Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var :

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var :"

Transkript

1 Rasgele Sayı Üretme Rasgele Sayıların Özellikleri İki önemli istaiksel özelliği var : Düzgünlük (Uniformity) Bağımsızlık R i, rasgele sayısı olasılık yoğunluk fonksiyonu aşağıdaki gibi olan uniform bir dağılımdan bağımsız olarak seçilmelidir:, f ( x) 0, 0 x diğer durumlarda E( R) xdx 0 2 x Şekil: rasgele sayılar için pdf

2 Pseudo-Rasgele Sayıların Üretilmesi Pseudo (yalancı) olmasının nedeni: bilinen bir yöntem kullanılarak sayıların üretilmesi gerçek rasgelelik potansiyelini ortadan kaldıryor. Amaç: rasgele sayıların (RN) ideal özelliklerni taklit eden, [0,] aralığında bir sayı dizisi üretmek. RN rutinlerinde dikkat edilecek önemli hususlar: Hızlı Farklı bilgisayarlara taşınabilir Yeterince uzun çevrime sahip Yinelenebilir (aynı başlangıç koşulları verildiğinde) Düzgünlük ve bağımsızlık için gerekli ideal istatiksel özellikleri sağlama Rasgele Sayı Üretme Teknikleri Lineer Eşleşiklsel Yöntem - Linear Congruential Method (LCM). Birleştirilmiş Lineer Eşleşiklsel Üreteçler - Combined Linear Congruential Generators (CLCG). Rasgele-Sayı Dizileri - Random-Number Streams. 2

3 Linear Congruential Metodu 0 ve m- arasında, X, X 2, gibi bir tamsayı dizisi üretmek için kullanılacak rekürsif ilişki : X ( ax i + c) mod m, 0,,2,... i+ i Çarpan Artım Modül c, m, ve X 0 değerlerinin seçimi istatiksel özellikleri ve çevrim uzunluğunu önemli derecede etkiler. [0,m-] aralığında rasgele tamsayılar üretildikten sonra bunları rasgele sayılara dönüştürmek için: X i Ri, i,2,... m Örnek [LCM] X 0 27, a 7, c 43, ve m 00 değerlerini kullanacak olursak, X i ve R i değerleri: X (7*27+43) mod mod 00 2, R 0.02; X 2 (7*2+43) mod 00 77, R ; X 3 (7*77+43) mod 00 52, R ; 3

4 İyi Bir Üreteçin Karakteristik Özellikleri [LCM] Maksimum Yoğunluk R i, i,2, ile kabul edilen değerler [0,] aralığında büyük boşluklar bırakmamalı. Problem: Herbir R i değeri sürekli değil, ayrıktır. Çözüm: m için büyük bir tamsayı kullanılması Yuvalama çok az etki ediyor Maksimum Periyod Maksimum yoğunluğa ulaşmak ve uzun çevrim için gerekli. a, c, m, ve X 0 değerlerinin uygun seçilmesi ile mümkün Bilgisayarlar sayıların binary karşılığını kullanır m, modül değerinin 2 nin kuvveti olması hız ve etkinlik için önemlidir. Maksimum Periyod m2 b ve c 0 iken mümkün olan en uzun periyod: Pm2 b dir. En uzun periyoda m ile c birbirine göre asal iken erişilebilir (ebob(m,c) ) m2 b ve c0 iken mümkün olan en uzun periyod: Pm/4 2 b-2 dir. En uzun periyoda X 0 (seed) tek olmak üzere a 3+8k veya a5+8k (k0,,..) şeklinde seçildiğinde erişilebilir. m asal bir sayı ve c0 iken mümkün olan en uzun periyod: Pm- dir. En uzun periyoda a k - değerinin m ile bölünebildiği en küçük k değeri km- iken erişilebilir. 4

5 Maksimum Periyod a3, m6426, c0 iken X 0 (seed),2,3,4 seçilirse maksimum periyod Pm/46 olacaktır ve ancak X 0 (seed) veya 3 iken yani tek iken elde edilebilir. Birleştirilmiş Lineer Congruential Üreteçler Neden: Simülasyon sistemlerinin karmaşıklığı arttıkça daha uzun periyodlara ihtiyaç duyulmuş, tek üreteç yetersiz kalmıştır. Yaklaşım: İki veya daha fazla çarpımsal eşleşiklsel (congruential) üreteçin birleştirilmesi. X i,, X i,2,, X i,k, k adet farklı eşleşiklsel (congruential) üreteçlerin i. çıktıları olsun. j. üreteç: m j asal modülüne, a j çarpanına sahip ve periyodu m j - ise üreteceği X i,j tamsayıları [, m j -] aralığında yakalşık üniformdur. W i,j X i,j - ise [0, m j -2] aralığındaki tamsayılar için yakalşık üniformdur. 5

