AKM 202. Akışkanlar Mekaniği. Ders Notları. 9.Bölüm. Sıkıştırılamaz Viskoz Dış Akış İTÜ. Gemi İnşaatı ve Deniz Bilimleri Fakültesi.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "AKM 202. Akışkanlar Mekaniği. Ders Notları. 9.Bölüm. Sıkıştırılamaz Viskoz Dış Akış İTÜ. Gemi İnşaatı ve Deniz Bilimleri Fakültesi."

Transkript

1 AKM 22 Akışkanlar Mekaniği Ders Notları 9.Bölüm Sıkıştırılamaz Viskoz Dış Akış İTÜ Gemi İnşaatı ve Deniz Bilimleri Fakültesi Hazırlayan Yrd. Doç. Dr. Şafak Nur Ertürk Oda No:417 Tel: (212) e-posta:

2 DERS NOTLARI SIKIŞTIRILAMAZ VİSKOZ DIŞ AKIŞ AKM 22 AKIŞKANLAR MEKANİĞİ Giriş Dış akış denilince, sınırsız akışkan içine batırılmış cisimlrin etrafındaki akış akla gelir. Bunlara örnek olarak daha önce gördüğümüz yarı-sonsuz düzlemsel plaka üzerindeki akış ile silindir etrafındaki akışı verebiliriz.amacımız, dış akışta sıkıştırılamaz viskoz akışın davranışını nitelik olarak incelemek. Bir cisim etrafındaki dış akışta, oluşan birkaç fiziksel olay şekildeki bir hidrofoil'in etrafındaki viskoz akış içerisinde gösterilmiştir. Şekil 9-1 Serbest akım durma noktasının etrafında ikiye ayrılır ve cisim etrafındaki akışına devam eder. Cisim yüzeyi için verilen sınır şartı sonucu akışkan yüzeye değen noktada cisim ile aynı hıza sahiptir. Sınır taka cismin hem alt hem de üst yüzeyinde oluşur. (İyi anlaşılilmesi için, şekilde sınır taka gerçekte olduğundan daha kalın gösterilmiştir) Sınır taka içindeki akış başlangıçta laminerdir. Türbülanslı akışa geçiş düzgün akış şartlarına, yüzey pürüzlülüğüne ve basınç gradyentine bağlı olarak durma noktasından belirli bir mesafede başlar. Geçiş noktaları şekilde G ile gösterilmiştir. Türbülanslı sınır taka geçiş noktasından sonra laminer takadan çok daha hızlı büyür. Yüzeydeki sınır takanın kalınlaşması akım hatlarının hafifçe değişmesine neden olur. Artan basınç bölgelerinde (ters basınç gradyenti) akım ayrılması oluşur. Ayrılma noktaları A ile gösterilmiştir. Cisim yüzeyinde sınır taka içinde yer almış olan akışkan ayrılma noktasının arkasında "viskoz iz"i oluşturur. Şekildeki cisim, yüzeyine etkiyen kayma ve basınç kuvvetlerinin sonucu net bir kuvvet etkisi altındadır. U hızının paralel bileşenine sürüklenme/direnç (drag), dik bileşenine de kaldırma (lift) kuvveti denir. Ayrılmanın varlığı bu iki kuvvetin analitik çözümünü imkansız kılar. BÖLÜM A SINIR TABAKALAR 23, Şafak Nur ERTÜRK Bölüm

3 DERS NOTLARI SIKIŞTIRILAMAZ VİSKOZ DIŞ AKIŞ AKM 22 AKIŞKANLAR MEKANİĞİ 9.1 Sınır Taka Kavramı Sınır taka kavramı ilk kez 194 yılında Alman bilim adamı Ludwig Prandtl tarafından ortaya atıldı. Prandtl'ın bu tarihi çıkışından önce, akışkanlar mekaniği bilimi iki farklı yönde gelişiyordu. Teorik hidrodinamik, 1755'te Leonard Euler tarafından yayınlanan hareket denklemlerinden viskoz olmayan akış için geliştirildi. Ancak hidrodinamik biliminin sonuçları denyesel gözlemler ile çeliştiğinden, pratikte mühendisler kendi deneysel (ampirik) formüllerini geliştirdiler. Bu yaklaşım tamamı ile deneysel verilere dayanıyordu ve kuramsal hidrodinamiğin matematiksel yaklaşımından tamamen farklıydı. Viskoz akışkanın hareketini tanımlayan denklemler (Navier-Stokes denklemleri, Navier 1827, Stokes 1845) Prandtl'ın çıkışından önce bilinmesine rağmen, bu denklemlerin matematiksel olarak çözümünün bir iki basit hal dışında güç olması viskoz akışın kuramsal olarak incelenmesine engel oldu. Prandtl ise birçok viskoz akışın iki ayrı bölgeye ayrılarak analiz edilebileceğini gösterdi; biri katı cisim sınırında yakın bölge, ikincisi ise geriye kalan tüm akış bölgesi. Yalnızca katı cisim sınırına yakın olan bölgede viskozitenin etkisi önemlidir. Bunun dışındaki bölgede bu etki ihmal edilebilir ve akışkan viskozitesiz kul edilebilir. Sınır-taka kavramı kuram ile uygulama arasındaki uyuşmazlığı kaldırmış ve ikisi arasında yıllardır kurulamayan ilişkiyi kurmuştur. Daha da önemlisi, sınır-taka kavramı, Navier- Stokes denklemleri kullanılarak çözümü imkansız olan viskoz akış problemlerinin çözümünü mümkün kıldı. Sınır taka içinde, hem viskoz kuvvetler hem de atalet kuvvetleri önemlidir. Bunun sonucu olarak, atalet kuvvetlerinin viskoz kuvvetlere oranı olan Reynolds sayısının sınır taka akışını tanımlamada önemli olması hiç de hayret verici değildir. Reynolds sayısında kullanılan tipik uzunluk ya akış yönünde sınır takanın uzunluğu ya da sınır takanın kalınlığıdır. Sınır taka içindeki akış laminer veya türbülanslı olilir. Geçiş bölgesini belirleyecek herhangibir Reynolds sayısı yoktur. Sınır takadaki geçişi etkileyecek etmenler basınç gradyenti, yüzey pürüzlülüğü, ısı taşınımı, dış kuvvetler ve serbest akımdaki bozulmalardır. 23, Şafak Nur ERTÜRK Bölüm

4 DERS NOTLARI SIKIŞTIRILAMAZ VİSKOZ DIŞ AKIŞ AKM 22 AKIŞKANLAR MEKANİĞİ Birçok gerçek akışda, sınır taka uzun ve düz yüzeyler üzerinde oluşur. Gemi ve denizaltı teknesi, uçak kanatları ve düz araziler üzerindeki atmosferik olaylar buna örnek olarak verilebilir.... Sınır taka, giriş ucundan kısa bir mesafe içinde laminerdir. Geçiş tek bir nokta yerine, belirli bir bölgede oluşur. Geçiş bölgesi akışın tamamen türbülanslı hale geldiği bölgeye kadar devam eder. Şekil Sınır Taka Kalınlığı Sınır taka viskoz kuvvetlerin önemli olduğu katı cisim yüzeyine yakın olan bölgedir. Sınır taka kalınlığı, katı cisim yüzeyinden ölçülen ve hızın %1yaklaşıklıkla serbest akım hızına eşit olduğu noktaya kadar olan mesafedir. Hız profili, yumuşak bir şekilde ve asimptotik olarak serbest akıma birleştiği için, sınır taka kalınlığı 'yı ölçmek zordur. Sınır taka içindeki viskoz kuvvetlerin etkisi il akış yavaşlar. Katı cisim yüzeyi üzerindeki kütle akış hızı, sınır takanın olmaması halinde aynı bölgeden geçecek lan kütle akış hızından daha azdır. Viskoz kuvvetlerin etkisi ile akış hızındaki azalma ρ ( U u) dy Eğer viskoz kuvvetler yoksa, bir kesitteki hız U olacaktı. Deplasman kalınlığını * olarak * alırsak, kütle akışındaki azalma ρu olur. ρ U * ρ ( U u) dy Sıkıştırılamaz akış için ρsit 23, Şafak Nur ERTÜRK Bölüm

5 DERS NOTLARI SIKIŞTIRILAMAZ VİSKOZ DIŞ AKIŞ AKM 22 AKIŞKANLAR MEKANİĞİ * u u 1 dy 1 dy U U (9.1) u U alınırsa o zaman integre edilen terim y için sıfır olur. Sınır taka içindeki akışın yavaşlaması viskoz olmayan akışa göre herhangi bir kesitteki momentum akışında bir azalmaya neden olur. Sınır taka boyunca gerçek kütle akışındaki, ρ udy 'daki, momentum azalması, ρu( U u) dy 'dir. Eğer viskoz kuvvetler yoksa, o zaman katı cisim yüzeyini θ momentum kalınlığı kadar yukarıya ötelemek gerekir. Momentumdaki azalma ρu 2 θ 'dır. Momentum kalınlığı, θ, momentum akışı sınır taka boyunca momentum akışındaki azalmaya eşit olan, U hızındaki akışkan takasının kalınlığı olarak tanımlanır. 2 ρu θ ρu ρsit ( U u) dy θ u u u u 1 dy 1 dy U U U U (9.2) terim y için sıfır olur. Deplasman ve momentum kalınlıkları, * ve θ, integral kalınlıkları olarak tanımlanır. Tanımları yapılan integraller sınır tka boyuncadır. Integrantın serbest akımda sıfır olduğu integraller yardımıyla tanımlandıkları için, deneysel veriler yoluyla hesaplanmaları sınır taka kalınlığı kullanılarak hesaplanmalarından daha kolaydır. 9.3 Momentum İntegral Denklemi Laminer sınır taka (düz plaka üzerinde) çözümü 198'de Blasius tarafından elde edildi. Blasius'un ortaya koyduğu ifadelerin tam çözümü sınır taka kalınlığı için ve kayma gerilmesi için gerekli ifadeleri bize verir. Hız profilleri u/u ve y/ olarak boyutsuz olarak çizilirse gene benzer formda çıkarlar. Hız profili için kapalı çözüm mümkün değildir ve sayısal çözüm gerekir. Bunun yanısıra, yaklaşık yöntemler düz plaka üzerindeki laminer-sınır taka için kapalı çözümler elde etmek için kullanılır. Aynı yaklaşık yöntemler türbülanslı sınır taka 23, Şafak Nur ERTÜRK Bölüm

6 DERS NOTLARI SIKIŞTIRILAMAZ VİSKOZ DIŞ AKIŞ AKM 22 AKIŞKANLAR MEKANİĞİ oluşumuna ait özellikler için kullanılilir. Tam çözüm türbülanslı sınır taka için mevcut olmadığından, bu durumda yaklaşık yöntemler gerekli olur. Burada, bir cisim boyunca mesafenin fonksiyonu olarak laminer veya türbülanslı S-T kalınlığı için iyi bir yaklaşım yapmamıza yardım edecek bir analiz gerçekleştireceğiz. İntegral denklemlerini diferansiyel kontrol hacmine uygulayacağız. Buradaki amacımız, cisim boyunca uzunluğun fonksiyonu olarak büyüyen S-T 'nın davranışını tahmin etmemize yarayacak bir denklem bulmak. Çıkan bağıntı hem laminer hem de türbülanslı takaya uygulanilecek ve sıfır basınç gradyentiyle sınırlı kalmayacak. Katı bir yüzey üzerinde sıkıştırılamaz, daimi bir akışı düşünelim. S-T kalınlığı, artan x mesafesi ile kalınlaşır. Analiz için şekildeki gibi uzunluğunda, w kalınlığında ve (x) yüksekliğinde bir kontrol hacmi alıyoruz. Şekil 9-3 S-T kalınlığı 'yı x'in fonksiyonu olarak bulmak istiyoruz. ad kontrol hacmininin ve yüzeylerinden kütle akışı olacaktır. yüzeyi için ne denilebilir? yüzeyinden kütle akışı olacak mıdır? Daha önce, S-T'nin sınırının bir akım hattı olmadığını görmüştük. Bu yüzden yüzeyince kütle akışı olacaktır. ad katı cisim sınırı olduğunan, bu yüzey boyunca kütle akışı olmayacaktır. Kontrol hacminin üzerine etkiyen kuvvetleri ve kontrol yüzeyleri boyunca momentum akışını ele almadan önce, kontrol hacm,n,n herbir yüzeyinden geçen kütle miktarını hesaplamak için süreklilik denklemini uygulayalım. a) Süreklili Denklemi Temel denklem, r r ρd + ρvda (4.13) t CV Kuller: 1) Daimi akış 2) İki boyutlu akış O zaman r r ρ V da m& veya CS + m& + m& CS m & m& m& 23, Şafak Nur ERTÜRK Bölüm

