DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 9 Sayı: 1 s. 1-7 Ocak 2007 HİDROLİK PROBLEMLERİNİN ÇÖZÜMÜNDE TAŞIMA MATRİSİ YÖNTEMİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 9 Sayı: 1 s. 1-7 Ocak 2007 HİDROLİK PROBLEMLERİNİN ÇÖZÜMÜNDE TAŞIMA MATRİSİ YÖNTEMİ"

Transkript

1 DEÜ MÜHENDİSLİK FAKÜLESİ FEN ve MÜHENDİSLİK DERGİSİ lt: 9 Sayı: s -7 Ocak 7 HİDROLİK PROBLEMLERİNİN ÇÖÜMÜNDE AŞIMA MARİSİ YÖNEMİ (MEHOD OF RANSFER MARIX O HE ANALYSIS OF HYDRAULI PROBLEMS) Rasoul DANESHFARA*, Brol KAYA** ÖE/ABSRA Lteratürde mühedslk problemler çözümüde kullaıla br çok yötem mevcuttur Bularda br de yapı mekağ problemler çözümüde kullaıla taşıma matrs yötemdr Bu bldrde taşıma matrs yötem İşaat Mühedslğ Hdrolkte tek boyutlu akım problemler aalzde uygulaması ç br yaklaşım suulmuştur Suula yaklaşım le hızlı ve pratk olarak yazılable bast br program yardımıyla souca ulaşılmaktadır Çalışmaı souda Lteratürde alıa çeştl sayısal örekler burada suula yaklaşım le çözülmüş ve lteratürdek souçlarla karşılaştırılmıştır Suula yaklaşımı dğer yötemlere yeter yakısaklıkta olduğu görülmüştürbu çalışmada yalızca k tür hdrolk problem ç uygulaması alatıla taşıma matrs yötem br çok mühedslk problem çözümüde y br alteratf oluşturmaktadır here are umerous methods lterature for the soluto the problems of cvl egeerg Oe of these s the trasfer matrx, whch s used solvg the problems volved mechacs I ths paper a approach has bee preseted for the applcato of the method of trasfer matrx to the aalyss of oe dmesoal flow problems hydraulcs brach of cvl egeerg, ad to the lateral dyamc aalyss of mult-storey buldg, Wth the approach preseted, ad wth the help of a method whch ca be wrtte fast ad practcally, result ca be obtaed At the ed of ths study, varous examples take from the lterature have bee solved usg the approach preseted here ad the results of the lterature have bee obtaed It was see that the approach preseted here was suffcet agremeet wth other methods rasfer matrx method of whch oly two applcatos were preseted ths study forms a good alteratve for the soluto of umerous egeerg problems ANAHAR KELİMELER/KEYWORDS aşıma Matrs, Hdrolk, ek boyutlu akım rasfer matrx, Hydraulcs, Oe Dmesoal Flow *Boab Azad Üverstes, İşaat Mühedslğ Bölümü, Boab, İRAN **Dokuz Eylül Üverstes, Mühedslk Fakültes, İşaat Mühedslğ Bölümü, İMİR

2 Sayfa No: RDANESHFARA, BKAYA GİRİŞ Mekak problemler çözümüde br çok farklı yötem kullaılmaktadır Bularda başlıcaları solu elemalar, solu farklar, solu hacm, sıır elemaları, dferasyel quadrature yötem gb yötemlerdr Özellkle tegral aralığıı parçalara bölümes gerektğ durumlarda taşıma matrs ve kals yötemler çözüm ç kullaılablecek yötemlerdedr aşıma matrs yötem lk kez make mühedslğde burulmalı ttreşm problemler çözümüde kullaılmıştır (Dmarogoas, 996) Daha sora yöteme at uygulamalar Pestel ve Lecke tarafıda br ktapta toplamıştır (Petsel ve Lecke, 963) Yötem ürkye de İa tarafıda taıtılmış ve gelştrlmştr (İa, 968) Yöteme yöelk olarak so yıllarda da farklı özellkler çere br dz çalışma yapılmıştır Nam ve Lee çalışmalarıda Elastk zeme otura sldrk tak problem taşıma matrs yötem kullaarak celemşlerdr (Nam ve Lee, ) L aaltk trasfer matrs yötem le açık çatlağı ola bast mesetl krş problemler çözümüü celemştr (L, 4) Roatolo ve Suroce çok çatlaklı çubuk elemaları açısal frekasları çözümü ç taşıma matrs yötem kullamışlardır (Roatolo ve Suroce, 4) Değşk özellkl krşler eğlmel, burulmalı ttreşmlerde, stablte aalzlerde ve bast çerçeveler aalzde taşıma matrs yötem çere br dz çalışma yapılmıştır So yıllarda hdrolkte taşıma matrs yötem kullaıldığı bazı çalışmalar yapılmıştır haudry vd boruları damğe yöelk çalışmalarıda taşıma matrs kullamışlardır (haudry, 993) Shmada vd boru şebekelerde polomyal taşıma matrsyle eterpolasyo hatalarıı araştırmışlardır (Shmada vd, 6) Ltrco ve Fromo açık kaal akımlarıı frekas modellemes Sat veat deklemler leerleştrerek elde ettkler taşıma matrs yardımıyla gerçekleştrmşlerdr (Ltrco ve Fromo, 4) Bezer şeklde ayı yazarlar sulama kaallarıı kotrolü tasarımıı modellemes taşıma matrs yaklaşımıyla yapmışlardır Buları dışıda dalga problemler çözümüde de taşıma matrs yötem kullalmştr Bu çalışmada su mühedslğde boru hdrolğde taşıma matrs yötem kullaılması örekle alatılmaktadır AŞIMA MARİSİ YÖNEMİ İlk kez 856 da Holzer Va Duge tarafıda burulmalı kapalı kestler damk aalz ç kullaıla taşıma matrs yötem ülkemzde Mustafa İa tarafıda Başlagıç Değerler yötem adıyla taıtılmıştır (Ju vd, 4; İa, 968) Yötemde başlagıçta blmeyeler br kısmı seçlmekte daha sora dğer blmeyeler başlagıçtak blmeyelere bağlı olarak fade edlmekte ve souçta blmeyeler sıır şartları yardımıyla bulumaktadıryötem le bazı problemler çözümüde dğer yötemlere göre daha kısa sürede ve kolaylıkla souca gdleblmektedr Yötem dezavatajı se stablte soruudur Aşağıda hdrolkte tek boyutlu akım problemler çözümü ç taşıma matrs yötem uygulama aşamaları ve br örek verlmektedr 3 EK BOYULU AKIM PROBLEMİ Şekl de çde yoğuluğu gösterlmektedr ρ ola br sıvıı akmakta olduğu br boru

3 Fe ve Mühedslk Dergs lt : 9 Sayı : Sayfa No: 3 A A(x) A j Şekl Değşke kestl boru Burada l: boru uzuluğuu, u :borudak sıvı hızıı göstermek üzere boruu her kestde geçe su mktarıı ayı olması gerektğde c br sabt olmak üzere ρ Au c () bağıtısı yazılablmektedr Borudak sıvı vskoztesz olduğu takdrde, sıvı hızı u, potasyel foksyo olmak üzere u d / dx () şeklde yazılablmektedr Bu fadey Eştlk de yere yazıp x e göre türev aldığımızda [ A( d / dx) ] d / dx ρ (3) bağıtısı elde edlmekte ve boru çde kestde geçe akımı toplam kütles se ( ) ( d dx) ρa / (4) şeklde yazılablmektedr Her elema ç A ı sabt olduğu kabul edlerek, Eştlk 3 kc mertebede homoje ad dferasyel deklem x e göre tegre edldğde d dx ve br kez daha tegre edlrse (6) x + şeklde potasyel foksyou elde edleblmektedr Eştlk 5, Eştlk 4 te yere yazıldığıda ρa (7) bağıtısı elde edlmekte ve Eştlk 6 ve Eştlk 7 matrs formu da x ρa x xl şeklde yazılablmektedr Boruu başlagıcıda x ç Eştlk 8 ve Eştlk 9 matrs bağıtılar (5) (8) (9)

4 Sayfa No: 4 RDANESHFARA, BKAYA ρa () () şekl almaktadırlar Eştlk dek katsayılar vektörü Eştlk 9 da yere yazılırsa boru parçası ç taşıma matrs fades / A x ρ () veya (3) şeklde elde edlmektedr Burada (4) fades boru parçasıı taşıma matrsdr Boru başlagıcı le btş arasıdak lşky sağlaya elema taşıma matrs elde edlmes ç xl yazılmalıdır Böylece Eştlk 3 ve Eştlk 4 / A l ρ (5) (6) şekl almaktadır adet boru parçası ç Eştlk 6 ardışık olarak yazılırsa 3 (7) bağıtısı elde edlmektedr Buradak 3 t (8) fades sstem taşıma matrs olmaktadır Eştlk 7 de sıır şartları yazılarak blmeyeler buluablmektedr Daha sora bu blmeyeler ve Eştlk 5 bağıtı yardımıyla ara oktalardak blmeyeler hesaplaablmekdr İsterse elema taşıma matrs yardımıyla solu elemalar yötem ç elema matrsde buluablmektedr Buu ç Eştlk 5 elema taşıma matrsde gerekl düzelemeler yapılırsa solu elemalar matrs k l A k ρ (9) şeklde buluablmektedr

5 Fe ve Mühedslk Dergs lt : 9 Sayı : Sayfa No: 5 4 SAYISAL ÖRNEKLER Bu bölümde bu çalışma kapsamıda suula taşıma matrs yötem yakısaklığıı araştırmak üzere k adet sayısal örek çözülerek souçlar karşılaştırılmıştır Örekler taşıma matrs yötem le çözümü sırasıda Matlab hazır paket programı yardımıyla oluşturulmuş programlar kullaılmıştır 4 Sayısal Örek Şekl de gösterle değşke ekestl boruda ekest değşm A( x) A [( X / L)] fades le verlmektedr Şekl Değşke ekestl geel tek boyutlu sstem Kesk ko bçmde ola bu sstem sol ucudak kest alaı A, hız u ve sağ ucudak kest alaı A olmaktadır ve oktalarıdak potasyel değerler ç solu elemalar yötemyle çözümde elde edle soçlarla bu çalışmada verle taşıma matrs yötem le elde edle souçlar Çzelge de verlmektedr (Wast, 994) 4 Sayısal Örek Çzelge Potasyel değerler karşılaştırılması Potasyel değerler aşıma matrs Solu elemalar,374u L,374u L,8u L,8u L L Şekl 3 te görüle hdrolk şebekede akım lamer olarak dkkate alımaktadır (Reedy, 993) Şebeke düğüm oktaya sahp tpk elemalarda (sabt çaplı daresel boru) oluşmaktadır Sstemde blmeye düğüm oktalarıdak basıç (P) ve derecede blmeye gre akım() dır d e boru çapıı h e uzuluğuu µ vskoztey göstermektedr Sstemde a/r e olup R e değer se 8 µ h/π d e 4 dür Şebeke bu çalışmada verle taşıma matrs yötem le çözülmüş ve elde edle basıç değerler Çzelge de verlmştr Reedy tarafıda yapıla solu elemalar yötem le elde edle souçlarla karşılaştırılmıştır (Reedy, 993)

6 Sayfa No: 6 RDANESHFARA, BKAYA R a R 3a 3 R 4 a R a 4 P R 5 6a Şekl 3 Sayısal örek ye at şebeke Çzelge Düğüm oktalarıdak basıç değerler Düğüm o aşıma matrs Solu elemalar a a 4 4 a a a a SONUÇLAR Bu çalışmada hdrolk problemlere yöelk olarak taşıma matrs yötem kullaılması alatılmaktadır Çalışmada boru hdrolğe at örek ele alımış ve taşıma matrsler yardımıyla ele edle souçlar solu elemalar yötemyle elde edle souçlarla karşılaştırularak verlmştr Suula yötem oldukça kısa sürede souca ulaşmakta ve çözüm algortmasıı kurulması da dğer yötemlere göre daha kolay olmaktadır Çalışmaı souda suula örekler, yötem yeterce yakısak olduğu göstermektedr Souç olarak burada bazı uygulama alaları taıtılmış ve uygulamış ola yötem uygulamaları matematk alaıdak gelşmelere bağlı olarak dğer mühedslk problemler çözümüde de y br alteratf oluşturacağıa aılmaktadır KAYNAKLAR haudry MH (993): Appled Hydraulc raset Dmarogoas A (996): Vbrato for Egeers, Secod Edto, Pretce Hall Ia M (968): he Method of Ital Values ad arry Over Matrx Elastomechacs, Metu Faculty of Egeerg, Publcato No: Ju L, Rogyg S, Hogxg H, Xadg J (4): oupled Bedg ad orsoal Vbrato of Axally Loaded Beroull-Euler Beams Icludg Warpg Effects, Appled Acoustc, 65, pp 53-7 L HP (4): Drect ad Iverse Methods o Free Vbrato Aalyss of Smply Supported Beams wth rack, Egeerg Structures, 6, pp Ltrco X, Fromo V (4): Frequecy Modelg of Ope hael Flow, Joural of Hydraulc Egeerg, Vol 3, No 8, pp 86-85

7 Fe ve Mühedslk Dergs lt : 9 Sayı : Sayfa No: 7 Nam MH, Lee KH (): Usymetrcally Loaded yldrcal ak o Elastc Foudato, ASE Joural of Egeerg Mechacs, December, pp 57-6 Pestel E, Lecke FA (963): Matrx Methods Elastomechacs, Mc-Graw Hll Reddy JN,(993): A Itroducto to he Fte Elemet Method, McGraw-Hll Ruotolo R, Surace (4): Natural Frequeces of a bar wth Multple racks, Joural of Soud ad Vbrato, 7, pp 3-36 Shmada M, Brow J, Lesle D, Vordy A (6): A me Le Iterpolato Errors Ppe Networks, ASE Joural of Hydraulc Egeerg, Vol 3, No 3 Wast S (994): ek Boyutlu Akım Problemler Solu Elema Çözümü,Yapı Mekağ semer, Dumlupıar Üverstes, Orta Doğu ekk üverstes ve Osmagaz Üverstes, Kütahya, -3

