RASSAL SAYI ve RASSAL DEĞİŞ ĞİŞKEN. dd Her Ui nin beklenen değeri; Benzetimde rassallık k varsa, bir veya birden fazla dağı

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "RASSAL SAYI ve RASSAL DEĞİŞ ĞİŞKEN. dd Her Ui nin beklenen değeri; Benzetimde rassallık k varsa, bir veya birden fazla dağı"

Transkript

1 RASSAL SAYI ve RASSAL DEĞİŞ ĞİŞKEN ÜRETİMİ Benzetimde rassallık k varsa, bir veya birden fazla ğılımdan rassal değişken üretimi yapılacakt lacaktır. Bu ğılımlar, gözlemden g elde edilen veriye giydirilmiş ğılımlardır. r. Yani veriye uygun ğılımlardır. r. Bu bu ğılımlardan rassal değişken ken nasıl üretilir? Örneğin; kuyruk modeli benzetiminde varış ışlar arası zaman aralıklar klarının servis sürelerinin s üretilmesi gerekmektedir. Herhangi bir ğılımdan rassal değişken üretmek veya bir rassal süres reç için in U(0,) rassal değişkenleri gereklidir. Rassal sayılar, birbirinden bağı ğımsız z ve görülme g olasılıklar kları eşit olan sayılar ların n oluşturdu turduğu u dizilerdir. Bu sayı dizileri eşit e olasılık k gereği, tek biçimli imli (uniform) bir olasılık k ğılımı gösterir. RASSAL SAYILARIN ÖZELLİKLERİ U, U2,.. rassal sayılar dizisi; düzgd zgün n dağlımdan gelme ve bağı ğımsızlık k olmak üzere iki istatistiksel özelliğe e sahip olmalıdır. Her rassal sayı Ui, 0 ve aralığı ığındaki sürekli s düzgd zgün n ğılımdan alınan nan bir bağı ğımsız örnektir. Düzgün n ğılımın n OYF; 0 x f ( x ) = 0 dd Her Ui nin beklenen değeri; eri; 2 x E(U)= xdx = = Varyansı; x V(U)= x dx [ E( R )] = = = RASSAL SAYI ÜRETİMİ ) Şans oyunlarında nda olduğu u gibi zar atmak, kart çekmek, rulet çevirme vb. el işlemleriyle i rassal sayı üretmek. Gerçek ek anlamda rassal sayı üretir ancak yavaşlığı nedeniyle benzetim modellerinde kullanımı pratik değildir. 2) Çeşitli yöntemlerle y önceden hazırlanm rlanmış olan rassal sayı tablolarını kullanmak. Bu amaçla hazırlanm rlanmış tablolar literatürde rde vardır. r. ) Kendi kendini yineleyen bir eşitlikten, e aritmetik işlemlerle i rassal sayı dizileri üretmek. Bu işlemler, i bilgisayar aracılığı ığı ile yapılabilece labileceğinden inden son derece hızlh zlı ve verimlidir. Bu yöntemle y belirli bir sayı,, aritmetik işleme i başlang langıç değeri eri (seed) olarak verilir ve buna bağlı olarak bir sayı hesaplanır. Hesaplanan sayı bu kez başlang langıç değeri eri olarak alınıp p yeni bir sayı üretilir. Böylece, B her üretilen bir sayıdan yeni bir sayı üretilerek bir sayı dizisi elde edilir. Düzgünlük k ve bağı ğımsızlık özelliğinin inin iki sonucu; ) (0,) aralığı ığı,, eşit e uzunlukta n sınıfa s bölünürse; b N; gözlemlerin g toplam sayısı olmak üzere, her aralıktaki gözlemlerin beklenen değeri= eri= N n 2) Bir aralıkta bir değerin erin gözlemlenme g olasılığı ığı,, elde edilen bir önceki değerden erden bağı ğımsızdır.

2 RASSAL SAYI ÜRETEÇLERİNDEN İSTENİLEN ÖZELLİKLER.Rassall Rassallık: Üretilen pseudo-random (sahte rassal) sayılar, gerçek ek sayılar ile aynı özellikleri taşı şımalıdır. Rassal tavır, çeşitli istatistiksel testler ile belirlenir. 2.Büyük k Periyod: Tüm m pseudo-random sayı üreteçleri, deterministik formulasyonların n kullanıld ldığından dolayı,, her rassal sayı dizisi, kendi kendini tekrar etmeye başlayacakt layacaktır. Bir dizinin uzunluğu u (kendi kendini tekrarlamayan) periyod olarak adlandırılır. r. Bu periyodun mümkün n olduğu u kadar uzun olması istenir. Pratikte, bir simülasyon çalışmasında rassal sayılar ların n kendini tekrar etmeyecek kadar periyod uzunluğuna una sahip olması istenir. RASSAL SAYI ÜRETİM M TEKNİKLER KLERİ ) ORTA KARE YÖNTEMY NTEMİ Bilgisayarda aritmetik işlemlerle i rassal sayı üretiminde kullanılan lan ilk yöntem 946 da Von Neumann ve Metropolis tarafından önerilen ORTA KARE yöntemidir. Bu yöntemde, y (m) basamaklı ve genellikle tek olan bir sayı başlang langıç değeri eri olarak alınır. İkinci aşamada, a amada, bu sayının n karesi alınarak narak bulunan sayının n ortasındaki m kadar basamaklı sayı alınır. Bu bir rassal sayı olarak kaydedilir. Tekrar bu rassal sayının n karesi alınır r ve yine ortadaki m basamaklı sayı bir rassal sayı olarak kaydedilir. Bu işlem, i istenilen sayıda rassal sayı elde edilinceye kadar devam eder..yeniden Üretilebilirlik(Reproducibility) retilebilirlik(reproducibility): : Bir simülasyon programının adım m adım çalıştırılmasında (debugging) ya da bir parametrik çalışmayı (girdi verilerini değiştirmek) gerçekle ekleştirmek için, i in, her simülasyon çalışmasında rassal sayılar ların n aynı sırasının üretilmesi istenebilir. Diğer durumlarda, rassal sayılar ların n farklı dizilerinin üretilmesi istenir. Bu nedenle bir rassal sayı üreteci, analizcinin isteğine ine bağlı olarak tekrarlayan ve farklı rassal sayı dizilerini elde etme özelliğine ine sahip olmalıdır. 4.Hesaplama Etkinliği: : Bir simülasyon çalışmasında, büyük b k sayılarda rassal sayının üretilmesine ihtiyaç olacağı ğından dolayı, üreteç bu sayılar ları mümkün n olduğu u kadar kısa k zamanda üretmeli ve bilgisayar hafızas zasında çok yer kaplamamalıdır.

3 dezavantajları; ) İlk sayı ve dizinin tekrar uzunluğu u arasındaki ilişkiyi (periyod) önceden bilmek mümkm mkün n değildir. Çoğu u kez tekrar uzunluğu u kısadk sadır. 2) Elde edilen sayılar rassal olmayabilir. Yani; dizide dejenerasyon söz z konusu olabilir. Bu metodun dezavantajlarını ortadan kaldırmak için i in çeşitli metotlar geliştirilmi tirilmiştir. tir. Bunlar; - Orta çarpım m (midproduct) metodu, - Sabit çarpım m (constant multiplier) metodu, - Doğrusal eşlik e (congruential) metodu 2) DOĞRUSAL EŞLİK E K YÖNTEMY NTEMİ Bu metot, 95 yılında y Lehmer tarafından önerilmiştir. Doğrusal eşlik metodu, 0 ve m- m arasında X, X2,.. tamsayılar larının n bir dizisini üretir. Bu diziyi üretirken aşağıa ğıdaki yineleyen ilişkiyi kullanır. X i + = ( ax i + c) mod( m) () X : Başlang langıç değeri eri (initial seed) a : Sabit çarpan c : artış m : modulus a, c, m ve Xa nın n seçimi, istatistiksel özelliklerde ve çevrim uzunluğunda unda (periyod) büyük b k etkiye sahiptir. () eşitlie itliğin in çeşitli varyasyonları,, bilgisayar ortamında rassal sayılar ların üretimi için i in en çok kullanılan lan metotlardır. r. Herhangi bir Xi değeri eri için i in rassal sayı X U i i = m

4 RASSAL DEĞİŞ ĞİŞKEN ÜRETİMİ Gerçek ek sistemlerin tamamının n stokastik davranışı her zaman düzgd zgün (uniform) ğılımla açıklanamaz. a Bir sistem içinde i inde uniform ğılımdan daha çok diğer teorik (üstel,( normal, gamma v.b.) ğılımlarla karşı şılaşılmaktadır. r. Bir aktiviteye (örne( rneğin; M/M/ kuyruk sisteminde varış ışlar arası zaman aralığı ve servis zamanı gibi) uygun teorik ğılım m bulunamıyorsa, ampirik ğılım m kullanılabilir. labilir. Sistemin stokastik özelliğinden inden dolayı uniform ğılımdan (0, aralığı ığında) elde edilen rassal sayılar ların n teorik veya ampirik ğılımlara dönüştürülmesi d gerekir. Bunun için, i in, bir DÖNÜŞÜM D yöntemi kullanılarak larak istenilen ğılıma ma geçilir. DÖNÜŞÜM, istatistiki anlamda herhangi bir olasılık k ğılımından örnek almak demektir. Bunun için i in olasılık k ğılımın n parametrelerinin bilinmesi veya verilmesi gerekir.. TERS DÖNÜŞÜM D (Inverse Transformation) YÖNTEMİ Bir f(x) OYF verilsin. Amaç; ; f(x) den bir rassal değişken üretmek. x F( x ) = f ( x ) dx 0 F( x )

5 F ¹(u)=x ifadesi; verilen u değerine erine karşı şılık k gelen x değerinin erinin belirlenmesine yardımc mcı olur. 0<F(x)< dir ve F(x) artan fonksiyondur. ALGORİTMA. U ~U(0,) 2. X= F ¹(U) F. RETURN

6

7

8 KESİKL KLİ DAĞILIM Ters dönüşüm d m yöntemi, y kesikli rassal değişken üretiminde aşağıa ğıdaki şekilde kullanılır. X<X2<X.. olduğunu unu varsayalım. F(x)=P(x X)= p ( xi ) x X U ~U(0,) üretilir. i ALGORİTMA:. U ~U(0,) üret 2. X I : k p( x ) < u U ~U(0,) üretilir. Hangi aralığ ığa a düştüğüd aranır. r. Bu işlem i program yazımında arama (search) işlemi i gerektirir. Pahalı bir yöntem y olabilir. N çıktı olduğunu unu varsayalım. P=0 DO I=,N P=P+P(I) IF(U.LE.P) GO TO 2 i i= i= k p( x ) i CONTINUE 2 X=X(I) 0 P( x ) P( x ) + P( x2 ) F( x ) = P( xi ) i= M x < X 2 X x < X x > X X x < X X x < X ÖRNEK: Talep miktarını gösteren rassal değişken X, kesikli ve P(X=)=, P(X=2)=, P(X=)= ve P(X=4)= olasılık 6 6 değerlerini erlerini alıyor. Dağı ğılım m fonksiyonu grafiğini ini çizerek, X r.d. üretimini sağlayan algoritmayı düzenleyiniz.

9 0 / 6 F( x ) = / 6 5 / 6 x < x < 2 2 x < x < 4 x 4 2. REDDETME ( Acceptance-Rejection) YÖNTEMY NTEMİ Reddetme yöntemi, y olasılık k fonksiyonu f(x) sürekli s ve sınırls rlı olan herhangi bir ğılımdan rassal değişken üretmek için i in kullanılan lan genel bir metotdur. Sürekli bir X rassal değişkeni için; i in; 0 f(x) fmax a x b Reddetme yöntemi y direkt yöntemler y başar arısız z veya etkin olmadığı ığında kullanılır. Bu yöntemde y öncelikle bir t fonksiyonunun tanımlanmas mlanması gereklidir. t fonksiyonu; t(x) f(x) xi şartını sağlamal lamalıdır. c = t( x ) dx f ( x ) dx = t(x) fonksiyonu bir olasılık k yoğunluk fonksiyonu değildir. Çünk nkü c> ALGORİTMA:. U ~U(0,) üret 2. if if if if 0 < U 6 x = < U 6 6 x = 2 5 < U 6 6 x = 5 < U 6 x = 4. RETURN Ancak r(x) fonksiyonu; t( x ) r( x ) = c bir olasılık k yoğunluk fonksiyonudur. Çünk nkü; t( x ) dx r( x ) = = t( x ) dx = c = c c c R(x) olasılık k yoğunluk fonksiyonundan y rassal değişkeni aşağıa ğıdaki algoritma ile üretilebilir.

10 ALGORİTMA: ) r(x) yoğunluk fonksiyonundan Y rassal değişkeni üret. U ~U(0,); Y=X 2) U2 ~U(0,) üret (Y den bağı ğımsız) ) U2 f(y)/t(y) ise, X=Y ve RETURN GO TO (yeniden dene) Algoritma ve arasında dönerek d uygulanır. U2 f(y)/t(y) şartı sağland landığında X için i in Y değeri eri rassal değişken olarak kabul edilir. ÖRNEK:

11 ÖRNEK 2: Beta(4,) ğılımından rassal değişken üreten algoritmayı Reddetme yöntemine göre g düzenleyiniz. d Aşağıdaki U ve U2 değerleri erleri için i in algoritmayı kullanırsak; ALGORİTMA: ) U ~U(0,) üret. Y=X=U 2) U2 ~U(0,) üret. 2 ) U2 60Y ( Y ) / ise X=Y RETURN Değilse GO TO.

12

Rassal Değişken Üretimi

Rassal Değişken Üretimi Rassal Değişken Üretimi Doç. Dr. Mehmet AKSARAYLI GİRİŞ Yaşadığımız ya da karşılaştığımız olayların sonuçları farlılık göstermektedir. Sonuçları farklılık gösteren bu olaylar, tesadüfü olaylar olarak adlandırılır.

Detaylı

RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN

RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN RASTGELE SAYILARIN ÜRETİLMESİ Rastgele değişimler yapay tablolardan veya parametreleri verilen teorik dağılım fonksiyonlarından elde edilir.

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var :

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var : Rasgele Sayı Üretme Rasgele Sayıların Özellikleri İki önemli istaiksel özelliği var : Düzgünlük (Uniformity) Bağımsızlık R i, rasgele sayısı olasılık yoğunluk fonksiyonu aşağıdaki gibi olan uniform bir

Detaylı

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar.

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar. 9..03 EME 305 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)

Detaylı

Rasgele Sayılar (Random Numbers) NUPAMC-2012 Bitlis

Rasgele Sayılar (Random Numbers) NUPAMC-2012 Bitlis Rasgele Sayılar (Random Numbers) NUPAMC-2012 Bitlis Gültekin YEĞİN Fizik Bölümü Celal Bayar Üniversitesi Manisa 10 Mayıs 2012 Doç.Dr.Gultekin Yeğin (C.B.Ü. Fizik) Rasgele Sayılar (Random Numbers) NUPAMC-2012

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 16 BENZETİM ÖDEV SETİ Ödev 1. Bir depo ve N adet müşteriden oluşan bir taşımacılık sisteminde araç depodan başlayıp bütün müşterileri teker teker ziyaret ederek depoya geri dönmektedir. Sistemdeki

Detaylı

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ Günümüz simülasyonları gerçek sistem davranışlarını, zamanın bir fonksiyonu olduğu düşüncesine dayanan Monte Carlo yöntemine dayanır. 1.

Detaylı

ENM 316 BENZETİM DERS 3 KUYRUK SİSTEMİ. Operasyon yönetiminde önemli bir alana sahiptir.

ENM 316 BENZETİM DERS 3 KUYRUK SİSTEMİ. Operasyon yönetiminde önemli bir alana sahiptir. ENM 316 BENZETİM DERS 3 KUYRUK SİSTEMİ Kuyruk sistemleri, Operasyon yönetiminde önemli bir alana sahiptir. Üretimde, atölye çevresi kuyruk şebekelerinin karmaşık bir ilişkisi olarak düşünülebilir. Bir

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri Girdi Analizi 0 Gerçek hayattaki benzetim modeli uygulamalarında, girdi verisinin hangi dağılımdan geldiğini belirlemek oldukça zor ve zaman harcayıcıdır. 0 Yanlış girdi analizi, elde edilen sonuçların

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME GİRİŞ Bu bölümde benzetim için excel örnekleri önerilmektedir. Örnekler excel ile yapılabileceği gibi el ile de yapılabilir. Benzetim örnekleri

Detaylı

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr.

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr. Zaman Serileri-1 If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

BENZETİM. Prof.Dr.Berna Dengiz

BENZETİM. Prof.Dr.Berna Dengiz Prof.Dr.Berna Dengiz 2. Ders Sistemin Performans.. Ölçütleri Sistem Türleri Benzetim Modelleri Statik veya Dinamik Deterministik ( belirli ) & Stokastik ( olasılıklı) Kesikli & Sürekli Sistemin Performans

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R Geçen Ders Envanter yonetımı: Gazetecı problemı Rastsal Rakamlar Üret Talebi hesapla Geliri hesapla Toplam maliyeti hesapla Günlük ve aylık

Detaylı

SÜREKLİ( CONTINUOUS) OLASILIK

SÜREKLİ( CONTINUOUS) OLASILIK SÜREKLİ( CONTINUOUS) OLASILIK DAĞILIMLARI Sürekli bir random değişken (a,b) aralığındaki her değeri alabiliyorsa bu değişkene ait olasılık dağılım fonksiyonunun grafiğinde eğri altında kalan alan bize

Detaylı

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Bilgisayar Programlama Ders 6 Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Fonksiyon Prototipleri Fonksiyon Prototipleri Derleyici, fonksiyonların ilk hallerini (prototiplerini)

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1 . ÇÖZÜM YOLU: (5) 8 =.8+5 = 3 3:2 = 6.2+ 6:2 = 3.2+0 3:2 =.2+ En son bölümden başlayarak kalanları sıralarız. (5) 8 = (0) 2 2. ÇÖZÜM YOLU: 8 sayı tabanında verilen sayının her basamağını, 2 sayı tabanında

Detaylı

BENZETİM. Prof.Dr.Berna Dengiz. 4. Ders Modelleme yaklaşımları Benzetim yazılımlarında aranan özellikler M/M/1 Kuyruk Sistemi benzetimi

BENZETİM. Prof.Dr.Berna Dengiz. 4. Ders Modelleme yaklaşımları Benzetim yazılımlarında aranan özellikler M/M/1 Kuyruk Sistemi benzetimi Prof.Dr.Berna Dengiz 4. Ders Modelleme yaklaşımları Benzetim yazılımlarında aranan özellikler M/M/1 Kuyruk Sistemi benzetimi BENZETİM DİLLERİNDE MODELLEME YAKLAŞIMLARI Tüm benzetim dilleri; ya olay-çizelgeleme

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

Simülasyonda İstatiksel Modeller

Simülasyonda İstatiksel Modeller Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun

Detaylı

LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ

LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 3, Sayı, 9 LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ Yalçın KARAGÖZ Cumhuriyet Üniversitesi, İ.İ.B.F. İşletme Bölümü Özet Bu çalışmada logistic dağılım hakkında

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

9/22/2014 EME 3105 SİSTEM SİMÜLASYONU. Giriş. Tek Kanallı Kuyruk Sistemi. Kuyruk Sistemlerinin Simulasyonu. Simulasyon Örnekleri Ders 2

9/22/2014 EME 3105 SİSTEM SİMÜLASYONU. Giriş. Tek Kanallı Kuyruk Sistemi. Kuyruk Sistemlerinin Simulasyonu. Simulasyon Örnekleri Ders 2 EME 3105 SİSTEM SİMÜLASYONU Simulasyon Örnekleri Ders Giriş Bu derste bilgisayar yardımı olmaksızın çalıştırılabilen birkaç simulasyon örneği verilmiştir. Bu örnekler size sistem simulasyonu metodolojisini

Detaylı

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serileri IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere sahip değișkenlere zaman serisi adı verilmektedir. Genel olarak zaman serisi,

Detaylı

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK Soru 1 X rassal değişkeninin olasılık yoğunluk fonksiyonu x x, x> f ( x) = 0, dy. 1 werilmiş ve Y = rassal değişkeni tanımlamış ise, Y değişkenin 0< 1 X 1 y için olasılık yoğunluk fonksiyonu aşağıdaki

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan 1 Ders Planı 1. Karar Problemleri i. Karar problemlerinin bileşenleri ii. Değerler, amaçlar, bağlam iii. Etki diagramları 2. Model Girdilerinde Belirsizlik

Detaylı

SİMÜLASYON. Prof.Dr. Ünal H. ÖZDEN İSTATİSTİKSEL SİMÜLASYON

SİMÜLASYON. Prof.Dr. Ünal H. ÖZDEN İSTATİSTİKSEL SİMÜLASYON SİMÜLASYON 1 İSTATİSTİKSEL SİMÜLASYON nedir? un amaçları un avantajları un dezavantajları Uygulama alanları Sistem Sistem çeşitleri BENZETIM 1 , gerçek sistemin yapısı ve davranışını anlayabilmek için

Detaylı

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

POL NOMLAR. Polinomlar

POL NOMLAR. Polinomlar POL NOMLAR ÜN TE 1. ÜN TE 1. ÜN TE 1. ÜN TE 1. ÜN T POL NOMLAR Polinomlar 1. Kazan m: Gerçek kat say l ve tek de i kenli polinom kavram n örneklerle aç klar, polinomun derecesini, ba kat say s n, sabit

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Probability Distributions Probability Distributions SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Dr. Mehmet AKSARAYLI Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Ekonometri Bölümü

Detaylı

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30)

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30) ENM 316 BENZETİM ÖDEV SETİ Ödev 1. Bir projede A, B, C, D, E ve F olmak üzere 6 faaliyet vardır. Projenin tamamlanması için bu faaliyetlerin sırası ile yapılması gerekmektedir. Her faaliyetin tamamlanması

Detaylı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı matematik SORU BANKASI Süleyman ERTEKİN LYS KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ KONU ÖZETLERİ Öğrenci Kitaplığı SORU BANKASI matematik LYS EDAM Öğrenci Kitaplığı 18 EDAM ın yazılı izni olmaksızın,

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten elde edilen

Detaylı

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2 Bir Olayın Olasılığı P(A) = n(a) n(s) = A nın eleman sayısı S nin eleman sayısı Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? Çözüm: S

Detaylı

RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 2007

RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 2007 RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 007 1 Tekdüze Dağılım Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : SOSYAL BİLİMLERDE İSTATİSTİK Ders No : 000100 Teorik : Pratik : 0 Kredi : ECTS : Ders Bilgileri Ders Türü Öğretim Dili Öğretim

Detaylı

ENM 316 BENZETİM GİRİŞ DERS 1 GİRİŞ GİRİŞ. Zaman içerisinde değişiklik gösteren bir sistemin tavrı, geliştirilen bir benzetim modeli ile incelenir.

ENM 316 BENZETİM GİRİŞ DERS 1 GİRİŞ GİRİŞ. Zaman içerisinde değişiklik gösteren bir sistemin tavrı, geliştirilen bir benzetim modeli ile incelenir. GİRİŞ ENM 316 BENZETİM DERS 1 Zaman içerisinde değişiklik gösteren bir sistemin tavrı, geliştirilen bir benzetim modeli ile incelenir. Model, sistemin çalışması ile ilgili kabullerin bir setinden oluşur.

Detaylı

ENM 316 BENZETİM DERS 1 GİRİŞ. Benzetim, karmaşık sistemlerin tasarımı ve analizinde kullanılan en güçlü analiz araçlarından birisidir.

ENM 316 BENZETİM DERS 1 GİRİŞ. Benzetim, karmaşık sistemlerin tasarımı ve analizinde kullanılan en güçlü analiz araçlarından birisidir. ENM 316 BENZETİM DERS 1 GİRİŞ Benzetim, karmaşık sistemlerin tasarımı ve analizinde kullanılan en güçlü analiz araçlarından birisidir. Genel anlamda benzetim, zaman içinde sistemin işleyişinin taklididir.

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

IE 303 SİSTEM BENZETİMİ

IE 303 SİSTEM BENZETİMİ IE 303 SİSTEM BENZETİMİ DERS 2 : S I M U L A S Y O N Ö R N E K L E R I...making simulations of what you're going to build is tremendously useful if you can get feedback from them that will tell you where

Detaylı

ĐST 474 Bayesci Đstatistik

ĐST 474 Bayesci Đstatistik ĐST 474 Bayesci Đstatistik Ders Sorumlusu: Dr. Haydar Demirhan haydarde@hacettepe.edu.tr Đnternet Sitesi: http://yunus.hacettepe.edu.tr/~haydarde Đçerik: Olasılık kuramının temel kavramları Bazı özel olasılık

Detaylı

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma 2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal

Detaylı

ZAMAN SERİLERİNDE REGRESYON ANALİZİ

ZAMAN SERİLERİNDE REGRESYON ANALİZİ ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip

Detaylı

KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR

KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR 2012-2013 Karakter Dizgisi Karakter Dizgisi Üzerine İşlemler Altdizgi Tanım 3.1.1: Bir X kümesi üzerinde bir karakter dizgisi (string)

Detaylı

1991 ÖYS. 9. Parasının 7. ünü kardeşine veren Ali nin geriye lirası kalmıştır. Buna göre, Ali nin başlangıçtaki parası kaç liradır?

1991 ÖYS. 9. Parasının 7. ünü kardeşine veren Ali nin geriye lirası kalmıştır. Buna göre, Ali nin başlangıçtaki parası kaç liradır? 99 ÖYS.,8 + (, + ), işleminin sonucu kaçtır? B) 7 D) 86 987 B) D). a, b, c birer pozitif gerçel sayı ve a=b b=c olduğuna göre, aşağıdakilerden hangisi doğrudur? a

Detaylı

Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon

Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon Levent ÖZBEK Fikri ÖZTÜRK Ankara Üniversitesi Fen Fakültesi İstatistik Bölümü Sistem Modelleme ve Simülasyon Laboratuvarı 61 Tandoğan/Ankara

Detaylı

EME SISTEM SİMÜLASYONU. Giriş. Ertelenmiş Talep (Backorder) / Kayıp Satış (Lost Sales) Sürekli / Periyodik Gözden Geçirme

EME SISTEM SİMÜLASYONU. Giriş. Ertelenmiş Talep (Backorder) / Kayıp Satış (Lost Sales) Sürekli / Periyodik Gözden Geçirme .. Giriş EME SISTEM SİMÜLASYONU Simülasyon problemlerinin önemli bir bölümü stok sistemlerini içerir. Bu derste basit bir stokastik stok kontrol sistemi ele alınıp, sistemin isleyişi elle simule Simulasyon

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

Şekil 6.2 Çizgisel interpolasyon

Şekil 6.2 Çizgisel interpolasyon 45 Yukarıdaki şekil düzensiz bir X,Y ilişkisini göstermektedir. bu fonksiyon eğri üzerindeki bir dizi noktayı birleştiren bir seri düzgün çizgi halindeki bölümlerle açıklanabilir. Noktaların sayısı ne

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN Derse Giriş Ders Web Sitesi: www.canerozcan.net Ofis Saatleri: Salı 11:00-13:00 Perşembe 15:30-17:30 ya da email ile randevu alınız: canerozcan@karabuk.edu.tr Kaynak Kitaplar:

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 7 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

BMT 101 Algoritma ve Programlama I 11. Hafta. Yük. Müh. Köksal Gündoğdu 1

BMT 101 Algoritma ve Programlama I 11. Hafta. Yük. Müh. Köksal Gündoğdu 1 BMT 101 Algoritma ve Programlama I 11. Hafta Yük. Müh. Köksal Gündoğdu 1 C++ Fonksiyonlar Yük. Müh. Köksal Gündoğdu 2 C++ Hazır Fonksiyonlar Yük. Müh. Köksal Gündoğdu 3 C++ Hazır Fonksiyonlar 1. Matematiksel

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 9 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 316 BENZETİM ÖDEV SETİ ÖDEV 1: El ile Benzetim Bir depo ve 7 adet müşterisi olan bir taşımacılık sisteminde müşterilerden gelen siparişler araç ile taşınmaktadır. İki tür sipariş söz konusudur. Birincisi

Detaylı

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500 984 ÖYS. + + a a + a + a işleminin sonucu nedir? a A) +a B) a C) +a D) a E) +a a b ab. ifadesinin kısaltılmış biçimi a b + a b + ab a + b A) a b a b D) a b B) a b a + b E) ab(a-b) C) a b a + b A) 87 B)

Detaylı

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü ALGORİTMA ANALİZİ Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü 2 Özyinelemeler veya artık teknik Türkçeye girmiş olan rekürsiflik en çok duyulan fakat kullanımında zorluklar görülen tekniklerdendir.

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 4 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL VERİ MADENCİLİĞİ Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL SPRINT Algoritması ID3,CART, ve C4.5 gibi algoritmalar önce derinlik ilkesine göre çalışırlar ve en iyi dallara ayırma kriterine

Detaylı

ENM 316 BENZETİM. Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30)

ENM 316 BENZETİM. Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30) ENM 316 BENZETİM ÖDEV 1: Bir projede A, B, C, D, E ve F olmak üzere 6 faaliyet vardır. Projenin tamamlanması için bu faaliyetlerin sırası ile yapılması gerekmektedir. Her faaliyetin tamamlanması için gereken

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi 2010 S 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek t ablolar ve f ormüller bu kitapçığın sonunda verilmiştir. 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi yanlıstır? ) Maddesel

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

altında ilerde ele alınacaktır.

altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 15 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

EME Sistem Simülasyonu. Giriş. Ertelenmiş Talep (Backorder) / Kayıp Satış (Lost Sales) Sürekli / Periyodik Gözden Geçirme

EME Sistem Simülasyonu. Giriş. Ertelenmiş Talep (Backorder) / Kayıp Satış (Lost Sales) Sürekli / Periyodik Gözden Geçirme EME 7 Giriş Sistem Simülasyonu Simülasyon problemlerinin önemli bir bölümü stok sistemlerini içerir. Bu derste basit bir stokastik stok Simulasyon Örnekleri Ders kontrol sistemi ele alınıp, sistemin isleyişi

Detaylı

İNTEGRAL İŞLEMLER LEMLERİ

İNTEGRAL İŞLEMLER LEMLERİ İKTİSADİ DİNAMİKLİK K VE İNTEGRAL İŞLEMLER LEMLERİ 2 İktisat biliminde dinamiklik kavramı, değişkenlerin değişim süreçlerini, dengeye geliş ya da uzaklaşmalarını içeren bir analiz tipidir. Daha önce karşılaştırmalı

Detaylı

ÜNİTE ÜNİTE. RİSK YÖNETİMİ Doç. Dr. İbrahim Doğan İÇİNDEKİLER HEDEFLER KANTİTATİF RİSK DEĞERLENDİRME TEKNİKLERİ

ÜNİTE ÜNİTE. RİSK YÖNETİMİ Doç. Dr. İbrahim Doğan İÇİNDEKİLER HEDEFLER KANTİTATİF RİSK DEĞERLENDİRME TEKNİKLERİ HEDEFLER İÇİNDEKİLER KANTİTATİF RİSK DEĞERLENDİRME TEKNİKLERİ Giriş İstatiksel Kavramlar Olasılık Şartlı Olasılık Rassal Değişken Beklenen Değer Varyans Histogram Kantitatif Risk Değerlendirme Teknikleri

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ 1. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için

Detaylı