7 DERS NOTLARI SIKIŞTIRILAMAZ VİSKOZ DIŞ AKIŞ AKM 22 AKIŞKANLAR MEKANİĞİ Şimdi bu terimleri hesap edelim. Yüzey Kütle Akışı yüzeyi x'de yer alıyor. Akış iki-boyutlu olduğu için (z ile değişim yok), kütle akışı m& ρudy yüzeyi x+'de yer alıyor. x koordinatı civarında m& 'yi Taylor serisine açarsak m& m& x+ m& x + ve böylece m& ρudy + yüzeyi için & m x udy ρ ρudy Şimdi de momentum akışı ve kuvvetlerini ele alalım. b) Momentum Denklemi Momentum denkleminin x bileşeninin ad kontrol hacmine uygulayalım. Temel denklem, F Sx + F Bx t r r u ρ d + u ρ V. da (4.19a) CV CS Kul: F Bx O zaman, F ( ma) + ( ma) + ( ma) (ma):momentum akışı Sx Bu denklemi ad diferansiyel kontrol hacmine uygulamak için, kontrol yüzeylerinden geçen momentum akışı için ve yüzeylere etkiyen kuvvetler için bağıntıları elde etmemiz gerekir. 23, Şafak Nur ERTÜRK Bölüm

8 DERS NOTLARI SIKIŞTIRILAMAZ VİSKOZ DIŞ AKIŞ AKM 22 AKIŞKANLAR MEKANİĞİ Yüzey Momentum Akışı yüzeyi x'de yer alıyor. Akış iki-boyutlu olduğu için (z ile değişim yok), yüzeyince momentum akışı (ma) ( ma) uρudy yüzeyi x+'de yer alıyor. x koordinatı civarında (ma)'yı Taylor serisine açarsak ( ma) ( ma) x+ ( ma) x + ve böylece x ( ma) u udy u uudy w ρ + ρ yüzeyinden geçen kütle U hızına sahip olduğu için, 'yi geçen momentum akışı ( ma ) U & ( ma) m U udy ρ Kontrol yüzeyinden geçen net momentum akışı, CS r uρv. da uρudy w + uρudy w + u udy w U udy ρ ρ Terimleri toplarsak CS r uρv. da u udy U udy ρ ρ Şimdi kontrol yüzeyinden geçen momentum akışının x bileşenine ait bağıntıyı elde ettik. Dolayısı ile kontrol hacmine etkiyen yüzey kuvvetlerinin x bileşenini ele alalım. Kuvvetlerin x bileşenlerinin analiz etmek için, normal kuvvetlerin kontrol hacminin üç yüzeyine etkidiğini görebiliriz. Ek olarak, kayma kuvveti ad yüzeyine etkir. Hız gradyenti S-T'nin ucunda sıfır olduğundan yüzeyine hiçbir kesme kuvveti etkimez. 23, Şafak Nur ERTÜRK Bölüm

9 DERS NOTLARI SIKIŞTIRILAMAZ VİSKOZ DIŞ AKIŞ AKM 22 AKIŞKANLAR MEKANİĞİ Yüzey ad Kuvvet x'de basınç p ise, o zaman yüzeyindeki kuvvet, F pw S-T çok inceolduğu için basıncın y yönündeki değişimi ihmal edilebilir, pp(x) yüzeyi x+'de yer alıyor. x koordinatı civarında basıncı Taylor serisine açarsak dp px+ px + x ve böylece yüzeyine etkiyen kuvvet dp F p ( d )w x + + x yüzeyine etkiyen ortalama basınç 1 dp p + 2 x yüzeyine etkiyen normal kuvvetin x bileşeni 1 dp F p wd + 2 x ad yüzeyine etkiyen kesme kuvveti 1 Fad τ w + dτ w w 2 Kontrol hacmine etkiyen herbir kuvvetin x bileşenini toplarsak F Sx dp 1 dp 1. d dτ w w 2 2 dad olduğu için yukarıdaki denklemdeki ikinci terim ihmal edilir. Bu terimleri x momentum denkleminde yerine koyarsak, dp τ w w Her iki tarafı w ile bölersek uρudy U ρudy w dp τ w uρudy U ρudy (9.16) Bu denklem, S-T içinde etkiyen kuvvetlerin x bileşeni ile momentum akışı arasındaki bağıntıyı veren "momentum integral denklemi"dir. S-T içindeki hız asimptotik olarak serbest akışın hızına yükseldiği için, hesaplamalar için bu denklem düzenlenebilir. Basınç gradyenti dp/, S-T dışındaki akışa Bernoulli denklemini uygulayarak hesaplanilir; 23, Şafak Nur ERTÜRK Bölüm

10 DERS NOTLARI SIKIŞTIRILAMAZ VİSKOZ DIŞ AKIŞ AKM 22 AKIŞKANLAR MEKANİĞİ dp / ρudu /. dy olduğuna göre τ w uρudy + U ρudy + du ρudy U o zaman ρudy du ρuudy ρ udy τ w ve du ρu( U u) dy + ρ( U u) dy τ w τ ρ d U 2 2 ( U θ ) w * u u du u ρ ( 1 ) dy + U ρ(1 ) dy U U U + U du Bu "momentum integral denklemi"dir. Hız profili için uygun bir form kulü yapılır ve kayma gerilmesi diğer değişkenlere bağlı olarak ifade ediliyorsa bu denklem sınır taka kalınlığı için adi bir diferansiyel denklem verir. S-T kalınlığı bir kez hesaplanırsa, momentum kalınlığı, deplasman kalınlığı ve kayma gerilmesi hesaplanilir. yukarıdaki denklem, kontrol hacmine süreklilik ve momentum denklemlerini uygulayarak elde edildi. Bu denklem çıkarılırken yapılan kuller, a) Daimi akış b) Sıkıştırılamaz akış c) İki boyutlu akış d) Dış kuvvet yok Burada τ w kayma gerilmesini hız alanına bağlayan özel bir kul yapılmamıştır. Bu yüzden denklem hem laminer hem de türbülanslı S-T için geçerlidir. S-T kalınlığını x'in fonksiyonu olarak bulmak için, 1) U(x) hız dağılımına ilk yaklaşım yapılır. Bu, viskoz olmayan akış teoreminden yapılır (S-T yokmuş gibi düşünülen hız dağılımı). Bernoulli denklemi kullanılarak S-T içindeki basınç serbest akım hızı U'ya bağlı olarak ifade edilir. 2) S-T içinde uygun bir hız profili kulü yapılır. 23, Şafak Nur ERTÜRK Bölüm

11 DERS NOTLARI SIKIŞTIRILAMAZ VİSKOZ DIŞ AKIŞ AKM 22 AKIŞKANLAR MEKANİĞİ 3) τ w hız alanına bağlı olarak ifade edilir. Türbülanslı Akış Sıfır basınç gradyenti için sınır tkaya ait hız profili detayları boru içindeki türbülanslı akış için olana benzer. Momentum integral denklemi bir yaklaşım olduğu için uygun bir hız profili seçmek zorundayız. Aksi taktirde çözüm zorlaşır. 2 dθ 2 d u u τ w ρu ρu 1 dy (9.18) U U 9.4 Sınır Taka Akışı İçindeki Basınç Gradyenti Düz plaka üzerindeki sınır taka akışına ait analizler başlangıçta sıfır basınç gradyenti için yapılır. Bu hal için momentum integral denklemi Bu denklem çıkarılırken akış için herhangi bir modelleme yapılmadığı için hem laminer sınır taka hem de türbülanslı sınır taka için geçerlidir. Denklem, kayma gerilmesinin akışkanın momentumundaki azalma ile dengelendiğini gösterir. Bunun sonucu olarak da hız profili x boyunca değişime uğrar. Sınır taka gittikçe kalınlaşır ve cidara yakın akışkan daha da yavaşlar (momentum kaybı). BÖLÜM B BATIRILMIŞ CİSİMLER ETRAFINDAKİ AKIŞ 23, Şafak Nur ERTÜRK Bölüm

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT ÇEV-220 Hidrolik Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT Borularda Türbülanslı Akış Mühendislik uygulamalarında akışların çoğu türbülanslıdır ve bu yüzden türbülansın

Detaylı

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU HİDROLİK Yrd. Doç. Dr. Fatih TOSUNOĞLU Ders Hakkında Genel Bilgiler Görüşme Saatleri:---------- Tavsiye edilen kitaplar: 1-Hidrolik (Prof. Dr. B. Mutlu SÜMER, Prof. Dr. İstemi ÜNSAL. ) 2-Akışkanlar Mekaniği

Detaylı

TAŞINIMIN FİZİKSEL MEKANİZMASI

TAŞINIMIN FİZİKSEL MEKANİZMASI BÖLÜM 6 TAŞINIMIN FİZİKSEL MEKANİZMASI 2 or Taşınımla ısı transfer hızı sıcaklık farkıyla orantılı olduğu gözlenmiştir ve bu Newton un soğuma yasasıyla ifade edilir. Taşınımla ısı transferi dinamik viskosite

Detaylı

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii Last A Head xvii İ çindekiler 1 GİRİŞ 1 1.1 Akışkanların Bazı Karakteristikleri 3 1.2 Boyutlar, Boyutsal Homojenlik ve Birimler 3 1.2.1 Birim Sistemleri 6 1.3 Akışkan Davranışı Analizi 9 1.4 Akışkan Kütle

Detaylı

Bölüm 8: Borularda sürtünmeli Akış

Bölüm 8: Borularda sürtünmeli Akış Bölüm 8: Borularda sürtünmeli Akış Laminer ve Türbülanslı Akış Laminer Akış: Çalkantısız akışkan tabakaları ile karakterize edilen çok düzenli akışkan hareketi laminer akış olarak adlandırılır. Türbülanslı

Detaylı

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ Gerçek akışkanın davranışı viskoziteden dolayı meydana gelen ilave etkiler nedeniyle ideal akışkan akımlarına göre daha karmaşık yapıdadır. Gerçek akışkanlar hareket

Detaylı

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT ÇEV-220 Hidrolik Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT Borularda Akış Boru ve kanallardaki sıvı veya gaz akışından, yaygın olarak ısıtma soğutma uygulamaları ile akışkan

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. Akışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: 1- (24 Puan) Şekildeki 5.08 cm çaplı 38.1 m uzunluğunda, 15.24 cm çaplı 22.86 m uzunluğunda ve 7.62 cm çaplı

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. kışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI DENEY FÖYÜ DENEY ADI SINIR TABAKA DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEYİ YAPTIRAN ÖĞRETİM ELEMAN

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR-II BORU ve DİRSEKLERDE ENERJİ KAYBI DENEYİ 1.Deneyin Adı: Boru ve dirseklerde

Detaylı

AKIŞKANLAR MEKANİĞİ. Doç. Dr. Tahsin Engin. Sakarya Üniversitesi Makine Mühendisliği Bölümü

AKIŞKANLAR MEKANİĞİ. Doç. Dr. Tahsin Engin. Sakarya Üniversitesi Makine Mühendisliği Bölümü AKIŞKANLAR MEKANİĞİ Doç. Dr. Tahsin Engin Sakarya Üniversitesi Makine Mühendisliği Bölümü İLETİŞİM BİLGİLERİ: Ş Ofis: Mühendislik Fakültesi Dekanlık Binası 4. Kat, 413 Nolu oda Telefon: 0264 295 5859 (kırmızı

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 kışkan Statiğine Giriş kışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ

Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ Akışkanlar Mekaniği Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ Doç. Dr. İ. Gökhan AKSOY Denizanasının (Aurelia aurita) düzenli yüzme hareketi. Denizanası gövdesini kasıp akışkanı ittikten sonra süzülerek

Detaylı

AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI ( )

AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI ( ) 1 3 4 5 6 T AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI (13.11.008) Ad-Soad: No: Grup: 1) a) İdeal ve gerçek akışkan nedir? Hız dağılımlarını çiziniz. Pratikte ideal akışkan var mıdır? Açıklaınız. İdeal Akışkan;

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

3. GEMİ DİRENCİ, GEMİ DİRENCİNİN BİLEŞENLERİ, SINIR TABAKA

3. GEMİ DİRENCİ, GEMİ DİRENCİNİN BİLEŞENLERİ, SINIR TABAKA 3. GEMİ DİRENCİ, GEMİ DİRENCİNİN BİLEŞENLERİ, SINIR TABAKA 3.1 Gemi Direnci Bir gemi viskoz bir akışkanda (su + hava) v hızıyla hareket ediyorsa, gemiye viskoziteden kaynaklanan yüzeye teğet sürtünme kuvvetleri

Detaylı

9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir.

9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir. 9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir. 9.15 Bu bölümde verilen koordinat dönüşümü uygulanırsa;

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Yrd. Doç. Dr. Beytullah EREN Çevre Mühendisliği Bölümü BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Atatürk Barajı (Şanlıurfa) BATMIŞ YÜZEYLERE ETKİYEN KUVVETLER

Detaylı

Akışkanların Dinamiği

Akışkanların Dinamiği Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

Akışkanlar Mekaniği II (ME 302) Ders Detayları

Akışkanlar Mekaniği II (ME 302) Ders Detayları Akışkanlar Mekaniği II (ME 302) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Akışkanlar Mekaniği II ME 302 Güz 3 0 0 3 5 Ön Koşul Ders(ler)i ME 301 Dersin

Detaylı

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. Bir otomobile lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır. Hava sıcaklığı

Detaylı

3.1. Basınç 3. BASINÇ VE AKIŞKAN STATİĞİ

3.1. Basınç 3. BASINÇ VE AKIŞKAN STATİĞİ 3. BASINÇ VE AKIŞKAN STATİĞİ Doç.Dr. Serdar GÖNCÜ (Ağustos 2011) 3.1. Basınç Bir akışkan tarafından birim alana uygulanan normal kuvvete basınç denir Basınç birimi N/m 2 olup buna pascal (Pa) denir. 1

Detaylı

AÇIK KANAL AKIMI. Hopa Yukarı Sundura Deresi-ARTVİN

AÇIK KANAL AKIMI. Hopa Yukarı Sundura Deresi-ARTVİN AÇIK KANAL AKIMI Hopa Yukarı Sundura Deresi-ARTVİN AÇIK KANAL AKIMI (AKA) Açık kanal akımı serbest yüzeyli akımın olduğu bir akımdır. serbest yüzey hava ve su arasındaki ara yüzey @ serbest yüzeyli akımda

Detaylı

GEMİ DİRENCİ ve SEVKİ

GEMİ DİRENCİ ve SEVKİ GEMİ DİRENCİ ve SEVKİ 1. GEMİ DİRENCİNE GİRİŞ Geminin istenen bir hızda seyredebilmesi için, ana makine gücünün doğru bir şekilde seçilmesi gerekir. Bu da gemiye etkiyen su ve hava dirençlerini yenebilecek

Detaylı

Akışkanların Dinamiği

Akışkanların Dinamiği Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUARI DENEY FÖYÜ DENEY ADI ZORLANMIŞ TAŞINIM DERSİN ÖĞRETİM ÜYESİ DENEYİ YAPTIRAN ÖĞRETİM ELEMANI DENEY

Detaylı

Özel Laboratuvar Deney Föyü

Özel Laboratuvar Deney Föyü Özel Laboratvar Deney Föyü Deney Adı: Mikrokanatlı borlarda türbülanslı akış Deney Amacı: Düşey konmdaki iç yüzeyi mikrokanatlı bordaki akış karakteristiklerinin belirlenmesi 1 Mikrokanatlı Bor ile İlgili

Detaylı

İçindekiler 1 GENEL KAVRAM ve TANIMLAR 2 TEMEL YASALAR ve KORUNUM DENKLEMLERİ vii

İçindekiler 1 GENEL KAVRAM ve TANIMLAR 2 TEMEL YASALAR ve KORUNUM DENKLEMLERİ vii 1 GENEL KAVRAM ve TANIMLAR 1 1.1 Giriş... 1 1.2 Sürekli Ortam Yaklaşımı..... 2 1.2.1 Bir Maddenin Moleküler ve Atomik Seviyeleri... 3 1.2.2 Sürekli Ortam İçin Sınırlamalar... 4 1.3 Laminar ve Türbülanslı

Detaylı

Isı Kütle Transferi. Zorlanmış Dış Taşınım

Isı Kütle Transferi. Zorlanmış Dış Taşınım Isı Kütle Transferi Zorlanmış Dış Taşınım 1 İç ve dış akışı ayır etmek, AMAÇLAR Sürtünme direncini, basınç direncini, ortalama direnc değerlendirmesini ve dış akışta taşınım katsayısını, hesaplayabilmek

Detaylı

Suyun bir yerden bir başka yere iletilmesi su mühendisliğinin ana ilgi konusunu oluşturur. İki temel iletim biçimi vardır:

Suyun bir yerden bir başka yere iletilmesi su mühendisliğinin ana ilgi konusunu oluşturur. İki temel iletim biçimi vardır: CE 307 Hidrolik 1. GİRİŞ Kapsam Suyun bir yerden bir başka yere iletilmesi su mühendisliğinin ana ilgi konusunu oluşturur. İki temel iletim biçimi vardır: 1. İçindeki akımın basınçlı olduğu kapalı sistemler.

Detaylı

SORU #1. (20 p) (İlişkili Olduğu / Ders Öğrenme Çıktısı: 1,5,6 Program Çıktısı: 1)

SORU #1. (20 p) (İlişkili Olduğu / Ders Öğrenme Çıktısı: 1,5,6 Program Çıktısı: 1) Süre 90 dakikadır. T.C. SAKARYA ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ DERSİ 2015-2016 GÜZ FİNAL SINAVI (Prof.Dr. Tahsin ENGİN - Doç.Dr. Nedim Sözbir - Yrd.Doç.Dr. Yüksel KORKMAZ Yrd.Doç.Dr.

Detaylı

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ 1 Bir otomobil lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır Hava sıcaklığı 25 C iken etkin basınç 210 kpa dır Eğer lastiğin hacmi 0025

Detaylı

Pervane 10. PERVANE TEORİLERİ. P 2 v 2. P 1 v 1. Gemi İlerleme Yönü P 0 = P 2. Geliştirilmiş pervane teorileri aşağıdaki gibi sıralanabilir:

Pervane 10. PERVANE TEORİLERİ. P 2 v 2. P 1 v 1. Gemi İlerleme Yönü P 0 = P 2. Geliştirilmiş pervane teorileri aşağıdaki gibi sıralanabilir: . PEVANE TEOİLEİ Geliştirilmiş perane teorileri aşağıdaki gibi sıralanabilir:. Momentum Teorisi. Kanat Elemanı Teorisi 3. Sirkülasyon (Girdap) Teorisi. Momentum Teorisi Momentum teorisinde aşağıdaki kabuller

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

AKM BÖLÜM 11 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı

AKM BÖLÜM 11 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı AKM 205 - BÖLÜM 11 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı 1. Bir arabanın 1 atm, 25 C ve 90 km/h lik tasarım şartlarında direnç katsayısı büyük bir rüzgar tünelinde tam ölçekli test ile

Detaylı

Saf Eğilme(Pure Bending)

Saf Eğilme(Pure Bending) Saf Eğilme(Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki şekil değiştirmesini/ deformasyonları incelenecek. Burada çıkarılacak formüller

Detaylı

Momentum iletimi. Kuvvetin bileşenleri (Momentum akısının bileşenleri) x y z x p + t xx t xy t xz y t yx p + t yy t yz z t zx t zy p + t zz

Momentum iletimi. Kuvvetin bileşenleri (Momentum akısının bileşenleri) x y z x p + t xx t xy t xz y t yx p + t yy t yz z t zx t zy p + t zz 1. Moleküler momentum iletimi Hız gradanı ve basınç nedenile Kesme gerilmesi (t ij ) ve basınç (p) Momentum iletimi Kuvvetin etki ettiği alana dik ön (momentum iletim önü) Kuvvetin bileşenleri (Momentum

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

2. Basınç ve Akışkanların Statiği

2. Basınç ve Akışkanların Statiği 2. Basınç ve Akışkanların Statiği 1 Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvet olarak tanımlanır. Basıncın birimi pascal (Pa) adı verilen metrekare başına newton (N/m 2 ) birimine

Detaylı

Pürüzlü Cidar

Pürüzlü Cidar 10.3.3. Pürüzlü Cidar Şimdiye kadar boru cidarını pürüzsüz kabul ettik ve bu tip cidarlara cilalı cidar denir. Yükseklikleri k s olan elemanları sık bir şekilde boru cidarına yapıştırılırsa, boru cidarını

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METODLAR -I OSBORN REYNOLDS DENEY FÖYÜ 1. Deney Amacı Bu deneyin amacı laminer (katmanlı)

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 0 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY İÇİNDE SABİT SICAKLIKTA SİLİNDİRİK ISITICI BULUNAN DİKDÖRTGEN PRİZMATİK SAC KUTU YÜZEYLERİNDEN ZORLANMIŞ TAŞINIM

Detaylı

KAYMALI YATAKLAR II: Radyal Kaymalı Yataklar

KAYMALI YATAKLAR II: Radyal Kaymalı Yataklar KAYMALI YATAKLAR II: Radyal Prof. Dr. İrfan KAYMAZ Mühendislik Fakültesi Makine Mühendisliği Bölümü Giriş Bu bölüm sonunda öğreneceğiniz konular: Radyal yataklama türleri Sommerfield Sayısı Sonsuz Genişlikte

Detaylı

KAYMA GERİLMESİ (ENİNE KESME)

KAYMA GERİLMESİ (ENİNE KESME) KAYMA GERİLMESİ (ENİNE KESME) Demir yolu traversleri çok büyük kesme yüklerini taşıyan kiriş olarak davranır. Bu durumda, eğer traversler ahşap malzemedense kesme kuvvetinin en büyük olduğu uçlarından

Detaylı

MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ. Akışkanlar Mekaniği MK-312 3/Güz (3+1+0) 3.5 7

MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ. Akışkanlar Mekaniği MK-312 3/Güz (3+1+0) 3.5 7 MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS Akışkanlar Mekaniği MK-312 3/Güz (3+1+0) 3.5 7 Dersin Dili : İngilizce Dersin Seviyesi

Detaylı

BOYUTSUZ SAYILAR VE FİZİKSEL ANLAMLARI

BOYUTSUZ SAYILAR VE FİZİKSEL ANLAMLARI BOYUTSUZ SAYILAR VE FİZİKSEL ANLAMLARI Bitlis Eren Üniversitesi Mühendislik Mimarlık Fakültesi Makina Mühendisliği Bölümü Enerji Ana Bilim Dalı Bitlis Türkiye nkalkan@beu.edu.tr Giriş - Boyutsuz Sayılar

Detaylı

(p = osmotik basınç)

(p = osmotik basınç) EK II RAOULT KANUNU OSMOTİK BASINÇ Şek- 1 Bir cam kap içine oturtulmuş gözenekli bir kabın içinde şekerli su, cam kapla da saf su bulunsun ve her iki kapta düzeyler aynı olsun (şek. 1). Bu koşullar altında

Detaylı

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Gerilme ve Şekil değiştirme bileşenlerinin lineer ilişkileri Hooke Yasası olarak bilinir. Elastisite Modülü (Young Modülü) Tek boyutlu Hooke

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

GÜZ DÖNEMİ AKIŞKANLAR MEKANİĞİ ÇÖZÜMLÜ SORULARI Bölüm 7 (Boyut Analizi ve Benzerlik) Prof. Dr. Tahsin Engin

GÜZ DÖNEMİ AKIŞKANLAR MEKANİĞİ ÇÖZÜMLÜ SORULARI Bölüm 7 (Boyut Analizi ve Benzerlik) Prof. Dr. Tahsin Engin 05-06 GÜZ DÖNEMİ AKIŞKANLAR MEKANİĞİ ÇÖZÜMLÜ SORULARI Bölüm 7 (Boyut Analizi ve Benzerlik) Prof. Dr. Tahsin Engin 7-9 Termodinamik alanında kullanılan ve aşağıda verilen değişkenlerin her birinin ana boyutlarını

Detaylı

AKIġKANLAR MEKANĠĞĠ LABORATUARI 1

AKIġKANLAR MEKANĠĞĠ LABORATUARI 1 AKIġKANLAR MEKANĠĞĠ LABORATUARI 1 Deney Sorumlusu ve Uyg. Öğr. El. Prof. Dr. İhsan DAĞTEKİN Prof. Dr. Haydar EREN Doç.Dr. Nevin ÇELİK ArĢ.Gör. Celal KISTAK DENEY NO:1 KONU: Su jeti deneyi. AMAÇ: Su jetinin

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

Numerical Investigation of the Effect of Needle Tilting Angle on Irrigant Flow Inside the Tooth Root Canal

Numerical Investigation of the Effect of Needle Tilting Angle on Irrigant Flow Inside the Tooth Root Canal Numerical Investigation of the Effect of Needle Tilting Angle on Irrigant Flow Inside the Tooth Root Canal İğne Açısının Diş Kök Kanalı İçindeki İrigasyon Sıvısının Akışına Etkisinin Sayısal Analizi A.

Detaylı

Elastisite Teorisi Düzlem Problemleri için Sonuç 1

Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Düzlem Gerilme durumu için: Bilinmeyenler: Düzlem Şekil değiştirme durumu için: Bilinmeyenler: 3 gerilme bileşeni : 3 gerilme bileşeni : 3 şekil değiştirme

Detaylı

SORU #1. (20 p) (İlişkili Olduğu / Ders Öğrenme Çıktısı: 1,5,6 Program Çıktısı: 1)

SORU #1. (20 p) (İlişkili Olduğu / Ders Öğrenme Çıktısı: 1,5,6 Program Çıktısı: 1) Süre 90 dakikadır. T.C. SAKARYA ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ DERSİ 015-016 GÜZ FİNAL SINAVI (Prof.Dr. Tahsin ENGİN - Doç.Dr. Nedim Sözbir - Yrd.Doç.Dr. Yüksel KORKMAZ Yrd.Doç.Dr.