Zaman Skalasında Box-Cox Regresyon Yöntemi

Zaman Skalasında Box-Cox Regresyon Yöntemi Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:7, Sayı:, Yıl:0, ss.57-70. Zama Skalasıda Bo-Co Regresyo Yötem Atlla Özur İŞÇİ Sbel PAŞALI GÖKTAŞ ATMACA 3 M. Nyaz ÇANKAYA 4 Özet Hata term

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ Clt: 2 Sayı: 3 sh 87-02 Ekm 200 VOLTERRA SERİLERİ METODU İLE DOĞRUSAL OLMAYAN SİSTEMLERİN FREKANS BOYUTUNDA ANALİZİ İÇİN NET TABANLI ARAYÜZ TASARIMI (DESIGN

Detaylı

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine Geelleşrlmş Oralama Foksyou ve Bazı Öeml Eşszlkler Öğrem Üzere Gabl ADİLOV, Gülek TINAZTEPE & Serap KEALİ * Öze Armek oralama, Geomerk oralama, Harmok oralama, Kuvadrak oralama ve bular arasıdak lşk vere

Detaylı

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

Polinom İnterpolasyonu

Polinom İnterpolasyonu Polom İterpolasyou (Ara Değer Bulma Br foksyou solu sayıdak, K, R oktalarıda aldığı f (, f (,, f ( değerler bls (foksyou keds blmyor. Bu oktalarda geçe. derecede br tek, P a + a + a + + a (... polumu vardır

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

Olabilirlik Oranı Yöntemine Dayalı, Yapısal Homojen Olmayan Varyans Testlerinin Piyasa Modeli İçin Karşılaştırılması

Olabilirlik Oranı Yöntemine Dayalı, Yapısal Homojen Olmayan Varyans Testlerinin Piyasa Modeli İçin Karşılaştırılması Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:6, Sayı:, Yıl:011, ss.135-144 Olablrlk Oraı Yöteme Dayalı, Yaısal Homoje Olmaya Varyas Testler Pyasa Model İç Karşılaştırılması Flz KARDİYEN

Detaylı

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit Karadez Te Üverstes Blgsayar Mühedslğ Bölümü 5-6 Güz Yarıyılı Sayısal Çözümleme Ara Sıav Soruları Tarh: Kasım 5 Perşembe Süre: daa. f ( ( + a e fosyouu sabt otası olmadığı bldğe göre, a 'ı alableceğ e

Detaylı

BEKLENEN DEĞER VE VARYANS

BEKLENEN DEĞER VE VARYANS BEKLEE DEĞER VE VARYAS.1. İadel ve adesz öreklemede tüm mümkü örekler.. Beklee değer.3. Varyas.4. İk değşke ortak dağılımı.5. İstatstksel bağımsızlık.6. Tesadüf değşkeler doğrusal kombasyolarıı beklee

Detaylı

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması . Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve

Detaylı

Yüksek Mertebeden Sistemler İçin Ayrıştırma Temelli Bir Kontrol Yöntemi

Yüksek Mertebeden Sistemler İçin Ayrıştırma Temelli Bir Kontrol Yöntemi Yüksek Mertebede Sstemler İç Ayrıştırma Temell Br Kotrol Yötem Osma Çakıroğlu, Müjde Güzelkaya, İbrahm Eks 3 Kotrol ve Otomasyo Mühedslğ Bölümü Elektrk Elektrok Fakültes İstabul Tekk Üverstes,34369, Maslak,

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

PORTFÖY OPTİMİZASYONUNDA ORTALAMA MUTLAK SAPMA MODELİ VE MARKOWITZ MODELİNİN KULLANIMI VE İMKB VERİLERİNE UYGULANMASI

PORTFÖY OPTİMİZASYONUNDA ORTALAMA MUTLAK SAPMA MODELİ VE MARKOWITZ MODELİNİN KULLANIMI VE İMKB VERİLERİNE UYGULANMASI Süleyma Demrel Üverstes İktsad ve İdar Blmler Fakültes Dergs Y.2008, C.3, S.2 s.335-350. Suleyma Demrel Uversty The Joural of Faculty of Ecoomcs ad Admstratve Sceces Y.2008, vol.3, No.2 pp.335-350. PORTFÖY

Detaylı

Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ

Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ Değşkeler Arasıdak İlşkler Regresyo ve Korelasyo Dr. Musa KILIÇ http://ks.deu.edu.tr/musa.klc 1. Grş Buda öcek bölümlerde celedğmz koular, br tek değşke ç yorumlamalar yapmaya yöelk statstk yötemler üzerde

Detaylı

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ

Detaylı

Kuruluş Yeri Seçiminde Bulanık TOPSIS Yöntemi ve Bankacılık Sektöründe Bir Uygulama

Kuruluş Yeri Seçiminde Bulanık TOPSIS Yöntemi ve Bankacılık Sektöründe Bir Uygulama KMÜ Sosyal ve Ekoomk Araştırmalar Dergs (8): 37-45, 00 ISSN: 309-93, wwwkmuedutr Kuruluş Yer Seçmde Bulaık TOPSIS Yötem ve Bakacılık Sektörüde Br Uygulama Nha Tırmıkçıoğlu Çıar Yıldız Tekk Üverstes, Kmya-Metalür

Detaylı

PERDE ÇERÇEVE SİSTEMLERİN DEPLASMAN ESASLI DİZAYNI İÇİN DEPLASMAN PROFİLİ

PERDE ÇERÇEVE SİSTEMLERİN DEPLASMAN ESASLI DİZAYNI İÇİN DEPLASMAN PROFİLİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : : : : - PERDE ÇERÇEVE

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

ARAŞTIRMA MAKALESİ / RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ / RESEARCH ARTICLE ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ A Uygulamalı Blmler ve Mühedslk ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY A Appled Sceces ad Egeerg Clt/Vol.: 3-Sayı/No: : 5-63 (202 ARAŞTIRMA

Detaylı

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa ELECO '1 Elektrk - Elektrok ve Blgsayar Mühedslğ Sempozyumu, 9 Kasım - 1 Aralık 1, Bursa Artırma/Azaltma Lmtl ve Yasak İşletm Bölgel Ekoomk Güç Dağıtımı Problemler Yerçekmsel Arama Algortması le Çözümü

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

Gerçek Zamanlı Giriş Şekillendirici Tasarımı Design of Real Time Input Shaper

Gerçek Zamanlı Giriş Şekillendirici Tasarımı Design of Real Time Input Shaper ELECO '0 Elektrk - Elektrok ve Blgsayar Mühedslğ Sempozyumu, 9 asım - 0 ralık 0, Bursa Gerçek Zamalı Grş Şeklledrc Tasarımı Desg of Real Tme Iput Shaper Sa ÜNSL, Sırrı Suay GÜRLEYÜ Elektrk-Elektrok Mühedslğ

Detaylı

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE BAÜ Fen Bl. Enst. Dergs (6).8. YAYII YÜK İE YÜKENİŞ YAPI KİRİŞERİNDE GÖÇE YÜKÜ HESABI Perhan (Karakulak) EFE Balıkesr Ünverstes ühendslk marlık Fakültes İnşaat üh. Bölümü Balıkesr, TÜRKİYE ÖZET Yapılar

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Pamukkale Üverstes Mühedslk Blmler Dergs Pamukkale Uversty Joural of Egeerg Sceces Kabul Edlmş Araştırma Makales (Düzelememş Sürüm) Accepted Research Artcle (Ucorrected Verso) Makale Başlığı / Ttle Karayolu

Detaylı

TÜRKİYE ŞEKERPANCARI ÜRETİMİNDE FAKTÖR TALEP ANALİZİ ( ) (TRANSLOG MALİYET FONKSİYONU UYGULAMASI) Yaşar AKÇAY 1 Kemal ESENGÜN 2

TÜRKİYE ŞEKERPANCARI ÜRETİMİNDE FAKTÖR TALEP ANALİZİ ( ) (TRANSLOG MALİYET FONKSİYONU UYGULAMASI) Yaşar AKÇAY 1 Kemal ESENGÜN 2 l Ta rr ım ı Ekooms Kog rres 6-8 - Eylül l 2000 Tek rrdağ TÜRKİYE ŞEKERPANCARI ÜRETİMİNDE FAKTÖR TALEP ANALİZİ (980-998) (TRANLOG MALİYET FONKİYONU UYGULAMAI) Yaşar AKÇAY Kemal EENGÜN 2. GİRİŞ Türkye tarımı

Detaylı

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler

Detaylı

SIMULINK kullanarak güç sistem geçici hal kararlılık analizi. Power system transient stability analysis using SIMULINK

SIMULINK kullanarak güç sistem geçici hal kararlılık analizi. Power system transient stability analysis using SIMULINK SAÜ Fe Bl Der 9. Clt,. Sayı, s. -, 5 SIMULINK kullaarak güç sstem geçc hal kararlılık aalz Serdar Ekc * ÖZ 9..5 Gelş/Receved, 4.5.5 Kabul/Accepted SIMULINK, damk sstemler modellemes, aalz ve smülasyou

Detaylı

Đst201 Đstatistik Teorisi I

Đst201 Đstatistik Teorisi I Đst20 Đstatstk Teors I DERSĐN TÜRÜ Zorulu DERSĐN DÖNEMĐ Yaz DERSĐN KREDĐSĐ Ulusal Kred: (4, 0, 0 ) 4 KTS: 7 DERSĐN VERĐLDĐĞĐ Bölüm: Đstatstk 200/20 Öğretm Yılı DERSĐN MCI Đstatstğ matematksel temeller

Detaylı

S.Erhan 1 ve M.Dicleli 2

S.Erhan 1 ve M.Dicleli 2 1. Türkye Deprem Mühedslğ ve Ssmoloj Koferası 11-14 Ekm 2011 ODTÜ ANKARA ÖZET: SİSMİK YÜKLERİN İNTEGRAL KÖPRÜ KAZIKLARINDA DÜŞÜK DEVİRLİ YORULMAYA ETKİLERİ S.Erha 1 ve M.Dclel 2 1 Araştırma Görevls, Mühedslk

Detaylı

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR 2013 yılı fo getrs 02/01/2013-02/01/2014 tarhl brm pay değerler kullaılması le hesaplamıştır. 2013 yılı karşılaştırma ölçütü getrs

Detaylı

SAYISAL ARAZİ MODELLERİNDE BAZI ENTERPOLASYON YÖNTEMLERİNİN KARŞILAŞTIRILMASI

SAYISAL ARAZİ MODELLERİNDE BAZI ENTERPOLASYON YÖNTEMLERİNİN KARŞILAŞTIRILMASI Selçuk Üverstes ISSN 30/678 Joural of Techcal-Ole Tekk Blmler Meslek Yüksekokulu Tekk-Ole Derg Clt 5, Sayı:-006 SAYISAL ARAZİ MODELLERİNDE BAZI ENTERPOLASYON YÖNTEMLERİNİN KARŞILAŞTIRILMASI Taer Üstütaş

Detaylı

İleri Teknoloji Bilimleri Dergisi Journal of Advanced Technology Sciences ISSN:2147-3455

İleri Teknoloji Bilimleri Dergisi Journal of Advanced Technology Sciences ISSN:2147-3455 İler Tekoloj Blmler Dergs Joural of Advaced Techology Sceces ISSN:47-3455 GÜÇ SİSTEMLERİNDE HARMONİKLERİN KRİTİK DEĞERLERE ETKİSİ Yusuf ALAŞAHAN İsmal ERCAN Al ÖZTÜRK 3 Salh TOSUN 4,4 Düzce Üv, Tekoloj

Detaylı

BÉZIER YAKLAŞIMI İLE BİR YÜZEYİN OLUŞTURULMASI VE C PROGRAMLAMA İLE CAM KODLARININ TÜRETİLMESİ

BÉZIER YAKLAŞIMI İLE BİR YÜZEYİN OLUŞTURULMASI VE C PROGRAMLAMA İLE CAM KODLARININ TÜRETİLMESİ İMAK-asarım İmalat Aalz Kogres 6-8 Nsa 6 - ALIKESİR ÉZIER YAKLAŞIMI İLE İR YÜZEYİN OLUŞURULMASI VE C PROGRAMLAMA İLE CAM KODLARININ ÜREİLMESİ Cha ÖZEL, Erol KILIÇKAP Fırat Üverstes, Maka Mühedslğ ölümü-elaziğ

Detaylı

REGRESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KARELER VE EN KÜÇÜK MEDYAN KARELER YÖNTEMLERİNİN KARŞILAŞTIRILMASI

REGRESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KARELER VE EN KÜÇÜK MEDYAN KARELER YÖNTEMLERİNİN KARŞILAŞTIRILMASI FEN DEGİSİ (E-DEGİ). 8, 3() 9-9 EGESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KAELE VE EN KÜÇÜK MEDYAN KAELE YÖNTEMLEİNİN KAŞILAŞTIILMASI Özlem GÜÜNLÜ ALMA, Özgül VUPA Dokuz Eylül Üverstes, Fe-Edebyat Fakültes,

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Taımlayıcı İstatstkler br değerler dzs statstksel olarak geel özellkler taımlaya ölçülerdr Taımlayıcı İstatstkler Yer Göstere Ölçüler Yaygılık Ölçüler Yer Göstere Ölçüler Br dağılımı

Detaylı

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi 3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada

Detaylı

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Türkye İnşaat Mühendslğ, XVII. Teknk Kongre, İstanbul, 2004 İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Nur MERZİ 1, Metn NOHUTCU, Evren YILDIZ 1 Orta Doğu Teknk Ünverstes, İnşaat Mühendslğ Bölümü, 06531 Ankara

Detaylı

EKONOMİK YÜK DAĞITIMI İÇİN YENİ BİR ALGORİTMA VE HESAPLAMA YÖNTEMİ

EKONOMİK YÜK DAĞITIMI İÇİN YENİ BİR ALGORİTMA VE HESAPLAMA YÖNTEMİ EKONOMİK YÜK DAĞITIMI İÇİN YENİ BİR AGORİTMA VE HESAAMA YÖNTEMİ Nurett Çetkaya Abdullah Ürkmez İsmet Erkme Takut Yalçıöz 4, Selçuk Üverstes Elektrk-Elektrok Mühedslğ Bölümü Koya ODTÜ Elektrk-Elektrok Mühedslğ

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

(DERS NOTLARI) Hazırlayan: Prof.Dr. Orhan ÇAKIR. Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü

(DERS NOTLARI) Hazırlayan: Prof.Dr. Orhan ÇAKIR. Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü FİZ433 FİZİKTE BİLGİSAYAR UYGULAMALARI DERS NOTLARI Hazırlaya: Pro.Dr. Orha ÇAKIR Akara Üverstes, Fe Fakültes, Fzk Bölümü Akara, 7! İÇİNDEKİLER. LİNEER OLMAYAN DENKLEMLERİN KÖKLERİNİN BULUNMASI I/II. LİNEER

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

İŞLETMELERDE DAĞITIM SİSTEMİ MALİYETLERİ MİNİMİZASYONU İÇİN ÇÖZÜM MODELİ: BİR FİRMA UYGULAMASI

İŞLETMELERDE DAĞITIM SİSTEMİ MALİYETLERİ MİNİMİZASYONU İÇİN ÇÖZÜM MODELİ: BİR FİRMA UYGULAMASI İŞLETMELERDE DAĞITIM SİSTEMİ MALİYETLERİ MİNİMİZASYONU İÇİN ÇÖZÜM MODELİ: BİR FİRMA UYGULAMASI Ahmet ERGÜLEN * Halm KAZAN ** Muhtt KAPLAN *** ÖZET Arta rekabet şartları çersde karlılıklarıı korumak ve

Detaylı

HĐPERSTATĐK SĐSTEMLER

HĐPERSTATĐK SĐSTEMLER HĐPERSTATĐK SĐSTELER Taım: Bütü kest zorları, şekldeğştrmeler ve yerdeğştrmeler belrlemes ç dege deklemler yeterl olmadığı sstemlere hperstatk sstemler der. Hperstatk sstemler hesabı ç, a) Dege deklemlere,

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ STRES DAYANIKLILIK GÜVENİLİRLİĞİNİN MASKELİ VERİLERE DAYALI TAHMİNİ Demet SEZER DOKTORA TEZİ İstatstkAablm Dalı Aralık-03 KONYA Her Hakkı Saklıdır TEZ

Detaylı

AES S Kutusuna Benzer S Kutuları Üreten Simulatör

AES S Kutusuna Benzer S Kutuları Üreten Simulatör AES S Kutusua Bezer S Kutuları Ürete Smulatör M.Tolga SAKALLI Trakya Üverstes Blgsayar Mühedslğ tolga@trakya.edu.tr Erca BULUŞ Trakya Üverstes Blgsayar Mühedslğ ercab@trakya.edu.tr Adaç ŞAHİN Trakya Üverstes

Detaylı

Politeknik Dergisi, 2015; 18 (1) : Journal of Polytechnic, 2015; 18 (1) : 35-42

Politeknik Dergisi, 2015; 18 (1) : Journal of Polytechnic, 2015; 18 (1) : 35-42 Poltekk Dergs, 015; 18 (1) : 35-4 Joural of Polytechc, 015; 18 (1) : 35-4 Atakya Bölgesde Rüzgâr Gücü Yoğuluğu ve Rüzgâr Hızı Dağılımı Parametreler İstatstksel Aalz İlker Mert *, Cuma Karakuş ** * Dezclk

Detaylı

WEİBULL DAĞILIMININ ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİN İSTATİSTİKSEL TAHMİN YÖNTEMLERİNİN KARŞILAŞTIRILMASI

WEİBULL DAĞILIMININ ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİN İSTATİSTİKSEL TAHMİN YÖNTEMLERİNİN KARŞILAŞTIRILMASI İstabul Tcaret Üverstes Sosal Blmler Dergs Yıl:8 Saı:5 Bahar 2009 s.73-87 WEİBULL DAĞILIMII ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİ İSTATİSTİKSEL TAHMİ YÖTEMLERİİ KARŞILAŞTIRILMASI Flz ÇAKIR ZEYTİOĞLU* ÖZET Güümüzde

Detaylı

Bağıl Değerlendirme Sisteminin Simülasyon Yöntemi ile Test Edilmesi: Kilis 7 Aralık Üniversitesi Örneği

Bağıl Değerlendirme Sisteminin Simülasyon Yöntemi ile Test Edilmesi: Kilis 7 Aralık Üniversitesi Örneği Akademk Blşm 11 - III. Akademk Blşm Koferası Bldrler 2-4 Şubat 2011 İöü Üverstes, Malatya Bağıl Değerledrme Sstem Smülasyo Yötem le Test Edlmes: Kls 7 Aralık Üverstes Öreğ Kls 7 Aralık Üverstes, Blgsayar

Detaylı

Sağlam Ridge Regresyon Analizi ve Bir Uygulama

Sağlam Ridge Regresyon Analizi ve Bir Uygulama Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:5, Sayı:, Yıl:010, ss.137-148. Sağlam Rdge Regresyo Aalz ve Br Uygulama Özlem ALPU 1 Hatce ŞAMKAR Ekrem ALTAN 3 Özet Çoklu regresyo aalzde

Detaylı

SAYISAL ANALİZ. Ders Notları MART 27, 2016 PAMUKKALE ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ

SAYISAL ANALİZ. Ders Notları MART 27, 2016 PAMUKKALE ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL ANALİZ Ders Notları MART 7, 06 PAMUKKALE ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ PAÜ, Müh. Fak., Make Müh. Böl., Sayısal Aalz Ders Notları, Z.Grg Ösöz Mühedslkte aaltk olarak

Detaylı

HARDY-CROSS METODU VE UYGULANMASI

HARDY-CROSS METODU VE UYGULANMASI HRY-ROSS MTOU V UYGUNMSI ğ şebekelerde debi bir oktaya çeşitli yollarda gelebildiği içi, şebekei er agi bir borusua suyu agi yolda geldiğii ilk bakışta söyleyebilmek geellikle mümkü değildir. Çözümleme

Detaylı

Lojistik Regresyonda Meydana Gelen Aşırı Yayılımın İncelenmesi

Lojistik Regresyonda Meydana Gelen Aşırı Yayılımın İncelenmesi Yüzücü Yıl Üverstes, Zraat Fakültes, Tarım Blmler Dergs (J. Agrc. Sc.), 008, 18(1): 1-5 Araştırma Makales/Artcle Gelş Tarh: 10.06.007 Kabul Tarh: 7.1.007 Lojstk Regresyoda Meydaa Gele Aşırı Yayılımı İcelemes

Detaylı

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir.

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir. Bölüm 2 Matrsler aım 2.1 F br csm, m, brer doğal sayı olsu. a F ( 1,.., m; j 1,..., ) olmak üzere, a11... a1 fadese m satır sütuda oluşa (veya m tpde) br F matrs der. am 1... a m Böyle br matrs daha sade

Detaylı

Tarihli Mühendislik ekonomisi final sınavı. Sınav süresince görevlilere soru sormayın. Başarılar dilerim.

Tarihli Mühendislik ekonomisi final sınavı. Sınav süresince görevlilere soru sormayın. Başarılar dilerim. 6..27 Tarhl Mühedslk ekooms fal sıavı Süre 9 dakka Sıav Saat: Sıav süresce görevllere soru sormayı. Başarılar dlerm. D: SOYD: ÖĞRENCİ NO: İMZ: Tek ödemel akümüle değer faktörü Tek ödemel gücel değer faktörü

Detaylı

Ergonomik Ürün Tasarımına Bütünleşik Bir Yaklaşım

Ergonomik Ürün Tasarımına Bütünleşik Bir Yaklaşım Sakarya Üverstes Fe Blmler Esttüsü Dergs, Vol(No): pp, year SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DERGİSİ SAKARYA UNIVERSITY JOURNAL OF SCIENCE e-issn: 2147-835X Derg sayfası: http://dergpark.gov.tr/saufeblder

Detaylı

Matematik olarak normal dağılım fonksiyonu. 1 exp X 2

Matematik olarak normal dağılım fonksiyonu. 1 exp X 2 Matematk olarak ormal dağılım foksyou f ( ) ep ( ) Şeklde fade edlr. Burada μ artmetk ortalama, σ se stadart sapma değer gösterr ve dağılım foksyou N(μ, σ) otasyou le gösterlr. Bu deklem geometrk görütüsü

Detaylı

PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI

PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI Mehmet ARDIÇLIOĞLU *, Galp Seçkn ** ve Özgür Öztürk * * Ercyes Ünverstes, Mühendslk Fakültes, İnşaat Mühendslğ Bölümü Kayser

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Joural of Egeerg ad Natural Sceces Mühedslk ve Fe Blmler Dergs Sgma 005/ A PRATICAL METOD FOR DYNAMIC ANALYSIS OF MULTISTOREY BUILDINGS ACCORDING TO CONTINUUM APPROXIMATION MODEL Kaat rak BOZDOĞAN *, Duygu

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BAZI DAĞILIMLAR İÇİN EN ÇOK OLABİLİRLİK VE FARKLI KAYIP FONKSİYONLARI ALTINDA BAYES TAHMİN EDİCİLERİNİN PERFORMANSLARININ KARŞILAŞTIRILMASI Gülca GENCER

Detaylı

Operasyonel Risk İleri Ölçüm Modelleri

Operasyonel Risk İleri Ölçüm Modelleri Bakacılar Dergs, Sayı 58, 006 Grş Operasyoel Rsk İler Ölçüm Modeller Çalışma k bölümde oluşmaktadır. İlk bölümde operasyoel rskler ölçülmes kapsamıda hag ler ölçüm modeller kullaılması gerektğ, söz kousu

Detaylı

ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA

ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA İstabul Tcaret Üverstes Fe Blmler Dergs Yıl: 11 Sayı: Güz 01 s. 19-35 ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA Cası KAYA 1, Oza KOCADAĞLI Gelş: 30.05.01 Kabul: 14.1.01

Detaylı

Mikro boyuttaki ters basamak geometrisi içindeki akışın KTA yöntemiyle analizi

Mikro boyuttaki ters basamak geometrisi içindeki akışın KTA yöntemiyle analizi tüdergs/d mühedslk Clt:5, Sayı:6, 49-60 Aralık 006 Mkro boyuttak ters basamak geometrs çdek akışı KA yötemyle aalz Bayram ÇELİK *, Fırat Oğuz EDİS İÜ Fe Blmler Esttüsü, Uzay Blmler ve ekolojs Programı,

Detaylı

BULANIK ANALİTİK HİYERARŞİ SÜRECİ YÖNTEMİNDE DUYARLILIK ANALİZLERİ: YENİ BİR ALTERNATİFİN EKLENMESİ - ENERJİ KAYNAĞININ SEÇİMİ ÜZERİNDE BİR UYGULAMA

BULANIK ANALİTİK HİYERARŞİ SÜRECİ YÖNTEMİNDE DUYARLILIK ANALİZLERİ: YENİ BİR ALTERNATİFİN EKLENMESİ - ENERJİ KAYNAĞININ SEÇİMİ ÜZERİNDE BİR UYGULAMA İstabul Tcaret Üverstes Fe Bller Dergs Yıl:7 Sayı:4 Güz 2008/2 s.5-34 BULANIK ANALİTİK HİYERARŞİ SÜRECİ YÖNTEMİNDE DUYARLILIK ANALİZLERİ: YENİ BİR ALTERNATİFİN EKLENMESİ - ENERJİ KAYNAĞININ SEÇİMİ ÜZERİNDE

Detaylı

Rasgele sayıda bağımlı aktüeryal risklerin beklenen değeri için alt ve üst sınırlar

Rasgele sayıda bağımlı aktüeryal risklerin beklenen değeri için alt ve üst sınırlar www.saskcler.org İsaskçler Dergs (8) 64-74 İsaskçler Dergs Rasgele sayıda bağımlı aküeryal rskler beklee değer ç al ve üs sıırlar Fah Tak Kırıkkale Üverses Fe-Edebya Faküles, İsask Bölümü 7-ahşha,Kırıkkale,

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı TOBB Ekoom ve Tekoloj Üverstes İKT351 Ekoometr I, Ara Sıavı Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sıav toplam 100 pua değerde 4 soruda oluşmaktadır. Sıav süres 90 dakkadır ve

Detaylı

ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY Clt/Vol.:0-Sayı/No: : 455-465 (009) ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE İKİ PARAMETRELİ WEIBULL DAĞILIMINDA

Detaylı

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ 5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ Bir lieer deklemi geel çözümüü bulmak homoje kısmı temel çözümlerii belirlemesie bağlıdır. Sabit katsayılı diferasiyel deklemleri temel çözümlerii

Detaylı

Tuğba SARAÇ Yük. Endüstri Mühendisi TAI, Ankara tsarac@tai.com.tr. Özet. 1. Giriş. 2. Gözden Geçirmeler. Abstract

Tuğba SARAÇ Yük. Endüstri Mühendisi TAI, Ankara tsarac@tai.com.tr. Özet. 1. Giriş. 2. Gözden Geçirmeler. Abstract YKGS2008: Yazılım Kaltes ve Yazılım Gelştrme Araçları 2008 (9-0 ekm 2008, İstabul) Yazılım Ürü Gözde Geçrmeler Öem, Hazırlık Sürec ve Br Uygulama Öreğ The Importace of the Software Product Revews, Preparato

Detaylı

RAYLEIGH DAĞILIMININ ARDIŞIK OLASILIK ORAN TESTİ SEQUENTIAL PROBABILITY RATIO TEST OF RAYLEIGH DISTRIBUTION

RAYLEIGH DAĞILIMININ ARDIŞIK OLASILIK ORAN TESTİ SEQUENTIAL PROBABILITY RATIO TEST OF RAYLEIGH DISTRIBUTION Eskşehr Osmagaz Üverstes Müh.Mm.Fak.Dergs C.XX, S., 7 Eg&Arch.Fac. Eskşehr Osmagaz Uversty, Vol..XX, No:, 7 Makale Gelş Tarh :.3.6 Makale Kabul Tarh : 3..6 RAYLEIGH DAĞILIMININ ARDIŞIK OLASILIK ORAN TESTİ

Detaylı

EGITIM AMAÇLI PNÖMATIK SERVO-KONTROL DÜZENEGIN DENEYSEL DEGERLENDIRMESI

EGITIM AMAÇLI PNÖMATIK SERVO-KONTROL DÜZENEGIN DENEYSEL DEGERLENDIRMESI 03 III. ULUSAL HIDROLIK PNÖMATIK KONGRESI VE SERGISI 411 EGITIM AMAÇLI PNÖMATIK SERVO-KONTROL DÜZENEGIN DENEYSEL DEGERLENDIRMESI Mehmet YUNT Ark YETIS Koray K. SAFAK Osma S. TÜRKAY ÖZET Pömatk sstemler

Detaylı

Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik Altay Gündüz. Mühendisler için İstatistik Prof. Dr. Mehmetçik Bayazıt, Prof. Dr.

Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik Altay Gündüz. Mühendisler için İstatistik Prof. Dr. Mehmetçik Bayazıt, Prof. Dr. İSTATİSTİK DERSİ (BAÜ Müh-Mm Fakültes Dr. Bau Yağcı KAYNAKLAR Mühedslkte Olasılık, İstatstk, Rsk ve Güvelrlk Altay Güdüz Blgsayar (Ecel Destekl Uygulamalı İstatstk Pro. Dr. Mustaa Akkurt Mühedsler ç İstatstk

Detaylı

POISSON REGRESYON ANALİZİ

POISSON REGRESYON ANALİZİ İstabul Tcaret Üverstes Fe Blmler Dergs Yıl:4 Sayı:7 Bahar 005/ s. 59-7 POISSON REGRESYON ANALİZİ Özlem DENİZ * ÖZET Herhag br olayı belrlee br süreç çersde yaıla deemeler soucuda meydaa gelme sayısı,

Detaylı

Bir Telekomünikasyon Probleminin Matematiksel Modellenmesi Üzerine

Bir Telekomünikasyon Probleminin Matematiksel Modellenmesi Üzerine Br Telekomükasyo Problem Matematksel Modellemes Üzere Urfat Nuryev, Murat Erşe Berberler, Mehmet Kurt, Arf Gürsoy, Haka Kutucu 2 Ege Üverstes, Matematk Bölümü, İzmr 2 İzmr Yüksek Tekolo Esttüsü, Matematk

Detaylı

Eğitimle İlgili Sapan Değer İçeren Veri Kümelerinde En Küçük Kareler ve Robust M Tahmin Edicilerin Karşılaştırılması

Eğitimle İlgili Sapan Değer İçeren Veri Kümelerinde En Küçük Kareler ve Robust M Tahmin Edicilerin Karşılaştırılması Eğtmle İlgl Sapa Değer İçere Ver Kümelerde E Küçük Kareler ve Robust M Tahm Edcler Karşılaştırılması Orku COŞKUNTUNCEL * Özet Eğtm araştırmalarıda regresyo katsayılarıı tahm etmek ç e çok kullaıla yötem

Detaylı

FEN VE MÜHENDİSLİKTE MATEMATİK METOTLAR

FEN VE MÜHENDİSLİKTE MATEMATİK METOTLAR FE VE MÜHEDİSLİKTE MTEMTİK METOTLR 3. KİTP MTRİS CEBİRİ f 70 İÇİDEKİLER I. MTRİS CEBİRİ ) Matrsler ve Elemaları B) İşlemler C) İk Özel Matrs D) Dyagoal Matrsler E) İz ve Determat F) Bazı Matrs İşlemler

Detaylı

HIZLI EVRİMSEL ENİYİLEME İÇİN YAPAY SİNİR AĞI KULLANILMASI

HIZLI EVRİMSEL ENİYİLEME İÇİN YAPAY SİNİR AĞI KULLANILMASI Hızlı Evrmsel Eyleme İç Yapay Sr Ağı Kullaılması HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ OCAK 006 CİLT SAYI 3 (-8) HIZLI EVRİMSEL ENİYİLEME İÇİN YAPAY SİNİR AĞI KULLANILMASI Abdurrahma HHO Dekalığı Havacılık

Detaylı

GAUSS HÜZMESİNİN YÜKSEK FREKANSLARDA PLAZMA ORTAMLA ETKİLEŞİMİ

GAUSS HÜZMESİNİN YÜKSEK FREKANSLARDA PLAZMA ORTAMLA ETKİLEŞİMİ Gai Üiv. Müh. Mim. Fak. Der. Joural of the Faculty of Egieerig ad Architecture of Gai Uiversity Cilt 3, No, 73-79, 15 Vol 3, No, 73-79, 15 GAUSS HÜZMESİNİN YÜKSEK FREKANSLARDA PLAZMA ORTAMLA ETKİLEŞİMİ

Detaylı

YAPISAL ELEMANLARIN TİTREŞİM FREKANSLARININ ANALİZİ İÇİN ÜÇ BOYUTLU TIMOSHENKO KİRİŞ ELEMANI

YAPISAL ELEMANLARIN TİTREŞİM FREKANSLARININ ANALİZİ İÇİN ÜÇ BOYUTLU TIMOSHENKO KİRİŞ ELEMANI 2. Türkiye Deprem Mühedisliği ve Sismoloji Koferası YAPISAL ELEMANLARIN TİTREŞİM FREKANSLARININ ANALİZİ İÇİN ÜÇ BOYUTLU TIMOSHENKO KİRİŞ ELEMANI ÖZET: O. Soydaş 1 ve A. Sarıtaş 2 1 Doktora Öğrecisi, İşaat

Detaylı

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1 ĐÇI DEKILER Sayfa. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR.. Grş.. Đstatstk.3. Populasyo.4. Örek.5. Brm.6. Parametre.7. Değşke 3.8. Ver ve Ver Tpler 3.9. Toplama Sembolü 4 ÇALIŞMA PROBLEMLERĐ 6. VERĐLERĐ

Detaylı

Çift Taraflı Kontrol Sistemlerinin Biomedikal Alanda Uygulamaları

Çift Taraflı Kontrol Sistemlerinin Biomedikal Alanda Uygulamaları O'7 Bldrler tab stabul, 5-7 Eylül 27 Çft araflı otrol stemler Bomedkal Alada Uygulamaları Meltem Elta, Muammet Al Hocaolu, Asf abaovç Müedslk ve Doa Blmler akültes abacı Üverstes, stabul {meltemeltas,muammet}@su.sabacuv.edu,

Detaylı

Analitik Hiyerarşi Süreci Kullanılarak Kişi Takip Cihazı Seçimi. Person Tracking Device Selection Using Analytic Hierarchy Process

Analitik Hiyerarşi Süreci Kullanılarak Kişi Takip Cihazı Seçimi. Person Tracking Device Selection Using Analytic Hierarchy Process BİLİŞİM TKNOLOJİLRİ DRGİSİ, CİLT: 8, SAYI: 1, OCAK 2015 20 Aaltk Hyerarş Sürec Kullaılarak Kş Takp Chazı Seçm Bedredd Al AKÇA 1, Ahmet DOĞAN 2, Uğur ÖZCAN 3 1 Yöetm Blşm Sstemler, Blşm sttüsü, Gaz Üverstes,

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Ayça Hatce TÜRKAN GÜVENİLİRLİK ANALİZİNDE KULLANILAN İSTATİSTİKSEL DAĞILIM MODELLERİ İSTATİSTİK ANABİLİM DALI ADANA, 007 ÇUKUROVA ÜNİVERSİTESİ

Detaylı

SESSION 1. Asst. Prof. Dr. Fatih Ecer (Afyon Kocatepe University, Turkey) Abstract

SESSION 1. Asst. Prof. Dr. Fatih Ecer (Afyon Kocatepe University, Turkey) Abstract SESSION 1 Türkye dek Kout Fyatlarıı Tahmde Hedok Regresyo Yötem le Yapay Sr Ağlarıı Karşılaştırılması Comparso of Hedoc Regresso Method ad Artfcal Neural Networks to Predct Housg Prces Turkey Asst. Prof.

Detaylı

III.4. YÜKSEK MERTEBE TAYLOR METODLARI. ( t)

III.4. YÜKSEK MERTEBE TAYLOR METODLARI. ( t) III.4. YÜKSEK MEREBE AYLOR MEODLARI Saısal tekkler amacı mmum çaba le olablğce uarlı aklaşımlar ele etmektr. Bu eele çeştl aklaşım ötemler vermllğ karşılaştıracak br krtere gereksm varır. İlk ele alıacak

Detaylı

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Ünsal M.; Varol, A.: Soğutma Kulelernn Boyutlandırılması İçn Br Kuramsal 8 Mayıs 990, S: 8-85, Adana 4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Asaf Varol Fırat Ünverstes, Teknk Eğtm Fakültes,

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüet BAYILMIŞ Doç.Dr. Cüet BAYILMIŞ Sısl Alz SAYISAL ANALİZ EĞRİ UYDURMA (Curve Fttg) Doç.Dr. Cüet BAYILMIŞ Sısl Alz İÇİNDEKİLER Eğr Udurm (Curve Fttg) E Küçük Kreler Yötem Doç.Dr.

Detaylı

FARKLI METALLERİN KAYNAĞINDA GERİLME YIĞILMALARININ İNCELENMESİ

FARKLI METALLERİN KAYNAĞINDA GERİLME YIĞILMALARININ İNCELENMESİ P A M U K K A L E Ü N İ V E R S İ T E S İ M Ü H E N D İ S L İ K F A K Ü L T E S İ P A M U K K A L E U N I V E R S I T Y E N G I N E E R I N G C O L L E G E M Ü H E N D İ S L İ K B İ L İ M L E R İ D E R

Detaylı

MÜHENDİSLER İÇİN İSTATİSTİK. Prof. Dr. Hüseyin Çelebi Ders Notları

MÜHENDİSLER İÇİN İSTATİSTİK. Prof. Dr. Hüseyin Çelebi Ders Notları MEÜ. Mühedslk Fakültes Jeoloj Mühedslğ Bölümü MÜHENDİSLER İÇİN İSTATİSTİK YÖNTEMLER VE UYGULAMALAR Prof. Dr. Hüsey Çeleb Ders Notları Mers 007 Prof. Dr.-Ig. Hüsey Çeleb 1 Brkaç ülü sözü İstatstk! Matematğ

Detaylı

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON)

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON) BÖÜM 4 KASİK OPTİMİZASYON TEKNİKERİ KISITI OPTİMİZASYON 4. GİRİŞ Öcek bölülerde de belrtldğ b optzaso probleler çoğuluğu kısıtlaıcı oksolar çerektedr. Kısıtlaasız optzaso problelerde optu değer ede oksou

Detaylı

TEDARİKÇİ SEÇİMİ İÇİN BİR KARAR DESTEK SİSTEMİ A DECISION SUPPORT SYSTEMS FOR SUPPLIER SELECTION

TEDARİKÇİ SEÇİMİ İÇİN BİR KARAR DESTEK SİSTEMİ A DECISION SUPPORT SYSTEMS FOR SUPPLIER SELECTION Süleyma Demrel Üverstes Mühedslk Blmler ve Tasarım Dergs 3(2), 9-04, 205 ISSN: 308-6693 Araştırma Makales Suleyma Demrel Uversty Joural of Egeerg Sceces ad Desg 3(2), 9-04, 205 ISSN: 308-6693 Research

Detaylı

AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ

AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ Geel olrk 4 tp yötem kullılır.. Düz çzg yötem: Mlı değer zml doğrusl olrk zldığı vrsyılır. Mlı hzmet ömrü boyuc her yıl ç yı mktr mortsm olrk yrılır. V V d = S d:

Detaylı

Orkun COŞKUNTUNCEL a Mersin Üniversitesi

Orkun COŞKUNTUNCEL a Mersin Üniversitesi Kuram ve Uygulamada Eğtm Blmler Educatoal Sceces: Theory & Practce - 3(4) 39-58 03 Eğtm Daışmalığı ve Araştırmaları İletşm Hzmetler Tc. Ltd. Şt. www.edam.com.tr/kuyeb DOI: 0.738/estp.03.4.867 Sosyal Blmlerde

Detaylı

WEIBULL PARAMETRELERİ VE YÜZDELİKLERİ İÇİN GÜVEN ARALIĞI TAHMİN ALGORİTMALARI

WEIBULL PARAMETRELERİ VE YÜZDELİKLERİ İÇİN GÜVEN ARALIĞI TAHMİN ALGORİTMALARI Gaz Üv. Müh. Mm. Fak. Der. J. Fac. Eg. Arch. Gaz Uv. Clt 4, No 1, 11918, 009 Vol 4, No 1, 11918, 009 WEIBULL PARAMETRELERİ VE YÜZDELİKLERİ İÇİN GÜVEN ARALIĞI TAHMİN ALGORİTMALARI Mehmet Akf DANACI, Burak

Detaylı

NORMAL DAĞILIM İÇİN UYUM İYİLİĞİ TESTLERİ VE BİR SİMÜLASYON ÇALIŞMASI. Nurcan YILDIRIM YÜKSEK LİSANS TEZİ İSTATİSTİK

NORMAL DAĞILIM İÇİN UYUM İYİLİĞİ TESTLERİ VE BİR SİMÜLASYON ÇALIŞMASI. Nurcan YILDIRIM YÜKSEK LİSANS TEZİ İSTATİSTİK NORML DĞILIM İÇİN UYUM İYİLİĞİ TETLERİ VE BİR İMÜLYON ÇLIŞMI Nurca YILDIRIM YÜE LİN TEİ İTTİTİ Gİ ÜNİVERİTEİ FEN BİLİMLERİ ENTİTÜÜ ŞUBT 3 NR Nurca YILDIRIM tarafıda hazırlaa NORML DĞILIM İÇİN UYUM İYİLİĞİ

Detaylı

ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE ANADOLU ÜNİVERSİESİ BİLİM VE EKNOLOJİ DERGİSİ ANADOLU UNIVERSIY JOURNAL OF SCIENCE AND ECHNOLOGY Clt/Vol.:8Sayı/No: : 5359 (7) ARAŞIRMA MAKALESİ /RESEARCH ARICLE SEMİPARAMERİK OPLAMSAL REGRESYON MODELİ

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa ELECO '1 Elektrk - Elektrok ve Blgsayar Mühedslğ Sempozyumu, 9 Kasım - 1 Aralık 1, Bursa Zıt koumlu Yerçekmsel Arama Algortmasıı Termk Üretm Brmlerde Oluşa Emsyo Kısıtlı Ekoomk Güç Dağıtım Problemlere

Detaylı