6 Birleştirilmiş Lineer Congruential Üreteçler L Ecuyer tarafından buna dayanarak k adet birleştirilmiş üreteç için önerilen form: k j X i X ( ) i X i, j mod m, X i 0 j m Ri m, X i 0 m ( X Bu katsayı W i, X i, - çıkarma işlemini sağlar k2 için k 2 0 j i, ) + ( X i,2 ) ( ) ( X i, ) + ( ) ( X i,2 ) ( ) j Mümkün olan maksimum periyod: P ( m )( m )...( 2 2 k m k ) X i, j Birleştirilmiş Lineer Congruential Üreteçler] 32-bit bilgisayarlar için, L Ecuyer [988] k 2 adet üretecin m 2,47,483,563, a 40,04 ve m 2 2,47,483,399 a 2 20,692 olmak üzere birleştirilmesini önerir. Algoritma şu şekildedir: Adım : Kökler seçilir:. üreteç için X,0 [, 2,47,483,562] kademesinde 2. üreteç için X 2,0 [, 2,47,483,398] kademesinde. Adım 2: Herbir üreteç için, X,j+ 40,04 X,j mod 2,47,483,563 X 2,j+ 40,692 X,j mod 2,47,483,399. Adım 3: X j+ (X,j+ - X 2,j+ ) mod 2,47,483,562 (m -). Adım 4: X j+, X j+ > 0 R + 2,47,483,563 j 2,47,483,562, X j+ 0 2,47,483,563 Adım 5: j j+, 2. adıma geri dön. Bu birleştirilmiş üretecin periyou: (m )(m 2 )/2 ~ 2 x 0 8 6

7 Rasgele-Sayı Dizileri Lineer eşleşiklsel bir üreteç için kök (seed) değer: Rasgele sayı dizisini başlatan bir tamsayıdır. Bu dizideki herhangi bir değer üreteç için seed olarak kullanılabilir. Rasgele sayı dizisi: X 0, X,, X P. diziisinden alınmış bir başlangıç değerine (seed) işaret eder. Başlangıç değerleri dizinin bütünü içinde birbirinden uzakta seçilir. Eğer diziler b değer uzaklıkta ise i. dizi başlangıç değeri ile tanımlanır: S i X b ( i ) Eski üreteçlerde: b 0 5 civarında iken, yenilerde: b 0 37 gibi büyük değerler kullanılıyor. k alt diziden oluşan tek bir rasgele sayı üreteci k farklı sanal rasgele sayı üreteci gibi kullanılabilir. Rasgele-SayıTestleri İki kategoride topanır: Uniformluk Testi: H 0 : R i ~ U[0,] H : R i ~ U[0,] / H 0 hipotezi sayıların [0,] aralığında rasgele dağıldığını söyler, hipotezin aksinin gösterilememesi uniformluğun olmadığının tesbit edilemediğini söyler. Bağımsızlık Testi: H 0 : R i ~ bağımsız H : R i ~ / bağımsız H 0 hipotezi sayıların bağımsız olduğunu söyler, hipotezin aksinin gösterilememesi bağımlılık tesbit edilemediğini söyler. Önem derecesi α, H 0 doğru iken reddetme olasılığıdır: α P(red H 0 H 0 doğru) 7

8 Rasgele-SayıTestleri Ne zaman kullanılmalı: Bilinen simülasyon dilleri veya rasgele sayı üreteçleri kullanılıyorsa test etmek gerekli olmayabilir, Eğer üreteç özellikle bilinmiyo veya dökümante edilmemiş ise (tablolama programları, nümerik-sembolik hesaplayıcılar gibi) pek çok örnek sayı için testler uygulanmalıdır. Test Tipleri: Teorik testler: Gerçek sayları üretmeden m, a, ve c gibi parametre seçimlerini inceler. Ampirik (deneysel) testler: Üretilen gerçek sayı dizilerine uygulanır. Rasgele-SayıTestleri Frekans Testleri Uniforlmluk ile ilgili Kolmogorov-Smirnov testi Chi-square testi Otokorolasyon Testleri Bağımsızlık ile ilgili 8