Detaylı

Akışkanlar Mekaniği. Dr. Osman TURAN. Makine ve İmalat Mühendisliği. osman.turan@bilecik.edu.tr

Akışkanlar Mekaniği. Dr. Osman TURAN. Makine ve İmalat Mühendisliği. osman.turan@bilecik.edu.tr Akışkanlar Mekaniği Dr. Osman TURAN Makine ve İmalat Mühendisliği osman.turan@bilecik.edu.tr Kaynaklar Ders Değerlendirmesi 1. Vize 2. Vize Ödev ve Kısa sınavlar Final % 20 % 25 % 15 % 40 Ders İçeriği

Detaylı

Bölüm 2: Akışkanların özellikleri. Doç. Dr. Tahsin Engin Sakarya Üniversitesi Makine Mühendisliği Bölümü

Bölüm 2: Akışkanların özellikleri. Doç. Dr. Tahsin Engin Sakarya Üniversitesi Makine Mühendisliği Bölümü Bölüm 2: Akışkanların özellikleri Doç. Dr. Tahsin Engin Sakarya Üniversitesi Makine Mühendisliği Bölümü Giriş Bir sistemin herhangi bir karakteristiğine özellik denir. Bilinenler: basınç P, sıcaklıkt,

Detaylı

KAYMALI YATAKLAR. Kaymalı Yataklar. Prof. Dr. İrfan KAYMAZ. Erzurum Teknik Üniversitesi. Mühendislik ve Mimarlık Fakültesi Makine Mühendisliği Bölümü

KAYMALI YATAKLAR. Kaymalı Yataklar. Prof. Dr. İrfan KAYMAZ. Erzurum Teknik Üniversitesi. Mühendislik ve Mimarlık Fakültesi Makine Mühendisliği Bölümü KAYMALI YATAKLAR Prof. Dr. İrfan KAYMAZ Mühendislik ve Mimarlık Fakültesi Makine Mühendisliği Bölümü Giriş Bu bölüm sonunda öğreneceğiniz konular: Eksenel yataklama türleri Yatak malzemeleri Hidrodinamik

Detaylı

BÖLÜM 5 KANAT PROFĐLLERĐNĐN AERODĐNAMĐĞĐ

BÖLÜM 5 KANAT PROFĐLLERĐNĐN AERODĐNAMĐĞĐ BÖÜM 5 KANAT PROFĐERĐNĐN AERODĐNAMĐĞĐ 5.1. Kanat profili, 2-boyutlu akım 5.2. Kanat profili geometrisi 5.3 Kanat profili etrafındaki akım, taşımanın oluşumu 5.4 Kanat profilinin performans büyüklükleri

Detaylı

VENTURİMETRE DENEYİ 1. GİRİŞ

VENTURİMETRE DENEYİ 1. GİRİŞ VENTURİMETRE DENEYİ 1. GİRİŞ Genellikle herhangi bir akış esnasında akışkanın tabakaları farklı hızlarda hareket ederler ve akışkanın viskozitesi, uygulanan kuvvete karşı direnç gösteren tabakalar arasındaki

Detaylı

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUVARI BERNOULLİ DENEYİ FÖYÜ 1. GENEL BİLGİLER Bernoulli denklemi basınç, hız ve yükseklik arasındaki

Detaylı

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise;

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise; Deney No : M3 Deneyin Adı : EYLEMSİZLİK MOMENTİ VE AÇISAL İVMELENME Deneyin Amacı : Dönme hareketinde eylemsizlik momentinin ne demek olduğunu ve nelere bağlı olduğunu deneysel olarak gözlemlemek. Teorik

Detaylı

Kirişlerde Kesme (Transverse Shear)

Kirişlerde Kesme (Transverse Shear) Kirişlerde Kesme (Transverse Shear) Bu bölümde, doğrusal, prizmatik, homojen ve lineer elastik davranan bir elemanın eksenine dik doğrultuda yüklerin etkimesi durumunda en kesitinde oluşan kesme gerilmeleri

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 7 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 7 Kasım 1999 Saat: 21.50 Problem 7.1 (Ohanian, sayfa 271, problem 55) Bu problem boyunca roket

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

ÇÖZÜM 1) konumu mafsallı olup, buraya göre alınacak moment ile küçük pistona etkileyen kuvvet hesaplanır.

ÇÖZÜM 1) konumu mafsallı olup, buraya göre alınacak moment ile küçük pistona etkileyen kuvvet hesaplanır. SORU 1) Şekildeki (silindir+piston) düzeni vasıtası ile kolunda luk bir kuvvet elde edilmektedir. İki piston arasındaki hacimde yoğunluğu olan bir akışkan varıdr. Verilenlere göre büyük pistonun hareketi

Detaylı

LİNEER DALGA TEORİSİ. Page 1

LİNEER DALGA TEORİSİ. Page 1 LİNEER DALGA TEORİSİ Giriş Dalgalar, gerçekte viskoz akışkan içinde, irregüler ve değişken geçirgenliğe sahip bir taban üzerinde ilerlerler. Ancak, çoğu zaman akışkan hareketi neredeyse irrotasyoneldir.

Detaylı

BÖLÜM 10 BORULAR İÇERİSİNDE AKIM. Hidrolik - ITU, Ercan Kahya

BÖLÜM 10 BORULAR İÇERİSİNDE AKIM. Hidrolik - ITU, Ercan Kahya BÖLÜM 10 BORULAR İÇERİSİNDE AKIM 10.1. HAREKET DENKLEMİ v Zamanla değişmeyen akımı v Hareket denklemini (d) HAREKET DENKLEMİ (p + L1p) m 2 - pnr 2 - y (m 2 L1x) sina - 't (2m L1x) Kütle x DEĞERLENDİRME:

Detaylı

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması.

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması. ATALET MOMENTİ Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması. UYGULAMALAR Şekilde gösterilen çark büyük bir kesiciye bağlıdır. Çarkın kütlesi, kesici bıçağa

Detaylı

Bölüm 10 NAVIER STOKES DENKLEMİNİN YAKLAŞIK ÇÖZÜMLERİ

Bölüm 10 NAVIER STOKES DENKLEMİNİN YAKLAŞIK ÇÖZÜMLERİ Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Bölüm 10 NAVIER STOKES DENKLEMİNİN YAKLAŞIK ÇÖZÜMLERİ Bu bölümde Navier-Stokes denklemini,

Detaylı

Gerilme Dönüşümleri (Stress Transformation)

Gerilme Dönüşümleri (Stress Transformation) Gerilme Dönüşümleri (Stress Transformation) Bu bölümde, bir noktaya etkiyen ve bir koordinat ekseni ile ilişkili gerilme bileşenlerini, başka bir koordinat sistemi ile ilişkili gerilme bileşenlerine dönüştürmek

Detaylı

AKM 205 BÖLÜM 3 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

AKM 205 BÖLÜM 3 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut AKM 205 BÖLÜM 3 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. 70 kg gelen bir bayanın 400 cm 2 toplam ayak tabanına sahip olduğunu göz önüne alınız. Bu bayan

Detaylı

Surface Processes and Landforms (12.163/12.463) Fall K. Whipple

Surface Processes and Landforms (12.163/12.463) Fall K. Whipple MIT Açık Ders Malzemeleri http://ocw.mit.edu 12.163./12.463 Yeryüzü Süreçleri ve Yüzey Şekillerinin Evrimi 2004 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

FLOWING FLUIDS and PRESSURE VARIATION

FLOWING FLUIDS and PRESSURE VARIATION 4. FLOWING FLUIDS and PRESSURE VARIATION Akışkan Kinematiği Akışkan kinematiği, harekete neden olan kuvvet ve momentleri dikkate almaksızın, akışkan hareketinin tanımlanmasını konu alır. Yapı üzerindeki

Detaylı

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUVARI

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUVARI T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUVARI BORULARDA VE HİDROLİK ELEMANLARDA SÜRTÜNME KAYIPLARI DENEY FÖYÜ 1. DENEYİN AMACI Borularda

Detaylı

1. Aşağıda verilen fiziksel büyüklüklerin dönüşümünde? işareti yerine gelecek sayıyı bulunuz.

1. Aşağıda verilen fiziksel büyüklüklerin dönüşümünde? işareti yerine gelecek sayıyı bulunuz. Şube Adı- Soyadı: Fakülte No: NÖ-A NÖ-B Kimya Mühendisliği Bölümü, 2016/2017 Öğretim Yılı, 00323-Akışkanlar Mekaniği Dersi, 2. Ara Sınavı Soruları 10.12.2016 Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20) 5 (20)

Detaylı

1.1. Giriş 16.9.2014. 1. GİRİŞ ve TEMEL KAVRAMLAR

1.1. Giriş 16.9.2014. 1. GİRİŞ ve TEMEL KAVRAMLAR 1. GİRİŞ ve TEMEL KAVRAMLAR Doç.Dr. Serdar GÖNCÜ (Ağustos 2011) 1.1. Giriş Mekanik: Kuvvetlerin etkisindeki durağan (statik) ve hareketli (dinamik) cisimler ile ilgilenen bilim. Akışkanlar Mekaniği: Akışkanların,

Detaylı

Akışkanlar Mühendisliği 1. Giriş ve genel bilgiler. İçerik: Jet Motoru

Akışkanlar Mühendisliği 1. Giriş ve genel bilgiler. İçerik: Jet Motoru AKI KAN MÜHENDİSİĞİ Uçak Aerodinamiği: Akışkanın uçak uygulamasındaki rolleri Jet Motoru Y.O Yakıt K T 1 İçerik: Akışkanlar Mühendisliği 1. Giriş ve genel bilgiler -Giriş ve genel bilgiler -Akışkan özellikleri

Detaylı

SORULAR - ÇÖZÜMLER. NOT: Toplam 5 (beş) soru çözünüz. Sınav süresi 90 dakikadır. 1. Aşağıdaki çizelgede boş bırakılan yerleri doldurunuz. Çözüm.1.

SORULAR - ÇÖZÜMLER. NOT: Toplam 5 (beş) soru çözünüz. Sınav süresi 90 dakikadır. 1. Aşağıdaki çizelgede boş bırakılan yerleri doldurunuz. Çözüm.1. SORULAR - ÇÖZÜMLER 1. Aşağıdaki çizelgede boş bırakılan yerleri doldurunuz. Çözüm.1. Gıda Mühendisliği Bölümü, 2014/2015 Öğretim Yılı, Bahar Yarıyılı 0216-Akışkanlar Mekaniği Dersi, Dönem Sonu Sınavı Soru

Detaylı

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 7 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 7. HAFTA Kapsam: Parçacık Kinetiği, Kuvvet İvme Yöntemi Newton hareket

Detaylı

BÜLENT ECEVİT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK490 Makine Laboratuarı Dersi Akışkanlar Mekaniği Deneyi

BÜLENT ECEVİT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK490 Makine Laboratuarı Dersi Akışkanlar Mekaniği Deneyi BÜLENT ECEVİT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK490 Makine Laboratuarı Dersi Akışkanlar Mekaniği Deneyi 1. Genel Bilgi Bazı akışlar oldukça çalkantılıyken bazıları düzgün ve düzenlidir. Düzgün

Detaylı

Kesit Tesirleri Tekil Kuvvetler

Kesit Tesirleri Tekil Kuvvetler Statik ve Mukavemet Kesit Tesirleri Tekil Kuvvetler B ÖĞR.GÖR.GÜLTEKİN BÜYÜKŞENGÜR Çevre Mühendisliği Mukavemet Şekil Değiştirebilen Cisimler Mekaniği Kesit Tesiri ve İşaret Kabulleri Kesit Tesiri Diyagramları

Detaylı

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi 4. 4. Cismin ğırlığı Düzlemsel landa ğırlık erkezi - İntegrasyon Yöntemi Düzlemsel Eğride ğırlık erkezi - İntegrasyon Yöntemi 4.3 Bileşik Plak ve Teller 4.4 Pappus Guldinus Teoremleri 4.5 Üç Boyutlu Cisimlerde

Detaylı

Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin

Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin BURMA DENEYİ Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin genel mekanik özelliklerinin saptanmasında

Detaylı

TEMEL İNŞAATI ŞERİT TEMELLER

TEMEL İNŞAATI ŞERİT TEMELLER TEMEL İNŞAATI ŞERİT TEMELLER Kaynak; Temel Mühendisliğine Giriş, Prof. Dr. Bayram Ali Uzuner 1 2 Duvar Altı (veya Perde Altı) Şerit Temeller (Duvar Temelleri) 3 Taş Duvar Altı Şerit Temeller Basit tek

Detaylı

AKIŞ REJİMİNİN BELİRLENMESİ

AKIŞ REJİMİNİN BELİRLENMESİ AKIŞ REJİMİNİN BELİRLENMESİ 1. Deneyin Amacı Kimyasal proseslerde, akışkanlar borulardan, kanallardan ve prosesin yürütüldüğü donanımdan geçmek zorundadır. Bu deneyde dairesel kesitli borularda sıkıştırılamayan

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 4 Kuvvet Sistemi Bileşkeleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 4. Kuvvet Sitemi Bileşkeleri

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Kimya Mühendisliği Bölümü Kimya Mühendisliği Laboratuvarı Venturimetre Deney Föyü Hazırlayan Arş.Gör. Orhan BAYTAR 1.GİRİŞ Genellikle herhangi bir akış

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı