FAKÜLTESİ / ENSTİTÜSÜ / YÜKSEKOKULU BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ /ABD LİSANS PROGRAMI - 1 (2016-17 yılı ve sonrasında birinci sınıfa başlayan öğrenciler için) BİRİNCİ YIL 1. Dönem

Detaylı

Veri Madenciliği - Giriş. Erdem Alparslan

Veri Madenciliği - Giriş. Erdem Alparslan Veri Madenciliği - Giriş Erdem Alparslan Amaçlar İş zekasının önemli bir parçası olan veri madenciliğinin tanımı İş analizi ve veri madenciliğinin amaçlarının anlaşılması Veri madenciliğini kullanan çok

Detaylı

Büyük Veri de Türkiye den Uygulama Örnekleri Dr. Güven Fidan

Büyük Veri de Türkiye den Uygulama Örnekleri Dr. Güven Fidan Büyük Veri de Türkiye den Uygulama Örnekleri Dr. Güven Fidan ARGEDOR Bilişim Teknolojileri ARGEDOR ARGEDOR, şirketlere ve son kullanıcılara yenilikçi bilgiyi işleme çözümleriyle dünya çapında mevcut olan

Detaylı

Olasılık ve İstatistik nedir? Bilgisayar Mühendisliğindeki yeri

Olasılık ve İstatistik nedir? Bilgisayar Mühendisliğindeki yeri Olasılık ve İstatistik nedir? Bilgisayar Mühendisliğindeki yeri IST 108 Olasılık ve İstatistik Bahar 2016 Yrd. Doç. Dr. Ferhat Dikbıyık Bu sunumun bir kısmı Utah Üniversitesi nden Bilgisayar Bilimleri

Detaylı

Akademik Dünyada Özgür Yazılım. Akademik Dünyada. Onur Tolga Şehitoğlu 10-02-2007

Akademik Dünyada Özgür Yazılım. Akademik Dünyada. Onur Tolga Şehitoğlu 10-02-2007 Akademik Dünyada Özgür Yazılım Onur Tolga Şehitoğlu 10-02-2007 1 Özgür Yazılım Nedir? Neden Özgür Yazılım? 2 Masaüstü İşletim Sistemi Ofis Uygulamaları 3 Görüntüleme 4 Bilimsel Araçlar Octave SciLab R

Detaylı

EĞĠTĠM-ÖĞRETĠM PLANI

EĞĠTĠM-ÖĞRETĠM PLANI T.C. ERCĠYES ÜNĠVERSĠTESĠ Mühendislik Fakültesi Endüstri Mühendisliği Bölümü 2014-2015 EĞĠTĠM-ÖĞRETĠM PLANI I. YARIYIL II. YARIYIL ENM 101 Matematik I 4 0 4 6 ENM 102 Matematik II 4 0 4 6 ENM 103 Fizik

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I 1/19 İçerik Yöneylem Araştırmasının Dalları Kullanım Alanları Yöneylem Araştırmasında Bazı Yöntemler Doğrusal (Lineer) Programlama, Oyun Teorisi, Dinamik Programlama, Tam Sayılı

Detaylı

BÜYÜK VERI UYGULAMALARı DERS 7. Doç. Dr. Yuriy Mishchenko

BÜYÜK VERI UYGULAMALARı DERS 7. Doç. Dr. Yuriy Mishchenko 1 BÜYÜK VERI UYGULAMALARı DERS 7 Doç. Dr. Yuriy Mishchenko PLAN Azure ML hizmeti kullanılmasına bir pratik giriş 2 3 MS AZURE ML 4 MS AZURE ML Azure Microsoft tarafından sağlanan bulut hesaplama hizmetleri

Detaylı

Olasılık ve İstatistik (IE 220) Ders Detayları

Olasılık ve İstatistik (IE 220) Ders Detayları Olasılık ve İstatistik (IE 220) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistik IE 220 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin

Detaylı

MOODLE UZAKTAN ÖĞRETİM SİSTEMİ

MOODLE UZAKTAN ÖĞRETİM SİSTEMİ MOODLE UZAKTAN ÖĞRETİM SİSTEMİ ÖZET Genel Bilgiler Moodle nedir? Sistem Gereksinimleri Moodle Sisteminin Kurulumu Ders ve kategori eklenmesi Bir dersin sistem özellikleri İstatistikler Sonuç ve öneriler

Detaylı

«Pek çok küçük şey, doğru reklamla devleşmiştir.» Mark Twain

«Pek çok küçük şey, doğru reklamla devleşmiştir.» Mark Twain Video Reklamlar «Pek çok küçük şey, doğru reklamla devleşmiştir.» Mark Twain 1 2 3 4 Türkiye deki Arama Türkiye Pazarında Arama Hacmi Türkiye de Beyazperde Nerede? Rakip Analizi, Yıllık Analiz YouTube

Detaylı

Metin Madenciliği Yöntemleri ile Twitter Duygu Analizi (Twitter Sentiment Analysis using Text Mining Methods)

Metin Madenciliği Yöntemleri ile Twitter Duygu Analizi (Twitter Sentiment Analysis using Text Mining Methods) YBS Ansiklopedi www.ybsansiklopedi.com Cilt 4, Sayı 2,Haziran 2017 Metin Madenciliği Yöntemleri ile Twitter Duygu Analizi (Twitter Sentiment Analysis using Text Mining Methods) Amine YEŞİLYURT 1 Şadi Evren

Detaylı

MPS. Multi-service Platform System Powered by QIHAN

MPS. Multi-service Platform System Powered by QIHAN MPS Multi-service Platform System Powered by QIHAN Düşük çalışan memnuniyeti ile daha Önsöz Geleneksel perakende işletmeler, ayak Esnek olmayan pazarlama tanıtımı yüksek ve daha yüksek trafiğini sürekli

Detaylı

Dijital pazarlama bir satış yöntemi değil; ulaşılan sonuçları sayesinde satış artışı sağlayan, bir ilişkilendirme ve iletişim sürecidir.

Dijital pazarlama bir satış yöntemi değil; ulaşılan sonuçları sayesinde satış artışı sağlayan, bir ilişkilendirme ve iletişim sürecidir. Dijital pazarlama bir satış yöntemi değil; ulaşılan sonuçları sayesinde satış artışı sağlayan, bir ilişkilendirme ve iletişim sürecidir. Dijital Pazarlama, rekabet avantajı için yeni kaynaklara ulaşımı

Detaylı

EĞĠTĠM-ÖĞRETĠM PLANI

EĞĠTĠM-ÖĞRETĠM PLANI T.C. ERCĠYES ÜNĠVERSĠTESĠ Mühendislik Fakültesi Endüstri Mühendisliği Bölümü 2016-2017 EĞĠTĠM-ÖĞRETĠM PLANI I. YARIYIL II. YARIYIL ENM 101 Matematik I 4 0 6 6 ENM 102 Matematik II 4 0 6 6 ENM 103 Fizik

Detaylı

Yapay Sinir Ağları ve Yüksek Enerji Fiziği Uygulamaları

Yapay Sinir Ağları ve Yüksek Enerji Fiziği Uygulamaları Yapay Sinir Ağları ve Yüksek Enerji Fiziği Uygulamaları Ece Akıllı Université de Genève 12 Eylül 2016 CERN TR E. Akıllı (UNIGE) Yapay Sinir Ağları 12.09.2016 1 / 18 Akış 1 Makine Ogrenimi 2 Yapay Sinir

Detaylı

Ekonometri II (ECON 302T) Ders Detayları

Ekonometri II (ECON 302T) Ders Detayları Ekonometri II (ECON 302T) Ders Detayları Ders Adı Ekonometri II Ders Kodu ECON 302T Dönemi Ders Uygulama Saati Saati Laboratuar Saati Kredi AKTS Bahar 3 0 0 3 6 Ön Koşul Ders(ler)i ECON 301 Dersin Dili

Detaylı

T.C. YALOVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ. Tüm Ders Kodları Havuzu

T.C. YALOVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ. Tüm Ders Kodları Havuzu POLİMER MÜHENDİSLİĞİ EABD LİSANSÜSTÜ DERSLERİ PLM501 Polimer Mühendisliği (3+0) 3 6 Zorunlu PLM502 Polimerlerin Şekillendirilmesi (3+0) 3 6 Zorunlu PLM503 Polimerizasyon Yöntemleri PLM504 İletken Polimerler

Detaylı

Maliye Anabilim Dalı- Tezli Yüksek Lisans (Sak.Üni.Ort) Programı Ders İçerikleri

Maliye Anabilim Dalı- Tezli Yüksek Lisans (Sak.Üni.Ort) Programı Ders İçerikleri Maliye Anabilim Dalı- Tezli Yüksek Lisans (Sak.Üni.Ort) Programı Ders İçerikleri Sosyal Bilimlerde Araştırma Yöntemleri MLY733 1 3 + 0 6 Araştırma yöntemlerindeki farklı anlayışları, yaygın olarak kullanılan

Detaylı

2017 MÜFREDATI MÜHENDİSLİK FAKÜLTESİ / HARİTA MÜHENDİSLİĞİ EĞİTİM PLANI. Ders Kodu Ders Adı (Türkçe) Müf.No T P K AKTS Tip Op.

2017 MÜFREDATI MÜHENDİSLİK FAKÜLTESİ / HARİTA MÜHENDİSLİĞİ EĞİTİM PLANI. Ders Kodu Ders Adı (Türkçe) Müf.No T P K AKTS Tip Op. 2017 MÜFREDATI MÜHENDİSLİK FAKÜLTESİ / HARİTA MÜHENDİSLİĞİ EĞİTİM PLANI SINIF: 1 DÖNEM: GÜZ Aİ 101 ATATÜRK İLKELERİ VE İNKILAP TARİHİ 2017 2 0 2 2 Z FİZ 101 FİZİK 2017 4 0 6 6 Z HM 101 BİLGİSAYAR PROGRAMLAMA-I

Detaylı

VERİ MADENCİLİĞİNİN GÖREVLERİ

VERİ MADENCİLİĞİNİN GÖREVLERİ VERİ MADENCİLİĞİNİN GÖREVLERİ VERİ MADENCİLİĞİNİN GÖREVLERİ Classification (Sınıflandırma) Karakterizasyon (Betimleme) Regression (İlişki Çıkarımı) Clustering (Kümeleme) Association (İlişki Analizi) Forecasting

Detaylı

Sayısal Yöntemler (COMPE 350) Ders Detayları

Sayısal Yöntemler (COMPE 350) Ders Detayları Sayısal Yöntemler (COMPE 350) Ders Detayları Ders Adı Sayısal Yöntemler Ders Kodu COMPE 350 Dönemi Ders Uygulama Saati Saati Laboratuar Saati Kredi AKTS Bahar 2 2 0 3 5.5 Ön Koşul Ders(ler)i Dersin Dili

Detaylı

TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ I. SINIF EĞİTİM - ÖĞRETİM PROGRAMI

TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ I. SINIF EĞİTİM - ÖĞRETİM PROGRAMI TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ I. SINIF EĞİTİM - ÖĞRETİM PROGRAMI 1. YIL 1. DÖNEM BİL 103 Bilgisayar Bilimlerine Giriş 2 0 2 3 Z BİL 113 Bilgisayar

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Matlab Programlama BIL449 7 3+0 3 5 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Seçmeli / Yüz Yüze Dersin

Detaylı

KPSS LİSANS DA UYGULANAN TESTLERİN KAPSAMLARI

KPSS LİSANS DA UYGULANAN TESTLERİN KAPSAMLARI 2012 - LİSANS DA UYGULANAN TESTLERİN KAPSAMLARI Genel Yetenek 1) Türkçe %50 2) Matematik %50 a) Sözcük bilgisi %5 a) Sayılarla işlem yapma %10 b) Dil bilgisi %10 b) Matematiksel ilişkilerden yararlanma

Detaylı

Şube Sayısı. Şube Sayısı T P K AKTS T P K AKTS. 2 MTK 302 Kısmi Diferansiyel

Şube Sayısı. Şube Sayısı T P K AKTS T P K AKTS. 2 MTK 302 Kısmi Diferansiyel 11.12.2014 tarih ve 714 sayılı Eğitim Komisyonu Kararı Eki Tablo 1 ÖĞRETİM PROGRAMI TABLOSU Hacettepe Üniversitesi Fen Fakültesi Matematik Bölümü Lisans Programı (Ders dili İngilizce olan şubeler dosyanın

Detaylı

BÜYÜK VERI UYGULAMALARı DERS 4. Doç. Dr. Yuriy Mishchenko

BÜYÜK VERI UYGULAMALARı DERS 4. Doç. Dr. Yuriy Mishchenko BÜYÜK VERI UYGULAMALARı DERS 4 Doç. Dr. Yuriy Mishchenko PLAN Lineer modeller Öznitelik seçilmesi Model oluşturulması BÜYÜK VERI VE MAKINE ÖĞRENME 3 BÜYÜK VERI VE MAKINE ÖĞRENME Büyük veri uygulamaları,

Detaylı

Harmanlanmış Bilgisayar Dersinde Öğrencilerin Sınav Günü İnternet Hareketliliği

Harmanlanmış Bilgisayar Dersinde Öğrencilerin Sınav Günü İnternet Hareketliliği Harmanlanmış Bilgisayar Dersinde Öğrencilerin Sınav Günü İnternet Hareketliliği Yalçın Ezginci 1 1 Selçuk Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü, Konya yezginci@selcuk.edu.tr Özet: İnternet

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

Your Digital Agency in Europe. Web Tasarım & Dijital Medya Çözümleri

Your Digital Agency in Europe. Web Tasarım & Dijital Medya Çözümleri Paragon Web Tasarım & Dijital Medya Çözümleri Hakkımızda DENEYİM Rakipsiz YARATICILIK Takip edilen YENİLİKLER Biz Kimiz? ParagonTasarım dijital medya alanında hizmet veren İstanbul merkezli bir tasarım

Detaylı

Kolektif Öğrenme Metotları

Kolektif Öğrenme Metotları Kolektif Öğrenme Metotları Kolektif öğrenme algoritmalarına genel bakış 1-Bagging 2-Ardışık Topluluklarla Öğrenme (Boosting) 3-Rastsal Altuzaylar 4-Rastsal Ormanlar 5-Aşırı Rastsal Ormanlar 6-Rotasyon

Detaylı

VERI TABANLARıNDA BILGI KEŞFI

VERI TABANLARıNDA BILGI KEŞFI 1 VERİ MADENCİLİĞİ VERI TABANLARıNDA BILGI KEŞFI Veri Tabanlarında Bilgi Keşfi, veriden faydalı bilginin keşfedilmesi sürecinin tamamına atıfta bulunmakta ve veri madenciliği bu sürecin bir adımına karşılık

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

info@ph1istanbul.com

info@ph1istanbul.com 0216 693 08 08 info@ph1istanbul.com DİJİTAL DÜNYA YA DAİR NE VARSA.. Mevcut Durum Analizi Algı Yönetimi Sürdürülebilir İlişkiler Hedef Kitle Analizi Dijital Strateji Kurulumu Marka Konumlandırma Rakip

Detaylı

Adnan Menderes Üniversitesi FAKÜLTESİ SÖKE İŞLETME. BÖLÜMLER ULUSLARARASI TİCARET ve İŞLETMECİLİK YÖNETİM BİLİŞİM SİSTEMLERİ

Adnan Menderes Üniversitesi FAKÜLTESİ SÖKE İŞLETME. BÖLÜMLER ULUSLARARASI TİCARET ve İŞLETMECİLİK YÖNETİM BİLİŞİM SİSTEMLERİ Adnan Menderes Üniversitesi SÖKE İŞLETME FAKÜLTESİ BÖLÜMLER ULUSLARARASI TİCARET ve İŞLETMECİLİK YÖNETİM BİLİŞİM SİSTEMLERİ SÖKE İŞLETME FAKÜLTESİ ULUSLARARASI TİCARET VE İŞLETMECİLİK BÖLÜMÜ DERS PROGRAMI

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: Pattern Recognition

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: Pattern Recognition Dersi Veren Birim: Fen Bilimleri Enstitüsü Dersin Türkçe Adı: Örüntü Tanıma Dersin Orjinal Adı: Pattern Recognition Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisansüstü Dersin Kodu: CSE

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

Taslak Anahtar Kelime Listesi. * otomatik pvc makinaları. * pvc makinaları fiyatları. * pvc makinaları şirketleri. * otomatik pvc fiyatları

Taslak Anahtar Kelime Listesi. * otomatik pvc makinaları. * pvc makinaları fiyatları. * pvc makinaları şirketleri. * otomatik pvc fiyatları Google AdWords Arama Ağı Reklamları Projelendirmesi Firmanız için hazırlanan arama ağı reklam kampanyasında yapılabilecek çalışma ürününüzü arayan potansiyel müşteriye reklamlarımızı göstermek olacaktır.

Detaylı

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma...

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma... İçindekiler İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii BÖLÜM 1 Ölçme, İstatistik ve Araştırma...1 Ölçme Nedir?... 3 Ölçme Süreci... 3 Değişkenler

Detaylı

17.ULUSAL TURİZM KONGRESİ

17.ULUSAL TURİZM KONGRESİ 17.ULUSAL TURİZM KONGRESİ 2016 YILI BİLDİRİLERİ ÜZERİNE BİR DEĞERLENDİRME Prof. Dr. A. Celil ÇAKICI Mersin Üniversitesi Turizm Fakültesi YAZAR SAYISI YAZARLARIN UNVAN DAĞILIMI (İlk üç) 1.Yazarın Üniversitesi

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Doğrusal Olmayan Sistemlere Doğru. Uzay Çetin. Python ve R ile Bilimsel Hesaplama Kursu Mustafa Gökçe Baydoğan, Uzay Çetin, Berk Orbay

Doğrusal Olmayan Sistemlere Doğru. Uzay Çetin. Python ve R ile Bilimsel Hesaplama Kursu Mustafa Gökçe Baydoğan, Uzay Çetin, Berk Orbay Doğrusal Olmayan Sistemlere Doğru 1 / 27 Doğrusal Olmayan Sistemlere Doğru Uzay Çetin Boğaziçi - Işık Üniversitesi Python ve R ile Bilimsel Hesaplama Kursu Mustafa Gökçe Baydoğan, Uzay Çetin, Berk Orbay

Detaylı

AKILLI TATIL PLANLAMA SISTEMI

AKILLI TATIL PLANLAMA SISTEMI AKILLI TATIL PLANLAMA SISTEMI Istanbul Teknik Üniversitesi Bilgisayar ve Bilişim Fakültesi Bitirme Ödevi Ali Mert Taşkın taskinal@itu.edu.tr Doç. Dr. Feza Buzluca buzluca@itu.edu.tr Ocak 2017 İçerik Giriş

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

ALIŞVERİŞ SİTELERİ ÜYELİK FORMLARINDA ETKİLEŞİM TASARIMI: HEPSİBURADA, IDEFIX VE GİTTİGİDİYOR ÖRNEĞİ

ALIŞVERİŞ SİTELERİ ÜYELİK FORMLARINDA ETKİLEŞİM TASARIMI: HEPSİBURADA, IDEFIX VE GİTTİGİDİYOR ÖRNEĞİ ALIŞVERİŞ SİTELERİ ÜYELİK FORMLARINDA ETKİLEŞİM TASARIMI: HEPSİBURADA, IDEFIX VE GİTTİGİDİYOR ÖRNEĞİ Zehra Taşkın Araştırma Görevlisi Hacettepe Üniversitesi Bilgi ve Belge Yönetimi Bölümü Etkileşim Interaction

Detaylı

Dağıtık Ortak Hafızalı Çoklu Mikroişlemcilere Sahip Optik Tabanlı Mimari Üzerinde Dizin Protokollerinin Başarım Çözümlemesi

Dağıtık Ortak Hafızalı Çoklu Mikroişlemcilere Sahip Optik Tabanlı Mimari Üzerinde Dizin Protokollerinin Başarım Çözümlemesi Dağıtık Ortak Hafızalı Çoklu Mikroişlemcilere Sahip Optik Tabanlı Mimari Üzerinde Dizin Protokollerinin Başarım Çözümlemesi İpek ABASIKELEŞ, M.Fatih AKAY Bilgisayar Mühendisliği Bölümü Çukurova Üniversitesi

Detaylı

A/B TESTING. Mert Hakan ÖZLÜ N14111368

A/B TESTING. Mert Hakan ÖZLÜ N14111368 A/B TESTING Mert Hakan ÖZLÜ N14111368 İÇERİK A/B Testi Nedir? A/B Testinin Amacı Nedir? A/B Testi Nasıl Uygulanır? A/B Testi Nerelerde Kullanılır? A/B Testi ile Nasıl Değişiklikler Yapılabilir? A/B Testi

Detaylı

TABLO-1 KPSS DE UYGULANACAK TESTLERİN KAPSAMLARI Yaklaşık Ağırlığı Genel Yetenek

TABLO-1 KPSS DE UYGULANACAK TESTLERİN KAPSAMLARI Yaklaşık Ağırlığı Genel Yetenek TABLO-1 KPSS DE UYGULANACAK TESTLERİN KAPSAMLARI Yaklaşık Ağırlığı Genel Yetenek Yaklaşık Ağırlığı 1) Sözel Bölüm %50 2) Sayısal Bölüm %50 Sözel akıl yürütme (muhakeme) becerilerini, dil bilgisi ve yazım

Detaylı

Kalkülüs II (MATH 152) Ders Detayları

Kalkülüs II (MATH 152) Ders Detayları Kalkülüs II (MATH 152) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kalkülüs II MATH 152 Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i Math 151 Kalkülüs I Dersin

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Diferansiyel Denklemler ve Lineer Cebir BIL271 3 3+0 3 5 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans

Detaylı

PROF. DR. ŞAKİR ESNAF IN BİTİRME PROJESİ KONULARI

PROF. DR. ŞAKİR ESNAF IN BİTİRME PROJESİ KONULARI PROF. DR. ŞAKİR ESNAF IN TEORİK ÇALIŞMA BAŞLIKLARI Ø Coğrafi Çoklu Tesis Yeri Seçimi (Weber) Probleminin Çözümü için Sezgisel ve Metasezgisel Algoritmalar Ø Çoklu Tesis Yeri Seçimi (Pmedyan) Probleminin

Detaylı

Geniş Alan Gözetleme Sistemlerinin Afet Durumunda Kullanımı ESEN SİSTEM ENTEGRASYON KASIM 2013

Geniş Alan Gözetleme Sistemlerinin Afet Durumunda Kullanımı ESEN SİSTEM ENTEGRASYON KASIM 2013 Geniş Alan Gözetleme Sistemlerinin Afet Durumunda Kullanımı ESEN SİSTEM ENTEGRASYON KASIM 2013 İçerik 2 ESEN Sistem Şirket Tanıtımı Şirket Vizyonu ve Çalışma Alanları Geniş Alan Gözetleme Sistemleri (GAG)

Detaylı

EĞİTİM BİLİMLERİ ANABİLİM DALI EĞİTİM PROGRAMLARI VE ÖĞRETİM BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI 2011 2012 EĞİTİM ÖĞRETİM PLANI

EĞİTİM BİLİMLERİ ANABİLİM DALI EĞİTİM PROGRAMLARI VE ÖĞRETİM BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI 2011 2012 EĞİTİM ÖĞRETİM PLANI EĞİTİM BİLİMLERİ ANABİLİM DALI EĞİTİM PROGRAMLARI VE ÖĞRETİM BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI 2011 2012 EĞİTİM ÖĞRETİM PLANI BİLİMSEL HAZIRLIK GÜZ YARIYILI DERSLERİ EGB501 Program Geliştirmeye Giriş

Detaylı

YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ

YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ Bu ders 1. Sınıf güz döneminden 2. Sınıf güz dönemine alınmıştır. gerektiği halde alamayan öğrenciler 2010-2011 öğretim yılı

Detaylı

İçerik Turu. Britannica School'u kullanmaya başlamak için kılavuzunuz.

İçerik Turu. Britannica School'u kullanmaya başlamak için kılavuzunuz. İçerik Turu Britannica School'u kullanmaya başlamak için kılavuzunuz. www.school.eb.co.uk Giriş Sayfası Bu sayfada herhangi bir düzeyde arama yapabilirsiniz. Düzeylerin her birinde kendi liste kutusu bulunur,

Detaylı

TELEVIDYON.COM. Medya Kiti

TELEVIDYON.COM. Medya Kiti TELEVIDYON.COM Medya Kiti MYK MEDYA HAKKINDA Televidyon.com adresinde şu ana kadar 9 kategorideki 27 programda 2000'in üstünde yapımın hazırlanması, çekimi, montajı, yayını ve yönetimini gerçekleştirdik.

Detaylı

Önsöz. İçindekiler Algoritma Algoritma Nasıl Hazırlanır? Yazılımda Algoritma Mantığı Nedir? 1.2. Algoritma Örnekleri ve Sorular

Önsöz. İçindekiler Algoritma Algoritma Nasıl Hazırlanır? Yazılımda Algoritma Mantığı Nedir? 1.2. Algoritma Örnekleri ve Sorular Önsöz Giriş İçindekiler V VII IX 1.1. Algoritma 1.1.1. Algoritma Nasıl Hazırlanır? 1.1.2. Yazılımda Algoritma Mantığı Nedir? 1.2. Algoritma Örnekleri ve Sorular 2.1. Programın Akış Yönü 19 2.2. Başlama

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Gevşek Hesaplama (COMPE 474) Ders Detayları

Gevşek Hesaplama (COMPE 474) Ders Detayları Gevşek Hesaplama (COMPE 474) Ders Detayları Ders Adı Gevşek Hesaplama Ders Kodu COMPE 474 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin Dili Dersin

Detaylı

Hızlı Uygulama Geliştirme (SE 340) Ders Detayları

Hızlı Uygulama Geliştirme (SE 340) Ders Detayları Hızlı Uygulama Geliştirme (SE 340) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Hızlı Uygulama Geliştirme SE 340 Her İkisi 2 2 0 3 5 Ön Koşul Ders(ler)i

Detaylı