9 Kolmogorov-Smirnov Testi [Frekans Testleri] Uniform dağılımın sürekli kümülatif dağılım fonksiyonu, F(x) ile N adet örnek gözlem için deneysel kümülatif dağılım fonksiyonu S N (x) karşılaştırılır. Uniform dağılım için: F( x) x, 0 x Rasgele sayı üretecinden alınan örnekler R, R 2,, R N, ise deneysel cdf, S N (x): S R, R,..., Rn, x olan örnek sayısı x) N 2 N ( Kolmogorov-Smirnov testi F(x) ile S N (x) arasındaki en büyük mutlak sapma ile ilgilenir: D max F(x) - S N (x) D nin dağılımı N in fonksiyonu olarak tablolanmıştır 9

10 Kolmogorov-Smirnov Testinin Uygulanışı Örnek: N5 adet üretilmiş sayının 0.44, 0.8, 0.4, 0.05, 0.93 olduğu verilmiş Adım: Adım 2: R (i) i/n i/n R (i) R (i) (i-)/n Adım 3: D max(d +, D - ) 0.26 Adım 4: İstenilen önem derecesi α 0.05 ise, tablodan D α > D R (i) küçükten büyüğe sıralanır D + max {i/n R (i) } D - max {R (i) -(i-)/n} Bu durumda, H 0 hipotezi doğru (ret edilmedi). Otokorolasyon Testleri i. sayıdan itibaren her m. sayı arasındaki otokorolasyona bakılır. m gecikme (lag) olarak adlandırılır. R i, R i+m, R i+2m, R i+(m+)m sayıları arasındaki otokorolasyon ρ im M, Hipotez: i + (M + )m H H 0 : N : ρ 0, im ρ 0, im olmak üzere en büyük tamsayıdır. sayılar bağımsız ise sayılar bağımlı ise Eğer değerler karşılıklı ilişkisiz ise: M in büyük değerleri için, ρ im in dağılımı ( dağılımdır. ρˆim ) yaklaşık normal 0

11 Otokorolasyon Testleri ˆ ρ Teste ait istatistik: im Z0 ˆ σ ˆ ρ im Z 0 0 ortalama ve varyans ile normal dağılıma sahiptir ve : ρˆ σˆ im ρ im M Ri M + k 0 3M + 7 2(M + ) + km Eğer - z α/2 Z 0 z α/2 ise dizi (seçilen sayılar) ilişkili değildir. (α önem derecesidir z α/2, kümülatif normal dağılım tablosundan bulunabilir) Eğer ρ im > 0 ise, seçilen dizi pozitif otokorolasyona sahip Büyük rasgele sayıları yine büyük sayılar takip etme eğiliminde, vs. Eğer ρ im < 0 ise, seçilen dizi negatif otokorolasyona sahip Küçük rasgele sayıları büyük sayılar takip etme eğiliminde, vs. R i+ (k + )m Örnek Aşaağıda verilen sayı dizisi için, dizideki 3.,8.,3.,... sayıların ilişkili olup olmadığını α 0.05 önem derecesi için test ediniz

12 Örnek Verilenlere göre α 0.05, i 3, m 5, N 30, ve M 4 ρˆ σˆ 35 ρ35 (0.23)(0.28) + (0.25)(0.33) + (0.33)(0.27) (0.28)(0.05) (0.05)(0.36) (4) ( 4 + ) Z Aşağıdaki gibi bir kümilatif normal dağılım tablosundan yararlanılırsa z olduğu ve - z α/2 Z 0 z α/2 koşulu sağlandığı için bağımsızlık hipotezinin reddedilmediği görülür. 2

13 Yukarıda verilen tablo kümülatif normal dağılım eğrisi altında kalan alanları (olasılıkları) temsil ediyor. Daha fazla bilgi için: n3/eda3672.htm ÖNEMLİ NOT Ödev vermekten vazgeçtim yukarıdaki örneği inceleyin lütfen. Kendi projenizde kendi yazacağınız bir rasgele sayı üreteci kullanmayı düşünmeniz iyi olur (girdilerinizin hangi değerleri alabileceği bellidir ama olası değerlerden hangisini seçeceğinize üretilen rasgele sayı karar versin). Eğer tarif edilen üreteçlerden birini yazıp kullanıyorsanız otokorolasyon testi gerekmeyebilir ama üreteci kendiniz yazmamanız durumunda otokorolasyon testini uygulayın. 3

Rasgele Sayılar (Random Numbers) NUPAMC-2012 Bitlis

Rasgele Sayılar (Random Numbers) NUPAMC-2012 Bitlis Rasgele Sayılar (Random Numbers) NUPAMC-2012 Bitlis Gültekin YEĞİN Fizik Bölümü Celal Bayar Üniversitesi Manisa 10 Mayıs 2012 Doç.Dr.Gultekin Yeğin (C.B.Ü. Fizik) Rasgele Sayılar (Random Numbers) NUPAMC-2012

Detaylı

RASSAL SAYI ve RASSAL DEĞİŞ ĞİŞKEN. dd Her Ui nin beklenen değeri; Benzetimde rassallık k varsa, bir veya birden fazla dağı

RASSAL SAYI ve RASSAL DEĞİŞ ĞİŞKEN. dd Her Ui nin beklenen değeri; Benzetimde rassallık k varsa, bir veya birden fazla dağı RASSAL SAYI ve RASSAL DEĞİŞ ĞİŞKEN ÜRETİMİ Benzetimde rassallık k varsa, bir veya birden fazla ğılımdan rassal değişken üretimi yapılacakt lacaktır. Bu ğılımlar, gözlemden g elde edilen veriye giydirilmiş

Detaylı

Kuyruk Sistemlerinin Simülasyonu

Kuyruk Sistemlerinin Simülasyonu Kuyruk Sistemlerinin Simülasyonu Kuyruk sistemlerinin simülasyonu sonraki adımda ne olacağını belirlemek üzere bir olay listesinin tutulmasını ve bakımını gerektirir. Simülasyonda olaylar genellikle gerçek

Detaylı

Simülasyonda İstatiksel Modeller

Simülasyonda İstatiksel Modeller Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ İKİ ÖRNEKLEM TESTLERİ BAĞIMLI GRUPLARDA İKİ ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr İKİ ÖRNEKLEM TESTLERİ

Detaylı

1106104 SİSTEM SİMÜLASYONU

1106104 SİSTEM SİMÜLASYONU 6 SİSTEM SİMÜLASYONU Yrd Doç. Dr. Sırma Yavuz Çarşamba : - : (F-9) Ofis: B Blok - Kat Donanım Lab. Ofis Saatleri : Çarşamba 6: - 7: İçerik Simülasyon Modeli Yaklaşımları Kuyruk Sistemlerinin Simülasyonu

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

6.046J/18.401J DERS 7 Kıyım Fonksiyonu (Hashing I) Prof. Charles E. Leiserson

6.046J/18.401J DERS 7 Kıyım Fonksiyonu (Hashing I) Prof. Charles E. Leiserson Algoritmalara Giriş 6.046J/8.40J DERS 7 Kıyım Fonksiyonu (Hashing I) Doğrudan erişim tabloları Çarpışmaları ilmekleme ile çözmek Kıyım fonksiyonu seçimi Açık adresleme Prof. Charles E. Leiserson October

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Bilgisayar Programlama Ders 6 Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Fonksiyon Prototipleri Fonksiyon Prototipleri Derleyici, fonksiyonların ilk hallerini (prototiplerini)

Detaylı

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ

LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 3, Sayı, 9 LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ Yalçın KARAGÖZ Cumhuriyet Üniversitesi, İ.İ.B.F. İşletme Bölümü Özet Bu çalışmada logistic dağılım hakkında

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) İÇİN MODELLEME VE BENZETİM. Dr. Murat Günal

SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) İÇİN MODELLEME VE BENZETİM. Dr. Murat Günal 1 SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) İÇİN MODELLEME VE BENZETİM Dr. Murat Günal SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) Sekröte sunulacak Yeni Ürün (veya Teknoloji) Mevcut ve gelecekteki demografik durum

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8

Detaylı

ZAMAN SERİLERİNDE REGRESYON ANALİZİ

ZAMAN SERİLERİNDE REGRESYON ANALİZİ ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

TOZ METALURJİSİ Prof.Dr.Muzaffer ZEREN

TOZ METALURJİSİ Prof.Dr.Muzaffer ZEREN . TEKNİK SEÇİMLİ DERS I TOZ METALURJİSİ Prof.Dr.Muzaffer ZEREN TOZ KARAKTERİZASYONU TOZ KARAKTERİZASYONU Tüm toz prosesleme işlemlerinde başlangıç malzemesi toz olup bundan dolayı prosesin doğasını anlamak

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

Excel Formüller ve Fonksiyonlar. Yusuf MANSUROĞLU Mühendislik Hizmetleri Müdür Yardımcısı 11.02.2015

Excel Formüller ve Fonksiyonlar. Yusuf MANSUROĞLU Mühendislik Hizmetleri Müdür Yardımcısı 11.02.2015 Excel Formüller ve Fonksiyonlar Yusuf MANSUROĞLU Mühendislik Hizmetleri Müdür Yardımcısı 11.02.2015 Excel de Yapabileceklerimiz Temel aritmetik işlemler (4 işlem) Mantıksal karşılaştırma işlemleri (>,>=,

Detaylı

HPFBU. MADX III (Methodical Accelerator Design) Yöntemli Hızlandırıcı Tasarımı Programı

HPFBU. MADX III (Methodical Accelerator Design) Yöntemli Hızlandırıcı Tasarımı Programı MADX III (Methodical Accelerator Design) Yöntemli Hızlandırıcı Tasarımı Programı Dr. Öznur METE University of Manchester The Cockcro: Ins

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği İSTATİSTİK E GİRİŞ TEMEL KAVRAMLAR İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği Elemanlarıl AMAÇ İstatistiğe

Detaylı

Asal sayılar. II denklem. I denklem

Asal sayılar. II denklem. I denklem Asal sayılar I denklem II denklem 5 ( n+1 ) + n 5.1+0 = 5 5.2+1 = 11 5.3+2 = 17 5.4+3 = 23 5.5+4 = 29 *5.6+5 =35= 5.7 5.7+6 = 41 5.8+7 =47 5.9+8 =53 5.10+9 =59 * 5.11+10 =65=5.13 5.12+11 =71 * 5.13+12

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

8. FET İN İNCELENMESİ

8. FET İN İNCELENMESİ 8. FET İN İNCELENMESİ 8.1. TEORİK BİLGİ FET transistörler iki farklı ana grupta üretilmektedir. Bunlardan birincisi JFET (Junction Field Effect Transistör) ya da kısaca bilinen adı ile FET, ikincisi ise

Detaylı

İstatistik Yöntemleri ve Hipotez Testleri

İstatistik Yöntemleri ve Hipotez Testleri Sağlık Araştırmalarında Kullanılan Temel İstatistik Yöntemleri ve Hipotez Testleri Yrd. Doç. Dr. Emre ATILGAN BİYOİSTATİSTİK İstatistiğin biyoloji, tıp ve diğer sağlık bilimlerinde kullanımı biyoistatistik

Detaylı

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) S-1) Bir otoyol üzerinde radarla hız kontrolü yapan, polis ekipler tarafından tespit edilen tane aracın hızları aşağıdaki tabloda

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi Parametrik Olmayan Testler Ki-kare (Chi-Square) Testi Ki-kare (Chi-Square) Testi En iyi Uygunluk (Goodness of Fit) Ki-kare Dağılımı Bir çok önemli istatistik testi ki kare diye bilinen ihtimal dağılımı

Detaylı

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar.

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar. 9..03 EME 305 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

Markov Zinciri Monte Carlo Yaklaşımı. Aktüeryal Uygulamaları

Markov Zinciri Monte Carlo Yaklaşımı. Aktüeryal Uygulamaları Markov Zinciri Monte Carlo Yaklaşımı ve Aktüeryal Uygulamaları ŞİRZAT ÇETİNKAYA Aktüer Sistem Araştırma Geliştirme Bölümü AKTÜERLER DERNEĞİ 2.0.20080 2008 - İSTANBUL Sunum Planı. Giriş 2. Bayesci Metodun

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

Algoritmalar, Akış Şemaları ve O() Karmaşıklık Notasyonu

Algoritmalar, Akış Şemaları ve O() Karmaşıklık Notasyonu Algoritmalar, Akış Şemaları ve O() Karmaşıklık Notasyonu Öğr. Gör. M. Ozan AKI r1.0 Algoritmalar (Algorithms) Algoritma, bir problemin çözümünü sağlayan ancak deneme-yanılma ve sezgisel çözüme karşıt bir

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Amacı: Metalik Oranların elde edildiği ikinci dereceden denklemin diskriminantını ele alarak karmaşık sayılarla uygulama yapmak ve elde

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

MS Excel. Excel Microsoft Office in bir parçasını oluşturur. Office 2007, Office 2010, Office 2013, Office 2016

MS Excel. Excel Microsoft Office in bir parçasını oluşturur. Office 2007, Office 2010, Office 2013, Office 2016 MS Excel Elektronik tablolama veya hesaplama programı olarak da adlandırılan Excel, girilen veriler üzerinde hesap yapabilme, tablolar içinde verilerle grafik oluşturma, verileri karşılaştırıp sonuç üretebilme

Detaylı

T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI. Doç.Dr. Necaattin BARIŞÇI FİNAL PROJESİ

T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI. Doç.Dr. Necaattin BARIŞÇI FİNAL PROJESİ T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI Doç.Dr. Necaattin BARIŞÇI YAPAY SİNİR AĞLARI İLE KORONER ARTER HASTALIĞI RİSK Öğrenci : SİNEM ÖZDER Numarası : 118229001004

Detaylı

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME GİRİŞ Bu bölümde benzetim için excel örnekleri önerilmektedir. Örnekler excel ile yapılabileceği gibi el ile de yapılabilir. Benzetim örnekleri

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN. Ders No:2 Simülasyon Örnekleri

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN. Ders No:2 Simülasyon Örnekleri 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN Ders No:2 GIRIŞ Bu derste elle ya da bir çalışma sayfası yardımıyla oluşturulacak bir simülasyon tablosunun kullanımıyla yapılabilecek simülasyon

Detaylı

MANTIK DEVRELERİ HALL, 2002) (SAYISAL TASARIM, ÇEVİRİ, LITERATUR YAYINCILIK) DIGITAL DESIGN PRICIPLES & PRACTICES (3. EDITION, PRENTICE HALL, 2001)

MANTIK DEVRELERİ HALL, 2002) (SAYISAL TASARIM, ÇEVİRİ, LITERATUR YAYINCILIK) DIGITAL DESIGN PRICIPLES & PRACTICES (3. EDITION, PRENTICE HALL, 2001) MANTIK DEVRELERİ DERSİN AMACI: SAYISAL LOJİK DEVRELERE İLİŞKİN KAPSAMLI BİLGİ SUNMAK. DERSİ ALAN ÖĞRENCİLER KOMBİNASYONEL DEVRE, ARDIŞIL DEVRE VE ALGORİTMİK DURUM MAKİNALARI TASARLAYACAK VE ÇÖZÜMLEMESİNİ

Detaylı

SANAL ÖLÇME UYGULAMASI

SANAL ÖLÇME UYGULAMASI TMMOB Makina Mühendisleri Odası 11. Otomotiv Sempozyumu 8-9 Mayıs 2009 SANAL ÖLÇME UYGULAMASI Özet Uygulamanın temel amacı Otomotiv sac kalıpçılığında, kalıptan elde edilen parçanın kalite seviyesinin

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

TEMEL KAVRAMLAR Test -1

TEMEL KAVRAMLAR Test -1 TEMEL KAVRAMLAR Test -1 1. 6 ( ) 4 A) B) 3 C) 4 D) 5 E) 6 5. 4 [1 ( 3). ( 8)] A) 4 B) C) 0 D) E) 4. 48: 8 5 A) 1 B) 6 C) 8 D) 1 E) 16 6. 4 7 36:9 18 : 3 A) 1 B) 8 C) D) 4 E) 8 3. (4: 3 + 1):4 A) 3 B) 5

Detaylı

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi

Detaylı

Algoritma Geliştirme ve Veri Yapıları 3 Veri Yapıları. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 3 Veri Yapıları. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 3 Veri Yapıları Veri yapısı, bilginin anlamlı sırada bellekte veya disk, çubuk bellek gibi saklama birimlerinde tutulması veya saklanması şeklini gösterir. Bilgisayar

Detaylı

ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI

ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI İlaç Tasarımında Yeni Yazılımların Geliştirilmesi: Elektron Konformasyonel-Genetik Algoritma Metodu ile Triaminotriazin Bileşiklerinde Farmakofor Belirlenmesi ve Nicel Biyoaktivite Hesabı; ERCİYES ÜNİVERSİTESİ

Detaylı

YAPAN: ESKISEHIR G TIPI LOJMAN TARİH: 15.02.2010 REVİZYON: Hakan Şahin - ideyapi Bilgisayar Destekli Tasarım

YAPAN: ESKISEHIR G TIPI LOJMAN TARİH: 15.02.2010 REVİZYON: Hakan Şahin - ideyapi Bilgisayar Destekli Tasarım YAPAN: PROJE: TARİH: 15.02.2010 REVİZYON: Hakan Şahin - ideyapi Bilgisayar Destekli Tasarım YAPI GENEL YERLEŞİM ŞEKİLLERİ 1 4. KAT 1 3. KAT 2 2. KAT 3 1. KAT 4 ZEMİN KAT 5 1. BODRUM 6 1. BODRUM - Temeller

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

TOPOĞRAFYA Temel Ödevler / Poligonasyon

TOPOĞRAFYA Temel Ödevler / Poligonasyon TOPOĞRAFYA Temel Ödevler / Poligonasyon Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz/marangoz.htm

Detaylı

Zahmetsiz örüntü tanıma: Nokta bulutlarının karşılaştırılması yoluyla veri-tabanlı ve parametresiz istatistiksel öğrenme

Zahmetsiz örüntü tanıma: Nokta bulutlarının karşılaştırılması yoluyla veri-tabanlı ve parametresiz istatistiksel öğrenme Zahmetsiz örüntü tanıma: Nokta bulutlarının karşılaştırılması yoluyla veri-tabanlı ve parametresiz istatistiksel öğrenme Doç. Dr. Bilge Karaçalı Biyomedikal Veri İşleme Laboratuvarı Elektrik-Elektronik

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 Aşağıdaki analizlerde http://yunus.hacettepe.edu.tr/~tonta/courses/spring2010/bby208/bby208

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı ARAŞTIRMA MODELLİLERİNDE KULLANILACAK İSTATİSTİKLERİ BELİRLEME ÖLÇÜTLERİ Parametrik mi Parametrik Olmayan mı? Kullanılacak İstatistikleri Belirleme Ölçütleri Değişken Sayısı Tek değişkenli (X) İki değişkenli

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME

EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME Öğrenci başarısının veya başarısızlığının kaynağında; öğrenci, öğretmen, çevre ve program vardır. Eğitimde değerlendirme yapılırken bu kaynaklar dikkate alınmaz. Eğitimciler,

Detaylı

ÖRNEKLEME HATALARI EK C. A. Sinan Türkyılmaz

ÖRNEKLEME HATALARI EK C. A. Sinan Türkyılmaz ÖNEKLEME HATALAI EK C A. Sinan Türkyılmaz Örneklem araştırmalarından elde edilen kestirimler (estimates) iki tip dan etkilenirler: (1) örneklem dışı lar ve (2) örneklem ları. Örneklem dışı lar, veri toplama

Detaylı

VERİ YAPILARI VE PROGRAMLAMA

VERİ YAPILARI VE PROGRAMLAMA VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

EVREN, ÖRNEK, TEMSİLİYET. Prof. Mustafa Necmi İlhan

EVREN, ÖRNEK, TEMSİLİYET. Prof. Mustafa Necmi İlhan EVREN, ÖRNEK, TEMSİLİYET Prof. Mustafa Necmi İlhan MD, PhD, PhD, MBA Gazi Üniversitesi Tıp Fakültesi Halk Sağlığı AbD mnilhan@gazi.edu.tr 1 Neden Araştırma Yaparız? Bilimsel gerçeğe ulaşmak Bilinenlerin

Detaylı

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir.

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. BİYOİSTATİSTİK Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. Veri Analiz Bilgi El ile ya da birtakım bilgisayar programları

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

MAKİNE ELEMANLARI DERS SLAYTLARI

MAKİNE ELEMANLARI DERS SLAYTLARI MAKİNE ELEMANLARI DERS SLAYTLARI TOLERANSLAR P r o f. D r. İ r f a n K A Y M A Z P r o f. D r. A k g ü n A L S A R A N A r ş. G ör. İ l y a s H A C I S A L I H O Ğ LU Tolerans Gereksinimi? Tasarım ve üretim

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) Parametrik Olmayan Testler Binom Testi SPSS Ders Notları III (3 Mayıs 2012) Soru 1: Öğrencilerin okul

Detaylı

Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir.

Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir. Bağımlı Örneklerde Ki-Kare testi -- Mc Nemar Testi Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir. Örnek: Sigara içmeyle ilgili bir çalışmada, kişilere sigarayı

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

Ki-Kare Bağımsızlık Analizi

Ki-Kare Bağımsızlık Analizi Ki-Kare Bağımsızlık Analizi Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Ki-Kare Bağımsızlık Analizi Kikare bağımsızlık analizi, isimsel ya da sıralı ölçekli

Detaylı

SİSMİK TEHLİKE ANALİZİ

SİSMİK TEHLİKE ANALİZİ SİSMİK TEHLİKE ANALİZİ Depreme dayanıklı yapı tasarımının hedefi, yapıları aşırı bir hasar olmaksızın belirli bir yer hareketi seviyesine dayanacak şekilde üretmektir. Bu belirlenen yer hareketi seviyesi

Detaylı

Şekil 6.2 Çizgisel interpolasyon

Şekil 6.2 Çizgisel interpolasyon 45 Yukarıdaki şekil düzensiz bir X,Y ilişkisini göstermektedir. bu fonksiyon eğri üzerindeki bir dizi noktayı birleştiren bir seri düzgün çizgi halindeki bölümlerle açıklanabilir. Noktaların sayısı ne

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1 Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı Mart 2015 0 SORU 1) Bulanık Küme nedir? Bulanık Kümenin (fuzzy

Detaylı

Online Protokol Üretim Projesi

Online Protokol Üretim Projesi Online Protokol Üretim Projesi Yazılım Geliştirici Kılavuzu Sürüm 1.5 Kasım 2012 Proje Pilot Başlangıç Zamanı 19.11.2012 Pilot Proje Uygulama Yeri Ankara İli Sağlık Hizmet Sağlayıcıları Proje Yöneticisi

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

VERİ MADENCİLİĞİ Metin Madenciliği

VERİ MADENCİLİĞİ Metin Madenciliği VERİ MADENCİLİĞİ Metin Madenciliği Yrd. Doç. Dr. Şule Gündüz Öğüdücü 1 2 Metin için Veri Madenciliği Metin Madenciliğinde Sorunlar Metin madenciliği: Veri madenciliği teknikleri ile yazılı belgeler arasındaki

Detaylı

VİSKOZİTE SIVILARIN VİSKOZİTESİ

VİSKOZİTE SIVILARIN VİSKOZİTESİ VİSKOZİTE Katı, sıvı veya gaz halinde bütün cisimler, kitlelerinin bir bölümünün birbirine göre şekil ya da göreceli yer değiştirmelerine karşı bir mukavemet arz ederler. Bu mukavemet değişik türlerde

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5 1 14 ve 1 sayılarına tam bölünebilen üç basamaklı kaç farklı doğal sayı vardır? x = 14.a = 1b x= ekok(14, 1 ).k, (k pozitif tamsayı) x = 4.k x in üç basamaklı değerleri istendiğinden k =, 4, 5, 6, 7,,

Detaylı

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir.

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir. SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon Tanım 2: Bir grubun kendi üzerine izomorfizmine otomorfizm, grubun kendi üzerine homomorfizmine endomorfizm Sadece birebir olan

Detaylı

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ 6.2. Laplace Dönüşümü Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) ya da L[f(t)] olarak gösterilir. Burada tanımlanan s; ÇÖZÜM: a) b) c) ÇÖZÜM: 6.3.

Detaylı

2. (v+w+x+y+z) 8 ifadesinin açılımında kaç terim vardır? 3. log 5 0, 69897 olduğuna göre 50 10 sayısı kaç basamaklıdır?

2. (v+w+x+y+z) 8 ifadesinin açılımında kaç terim vardır? 3. log 5 0, 69897 olduğuna göre 50 10 sayısı kaç basamaklıdır? Ayrık Hesaplama Yapıları A GRUBU 3.03.0 Numarası Adı Soyadı : CEVAP : ANAHTARI SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı