İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere 2. ÜNİTE. İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere 2. ÜNİTE. İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR"

Transkript

1 - 1-2 ÜNİTE İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR ÖĞRENME ALANI CEBİR İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere Şeklindeki açık önermelere, ikinci dereceden bir bilinmeyenli denklem denir Bu denklemi sağlayan x değerlerine denklemin kökü denir ALT ÖĞRENME ALANI İKİNCİ DERECEDEN DENKLEMLER SÜRE 16 DERS SAATİ KAZANIMLAR : 1 İkinci dereceden bir bilinmeyenli denklemlerin köklerini ve çözüm kümesini belirler 2 İkinci dereceden bir bilinmeyenli denklemlerin köklerini veren bağıntıyı gösterir ve köklerin varlığını diskriminantın işaretine göre belirler 3 İkinci dereceden bir denklemin kökleri ile katsayıları arasındaki bağıntıları gösterir 4 Parametre içeren ikinci dereceden bir denklemin, verilen koşullara uygun olacak şekilde parametresini bulur 5 Kökleri verilen ikinci dereceden bir bilinmeyenli denklemi yazar 6 İkinci dereceden bir bilinmeyenli bir denkleme dönüştürülebilen denklemlerin çözüm kümesini bulur 7 İkinci dereceden iki bilinmeyenli denklem sistemlerini açıklar ve ikinci dereceden bir bilinmeyenli denkleme dönüştürülebilen ikinci dereceden iki bilinmeyenli denklem sistemlerinin çözüm kümesini bulur ikinci dereceden denklemin sabit terimini bulunuz ikinci dereceden denklemin katsayılar toplamını bulunuz

2 - 2 - Örnekler : Aşağıdaki denklemlerin çözüm kümesini bulunuz 3) Denkleminin özümü DENKLEM ÖZÜM KÜMESİ,, 4) Denkleminin özümü, Örnekler: 1) İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLERİN ÖZÜMÜ 2) 1) Denkleminin özümü 2) Denkleminin özümü 3),

3 - 3-4) İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLERİN KÖKLERİNİN VARLIĞI,, olmak üzere denkleminin kökleri Diskriminantın delta olmak üzere 5) İle hesaplanırbu durumda; I) ise denklemin farklı iki reel kökü vardır ve bu kökler, II) ise denklemin birbirine eşit iki reel kökü vardır ve bu kök 6) çı III) ise denklemin reel kökü yoktur Boşlukları doldurunuz (TABLO 1) Her denklemin ait olduğu çözüm kümesini örnekteki gibi kutunun içine yerleştiriniz (TABLO 2)

4 - 4 - A işçisi bir işi B işçisinden saat sonra bitirebilmektedir Birlikte bu işi saatte bitirdiklerine göre ayrı ayrı bu işi kaç saatte bitirebilirler şç saatte işi bitirsinler şç m boyundaki teli öyle iki parçaya ayırınız ki telin uzunluğunun uzun parçanın uzunluğuna oranı, uzun parçanın uzunluğunun kısa parçanın uzunluğuna eşit olsun katlı kökü varsa m denkleminin çift ise m=? denkleminde

5 - 5 - denkleminde ise m=? Denklemlerinin birer kökü ortak ise a ( ö, ğ ç köklerinden biri kaçtır denkleminin olduğuna göre, diğer kökü ve b olsun; denkleminin kökleri a denkleminin farklı iki reel kökünün olması için m ne olmalıdır

6 - 6 - KÖKLER İLE KATSAYILAR ARASINDAKİ İLİŞKİLER,, olmak üzere Denklemi için ; I Kökler Toplamı > 0 ve, olsun (TABLO 3) denkleminde x değişken olmak üzere, m bir parametredir Buna göre; a) m için denklemin çözüm kümesini bulunuz II Kökler arpımı III Köklerin Farkının Mutlak Değeri IV Köklerin arpmaya Göre Terslerinin Toplamı b) m için denklemin çözüm kümesini bulunuz V Köklerin Kareleri Toplamı VI Köklerin Küpleri Toplamı VII) Köklerin Aritmetik Ortalaması c) Denklemin köklerinden biri ise m değerini bulunuz VII) Köklerin Geometrik Ortalaması VII) Köklerin Harmonik Ortalaması

7 - 7 - d) ise m değerini bulunuz denkleminin simetrik iki kökünün olması için m ( denklemi için kökler toplamı ise m denkleminde değerler nelerdir ise m nin alabileceği denkleminin kökleri, olmak üzere ise m=? kökleri arasında olması için m denkleminin bağıntısının

8 - 8 - denklemi için m=? ise Kökleri, olan ikinci dereceden denklemi yazınız dir Kökleri derece denklemi yazınız denkleminin kökleri olan ikinci KÖKLERİ VERİLEN İKİNCİ DERECEDEN DENKLEMİN YAZILMASI Diğer yandan ; için Kökler toplamı, kökler çarpımı olan ikinci dereceden denklemi yazınız dir Kökleri derece denklemi yazınız denkleminin kökleri olan ikinci Kökleri, olan ikinci dereceden denklemi yazınız

9 - 9 - dir Kökleri derece denklem denkleminin kökleri olan ikinci İKİNCİ DERECEDEN DENKLEMLERİN ÖZÜMÜ 1) Polinomların çarpımı şeklindeki denklemler 3) Yardımcı bilinmeyen kullanılarak çözülebilen denklemler 2) Polinomların bölümü şeklindeki denklemler

10 Sonuç altın oran, 3) Köklü Denklemler

11 - 11-4) Mutlak Değerli Denklemler ç,,

12 İKİNCİ DERECEDEN İKİ BİLİNMEYENLİ DENKLEM SİSTEMİ,,,,,,, sayılarından en az ikisi sıfırdan farklı olmak üzere, Şeklindeki denklemlere ikinci dereceden iki bilinmeyenli denklem denir Bu denklemi sağlayan x,y reel sayı ikililerin kümesine de denklemin çözüm kümesi denir İkinci dereceden iki bilinmeyenli bir denklem ile birinci dereceden veya başka ikinci dereceden iki bilinmeyenli denklemden oluşan sisteme, ikinci dereceden iki bilinmeyenli denklem sistemi denir

13 ÖZEL SORULAR 1) denkleminin köklerinden biri olduğuna göre, diğer iki kökü bulunuz ) Taraf tarafa çıkar sadeleştir (dikkat x-y=0 olabilir) 2) 4), için

14 - 14-5) 7) denkleminin kökleri dir Kökleri olan ikinci derece denklemi yazınız 6) ç

15 TABLO 1 DENKLEM ARPANLARA AYRILMIŞ ŞEKLİ BİRİNCİ KÖK İKİNCİ KÖK ÖZÜM KÜMESİ,, TABLO 2 DENKLEM ÖZÜM KÜMESİ (A), (B), (C)

16 (D) , (E), (F) (G),

17 TABLO 3 DENKLEM a b c

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

MUTLAK DEĞER Test -1

MUTLAK DEĞER Test -1 MUTLAK DEĞER Test -. < x < olduğuna göre, x x ifadesinin eşiti aşağıdakilerden 7 B) 7 x C) x 7 D) x 7 E) 7 x 5. y < 0 < x olduğuna göre, y x x y x y ifadesinin eşiti aşağıdakilerden xy B) xy C) xy D) xy

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

6. 3x2-8x - 3 = O denkleminin negatif kökü asagidakilerden. 7. mx2 - (2m2 + i) x + 2m = O denkleminin köklerinden

6. 3x2-8x - 3 = O denkleminin negatif kökü asagidakilerden. 7. mx2 - (2m2 + i) x + 2m = O denkleminin köklerinden ikinci Dereceden Denklemler, tçözüm Kümesi, Köklerin Varligi. (m - 9) x + x - 6 = o denkleminin ikinci dereceden bir bilinmeyenli denklem olmasi için, m degeri asagidakilerden hangisi olamaz? A) - B) -

Detaylı

Ğ Ğ Ü ğ İ ğ ğ ğ İ ğ Ü Ü ğ ğ ö ç ç ğ ö ğ ç İ ç ğ ç ç ğ ç ç ö ğ ö ç ç ç ğ ö ğ ç ç İ ö ç İ ğ ö ö ç ç ç ç ç ç ç ç ç ç İ ç ğ ç ç Ç ç ö İ ç ç

Ğ Ğ Ü ğ İ ğ ğ ğ İ ğ Ü Ü ğ ğ ö ç ç ğ ö ğ ç İ ç ğ ç ç ğ ç ç ö ğ ö ç ç ç ğ ö ğ ç ç İ ö ç İ ğ ö ö ç ç ç ç ç ç ç ç ç ç İ ç ğ ç ç Ç ç ö İ ç ç Ğ Ğ Ü İ İ ğ İ ğ ğ ğ ğ ğ ç ö ç Çİ İ Ö Ğ Ğ Ğ Ü ğ İ ğ ğ ğ İ ğ Ü Ü ğ ğ ö ç ç ğ ö ğ ç İ ç ğ ç ç ğ ç ç ö ğ ö ç ç ç ğ ö ğ ç ç İ ö ç İ ğ ö ö ç ç ç ç ç ç ç ç ç ç İ ç ğ ç ç Ç ç ö İ ç ç ç ö ğ ö ç ö ç ç ç ö ö ğ ö

Detaylı

: Matematik. : 9. Sınıf. : Sayılar. : (6) Ders Saati

: Matematik. : 9. Sınıf. : Sayılar. : (6) Ders Saati MATEMATİK DERS PLÂNI Dersin adı Sınıf Öğrenme Alanı : Matematik : 9. Sınıf : Sayılar Başlangıç Tarihi :.. /../. Alt Öğrenme Alanı : Mutlak Değer Önerilen Süre : (6) Ders Saati Öğrenci Kazanımları /Hedef

Detaylı

Ğ Ş Ü Ç Ç Ş ş ş ğ ş ç ş ş ğ ş ğ ş ö ç ö ç ö ç ö ç ğ ş ö ö ş ş ğ ğ ş ç ç ğ ğ ç ğ ş ç ş ç ç ş

Ğ Ş Ü Ç Ç Ş ş ş ğ ş ç ş ş ğ ş ğ ş ö ç ö ç ö ç ö ç ğ ş ö ö ş ş ğ ğ ş ç ç ğ ğ ç ğ ş ç ş ç ç ş Ğ Ğ Ğ Ğ Ğ Ş Ğ ş ğ ç ş ö ğ ş ş Ş Ş Ş» ğ Ğ Ş Ü Ç Ç Ş ş ş ğ ş ç ş ş ğ ş ğ ş ö ç ö ç ö ç ö ç ğ ş ö ö ş ş ğ ğ ş ç ç ğ ğ ç ğ ş ç ş ç ç ş ğ ğ çö ç ş ş ö ğ ğ ş ş ö ş ğ ç ç ç ç ş ş ş ğ ö ö ğ ö ç ş ç ş ö ö ş ş ğ

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

Ğ Ğ Ü Ğ Ğ Ğ Ş Ğ Ş ş ğ

Ğ Ğ Ü Ğ Ğ Ğ Ş Ğ Ş ş ğ Ğ Ğ Ü Ğ Ğ Ü Ğ Ş Ğ ş ğ ç ş ğ ş ş ğ Ş ş ğ Ğ Ğ Ü Ğ Ğ Ğ Ş Ğ Ş ş ğ Ğ Ş Ü Ç Ç Ş ş ş ğ ş ç ş ş ğ ş ğ ş ç ç ç ç ğ ş ş ç ş ğ ğ ş ç ğ ğ ç ğ ş ç ş ç ç ş ğ ğ ç ş ğ ğ ş ş ş ğ ç ç ç ç ş ş ş ğ ğ ç ş ç ç ş ş ş ç ç ç ğ

Detaylı

Ö Ç

Ö Ç Ğ Ö Ç Ç Ğ Ş Ş Ş Ç Ç Ç Ç Ş Ç Ç Ç Ş Ş Ç Ş ŞÇ Ş Ş Ö Ö Ş Ö Ö Ç Ç Ç Ç Ç Ş Ş Ş Ş Ç Ç Ş Ş Ö Ş Ç Ş Ş Ş Ö Ş Ç Ş Ş Ş Ç Ş Ş Ö Ş Ş Ş Ş Ş Ö Ç Ş Ç Ö Ç Ş Ç Ş Ö Ö Ç Ç Ş Ş Ö Ö Ş Ğ Ş Ş Ş Ö Ş Ş Ğ Ş Ç Ö Ş Ş Ç Ğ ÇÖ Ğ Ş Ğ Ö

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR KASIM EKİM EYLÜL Ay Hafta D.Saat i 0 04 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE SÜRE ÖĞRENME ALANI ALT ÖĞRENME ALANI Örüntü Süslemeler si KAZANIMLAR.Doğru, çokgen

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

Ç Ç Ö Ç Ç Ç Ç Ç Ş Ö «Ü Ç Ş Ü Ç Ç

Ç Ç Ö Ç Ç Ç Ç Ç Ş Ö «Ü Ç Ş Ü Ç Ç Ö Ğ Ç Ü Ü Ç Ç Ç Ö Ü Ü Ü Ü ÖÜ» Ç Ş Ş Ö Ç Ğ Ü Ü Ç Ç Ö Ç Ç Ç Ç Ç Ş Ö «Ü Ç Ş Ü Ç Ç Ş Ş «Ş Ö Ü Ü Ü Ş Ş Ş Ç Ç Ş Ç Ş Ç ŞÇ Ö Ü Ç Ç Ş Ç «Ö Ç Ğ Ç Ü Ç Ç Ş Ü Ğ Ş Ç Ş Ç Ö Ç «Ö Ö «Ö Ç Ç Ö Ş Ü Ç Ş Ş Ş Ş «Ç ŞÇ Ö Ü Ş Ş

Detaylı

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ ADAYIN ÞÝFRESÝ BURAYA YAPIÞTIR DEVLET OLGUNLUK SINAVI DEVLET SINAV MERKEZÝ MATEMATÝK - TEMEL SEVÝYE MATEMATÝK TEMEL SEVÝYE Testin Çözme Süresi: 180 dakika Haziran, 2009 yýlý BÝRÝNCÝ deðerlendiricinin þifresi

Detaylı

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =?

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =? TANIM MUTLAK DEĞER Örnek...6 : 1 x > 1 y > 1 z ise x y x z z y =? Bir x reel sayısına karşılık gelen noktanın sayı doğrusunda 0 (sıf ır) a olan uzaklığına x sayısının mutlak değeri denir ve x şeklinde

Detaylı

;] u Y hb* p(a/ > V aaa!a!a!a!!!!!a! BASIN KİTAPÇIĞI

;] u Y hb* p(a/ > V aaa!a!a!a!!!!!a! BASIN KİTAPÇIĞI BASIN KİTAPÇIĞI 00000000 AÇIKLAMA 1. Bu kitapç kta Lisans Yerle tirme S nav -1 Matematik Testi bulunmaktad r. 2. Bu test için verilen toplam cevaplama süresi 75 dakikadır. 3. Bu kitapç ktaki testlerde

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona , 2006 MC Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Đşlem ĐŞLEM A ve A x A nın bir alt kümesinden A ya her fonksiyona ikili işlem denir. Örneğin toplama, çıkarma, çarpma birer işlemdir. Đşlemler

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

Ğ Ğ Ğ Ğ Ğ Ğ Ş ğ ş ğ

Ğ Ğ Ğ Ğ Ğ Ğ Ş ğ ş ğ Ü Ğ Ğ Ğ Ü Ğ Ş Ğ ç ş ğ ç ş ç ö ğ ş ş ş ş ğ ş ç ğ Ğ Ğ Ğ Ğ Ğ Ğ Ş ğ ş ğ Ğ Ğ Ğ Ğ Ğ Ğ Ş Ş ğ Ş ğ Ğ ş ç ç «ş ş ş ş ğ ş ç ş ş Ü Ü Ö ğ ş ç ö ç ğ ş ö ö ç ö ç ğ ş ö ö ş ş ğ ğ ş ç ç ğ ğ ç ğ ş ç ş ç ç ş ğ ğ çö ç ş ğ

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

ö Ş Ç ö ö ö ö ö Ö ö Ö ö Ç ö ö ö Ö Ğ Ğ

ö Ş Ç ö ö ö ö ö Ö ö Ö ö Ç ö ö ö Ö Ğ Ğ ö ö ö ö ö ö ö ö ö ö ö ö ö Ş Ş ö ö Ş Ç ö ö ö ö ö Ö ö Ö ö Ç ö ö ö Ö Ğ Ğ ö ö Ç Ş Ğ Ç Ş Ş Ğ ö Ü Ğ ö Ü ö ö Ü Ü Ç Ü Ç ö ö ö ö Ç ö ö ö ö Ö Ü Ö ö ö ö ö ö ö ö Ö Ü ö ö ö ö ö ö ö ö ö Ü ö ö Ö ö ö ö ö Ö ö ö ö ö Ş ö

Detaylı

ö ü ü ö ö ü ö ü ü ğ ö ç ü Ç ğ ç ç ö ü ç ü ö Ş ğ üç ğ ç ü ö ç ç ç ç ğ ç ü ü ç ö ç ü ç ü ö ğ ç ç ö ç ğ ğ ç ç ö ç ö ü ğ ü Ş Ü Ü ö

ö ü ü ö ö ü ö ü ü ğ ö ç ü Ç ğ ç ç ö ü ç ü ö Ş ğ üç ğ ç ü ö ç ç ç ç ğ ç ü ü ç ö ç ü ç ü ö ğ ç ç ö ç ğ ğ ç ç ö ç ö ü ğ ü Ş Ü Ü ö ö Ş ü ö ü ö ğ ç ü Ç ç ü ğ ü ü ğ ç ö ğ ö ç ö ç ü ö ü ö ğ ü ç ö ğ ö ö ğ ğ ğ ç ö ğ ö ç ö «Ö ö ü ğ Ç ğ ğ ç ü ç ö ö ö ğ ç ö ü ü ö ö ü ö ü ü ğ ö ç ü Ç ğ ç ç ö ü ç ü ö Ş ğ üç ğ ç ü ö ç ç ç ç ğ ç ü ü ç ö ç ü ç

Detaylı

Ğ ç ğ ç ç ğ ç ğ ç ç ğ ç ğ ğ ç ç ğ ç ç ğ ç ç ç ğ ç ç ğ ç ç ç İ ğ ğ ğ ç ğ ğ ç ğ ğ ğ ğ ğ ç ç ç ç ğ ç ğ ç ç ğ ğ ç ç ç ğ ğ ç ğ ğ ç ç ç ç İ ğ ç ğ ç ğ ç ç ğ

Ğ ç ğ ç ç ğ ç ğ ç ç ğ ç ğ ğ ç ç ğ ç ç ğ ç ç ç ğ ç ç ğ ç ç ç İ ğ ğ ğ ç ğ ğ ç ğ ğ ğ ğ ğ ç ç ç ç ğ ç ğ ç ç ğ ğ ç ç ç ğ ğ ç ğ ğ ç ç ç ç İ ğ ç ğ ç ğ ç ç ğ İ Ü İ İ İ ç ğ ğ ç ç Ğ «Ö Ğ ğ ç ğ ç ğ ç ç ğ ğ ç ğ ç ğ ç ğ ç ğ ç ç Ö ğ Ö ğ ç Ğ ç ğ ç ç ğ ç ğ ç ç ğ ç ğ ğ ç ç ğ ç ç ğ ç ç ç ğ ç ç ğ ç ç ç İ ğ ğ ğ ç ğ ğ ç ğ ğ ğ ğ ğ ç ç ç ç ğ ç ğ ç ç ğ ğ ç ç ç ğ ğ ç ğ ğ ç

Detaylı

Ş Ğ ş Ğ İ Ğ İ ş ş Ü Ü Ş Ü İ ş ş ş

Ş Ğ ş Ğ İ Ğ İ ş ş Ü Ü Ş Ü İ ş ş ş İ İ Ğ Ğ İ İ ş Ğ Ğ «Ğ İ Ğ ş ş ş ş ş Ç ş ş İ ş Ç ş İ İ İ ş Ş Ğ ş Ğ İ Ğ İ ş ş Ü Ü Ş Ü İ ş ş ş Ğ İ İ Ş Ğ ş ş İ ş ş Ş ş İ İ ş Ğ ş ş ş Ü ş ş ş İ ş Ğ ş ş ş Ş ş İ ş İ İ ş İ İ ş İ İ Ö Ü ş Ö ş ş ş İ ş ş ş ş İ ş

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

ş ş ş ç İ Ü ş ş ş ş ç ç ş ş ş ç ş Ü ç ş ş şç ş ş ş ş ç ş ç ş ç ş ş ç Ş ş İ ş Ş ş İ ç ş

ş ş ş ç İ Ü ş ş ş ş ç ç ş ş ş ç ş Ü ç ş ş şç ş ş ş ş ç ş ç ş ç ş ş ç Ş ş İ ş Ş ş İ ç ş İ Ğ İ Ş ç İ İ Ö ş ş Ş ş ç Ş ş ş ç ç ş ş ş Ö ş ç ş ç ç ş ş ş ş ş ç ş ş ş ş ş ş ş ç İ Ü ş ş ş ş ç ç ş ş ş ç ş Ü ç ş ş şç ş ş ş ş ç ş ç ş ç ş ş ç Ş ş İ ş Ş ş İ ç ş ş ş ç ş İİ İ İİ ç ş ş ç İ Ğİ İ İ Ş İ İ ş

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu .SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade

Detaylı

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan SAYILAR RAKAM VE DOĞAL SAYI KAVRAMI MATEMATİK KAF01 TEMEL KAVRAM 01 Sayıları ifade etmeye yarayan { 0,1,, 3, i i i,9} kümesindeki semollere onluk sayma düzeninde rakam denir. N =... kümesinin elemanlarına

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

Sunum ve Sistematik 1. BÖLÜM: ÖNERMELER

Sunum ve Sistematik 1. BÖLÜM: ÖNERMELER Sunum ve Sistematik. ÜNİTE: MANTIK KONU ÖZETİ Bu başlık altında, ünitenin en can alıcı bilgileri, kazanım sırasına göre en alt başlıklara ayrılarak hap bilgi niteliğinde konu özeti olarak sunulmuştur..

Detaylı

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder.

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder. LENDİRME ŞEMASI ÜNİTE Üslü 1. Bir tam sayının negatif kuvvetini belirler ve rasyonel sayı olarak ifade eder.. Ondalık kesirlerin veya rasyonel sayıların kendileriyle tekrarlı çarpımını üslü sayı olarak

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı matematik SORU BANKASI Süleyman ERTEKİN LYS KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ KONU ÖZETLERİ Öğrenci Kitaplığı SORU BANKASI matematik LYS EDAM Öğrenci Kitaplığı 18 EDAM ın yazılı izni olmaksızın,

Detaylı

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 1 16 soruluk bir testte 5 ve 10 puanlık sorular bulunmaktadır. Soruların tamamı doğru cevaplandığında 100 puan alındığına göre testte

Detaylı

Soru Konu Doğru Yanlış Boş

Soru Konu Doğru Yanlış Boş YGS - MATEMATİK DENEME- A Soru Konu Doğru Yanlış Boş Mutlak Değerin Sayıya Eşitliği % % Sayılar Akıl Yürütme % % Okek Dikdörtgen Birleştirme % % Kesirlerin Okeki % % Obeb Problemleri % % Obeb Denklemi

Detaylı

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır.

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır. -A Adı Soadı kulu Sınıfı LYS- MATEMATİK TESTİ Bu Testte; Toplam Adet soru bulunmaktadır. Cevaplama Süresi 7 dakikadır. Süre bitiminde Matematik Testi sınav kitapçığınızı gözetmeninize verip Geometri Testi

Detaylı

Başlayanlara AKTİF MATEMATİK

Başlayanlara AKTİF MATEMATİK KPSS - YGS - DGS - ALES Adayları için ve 9. sınıfa destek 0 dan Başlayanlara AKTİF MATEMATİK MEHMET KOÇ ÖNSÖZ Matematikten korkuyorum, şimdiye kadar hiç matematik çözemedim, matematik korkulu rüyam! bu

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : Matematik Ders No : 0690230018 Teorik : 4 Pratik : 0 Kredi : 4 ECTS : 4 Ders Bilgileri Ders Türü Öğretim Dili Öğretim Tipi

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

Ğ ş ö ş ç ç İ ş İ ş Ş ç ş ş ş İ İ İ İ ç ğ ş ç ö ç ğ ş ö ö ç ç ğ ş ö ö ş ş ğ ğ ş ç ğ ğ ç ğ ş ç ş ç ç ş ğ ğ çö ç ş ş ş ö ğ ğ ş ş ö

Ğ ş ö ş ç ç İ ş İ ş Ş ç ş ş ş İ İ İ İ ç ğ ş ç ö ç ğ ş ö ö ç ç ğ ş ö ö ş ş ğ ğ ş ç ğ ğ ç ğ ş ç ş ç ç ş ğ ğ çö ç ş ş ş ö ğ ğ ş ş ö Ğ İ İĞİ Ğ Ğ Ğ Ğ Ş Ö Ü Ş ş ğ ç Ç ş ğ ş İ İ ş Ş Ş İ» İ İ Ğ ş ö ş ç ç İ ş İ ş Ş ç ş ş ş İ İ İ İ ç ğ ş ç ö ç ğ ş ö ö ç ç ğ ş ö ö ş ş ğ ğ ş ç ğ ğ ç ğ ş ç ş ç ç ş ğ ğ çö ç ş ş ş ö ğ ğ ş ş ö ğ ç ç ç ç ş ş ş ğ

Detaylı

4. ÜNİTE ORAN-ORANTI

4. ÜNİTE ORAN-ORANTI 4. ÜNİTE ORAN-ORANTI KONULAR 1. ORAN 2. ORANTI KAVRAMI, ÖZELLİKLERİ VE TÜRLERİ 3. Orantının Özellikleri 4. Doğru Orantı 5. Ters Orantı 6. Bileşik Orantı 7. Orantı İle Çözülebilecek Problemler 8. ÖZET 9.

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08 LİSNS YRLŞTİRM SINVI- MTMTİK-GMTRİ SINVI MTMTİK TSTİ SRU KİTPÇIĞI 08 U SRU KİTPÇIĞI LYS- MTMTİK TSTİ SRULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik Testi

Detaylı

Math 103 Lineer Cebir Dersi Ara Sınavı

Math 103 Lineer Cebir Dersi Ara Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Ara Sınavı 9 Kasım 27 Hazırlayan: Yamaç Pehlivan Başlama saati: 3: Bitiş Saati: 4:5 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

Bu ders materyali 06.09.2015 23:17:19 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir.

Bu ders materyali 06.09.2015 23:17:19 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir. -- Bu ders materyali 06.09.05 :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından UYGULAMA-00 Cevap: x- -x- x- =0 denklemini sağlayan x değeri kaçtır? UYGULAMA-00 Cevap: x x x 5 + = + denklemini

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

Temel Matematik Testi - 4

Temel Matematik Testi - 4 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: D00. Bu testte 0 soru vardır.. Tavsiye edilen süre 0 dakikadır. Temel Matematik Testi -.

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

1991 ÖYS. 9. Parasının 7. ünü kardeşine veren Ali nin geriye lirası kalmıştır. Buna göre, Ali nin başlangıçtaki parası kaç liradır?

1991 ÖYS. 9. Parasının 7. ünü kardeşine veren Ali nin geriye lirası kalmıştır. Buna göre, Ali nin başlangıçtaki parası kaç liradır? 99 ÖYS.,8 + (, + ), işleminin sonucu kaçtır? B) 7 D) 86 987 B) D). a, b, c birer pozitif gerçel sayı ve a=b b=c olduğuna göre, aşağıdakilerden hangisi doğrudur? a

Detaylı

2004 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

2004 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI 4 II MATEMATİK YARIŞMASI I AŞAMA SORULARI 4? 4 4 A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? 5 A) B) C) - D) E) - 8 4 x x

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ 015-016 EĞİTİM-ÖĞRETİM YILI 1. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI AY HAFTA SAAT KAZANIMLAR BÖLÜMLER (ALT ÖĞRENME ALANLARI) ÖĞRENME

Detaylı

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir. BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı

Detaylı

KARTEZYEN ÇARPIM VE BAĞINTI

KARTEZYEN ÇARPIM VE BAĞINTI KRTEZYEN ÇRPIM VE BĞINTI 3. Bölüm TEST -2 1. β={(x,y):2x+y=8,x,y N} şeklinde tanımlı β bağıntısı kaç elemanlıdır? ) 4 B) 5 C) 6 D) 7 E) 8 6. R'de bağıntısı yansıyan ise a.b kaçtır? ) 18 B) 9 C) 2 D) 18

Detaylı

AKDENİZ ÜNİVERSİTESİ ORAN-ORANTI. İlköğretim Matematik Öğretmenliği. Grup1 E N F O R M A T İ K - L A B 4

AKDENİZ ÜNİVERSİTESİ ORAN-ORANTI. İlköğretim Matematik Öğretmenliği. Grup1 E N F O R M A T İ K - L A B 4 AKDENİZ ÜNİVERSİTESİ ORAN-ORANTI İlköğretim Matematik Öğretmenliği Grup1 2011 1 E N F O R M A T İ K - L A B 4 İçindekiler ÜNİTE HAKKINDA BİLGİ:... 3 ORAN... 3 ORANTI... 4 1)ORANTI ÇEŞİTLERİ... 5 A)DOĞRU

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

T. C. Ö Z G Ü L Ö Ğ R E N M E G Ü Ç L Ü Ğ Ü T A N I L I Ç O C U Ğ A S A H İ P

T. C. Ö Z G Ü L Ö Ğ R E N M E G Ü Ç L Ü Ğ Ü T A N I L I Ç O C U Ğ A S A H İ P T. C. İ S T A N B U L B İ L İ M Ü N İ V E R S İ T E S İ S O S Y A L B İ L İ M L E R E N S T İ T Ü S Ü P s i k o l o j i A n a b i l i m D a l ı - P s i k o l o j i Y ü k s e k L i s a n s P r o g r a m

Detaylı

İ Ö İ Ü İ İ İ Ş İ İ Ü Ü İ Ç Ş Ğ Ğ Ö Ş ö ö ö Ö

İ Ö İ Ü İ İ İ Ş İ İ Ü Ü İ Ç Ş Ğ Ğ Ö Ş ö ö ö Ö Ğ ö ö ö «ö Ğ Ö ö Ç ö ö Ö ö ö İ ö İ ö İ Ö İ Ü İ İ İ Ş İ İ Ü Ü İ Ç Ş Ğ Ğ Ö Ş ö ö ö Ö İ ö Ç ö ö ö ö ö ö Ç ö Ö Ç ö İ Ç ö Ü Ş ö ö İ ö ö Ş ö İ Ü Ş ö ö ö ö Çö ö ö ö ö Ş ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö

Detaylı

Diğer sayfaya geçiniz. 2012 KPSS / GYGK CS 33. 31. işleminin sonucu kaçtır? işleminin sonucu kaçtır? A) B) C) A) B) C) 34. 32.

Diğer sayfaya geçiniz. 2012 KPSS / GYGK CS 33. 31. işleminin sonucu kaçtır? işleminin sonucu kaçtır? A) B) C) A) B) C) 34. 32. 31. 33. işleminin sonucu kaçtır? işleminin sonucu kaçtır? 32. 34. işleminin sonucu kaçtır? işleminin sonucu kaçtır? A) 84 B) 80 C) 72 64 60 9 35. 37. x ve y gerçel sayıları işleminin sonucu kaçtır? eşitsizliklerini

Detaylı

TEMEL MATEMATİK TESTİ

TEMEL MATEMATİK TESTİ TEMEL MTEMTİK TESTİ 1. u testte 0 soru vardır.. evaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 010 YGS / MT 1. 0, 0,0 0,. + 1 ) 1 7 0 ) 1 + 1 1.. ( a+ 1) ( a )

Detaylı

ö ö ş Ğ ş ü İ ç ö ş ş Ç ş ü ş ş İ ş ü ş İ ş ö İ ü ö üşü ö şü İ İ İ ü İ ö üş Ğ İ İİ ö ö ş ü ü ö ş ö ö ş ö ş ö ö ü ç ş ç ş ö ü çö ü ü ü ç ç ş ş ş ş ş ç

ö ö ş Ğ ş ü İ ç ö ş ş Ç ş ü ş ş İ ş ü ş İ ş ö İ ü ö üşü ö şü İ İ İ ü İ ö üş Ğ İ İİ ö ö ş ü ü ö ş ö ö ş ö ş ö ö ü ç ş ç ş ö ü çö ü ü ü ç ç ş ş ş ş ş ç ü İ Ğİ İ İ İ ü Ğ Ğ ü İ İ Ğ ü İ ş ö ö ş ş ü İ ö ö ş Ö Ü Ö ü ö ö İ İ İ ü İ İ ç İ Ş ö İ ç ş İ ö ö ş Ğ ş ü İ ç ö ş ş Ç ş ü ş ş İ ş ü ş İ ş ö İ ü ö üşü ö şü İ İ İ ü İ ö üş Ğ İ İİ ö ö ş ü ü ö ş ö ö ş ö ş ö ö

Detaylı

ğ ö ö ö ö ğ ğ ç çö ç ğ ç ö ğ ğ ç ğ ğ ç ğ ç ğ ğ ğ ç ö ö ğ ğ ç ö ğ ğ ç ğ ğ ö ö ğ Ö ç ö

ğ ö ö ö ö ğ ğ ç çö ç ğ ç ö ğ ğ ç ğ ğ ç ğ ç ğ ğ ğ ç ö ö ğ ğ ç ö ğ ğ ç ğ ğ ö ö ğ Ö ç ö ğ ö ö ö ö ğ ğ ç çö ç ğ ç ö ğ ğ ç ğ ğ ç ğ ç ğ ğ ğ ç ö ö ğ ğ ç ö ğ ğ ç ğ ğ ö ö ğ Ö ç ö ç ö çö ö çö ö ğ ç ğ ğ ğ ğ ğ ğ ğ ö ö ö ğ ç ö ğ ö ç ğ ğ ö ğ ğ ğ ğ ğ ç ğ ö ö ç ç ğ ç ğ ö ğ ğ ğ çö çö ö ö ğ ö ğ ö ö ğ ç

Detaylı

ö ğ ğ ğ ö ğ ğ ğ ğ ğ ğ ğ ğ İ ğ ö ğ ğ ğ İ ğ ğ ğ ğ ö ö ö ğ ğ ğ ö ö

ö ğ ğ ğ ö ğ ğ ğ ğ ğ ğ ğ ğ İ ğ ö ğ ğ ğ İ ğ ğ ğ ğ ö ö ö ğ ğ ğ ö ö İ ğ ö ö İ ğ ğ ğ ö İ ö İ İ ö İ İ ğ İ İ ğ ğ ğ ö ğ ğ ğ ö ğ ğ ğ ğ ğ ğ ğ ğ İ ğ ö ğ ğ ğ İ ğ ğ ğ ğ ö ö ö ğ ğ ğ ö ö İ ö ğ İ ö ö ğ ö ğ ğ ğ İ İğ ö ğ ğ ğ ğ ğ ö ğ ğ ğ ğ ğ ö ğ ö ö ğ ö ğ ğ ğ ğ ğ Ş ö ö Ş ğ ğ ğ ğ ğ ğ

Detaylı

ı ı ı ıı ıı ıı ı ı ı ğ ş ı

ı ı ı ıı ıı ıı ı ı ı ğ ş ı Ü Ğ Ş ö İ Ş ç ç Ğ ç ö Ü Ü Ş ö Ö ç ç ğ ö ö ğ ö İ Ş ğ ğ ç ö Ü ğ Ç Ö İ ğ ğ ğ Ş ö ç ç ö ö ç ö Ü İ İ ö ö ç «ğ Ü Ş ğ ö ğ ç ğ ç ö ç ç ç ç ö ö ö ç ç ç ö ç ö İ ö Ü ö ğ Ü Ş Ü Ş ö ç ç İŞ ğ ğ ğ ö İŞ ö İ Ü İ İ İ İ

Detaylı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı Ertuğrul US 01.09.2014 MATEMATİK PROGRAMIM Program 6 aylık (24 haftalık) bir programdır. Konuların veriliş sırasına uyularak çalışılması

Detaylı

Evrak No : Tarih :

Evrak No : Tarih : Evrak No : 1612050350 Tarih : 05.12.2016 ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö ö Ö ö ö ö ö Ö ö Ü Ü Ö Ü Ü Ü ö Ü Ü Ü Ö Ç Ü Ö Ü Ü Ü Ü Ü Ü Ö Ü Ü ö

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

Ğ Ç Ğ ç ç ç ç Ö ç Ş Ğ ç ç Ö Ş» ç

Ğ Ç Ğ ç ç ç ç Ö ç Ş Ğ ç ç Ö Ş» ç Ğ ç ç Ş Ğ Ş Ğ Ç Ğ ç ç ç ç Ö ç Ş Ğ ç ç Ö Ş» ç ç ç ç ç Öç ç ç ç Ç ç ç ç ç ç Ş ç ç ç ç ç ç Ğ ç Ü Ü ç ç Ü Ğ ç ç ç Ş Ş ç Ç ç Ç ç ç ç ç ç ç ç ç ç ç ç Ö ç ç ç ç Ü Ğ ç Ç ç ç Ş ç Ç Ç ç Ö ç ç ç ç ç Ş ç Ş Ş ç ç ç

Detaylı

İ İ İ» Ö

İ İ İ» Ö ğğ İ İ İ Ğ ğ ş ğ ş Ş Ğ Ğ İ Ğ ş ş ğ ş ş ç ğ İ Ğ İ İ İ» Ö İ Ö Ğ İ ş ğ Ö Ğ İ ş ğ ç Ğ ş Ç ğ ğ İ İ ğ İ ç ğ Ç ğ ğ ç ş ğ İ ş ş ğ İ ş İ İ ş İ Ğ ş Ö ğ ğ ğ Ş İş ş ğ ğ ç Ç ğ ğ Ö ş Ç İ Ö Ö ğ ş İ İ Öğ ş ğ ş ç ğ ş ğ

Detaylı

Ğ ç Ğ Ğ Ö Ö ç ç Ö ç ç Ö ç

Ğ ç Ğ Ğ Ö Ö ç ç Ö ç ç Ö ç Ğ Ğ Ö Ö ç Ğ Ğ ç Ö ç ç Ş ç ç ç Ş Ğ ç Ş Ğ ç Ğ Ğ Ö Ö ç ç Ö ç ç Ö ç ç Ğ Ğ Ö Ö Ö ç Ç Ö ç Ö ç Ş ç Ç Ö Ö Ğ Ö ç ç ç Ğ Ğ Ö ç Ö Ç Ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ş ç ç ç Ö ç Ö ç Ö Ö ç ç Üç Ö Ç ç Ö Ş Ş ÇŞ ç Ö

Detaylı

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın.08.0 ta rih ve sa yı lı ka ra rı ile ka bul edi len ve 0-0 Öğ re tim Yı lın dan iti ba ren uy gu lana cak olan prog ra ma gö re

Detaylı

2) Bir mağazada, bir ürüne satış fiyatı üzerinden %7 indirim yapılmış. Eğer yeni fiyatı 372 TL ise, kaç liralık indirim yapılmıştır?

2) Bir mağazada, bir ürüne satış fiyatı üzerinden %7 indirim yapılmış. Eğer yeni fiyatı 372 TL ise, kaç liralık indirim yapılmıştır? MATE 106 SOSYAL BİLİMLER İÇİN TEMEL ANALİZ Ad-Soyad No Uygun cevabı bulunuz. 1)A = πr2 formülü r yarıçaplı çemberin A alanını vermektedir. Bir masa örtüsü A alanına sahipse, yarıçapını A'nın bir fonksiyonu

Detaylı

Mutlak Değer. Isınma Hareketleri. a) 2. c) lñ5 ñ4l = ñ5 2 + d) lñ5 ñ9l = (ñ5 3) = ñ e) l 2al = ( 2a) = 2a. f) l3al = 3a. a) 2.lxl. lxl 3.

Mutlak Değer. Isınma Hareketleri. a) 2. c) lñ5 ñ4l = ñ5 2 + d) lñ5 ñ9l = (ñ5 3) = ñ e) l 2al = ( 2a) = 2a. f) l3al = 3a. a) 2.lxl. lxl 3. Isınma Hareketleri 1 Aşağıda verilenleri inceleyiniz. I. 5 0 5 >> l 5l = l5l II. Mutlak değer büyüklük olduğu için " " olmaz. Yani lxl 0 III. Mutlak değer içerisindeki ifade dışarıya alınırken kendi işareti

Detaylı

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde KPSS Genel Yetenek Genel Kültür MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2015 KPSS ye Pegem Yayınları ile hazırlanan adayların, 100'ün üzerinde soruyu kolaylıkla

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı