DİZİLER Dizilerde İşlemler Dizilerin Eşitliği Monoton Diziler Alt Dizi Konu Testleri (1 6)...

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DİZİLER... 213. Dizilerde İşlemler... 213. Dizilerin Eşitliği... 214. Monoton Diziler... 215. Alt Dizi... 216. Konu Testleri (1 6)..."

Transkript

1 ÜNİTE GERÇEK TOPLAM SAYI ÇARPIM DİZİLERİ ARİTMETİK SEMBOLÜ DİZİ Böüm Dizier GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ GEOMETRİK DİZİ SERİLER DİZİLER Dizierde İşemer Dizieri Eşitiği Mooto Dizier At Dizi Kou Testeri ( ) ARİTMETİK DİZİ GEOMETRİK DİZİ SERİLER Syf No Aritmetik Dizii Gee Terimii Buumsı Aritmetik Dizii İk Terimii Topmı Geometrik Dizi Bir Geometrik Dizii İk Terimii Topmı Bir Geometrik Dizii İk Terimii Çrpımı Kou Testeri ( ) Tekrr Testeri ( ) Yzııy Hzırık Sorurı ( ) ÜNİVERSİTEYE GİRİŞ SINAVINDA ÇIKMIŞ SORULAR x e x! k 0 k ( + ).r ( r)

2 TANIM f() f() f() f() omk üzere dizii değerer kümesi ie gösteriir. (,,,, ) DİZİLER f() syısı dizii dizii. terimi y d gee terimi deir. Gee terimi o f: N + R ( ) (,,,, ) dizisi BÖLÜM N + {,,,,, } sym syırı kümeside R gerçe syır kümesie tım her f: N + R foksiyou gerçek syı dizisi deir. ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Dizier ie gösteriir. Dizierde İşemer ( ) ve ( ) irer dizi omk üzere; ( )+( )( + ) ( ) ( ) ( ) ( ).( ) (. ) ( ) 0 içi ^ h d ^ h c sit syı omk üzere, c.( ) (c. )

3 ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Dizier Bir ( ) dizisii kç terimii egtif işreti oduğuu umk içi < 0 ve > 0 eşitsizik sistemii çözüm kümesideki doğ syırı syısı uuur. d içimideki rsyoe ir dizii kç terimii tmsyı oduğuu umk içi k k, e öüür öüm c, k k ise ifdeside yi tmsyı yp eri syısı uuur. Burd > 0 oduğu uutummı, c R ve < c omk üzere ( ) dizisii kç terimii ie c rsıd oduğuu umk içi < < c eşitsizikeri çözüerek (, c) ock şekide doğ syırıı syısı uuur. f() c içimideki dizierde > 0 ise dizii e küçük terimi vr f() c dizisii grfiği pro şekide (f: Z + R) Bu proü simetri eksei oup i) r - doğ syı ise dizii e küçük terimi f- ii) r - doğ syı değise - y e ykı iki doğ syı x ve x ise k c + r - x- x dizisii e küçük terimi f(x ) f(x ) f() c içimideki dizierde < 0 ise dizii e üyük terimi vr i) r - doğ syı ise 9 + dizii e üyük terimi ii) r - doğ syı değise - y e ykı iki doğ syı x ve x ise x- x f x f x syısı dizii e üyük terimi ^ h ^ h - h k c Dizieri Eşitiği ( ) ve ( ) iki ree syı dizisi osu. ( )( ) omsı içi gerek ve yeter koşu her Z + içi omsı Her Z + içi ise ( ) ve ( ) e eşit dizier deir.

4 MONOTON DİZİLER Gee terimi o ir ( ) dizisi verisi. Her Z + içi Gee terimi o ir ( ) dizisii mootouğu rştırıırke:. Dizii terimeri yzırk mootouğu iceeeiir.. A ^ h + - frkı uuur. Her Z + içi A() > 0 ise dizi mooto rt, A() < 0 ise dizi mooto z. ( ) pozitif terimi ir dizi omk üzere; orı uuur. Her Z + içi B() > ise dizi mooto rt, B() < ise dizi mooto z Souçr +, ^h dizisi mooto rt +, ^h dizisi mooto z + $, ^h dizisi zmy + #, ^h dizisi rtmy ^h ^,,,,, h B ^ h +,, c, d ree syır omk üzere gee terimi ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Dizier. + c. + d o ir ( ) diziside;. d - c ise mooto deği. d - c ise.d.c > 0 ise mooto rt. d - c ve.d.c < 0 ise mooto z..d.c 0 ise sit dizi

5 ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Dizier ε + ε S ALT DİZİ (k ) rt ir pozitif tmsyı dizisi (her Z + içi k < k + ) omk üzere ( ) diziside yerie k yzırk ede edie _ k i dizisie ( ) dizisii ir t dizisi deir. _ t dizisii her terimi ( ) dizisii de ir terimi Yi her Z + k i içi Komşuuk Bir ( ) dizisii, ir ( ) dizisii t dizisi oup omdığıı mk içi: ) ( ) diziside yerie k yzırk _ k i dizisi ede ediir. ^ h _ k i eşitiğide k uuur. (k ) pozitif tmsyırı rt ir dizisi omı ) ( ) dizisi ie ( ) dizisii terimeri çık ork yzıır. Eğer ( ) dizisii her terimi ( ) dizisii ir terimi ise ( ) dizisi ( ) dizisii ir t dizisi Vey ( ) dizisii e z ir terimi ( ) dizisii ir terimi değise ( ) dizisi ( ) dizisii ir t dizisi deği ε > 0 ir ree syı omk üzere ( ε, + ε) çık rığıd tüm oktrı kümesie ı ε (epsio) komşuuğu deir. ı ε komşuuğudki oktrıı kümesi S osu. x S ise our. O hde _ k i ^h x! ^ - ε, + εh, - ε x + ε,, S 8x: x- ε, x! RB -ε x- ε x- ε ı ε komşuuğud uu oktrı kümesi S 8x: x- ε, x! RB oup ı ε komşuuğu dışıd uu oktrı kümesi S 8x: x- $ ε, x! RB Bir ( ) dizisii kç terimii ı ε komşuuğuu dışıd oduğu soruduğud x ırk x- $ ε& - $ ε eşitsiziği çözüerek doğ syısı uuur.

6 + ^ h + 8 içi Bigi dizisii 8. terimi 0 dizisii kçıcı terimi tür? sorusuu çözeim. 0 &. 0 oup. terim + c + d c d & 8 & & tür. dizisi sit dizi ise R de gee terimi o + ir dizii te küçük kç terimi oduğuu uım.. > içi.. Kou + ^ h - dizisii. terimi kçtır? A) B) C) 0 D) 9 E) 8 ^- h. ^h G + diziside + ifdesii değeri kçtır? 9 A) B) - C) - 7 D) - E) - ^h TEST Dizier dizisii kçıcı terimi tür? A) B) C) D) E).. ^ h diziside k oduğu göre, k+ şğıdkierde hgisidir? A) 7 B) 9 C) D) 8 E) 9 k - ^ h + dizisi sit dizi ise k kçtır? A) - B) - C) - D) E) 0 7. Gee terimi Z k ] % ; k / ^modh ] ] k [ k+ ; k / ^modh ] ] k ; k / 0^mod ] / h \ ork verie dizide + kçtır? ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Dizier < A) 0 B) C) D) E) 8 omsıı sğy kç te syısı oduğuu umıyız. < < + + < oup,, içi dizii üç terimi te küçük our.. - ^ ve h + ^ h dizierii kçıcı terimeri eşittir? A) B) C) D) E) 8. k ^ h f / -kp k dizisii eşici terimi kçtır? A) 8 B) 90 C) 9 D) 00 E) 0 ) C ) C ) A ) E ) C ) C 7) A 8) C 7

7 ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Dizier Bigi dizisii kç + terimii tm syı oduğuu uım. oduğud 7 s syı oduğud + vey + 7 our. Burd vey our. pozitif tm syı oduğud Dizii. terimi tm syı R de gee terimi TEST + + ^h c m + dizisii kç terimi tmsyıdır? A) B) C) D) E) - + ^ h - dizisii kç terimi pozitiftir? A) B) C) D) E) ^- h. ^h G + dizisii kçıcı terimi dir? A) 7 B) C) D) E) ^kh g +!! k! diziside kçtır? 7. dizisii. terimi 8 ise x kçtır? A) B) C) 0 D) E). ( ) diziside. ve oduğu göre, 9 kçtır? A) f / B) C) 8 9 k D) E) dizisii dördücü terimi kçtır? A) B) C) ( ) dizisi içi, -^x- h. ^h d -.+ ^h c g + m 8 D) E) o ( ) dizisii kç terimii egtif oduğuu + uım. < < 0 eşitsiziğii sğy değererie krşı gee terimer egtiftir. +, tüm değereri içi pozitiftir. Eşitsizik + < 0 dektir. Burd < < uuur. ve içi iki terim egtiftir.. 7 A) B) C) D) E) + m ^h ve + ^ h + dizierii eşit omsı içi m kç omıdır? A) B) 0 C) 8 D) E) 8 ^+ h ^+ h. ve oduğu göre, + topmı kçtır? A) B) C) D) E) 8. ( k ) (sikπ) dizisii 0. terimi kçtır? A) B) 0 C) D) E) 8 9) B 0) A ) E ) E ) A ) C ) A ) E 7) B 8) B

8 Bigi ve iki dizi osu. ise + dizisii kçıcı terimi dir, uım & 8 oup dizii 8. terimi ( ) e/ o dizisii. k kk ( + ) terimii uım. / uuur. k kk ( + ) ( ) c ve m + 7 ( ) e/ k o k dizieri veriiyor. (. ) dizisii. terimii uım.... Kou c m + TEST Dizier dizisii c x m + x kç omıdır? dizisie eşit omsı içi A) - + B) + C) D) E) ^h c m + dizisii tmsyı o terimeride e üyüğü p, e küçüğü t Bu göre, p t kçtır? A) B) C) D) E) + ^ h + dizisii kçıcı terimi dir? A) B) C) D) E) 7.. dizisi içi kçtır? A) B) C) / k D) E) 7 k dizisii kç terimi egtif değidir? A) B) C) D) 8 E) 0 7. Gee terimi, ^h f / k. k + k ^ h p + 9 ^h c m 7. ^ h + o dizide ifdesii eşiti şğıdkierde hgisidir? A) B) C) 9 - / j j j ^ D) - E) ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Dizier ( ) e/ k o k ( + ).( + ) ; E (. ). ( + ).( + ) c m ( + ) (. ) ( + ) uuur. Bu dizii. terimi ise içi. + uuur.. Bir ( ) dizisii ik terimi ve içi + oduğu göre, dizii üçücü terimi şğıdkierde hgisidir? A) B) C) D) E) 8. d ve c m k ^ k + h f / ^ + hp k oduğu göre, ( ) dizisi şğıdkierdehgisidir? A) + B) + C) + 7 D) + E) + ) D ) E ) A ) C ) B ) A 7) A 8) B 9

9 ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Dizier dizisii. teri- / ^k+ h k + mii uım. içi / ^k+ h k. + Bigi İk terim topmı o ir dizii. terimii uım S ^ + h S-S. ^ + h S. ^ + h S 7 S S N + d ve ( > içi) ( + ) içimide tımı ir dizide 7 değerii uım. 9. Gee terimeri, TEST Z k, k tek ise ] k [ ], k çift ise \ k k k / ^+ kh o ( ) ve ( ) dizieri veriiyor. Bu göre, (. ) kçtır? A) B) C) 7 D) 8 E) 9 Z ] / ^k + h, / ^modh ] k ] 0. [ +, / ^modh ] ] % k, / 0^modh ] k \ dizisi veriiyor. + 7 değeri kçtır? A) 70 B) 7 C) 7 D) 7 E) 78. Bir ( ) diziside N + içi 8^+ h B ^ h $ ^ + h ve koşuu sğmkt, oduğu göre, 8 kçtır? A) B) C) D) E) 8. + ^ h dizisi sit dizi - t Bu göre, t kçtır? A) B) 7 C) 8 D) 9 E). Gee terimi g + o ( ) dizisi veriiyor. Bu göre, + kçtır? A) B) C) D) E) 7 7. Gee terimi o dizii dördücü terimi kçtır? A) 7 B) C) D) E). Bir dizide terimi topmı.( + ) 7. / ^k + h k g + Bu dizide. terim kçtır? A) B) C) D) E) ^h c m dizisii terimerii kç tesi tmsyıdır? A) B) C) D) E) ve 7. oup & uuur.. ve > içi - + içimide tımı dizide ü değeri kçtır? A) 8 B) 8 C) 8 D) 87 E) İk terimii topmı S ^ + h o ir dizii dokuzucu terimi kçtır? A) B) 0 C) 8 D) E) 0 9) C 0) D ) A ) C ) C ) B ) A ) D 7) A 8) A

10 Bigi + - dizisii egtif omy terim syısıı u- + ım. egtif deği ise 0 + $ 0 + eşitiğii sğy kç te doğ syısı oduğuu umıyız. ^ h^ + h $ 0 + $ içi $ 0 oduğud dizisii egtif terimi yoktur. Yi egtif omy tm syısı sosuz çokukt ( ) c + 8 m dizisii tmsyı o terimerii topmıı u- + ım. ( ) c + 8 m dizisii pyıı pydsı + öeim N + içi 8 + ifdesii tmsyı omsı gerekir. O hde (+) yerie,, ve 8 geeiir. + & 0 N + + & N + + & N +... Kou TEST Dizier ^- h! ^h ve - G oduğu göre, k kçtır? A) B) C) 7 D) 8 E) 9 + ^h c m + dizisii terimeride kç tesi pozitif değidir? A) B) C) D) E) ^h f / kk+ k ^ h p dizisii kçıcı terimi 7 8 k k+ dir? 0 A) B) C) 7 D) 8 E) 9. Gee terimi + ie eirtie ir dizide ( N + ) ik 0 terim topmı kçtır? A) 99 B) 00 C) 0 D) 0 E) 80. Gee terimi o ve ik terimii topmı S o ir dizide S + ifdesii eşiti şğıdkierde hgisidir? A) B) + C) 7. Gee terimi - - D) E) x. + ^ h + o ( ) dizisi mooto rt ise x içi şğıdkierde hgisi doğrudur? A) x B) x C) D) E) x + ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Dizier + 8 & 7 N + our. Souçt dizii.,. ve 7. terimeri omk üzere terimi tmsyı içi içi içi oup uuur.. 8 ^ h + dizisii tmsyı o terimerii e küçüğü kçtır? A) B) C) D) E) 8. x. + ^ h + dizisii mooto z ir dizi omsı içi, x hgi koşuu sğmıdır? A) x > 8 B) x > C) x < D) x < 8 E) x > ) A ) C ) C ) E ) C ) C 7) B 8) D

11 ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Dizier Bigi dizisi içi ve her içi - + oduğu göre, 0 yi uım. + h ^ h N + d ve ( > ) içi + içimide tımı ir dizide ifdesii eşitii uım ( ) ( ) uuur. TEST 9. > omk üzere, ir ( ) dizisi içi ve oduğu göre, ( ) dizisii gee terimi şğıdkierde hgisidir? A). B)..! C)..! D).! E). +.! 8 _ 0. ` şekide tım., $ - ( ) dizisii. terimi kçtır? A)!. B)!. 8 C)!. D)!. E)!.., / 0^modh ) +, / ^modh dizisi veriiyor. + kçtır? A) B) C) 8 D) 0 E). x. y, + ^ h ^ h c m dizieri eşit oduğu göre, x.y kçtır? A) B) 8 8 C) - D) E). k ^h > / ^ h. ^k+ hh k dizisii yirmi eşici terimi kçtır? A) 0 B) 9 C) 8 D) 7 E). + ^ h dizisii sit dizi omsı içi kç + omıdır? A) B) C) 0 D) 9 E) 8. N + ve içi. ve $ - oduğu göre, kçtır? A) B) C) D) E) oduğu göre, 7 kçtır? A) B) 8 C) D) 8 E) 7. ( )+( ) dizisi sit dizi oduğu göre, kçtır? A) B) C) D) E) 8. Gee terimeri, Z- ], / 0 mod ^ h ise [ - ], / mod ise ^ h \ +, / 0^modh ise * +, / ^modh ise 8 o ( ) ve ( ) dizieri içi, + topmı kçtır? 9 A) B) C) D) E) 9) C 0) B ) B ) A ) B ) B ) E ) A 7) C 8) C

12 Bigi + ifdesi içi tımı deği Bu edee ir - dizi deği + dizisii k + + t dizisi k + ^ + h + + ^+ h diziside c + d d c > 0 ise mooto rt dizisii k+ ve + k t dizierii uım. ( k + ) k+ ( k + ) + 8k + k + Kou. Aşğıdkierde hgisi ir ree syı dizisi değidir? A) c B) C) m c + m ^πh + + D) E) 7+ k -. Bir ( ) dizisi içi oduğu göre, 8 kçtır? A) B) 0 C) D) 0 E). - ^ h dizisi + + ^ h k+ k kçtır? TEST Dizier ^ - h^ + h. dizisii ir t dizisi ise. Gee terimi, o ( ) dizisii mooto rt dizi omsı içi, x şğıdki koşurd hgisii sğmıdır? A) x < B) x > C) x < D) x < 0 E) x > +. Aşğıdki dizierde hgisi dizisii t dizisidir? A) B) C) x. + ^ h D) E) ^h c m + ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Dizier k ( k ) ( k ) + A) B) C) D) E) dizisii terimeride kç tesi egtiftir? k k + A) B) 7 C) 8 D) 9 E) 0 c m dizisii kçıcı terimi + 7 e eşit oduğuu uım & 7. Gee terimi ( ) o ir dizide, 8 + ^ - h + oduğu göre, ( ) dizisi şğıdkierde hgisidir? A) B) C) D) E) + 8. ^h _ ^- h + i dizisi, şğıd gee terimeri verie dizierde hgisie eşittir? A) si π B) cos π C) t π D) cos π E) si π ) E ) A ) C ) E ) B ) D 7) A 8) D

13 ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Dizier Bigi + diziside d c < 0 c + d ise mooto z ir dizi d c > 0 ise mooto rt ir dizi Z + / 0 mod ] ^ h [ + / ^modh ] / ^modh \ diziside + + topmıı uım. / ^mod h oup. / ^modh oup. + / 0^modh oup ( ) c m + p dizisii mooto z omsı içi p hgi koşuu sğmıdır, uım. ( ) c m + p dizisii mooto z omsı içi; d < c ve.d.c < 0 omı + p 0 p < & p > ve 9. Aşğıdkierde hgisi mooto z ir dizidir? A) B) C) TEST + - D) E) + + ^ - h Bir dizii gee terimi ^+ h $, + k ^ h oduğu göre, kçtır? A) B) C) D) 7 E) 7 7. Gee terimi Z ] +, / 0 ^modh ise ] +, / ^modh ise [ ] / kk ^ + h, / ^modh ise ] k \ o ( ) dizisi içi + + topmı kçtır? A) 0 B) C) 0 D) E) 0. ( ) diziside ve içi. oduğu göre, kçtır? A) 0 B) C) 0.. D) E) 0 dizisii sit ir dizi oimesi içi (, ) ikiisi şğıdkierde hgisi omıdır? 9 9 A), B), C) D) 9,, - E), dizisii ir t dizisi `k oduğu göre, k j kçtır? A) B) C) 0 D) 9 E) 8 dizieri veriiyor. ( ).( ) dizisii gee terimi şğıdkierde hgisidir? A) B) C) D) E) - 7. ^ h ^ + ^k + h. h dizisi sit dizi ^ d ^ h ^ h h - ^h ^+ + + g + -h ve ^ h - Bu göre, (k. ) çrpımı kçtır? A) B) C) D) 7 E) 8 x - ^ h -.p ( ). < 0 p + < 0 & p < omı O hde, < p <. ve + ( ) + dizisi içi 0 / topmıı soucu edir? k A) 0 B) 0 C) D) 0 E) mooto rt ise x ise şğıdkierde hgisi doğrudur? A) x - B) x - C) D) x E) x $- x 9) D 0) A ) A ) C ) C ) B ) E ) B 7) E 8) D

14 + c + d c d + + k dizieri veriiyor. Bigi sit dizi ise ( ) + ( ) sit dizi oduğu göre, k ı değerii uım. + + k + + () () dizisii sit dizi omsı içi ^k + h..0 omı + k k. Kou dizisi sit ir dizi oduğu göre k. kçtır? A) B) C) D) E). ^h + ve ^ h + k dizieri veriiyor. ( ) + ( ) dizisii sit dizi oimesi içi kç omıdır? A) B) C) 0 D) E). ( ) diziside, TEST Dizier + ^ h + k, ve. oduğu göre, kçtır? A) 8 B) C) D) E) ^h c m D) E) ^h d + dizisii ir t dizisi şğıdkierde hgisidir? A) B) C) dizisii ir t dizisi _ k oduğu göre, k i + kçtır? A) 9 B) 0 C) D) E) - + ^ d ^ h h - dizisie ( ) t dizisi şğıdkierde hgisidir? A) B) C) ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Dizier.! ( )!. ( )! D) E) &.!. + ^h k ve + _ i + k & &. ktı omk üzere ( k ) dizisi ( ) dizisii ir t dizisi oduğu göre, c dizisii. k m terimi kçtır? A) B) C) D) E) ^ h (, +, + +,..., , ) dizisii 0. terimi kçtır? A) B) 0 C) D) E) 0 ) B ) E ) A ) A ) E ) C 7) E 8) D

15 ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Dizier Bigi g + c g + m $ ^ + h ^ + h^+ h + 0, ve N, oduğu göre, kçtır? 0 ve. ise içi. 0 içi.. içi..!... içi! uuur.! 9. dizieri veri- ^h c g + m iyor. ( ) + ( ) dizisi şğıdkierde hgisidir? A) B) + C) 0. ( ) diziside,. ^h c+ ve m D) - - E) + c m oduğu göre, u dizii gee terimi şğıdkierde hgisidir? A) + B) + C) + D) + E) ^h c m + dizisii tmsyı o terimi kçıcı terimdir? A) B) C) D) 7 E) 8. Bir ( ) ree syı dizisii ik terimii çrpımı P oduğu göre u dizii. terimi kçtır? 8 8 A) B) C) D) E) 8 9. Gee terimi o dizide TEST + + ^h d ^+ h! orı kçtır? diziside oduğu göre, m kçtır? A) 0 B) C) D) 0 E). Gee terimi g g + o dizii 7. terimi kçtır? A) B) C) D) E) 7 7. Gee terimi o dizide ifdesii değeri kçtır? 8 A) B) C) D) E) 7. Gee terimi o dizide ve her > içi oduğu göre, u dizii. terimi kçtır? A) + 7 B) C) 7 + D) Gee terimi + m + ^h c m * +! + E) / 0 ( mod ) / ^mod h c + m - c - m G o dizii. terimi kçtır? A) B) C) D) E) A) B) C) D) E) 9) E 0) C ) C ) A ) E ) B ) C ) D 7) E 8) D

16 Bigi + ^ h dizisii kç terimii i komşuuğuu dı- + 0 şıd oduğuu uım. + $ +, O hde dizii te terimi i komşuuğu dışıd 0 + dizisii mooto c + d z omsı içi d c < 0 omı Gee terimi,, N + o ( + )( + ) dizii ik 7 terimii topmıı uım. A + B ( + )( + ) + + şekide yzrsk A ve B uuur. dizisii ik terim topmı + + c m c m c m + c m+ c m+ c m c m ^ h $ ^ + h ^ + h #.0 + # # # 0. ( ) dizisi içi / k + k oduğu göre 0 kçtır? A) 0 B) 0 C) 9 D) 0 E) 9. 8 ve > doğ syısı içi.. Kou 9 - o ( ) dizisii 9. terimi kçtır? A) 9 8 B) 9 C) 9 D) 9 E) 9 + ^ h + dizisii terimerii kç tesi tmsyıdır? A) B) C) D) E) k + ^ h + dizisii sit dizi omsıı sğy k syısı kçtır? A) B) C) D) E) ( ) ( ) + ^h d + dizieri veriiyor. TEST Dizier (. ) dizisii. terimi kçtır? ^h c m - dizisii kç terimi egtiftir? A) B) C) D) 7 E) sosuz çokukt 7. Gee terimi Z ] + + / ^mod + h ] + [ / ^modh ] - ] / 0 ^modh \ o ( ) dizisi içi + işemii soucu kçtır? 7 A) B) C) D) E) ^ h + dizisii kç terimi 7 de küçüktür? A) B) C) D) E) 7 9. Gee terimi Z + ], / 0 mod + ^ h [ ^+ h, / ^modh ] ^ + h, / ^modh \ o ( ) dizisii (k ) ( ) t dizisi şğıdkierde hgisidir? - + A) d ^ h B) [.( ) + ] C) ( ) D) _ ^ - h + i ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Dizier + 8 uuur. 9 0 A) B) C) D) 8 E) E) ( + ) ) E ) B ) A ) D ) C ) C 7) E 8) C 9) B 7

17 ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Dizier. + c + d omsı içi c d omı / k k 8 i uım Bigi dizisii sit dizi osu. 8 / k + + g k 8 7 / k + + g + 7 k dizisii kç terimii d küçük oduğuu uım. 0.. TEST - ^ h + dizisii kç terimi dışıddır? komşuuğu A) B) 7 C) 8 D) 9 E) 0 + ^h c m! ü 8 + dizisi içi ^ch e o ise c kçtır? A) B) C) D) E). Gee terimi!. ^ h ^ h o ir dizide 0 orı kçtır? 8 A) 80 B) 0 C) 0 D) 0 E) 0. Bir ( ) dizisi içi +. ve 9 ise 9 orı kçtır? A) B) 0 C) D) 0 E) 9. Bir ( ) diziside 8 ve her > içi oduğu göre şğıdkierde hgisidir? A) B) C) D) E) 8 ^+ h π ^h cosc m 8 dizisii 99. terimi şğıdkierde hgisidir? A) - B) - C) 0 D) E) + ^+ hπ ^h ^- h.si; E dizisii 0. terimi kçtır? A) - B) - C) - D) E) + & ^ h + k oup dizisii 9 terimi d küçüktür.. + ^ h - dizisii ü ε komşuuğu dışıdki terim syısı oduğu göre ε kçtır? A) B) C) D) E) dizisii mooto z omsı içi k syısı hgi koşuu sğmıdır? A) < k < 0 B) < k < 9 C) - k D) - k 9 E) - k 8 0) D ) A ) E ) A ) D ) D ) C 7) A 8) C

18 ARİTMETİK DİZİ GEOMETRİK DİZİ SERİLER ARİTMETİK DİZİ Bir ( ) dizisii rdışık terimeri rsıdki frk hep yı sit syı ise u diziye ritmetik dizi deir. Her Z + ve d R içi ise ( ) ritmetik dizi d syısı ritmetik dizii ortk frkı deir. Aritmetik Dizii Gee Terimii Buumsı Souçr KONU ÖZETI İk terimi, ortk frkı d o ir ritmetik dizii gee terimii ( ) uumsı: + d + d + d + d + ( )d. Bir ritmetik dizide p ici terim p, k ici terim k ise oup + - d p + ^p-h d - k + ^k-h d p- k ^p-kh.d p- k d p - k BÖLÜM. ve gii iki syı rsı ritmetik dizi ouşturck şekide te terim yereştiridiğide ede edie Z terimi ritmetik dizii ortk frkı: ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Aritmetik Dizi Geometrik Dizi Serier, + + ^+ -h d ^+ h d & d + 9

19 ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Aritmetik Dizi Geometrik Dizi Serier Aritmetik Dizii İk Terimii Topmı Ortk frkı d o ir ( ) ritmetik dizisii ik terimii topmıı uumsı: ( ) ritmetik dizisii ik terimii topmı S ie gösteriirse; GEOMETRİK DİZİ Bir ( ) dizisii rdışık iki terimii orı hep yı sit syı ise u diziye geometrik dizi deir. Her Z + ve r R içi r syısı geometrik dizii ortk çrpı deir. S ^+ dh+ ^+ dh+ g + + ^-h $ + d+ + + g + ^- h.+ d $ d + ^ - d 8 + ^ + ^ - h hb ^ + h S ^ + h Bir Geometrik Dizii Gee Terimii Buumsı İk terimi, ortk çrpı r o ( ) geometrik dizisii gee terimii uumsı:.r r.r.r.r gggggggg + r.r.r - -.r - 0

20 Souçr. Bir ( ) geometrik diziside p ici terim p, k ıcı terim k ise oup trf trf orırs. ve gii iki syı rsı te terim yereştirierek ouşturu ( + ) terimi geometrik dizii ortk çrpıı uumsı:. Bir geometrik dizide herhgi ir terim, u terimde eşit uzkıkt uu iki terimi geometrik ortmsı eşittir. p > k omk üzere. Sou ir geometrik dizide şt ve sod eşit uzkıkt uu iki terimi çrpımı yı sit syıy eşittir. ( ) sou eemı ir geometrik dizi osu. Bu durumd p.r p - k.r k - p.r p - r k.r k - p - k p rp - k k,.r+ - + r + p p- k.p+ k.r+ + ^h ^,,, g,-, -,h..-.- g ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Aritmetik Dizi Geometrik Dizi Serier. ( ) (x, y, z) üç eemı dizisii hem ritmetik hem de geometrik dizi omsı içi u dizii terimeri rsıdki iişki: ( ) (x, y, z) dizisii ritmetik dizi omsı içi x z y +

21 ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Aritmetik Dizi Geometrik Dizi Serier geometrik dizi omsı içi y xz omı x+ z xz & x + z xz & ^x+ zh ^ xzh & x+ xz + z xz & x- xz+ z 0 & ^x- zh 0 & x z ve x z z z z y + + z& y z oup xyz Bir Geometrik Dizii İk Terimii Topmı Ortk çrpı r o ( ) geometrik dizisii ik terimii topmı T osu. T g + +.r +.r + g +.r - ^ h _ i _ i. ^ + r+ r+ g + r- h - r T $ - r Bir Geometrik Dizii İk Terimii Çrpımı ( ) ir geometrik dizi ve ortk çrpı r osu..r.r.r ggggg r - oduğud... g..r r r g r - ^ h_ i_ i _ i oup ^ - h p... g..r g + - ^ h ^ h.r O hde ( ) geometrik dizisii ik terimii çrpımı: ^ - h p % k r k - ^ h % _ i ^ h.r k k

22 Bigi, + r, + r, ( ).r dizisii terim syısı: + ^ r + + ir ritmetik dizi ise + ( )d,, c syırı ir ritmetik dizii rdışık üç terimi ise c + Bir dizide Bu dizide > içi + içimide tımı terimii ye ğı ifdesii uım. uuur. _.... `.... & Kou TEST Aritmetik Dizi. ( ) (, 7,,,..., 9) sou ritmetik diziside terim syısı kçtır? A) B) C) 7 D) 8 E) 9. x + y, x + z, y + z ritmetik dizii rdışık üç terimi ise şğıdkierde hgieri ritmetik dizi ouşturur? A) z, x, y B) x, y, z C) z, y, x D) x, y, z E) x, y, z. ( ) ir ritmetik dizi ve oduğu göre, S 0 kçtır? A) 0 B) C) 8 D) E). ( ) ritmetik dizi ( ) ( ) oduğu göre, u dizii ortk frkı kçtır?. Bir ritmetik dizide oucu terim, yirmici terim ise otuzucu terim edir? A) B) + C). Bir ritmetik dizide D) E) + / k + k oduğu göre, kçtır? A) B) 0 C) D) 0 E) 7. ( ) ir ritmetik dizi oduğu göre, şğıdkierde hgisidir? A) B) + C) + D) E) ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Aritmetik Dizi Geometrik Dizi Serier ( + ) A) B) C) 8 D) E) 8. +, 8, 7 + ir ritmetik dizii ik üç terimi oduğu göre, kçtır? A) 0 B) C) D) E) ) A ) B ) B ) E ) A ) C 7) A 8) A

23 ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Aritmetik Dizi Geometrik Dizi Serier Bigi ir ritmetik dizi ise + ( )d ritmetik dizisii ik terim topmı S ^ + h ve syırı rsı ( < ) te terim yereştirerek ouşturu + terimi ritmetik dizii ortk frkı - d + İk terimi, ortk frkı ve so terimi o ir ritmetik dizii terim syısıı uım. _ r ` + ( ).r + ( ). + & uuur. Dışükey ir dörtgede çır ir ritmetik dizii rdışık dört terimi E küçük çı 0 oduğu göre, e üyüğü kç derecedir, uım. Bir ritmetik dizii ik terim topmı; + S. c m 0 + & 0. c m 0 uuur. TEST 9. Bir ritmetik dizide 8. terim ie. terimi topmı ( + ) oduğu göre, 0. terim şğıdkierde hgisidir? A) B) C) - 8 D) E) 0. Ortk frkı d o ir ritmetik dizide + oduğu göre, ik 8 terimi topmı kç d dir? A) 0 d B) d C) d D) 8 d E) 0 d. İk terimi ortk frkı eşit o ir ritmetik dizide ik terimi ritmetik ortmsı 7 Bu göre, ik 0 terimi ritmetik ortmsı kçtır? A) 0 B) C) D) E). Bir ritmetik dizii ikici terimi, ik terimii topmı Dizii ik terimi kçtır? + 0 A) B) C) D) 8 E) 0. ie rsı u syır ritmetik dizi ouşturck şekide terim yzıdığıd ede edie dizii gee terimi şğıdkierde hgisidir? A) B) C). ( ) ritmetik diziside + 0 ve + 0 oduğu göre, şğıdkierde hgisie ittir? A) B) C) D) 9 E). İk terimi o ir ritmetik dizide ik 8 terim topmı S 8 8 oduğu göre, dizii ortk frkı kçtır? A) B) C) D) E). ie 8 syırı rsıd ritmetik dizi ouşturck şekide terim yereştiriiyor. Ouş ritmetik dizide sekizici terim kçtır? A) B) C) 8 D) 0 E) 7. Gee terimi + o ir ritmetik dizide ik terimi topmı S şğıdkierde hgisidir? 8. A) B) + C) + D) + E) - + x, + x, + 0x, g, -x ir ritmetik dizii sou terimeri Bu göre u terimeri syısı kçtır? D) E) + A) 80 B) C) 0 D) E) 0 9) C 0) E ) B ) A ) A ) B ) A ) C 7) B 8) C

24 Bigi ir ritmetik dizi ise + ( )d ve syırı ( < ) rsı te syı yereştirierek + terimi ir ritmetik dizi ouşturuduğud u dizii ortk frkı - d + ritmetik dizisii ik terimii topmı S ^ + h Bir dizii ik terimii topmı S ise k S k S k Yşrı topmı 8 o krdeşi yşrı ritmetik dizi ouşturmkt E küçük krdeş yşıd oduğu göre, e üyük krdeşi yşıı uım. Bir rtmetik dizii ik terim topmı, S [ + ] krdeş,,,,,, osu. S [ + ] & 8 ( + ) & + & yşıd Kou TEST. ( ) ir ritmetik dizi, / ^ h 0, Aritmetik Dizi oduğu göre, u dizii ortk frkı kç oiir? A) B) C) D) E). ( ) ir ritmetik dizi, 0 ve / ^ h / ^h oduğu göre, u dizii ortk frkı d kçtır? A) B) C) D) 0 E). ie 0 syırı rsı u syır erer ritmetik dizi ock şekide syı yereştiriiyor. Bu yereştirie syırd üçücüsü kç our? A)9 B)0 C) D) E). Bir ritmetik dizide / c m oduğu göre, u dizii ik 9 terimii topmı kçtır?. Bir ritmetik dizide ve 8 oduğu göre, + kçtır? A) 7 B) 8 C) 9 D) 0 E). Bir ritmetik dizii ik terimii topmı, S ^ + h Bu dizide dördücü terim kçtır? A) B) C) D) 7 E) 8 7. İk terimi, ik eş terimii topmı o ir ritmetik dizii ortk frkı kçtır? A) B) C) D) E) 8. Bir ritmetik dizide x, x, x oduğu göre, x kçtır? ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Aritmetik Dizi Geometrik Dizi Serier A) 9 B) 9 C) 9 D) 97 E) 98 A) B) C) D) E) ) E ) C ) B ) B ) D ) D 7) B 8) D

25 ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Aritmetik Dizi Geometrik Dizi Serier Bigi dizisii ik terim topmı S ise p S p S p,, c syırı ir ritmetik dizii rdışık üç terimi ise c + ritmetik diziside p. terim p + (p )d q. terim q + (q )d oup p- q d p- q dur. İk terimi, ortk frkı ve so terimi o ir ritmetik dizii terim syısıı uım. ve d ise + ( )d eşitiğide & + ( ). & uuur. So terim ise & & our. Dizii terim syısı tür. Bir ritmetik dizii. terimi 7, 7. terimi tir. Dizii ortk frkıı uım. 7, 7 ise dizii ortk frkı, 7 d our. TEST 9. İk 8 terim topmı ve ik terim topmı 0 o ir ritmetik dizii ik 0 terim topmı kçtır? A) B) C) 80 8 D) E) 7 0. Bir ritmetik dizide k ve p tür. k. ve p. terimer rsıd te terim oduğu göre dizii ortk frkı şğıdkierde hgisidir? A) B) C) D) E). Bir ritmetik dizide 8. terim ve. terim ise. terim kçtır? A) 7 B) 8 C) 9 D) 0 E). og 9 x, og x 7, og 8 x pozitif terimi ir ritmetik dizii rdışık üç terimi oduğu göre, og x kçtır? A) B) + C) D) E). Bir ritmetik dizide, ik terim topmı S + oduğu göre, 0. terim kçtır? A) B) C) D) 7 E) 9. ( ) ritmetik diziside ik terimi topmı S Bu göre, S 0 ve S 8 0 oduğu göre S 0 kçtır? A) 00 B) 00 C) 000 D) 90 E) 900. Bir ritmetik dizide, x ve x m Bu göre, dizii ortk frkı kçtır? + - A) B) m C) - - m D) - - m E) - + m. Üçücü terimi 8 ve dokuzucu terimi ie ikici terimi rsıdki frkı o ir ritmetik dizii ik kç terimii topmı 0 dir? A) B) C) D) E) 7 7. Bir ritmetik dizide 0. terim,. terim ( + ) Bu dizii ik terimi ise,. terimi kçtır? A) B) C) 7 D) 8 E) 9 8. (8,,,,,...) terimeri ir ritmetik dizi ouşturduğu göre, u dizii. terimi kçtır? A) B) C) 7 D) 8 E) 9 9) A 0) C ) B ) C ) A ) E ) C ) C 7) D 8) C

26 Bigi ir geometrik dizi ise.r p q. r p q dur. i ik terimii topmı r S $ r İk terimi ve ortk çrpı o ir geometrik dizii. terimii uım., r ise.r &. our uuur. v ve v8 syırı rsı hgi syıyı koyım ki, geometrik dizi meyd gesi? v ve v8 syırı rsı x syısı gediğide geometrik dizi ouyors, x omı. 8 Kou TEST Geometrik Dizi. ( ) geometrik diziside ik terim ve ortk çrp r oduğu göre, dizii dördücü terimi kçtır? A) B) C) D) E). ( ) geometrik dizi ve 8 8 oduğu göre, 0 kçtır? A) 7 B) 8 C) 9 D) 0 E). ( ) geometrik dizi,. + ve + oduğu göre, ortk çrp şğıdkierde hgisidir? A) B) C) D) 0 E),,,, g 9 7 dizisii 0. terimi kçtır? A) B) C) D) E). Bir geometrik dizii ik dört terimii topmı ve eşici terim irici terimde fz Bu göre, dizii ik terimi kçtır? A) B) C) D) E). ( ) ir geometrik dizi omk üzere; + ve - 8 oduğu göre, kçtır? A) B) C) D) E) ( ) ir geometrik dizi, oduğu göre r i pozitif değeri kçtır? A) B) C) D) E) 8. Bir geometrik dizii ik sekiz terimii topmı,, ik dört terimii topmı oduğu göre, u dizii ikici terimi kçtır? 7 A) B) C) D) E) 98 ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Aritmetik Dizi Geometrik Dizi Serier ) D ) C ) C ) A ) E ) C 7) C 8) E 7

27 ÜNİTE GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ Böüm Aritmetik Dizi Geometrik Dizi Serier Bigi x, y, z syırı ir geometrik dizii rdışık üç terimi ie y dekemii x, x, x kökeri ir geometrik dizii rdışık üç terimi ise ve oduğud d x uuur. x dekemde yerie yzırk istee değer ede ediir. Bir geometrik dizii ik terimi,. terimi oduğu göre,. terimii uım. r xz x+ x+ cx + d 0 xx x d - x xx x d -, ise ortk çrp Dizii gee terimi;.r ve içi.r uuur... 8 TEST 9.,, c ir ritmetik dizii rdışık üç terimi, +, ve c ise ir geometrik dizii rdışık üç terimi + + c 9 oduğu göre, kçtır? A) B) C) D) E) 0. Gee terimi ( ) o ir geometrik dizide x ve 8 oduğu göre, x şğıdkierde hgisidir? A) x B) x C) x D) x E). Bir geometrik dizii ik üç terimi sırsıy og, x, og Bu dizii ortk çrpı şğıdkierde hgisidir? A) B) C) og D) og 0 E). ( ) geometrik dizi x ve y Bu göre u dizide şğıdkierde hgisie eşittir? y9 A) 0 0 y B) 9 C) 0 x9 x y y D) x E) x. ( ) geometrik diziside, og y x9 ve S S 8 oduğu göre, u dizii ortk çrpı kçtır?. x x + x 8 0 dekemii kökeri ir geometrik dizii rdışık terimeri oduğu göre, syısı kçtır? A) B) C) 0 D) E) 8. Bir geometrik dizii rdışık terimi,,, oduğu göre, (.) çrpımı kçtır? A) B) C) 8 D) 70 E) 7. Pozitif terimi ir geometrik dizii ik tı terimii topmı, ik üç terimii topmıı ktı Dizii ortk çrpı kçtır? A) 0 B) C) D) E) 7. ( ) (.r ) ve ( ) (. ) geometrik dizieri veriiyor. e o geometrik dizisii ortk çrpı oduğu göre, ( ) dizisii ortk çrpı kçtır? A) B) C) D) E) 7 8.,, syırıı heriri x kdr rtırıdığıd ir geometrik dizii rdışık üç terimi ede ediiyor. Bu göre x kçtır? A) B) C) D) E) A) B) C) D) E) 8 9) C 0) A ) E ) A ) B ) E ) E ) B 7) D 8) B

8. sınıf ders notları zfrcelikoz@yahoo.com

8. sınıf ders notları zfrcelikoz@yahoo.com III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva 1 BÖLÜM 1 KÜMELER VE SAYILAR 1.1 KÜMELER 1.1.1. TEMEL TANIMLAR Kesi ir tımı ypılmmkl erer,sezgisel olrk,kümeye iyi tımlmış iri iride frklı eseler topluluğudur diyeiliriz. Kümeyi meyd getire eselere kümei

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

3. BÖLÜM: ÜSLÜ İFADE VE DENKLEMLER KONU ÖZETİ

3. BÖLÜM: ÜSLÜ İFADE VE DENKLEMLER KONU ÖZETİ . BÖLÜM: ÜSLÜ İFADE VE DENKLEMLER KONU ÖZETİ A. ÜSLÜ İFADELER 6.,, c R olmk üzere. Üslü İfdeler. +. c. = ( + c) dir. Bir syıı kedisi ile tekrrlı çrpımı o syıı kuvvetii lm y d üssüü lm deir. R ve Z + olmk

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı Trce ve Kellogg Yöemleri Kullılrk İegrl Operörlerii Özdeğerlerii Nümerik Hesı Erk Tşdemir () ; Yüksel Soyk () ; Melih Göce (3) (¹)Kırklreli Üiversiesi, Kırklreli, Türkiye, erksdemir@homil.com (²)Büle Ecevi

Detaylı

ORAN ORANTI 2 1 3 - - 4 4 2 1 1 2 ÖYS. = = yazılabilir. veya ALIŞTIRMALAR

ORAN ORANTI 2 1 3 - - 4 4 2 1 1 2 ÖYS. = = yazılabilir. veya ALIŞTIRMALAR YILLAR 00 003 00 00 006 00 008 009 00 0 3 - - ÖYS ORAN ORANTI ve t. t. t.e zılilir. f Or: E z iri sıfır frklı ı iste iki çokluğu ölümüe or eir. Or irimsizir. Ortı : iki ve h fzl orı eşitliğie ortı eir.

Detaylı

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi DERS Determitlr eotief Girdi - Çıktı lizi.. ir Kre Mtrisi Determitı. Determit kvrmıı tümevrıml tımlycğız. mtrisleri determitıı tımlyrk şlylım. Tım. tımlır. mtrisiidetermitı olrk Örek. mtrisii determitı

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

http://www.metinyayinlari.com Metin Yayınları

http://www.metinyayinlari.com Metin Yayınları LİMİT İÇ KAPAK Bu kitbı bütü ı hklrı sklıdır. Tüm hklrı, zrlr ve METİN YAYINLARI ittir. Kısme de ols lıtı pılmz. Meti, biçim ve sorulr, ıml şirketi izi olmksızı, elektroik, mekik, fotokopi d herhgi bir

Detaylı

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 PROBLEMLER İÇİNDEKİLER Syf No Test No ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 SAYI PROBLEMLERİ... 299-314... 01-08 YAŞ PROBLEMLERİ...

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

Komisyon DGS TAMAMI ÇÖZÜMLÜ 10 DENEME SINAVI ISBN 978-605-364-027-1. Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir.

Komisyon DGS TAMAMI ÇÖZÜMLÜ 10 DENEME SINAVI ISBN 978-605-364-027-1. Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. Komisyon DGS TAMAMI ÇÖZÜMLÜ 0 DENEME SINAVI ISBN 97-0--07- Kitpt yer ln ölümlerin tüm sorumluluğu yzrın ittir. Pegem Akdemi Bu kitın sım, yyın ve stış hklrı Pegem Akdemi Yy. Eğt. Dn. Hizm. Tic. Ltd. Şti

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

DENKLEM ve EŞİTSİZLİKLER

DENKLEM ve EŞİTSİZLİKLER DENKLEM ve EŞİTSİZLİKLER Sf No..................................................... - 7 Denklem ve Eşitsizlikler Konu Özeti............................................. Konu Testleri ( 0)..........................................................

Detaylı

b göz önünde tutularak, a,

b göz önünde tutularak, a, 3.ALT GRUPLAR Tnım 3.. bir grup ve G, nin boş olmyn bir lt kümesi olsun. Eğer ( ise ye G nin bir lt grubu denir ve G ile gösterilir. ) bir grup Not 3.. ) grubunun lt grubu olsun. nin birimi ve nin birimi

Detaylı

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4.

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4. IV. HTTİN TTIŞ MTEMTİK YRIŞMSI u test 30 sorudn oluşmktdır. İREYSEL YRIŞM SORULRI 1. 4 3 + 1 4. 3 3 + = + 1 + 1 denkleminin çözüm kümesi şğıdkilerden hngisidir? ) 5 3 ) ) 3 D) 13 3 ) { 0 } ) { 1} ) { }

Detaylı

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1 IAAOJ, Scietific Sciece, 23,(2), 22-25 GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE Adullh AKKURT, Hüseyi YILDIRIM Khrmmrş Sütçü İmm Üirsitesi, Fe-Edeiyt Fkültesi

Detaylı

ÜÇGEN VE PİSAGOR BAĞINTISI

ÜÇGEN VE PİSAGOR BAĞINTISI ÜÇGEN VE PİSGOR ĞINTISI KZNIMLR Üçgen kvrmı Üçgen çizimi Üçgenin kenrlrı rsındki ğıntılr Üçgen eşitsizliği Üçgenlerde yükseklik Üçgenlerde kenrorty Üçgenlerde çıorty Kenr ort dikme kvrmı Pisgor ğıntısı

Detaylı

DERS 3. Matrislerde İşlemler, Ters Matris

DERS 3. Matrislerde İşlemler, Ters Matris DES Mrislerde İşleler, Ters Mris Mrisler Mrislerle ilgili eel ılrııı ıslı e sır ve e süu oluşurk içide diiliş e sıı oluşurduğu lo ir ris deir ir ris geellikle şğıdki gii göserilir ve [ ij ], i ; j risii

Detaylı

1. ÜNİTE. Sayılar ve Cebir 9.2 DENKLEM VE EŞİTSİZLİKLER

1. ÜNİTE. Sayılar ve Cebir 9.2 DENKLEM VE EŞİTSİZLİKLER . ÜNİTE Sılr ve Cebir 9. DENKLEM VE EŞİTSİZLİKLER Trihte ilk ölçme tekikleri prmk klılığı, el geişliği, krış, k gibi ort bodki bir isı vücududki prç ve mesfelerde ol çıkılrk oluşturulmuştur. Fkt ticret

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK MTEMTİK KPSS ÇEVİR KONU - ÇEVİR SORU MTEMTİK EDİTÖR Turgut MEŞE YZR İdris DOĞN ütün hklrı Editör Yyınlrın ittir. Yyınevinin izni olmksızın, kitbın tümünün vey bir kısmının bsımı, çoğltılmsı ve dğıtımı

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

ğ ş ş ğ ö Ğ ş ö Ü ö ğ ğ ö Ş Ü ş ş ğ ö ş şş Ö ş ş Ş Ö Ü ş ş ğ ş ş ş ş ğ ğ ğ ğ ş ö Ğ ş ş ğ ş ö Ğ Ç Ç ğ Ş Ş ş ğ Ş ö ğ ş ö ğ ö ş ğ Ç ğ ğ ğ ğ ö ş ğ Ç ö ş ğ Ş ğ Ş ğ ğ ğ ğ ğ ğ ş ş ö ö Ş Ş ş ö ş ş Ş ş ş ş ö ö

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

ABSRACT Master Thesis. KÖTHE-TEOPLITZ DUALS OF DIFFRENCE SEQUENCE SPACES l ( p) Osman DUYAR

ABSRACT Master Thesis. KÖTHE-TEOPLITZ DUALS OF DIFFRENCE SEQUENCE SPACES l ( p) Osman DUYAR ABSRACT Mter Thei KÖTHE-TEOPLITZ DUALS OF DIFFRECE SEQUECE SPACES, c d c O DUYAR Gzioş Uiverity Grdute Schoo of tur Ad Aied Sciece Dertet Of Mthetic Suervior: Ait. Prof. Dr. O ÖZDEMİR I the firt of chter

Detaylı

DENEY 2 OHM YASASI UYGULAMASI

DENEY 2 OHM YASASI UYGULAMASI T.C. Mltepe Üniversitesi Mühendislik ve Doğ Bilimleri Fkültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 201 DEVRE TEORİSİ DERSİ LABORATUVARI DENEY 2 OHM YASASI UYGULAMASI Hzırlynlr: B. Demir Öner Sime

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında ORAN ORANTI syısının 0 dn frklı oln b syısın ornı :b vey olrk gösterilir. b İki vey dh fzl ornın eşitlenmesiyle oluşn ifdeye orntı denir. b =c d ifdesine ikili orntı denir. Bir orntı orntı sbitine eşitlenerek

Detaylı

YÜZDE VE FAĐZ PROBLEMLERĐ

YÜZDE VE FAĐZ PROBLEMLERĐ YILLAR 00 003 00 00 006 007 008 009 010 011 ÖSS-YGS 3 1 1 1 3 YÜZDE VE FAĐZ PROBLEMLERĐ YÜZDE: Bir syının yüzde sı= dır ÖRNEK(1) % i 0 oln syıyı bullım syımız olsun 1 = 0 = 0 ÖRNEK() 800 ün % ini bullım

Detaylı

ÜÇGENDE AÇI-KENAR BAĞINTILARI

ÜÇGENDE AÇI-KENAR BAĞINTILARI ÜÇGN ÇI-NR ĞINTILRI ir üçgende üük çı krşısınd üük kenr, küçük çı krşısınd küçük kenr ulunur. 3 Şekildeki verilere göre, en uzun kenr şğıdkilerden hngisidir? 3 3 üçgeninde, kenrlr rsınd > > ğıntısı vrs,

Detaylı

1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz.

1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz. MAT -MATEMATİK (5-5 YAZ DÖNEMİ) ÇALIŞMA SORULARI. Tabaı a büyük ekseli, b küçük ekseli elips ile sıırlaa ve büyük eksee dik her kesiti kare ola cismi 6ab hacmii buluuz. Cevap :. y = ve y = eğrileri ile

Detaylı

MESUT ERCİYES TEMEL KAVRAMLAR YGS-LYS MATEMATİK DERS NOTLARI. deð er ile en küçük deðerin toplamý kaçtýr? 24) c nin alabileceðienbüyük deðer kaçý

MESUT ERCİYES TEMEL KAVRAMLAR YGS-LYS MATEMATİK DERS NOTLARI. deð er ile en küçük deðerin toplamý kaçtýr? 24) c nin alabileceðienbüyük deðer kaçý TEMEL KAVRAMLAR ),! N olmk üzere, ise. i lileeði ) Rkmlrýfrklýiki smklýfrklýdört doðl sýý e üük deðer ile e küçük deðeri toplmýkçtýr? toplmý 0 iseeüük sýefzl kç olilir? ),! N olmk üzere, ise. i lileeði

Detaylı

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24.

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24. DENKLEM ÇÖZME + + = 0 + = 0 + = 0 + y = 0 İkinci dereceden ir ilinmeyenli denklemdir. İkinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden İki ilinmeyenli

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

Sonlu kanat Teorisi Açıklık oranıküçük kanatlar etrafındaki akımın fiziksel yapısı

Sonlu kanat Teorisi Açıklık oranıküçük kanatlar etrafındaki akımın fiziksel yapısı Sou kt Teor çıkık orıküçük ktr etrfıdk kımı fke pıı çıkık orı küçük (R < -5 ktr çıkık orı büük (R > -5 ktr UCK5 erodmk der otrı UCK5 erodmk der otrı çıkık orıküçük ktr etrfıdk kımı fke pıı çıkık orıükek

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

Test 16. 1. Teorem: a R ve a 1 ise 1 1. 4. İddia: 5 = 3 tür. 2. Teorem: x Z ve. Kanıt: Varsayalım ki, 1 olsun. a 1

Test 16. 1. Teorem: a R ve a 1 ise 1 1. 4. İddia: 5 = 3 tür. 2. Teorem: x Z ve. Kanıt: Varsayalım ki, 1 olsun. a 1 Test 6. Teorem: a R ve a ise a dir. Kanıt: Varsayalım ki, olsun. a a olduğundan a 0 dır. Bu durumda, eşitsizliğin yönü değişmeden, a a olur. Demek ki, a a dir. Fakat bu durum a hipotezi ile çelişmektedir.

Detaylı

İ İ İĞİ ü ü üü Ü İ Ö İ İ İ Ğİ ş Ğ ü üü ü ş ş ş ü üü ş ü İ ç ü ç Ğ Ü Ğ ü» Ğ Ğİ İ ü Ü ü Ş ç ç ç ş Ş ç İ ü ü ü Ş ş ü«ü üü ü ü ü ş ç ş Ş ş Ş ü ç ç Ğİ İ Ü ş ç ü Ş ş ç ü ç ş ç Ş Ç ç ş ç ş ş ş Ş ş ş İ ş Ş ş ç

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

ÇÖZÜMLER. 3. I. Ortam sürtünmesiz ise, a) Di na mi ğin te mel pren si bi sis te me uy gu lan dığın 30 T 1 T 1. II. Ortamın sürtünme katsayısı 0,1 ise,

ÇÖZÜMLER. 3. I. Ortam sürtünmesiz ise, a) Di na mi ğin te mel pren si bi sis te me uy gu lan dığın 30 T 1 T 1. II. Ortamın sürtünme katsayısı 0,1 ise, BÖÜM DİNAMİ AIŞIRMAAR ÇÖZÜMER DİNAMİ 1 4kg 0N yty M düzle rsınd : rsınd cisin ivesi /s olduğundn cise uygulnn kuvvet, 1 4 0 N olur M rsınd : M rsınd cisin ivesi /s olduğundn cise etki eden sürtüne kuvveti,

Detaylı

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu OĞRU ÇILR Temel Kvrmlr ve oğrud çılr Nokt: Nokt geometrinin en temel terimidir. ni, boyu vey yüksekliği yoktur. İnce uçlu bir klemin kğıt üzerinde bırktığı iz olrk düşünebilirsiniz. oğru: üz, klınlığı

Detaylı

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I Üniversite Hazırlık / YGS Kolay Temel Matematik 0 KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I. 8 ( 3 + ) A) 7 B) 8 C) 9 D) 0 E) 6. 3! 3 ( 3 3)": ( 3) A) B) 0 C) D) E) 3. 7 3. + 5 A) 6 B) 7 C) 8 D) 0

Detaylı

Ğ öğ Ğ ü ü üğü Ğ Ğ ş ş İ ü ü ü ş İ ü ü üü ö ö ş ş İ ş ç Ç ş ü ü ü ç Ç ş ü ş ş İ ü ü üü İ ü ü İ ü ü üü İ ü ü üü İ Ç ş ü ü İ ü ş İ ö ş ş İ ç ş ş ö ö ş İ ş ş ö ü ü ş İ İ ç ç İ İ ü ü ç İ ş Ş ü ü üü ü Ş ö ş

Detaylı

ISBN - 978-605-5631-60-4 Sertifika No: 11748

ISBN - 978-605-5631-60-4 Sertifika No: 11748 ISBN - 978-605-563-60-4 Sertifia No: 748 GENEL KOORDİNATÖR: REMZİ ŞAHİN AKSANKUR REDAKTE: REMZİ ŞAHİN AKSANKUR SERDAR DEMİRCİ SABRİ ŞENTÜRK Basm Yeri: EVOS BASIM - ANKARA Bu itab tüm basm ve yay halar

Detaylı

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1 YGS-YS GOMTRİ ÖZT ÇÖZÜMRİ TST 1 1. 1. y 1 1 + 1 1ʺ 1 1ʹ 17 0ʹ 1 1ʹ ʹ + ʹ 1ʺ ʹ + ʹ 1ʺ 7 0ʹ 1ʺ 0 0ʹ 1ʺ bulunur. 1 y < + 1 y dir. y < 7 + 1 < 7 0 < < 1 in en büyü tm syı değeri 17 in en üçü tm syı değeri

Detaylı

KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI

KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI SEVGİ İŞLER EYLÜL 5 ÖZET KOMPLEKS FONKSİYONLARDA REZİDÜ VE

Detaylı

En iyi donanımlı yatlarla en iyi hizmet

En iyi donanımlı yatlarla en iyi hizmet Bi Cruisr 00 + TH Dufour r'lg 0 Kopri + TH KP Fi Döri 0 Oc is is M M Hz Hz ADB 0-0 Tm p B Pr Pr Y A Ti Y A Y / Hf Kim / Ism 0 Kirm Fi Lis 0 Ks Ar Ei 0 Ks E Ei Br 0 -.0.0.0.0.0 MI.0.0.0.0.0 Oc Smos 0 0

Detaylı

1984 ÖSS. 6. a, b, c birer pozitif sayı ve. olduğuna göre, a, b, c arasındaki bağlantılardan hangisi doğrudur? 7. a, b, c birer tamsayı olmak üzere

1984 ÖSS. 6. a, b, c birer pozitif sayı ve. olduğuna göre, a, b, c arasındaki bağlantılardan hangisi doğrudur? 7. a, b, c birer tamsayı olmak üzere 984 ÖSS 033 0. = x 0 olduğun göre x in değeri nedir? A) 0063 B) 063 C) 63 D) 63 E) 630. 6. b c birer pozitif syı ve b c = = 03 04 05 olduğun göre b c rsındki bğlntılrdn hngisi doğrudur? A) c

Detaylı

İ ü ü ü ü İ ü üü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü Ş Ş ü üü İ ü üü Ö ü ü ü ü üü üü ü ü ü ü ü ü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü Ö ü ü ü ü ü ü Ş ü ü ü ü ü ü ü ü ü ü İ üü ü ü Ç Ç ü ü ü ü ü ü

Detaylı

Ğ Ü Ş Ş Ü Ş Ş Ü Ü Ş Ş Ç Ş Ş Ğ Ü Ö Ö Ş Ü Ç Ş Ü Ş Ş Ş Ö Ş Ü Ş Ö Ü Ş Ç « Ö Ö Ş « Ü Ü Ü Ü Ü «Ü Ş Ü «Ö Ö Ç Ö Ö Ö Ö Ö Ş Ü Ç Ş Ç Ş Ö Ö Ü Ğ ÜŞ «Ü Ç Ç Ç Ç Ö Ö Ğ Ö Ö Ö Ö » Ü Ü Ü Ü Ş Ğ Ü Ç Ö « Ç Ö Ü Ş Ö Ş

Detaylı

Ğ Ğ ü «Ü Ğ Ö Ğ ü Ü ü Ğ ü ü ü Ç Ş ü Ğ Ğ Ü Ğ Ü Ö ü Ç Ü ü ü Ü ü ü ü ü ü ü Ü ü ü ü Ü ü ü ü ü ü ü Ü ü ü ü ü ü ü ü Ö ü ü ü ü ü üü ü ü üü ü Ü ü» ü ü Ü ü üü ü üü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü üü ü ü Ü «ü ü ü

Detaylı

İ ş Ğ İ ş ü ü üü İş ü ü üü ş İ ş Ğ İ ş ş ş ş ş ş ş ü ş ş İ ş ü ü İ ü Ç ş ş ş İ ş ü Ş Ş ş ş ö ş ü ö ş ş ş ş ö ü ö ş ş ş ş ü ö ü ö ş ü ö ü ş ö ş ü ü ş ö İ ü ş ü ş Ş ş ö ş ş ö ü ö ö ö ş İ Ç İ İŞİ ş ö ş ş

Detaylı

ü İİ İ Ü ü ü ö ü ü İ Ö ü ö ö ü ö ö ü ü ü ü ö ö üü ü üü ü ö ö ü ö Ü ü ü İ ö Ö ü ü ü ü İ İ ö ü Ö ü ü ü ü ö ö Ş ö ü ü ü ö ü Ç ö ü ü ü ü ü ü ü ü ü ü ö ö ü ü ö ü ü ü Ü ü ü Ş ü ü ü ü üü ü ö ü İ ö ö üü ü ü Ç

Detaylı

ü ü ü ü ç ü ü ü üü ç ü ü ü ü ü ü ü ü ü ü ç ü ü ü ç ü ü ü ü ü ü ü ü ü ü ç ü ç ç ç ü ç ü ü üü ü ü ü üü ç ü ç ç ü ü ç ü ü ü ç ü ü üü üü ü ü ü üü ç ü ü ü ü üü ü ü üü ü ü üü ü ü ü ü üü ç ü ü ü üü ç ü ü ü ü

Detaylı

Ö ö Ü Ü ÜÜ ö Ö ö ö Ş « ö Ö ö Ö Ö ö ö Ç Ö Ö Ş Ö Ö Ş Ş Ö Ç Ş Ş Ş ö Ö ö Ç ö ö Ö Ö ö ö Ö Ç ö ö Ö Ö Ö» ö ö ö ö Ö ö ö ö ö ö ö ö ö ö ö ö Ö ö Ö Ö Ö Ö Ö Ö ö Ş Ş ö Ş Ş ö ö ö ö Ş Ö Ö ö Ş ö Ş ö ö Ş Ş ö ö ö ö Ö Ş Ö

Detaylı

ö ü ş ç» ş ü ü ü ü ç» Ö Ö Ç ş Ö Ü ş ü ü ü ü ü ü ş ü ü ü ü ü üü ö ç ş ö ü ş ç ş ü ü ü ü ç» ü ü ş Ö Ö Ç ü ü ü Ö ü ü ü ü ö ü ö ü ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ç ü ü üü ö ç ş Ö Ü ç ü ç ö ö Ç ü ü ü ü ü ö ü

Detaylı

«ç Ü Ü Ü ü ç ü ü Ö Ü ü ü ü ü ü ü ö ü«ç ü ü ü ç ü ü ü» ü ü ü ü ç ü ü ü ü ü ü ü ü ü ü ü ü ü ç ü üü ü ü ü ü ü ü ü ü ü ç ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü üü ü ü ü ü ç ü üü ü ü ü ü ü ü Ü

Detaylı

Ğ Ü Ğ Ğ Ğ Ö Ğ ş ş ö ö ş Ç ş ş Ğ Ğ Ş Ğ ş ş ö ş ş ö ş ş ö ş Ğ Ö ö ö ö Ç ş ö ö ş ş ö ş ö ö ş ö ş ö ö ö ş ş ö ş ö ö ö ş ö ö Ö ş ş ş ş ş ş Ç Ğ Ğ ö ş ş ş ö ö ş ö ö ş Ç ö ş ö ş ö ş ş ş ö ö ş ş ö ş ş ö ş ş ö ş

Detaylı

ş ş» Ğ Ş ş Ş ş Ş Ş Ş ş ş Ş Ç ş ş Ş ş ş ş ş ş ş ş ş ş ş ş ş ş Ş ş Ş ş ş ş Ş ş ş ş ş ş ş ş ş ş Ş ş Ş ş ş ş ş ş ş ş ş Ş ş ş ş ş Ş ş ş ş ş ş Ş ş ş ş Ü Ü ş ş ş ş Ş ş ş Ş ş Ü Ş ş Ş ş ş Ş ş Ş ş ş Ş Ş ş ş ş ş

Detaylı

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c.

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c. Syıl Devreler (Lojik Devreleri) Tümleştirilmiş Kominezonl Devre Elemnlrı Syıl itemlerin gerçekleştirilmeinde çokç kullnıln lojik devreler, klik ğlçlrın ir ry getirilmeiyle tümleştirilmiş devre olrk üretilirler

Detaylı

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77 UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir

Detaylı

ORAN ORANTI ORAN ORANTI ORANTININ ÖZELLİKLERİ ÖRNEK - 1 TANIM. x ve y tamsayıdır. x y

ORAN ORANTI ORAN ORANTI ORANTININ ÖZELLİKLERİ ÖRNEK - 1 TANIM. x ve y tamsayıdır. x y ORAN ORANTI TANIM Anı irimden iki çokluğun iririle krşılştırılmsın orn denir. ornınd ve nı irimden olduğu için nin irimi oktur. ÖRNEK - 1 ve tmsıdır. = ve + = 0 olduğun göre, kçtır? A) 1 B) C) 0 9 D) 1

Detaylı

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE BAÜ Fen Bil. Enst. Dergisi (006).8. İŞ ETKİ ÇİZGİSİ TEOREMİ Scit OĞUZ, Perihn (Krkulk) EFE Blıkesir Üniversitesi Mühendislik Mimrlık Fkültesi İnşt Müh. Bölümü Blıkesir, TÜRKİYE ÖZET Bu çlışmd İş Etki Çizgisi

Detaylı

SAYISAL YÖNTEMLER DERS NOTLARI

SAYISAL YÖNTEMLER DERS NOTLARI SAYISAL YÖNTEMLER DERS NOTLARI Yrd Doç Dr Hüse Bıroğu İSTANBUL 6 İÇİNDEKİLER SAYFA -GİRİŞ SAYISAL HESAPLAMALARDA HATA ANALİZİ HATA TANIMI SAYISAL YÖNTEMLERİN SINIFLANDIRILMASI 5 DENKLEMLERİN KÖKLERİNİN

Detaylı

MUTLAK DEĞER. a ε R olmak üzere; Mutlak Değer MATEMATĐK ĐM YILLAR 2002 203 2004 2005 2006 2007 2008 2009 2010 2011 14) GENEL ÖRNEKLER.

MUTLAK DEĞER. a ε R olmak üzere; Mutlak Değer MATEMATĐK ĐM YILLAR 2002 203 2004 2005 2006 2007 2008 2009 2010 2011 14) GENEL ÖRNEKLER. Mutlk Değer YILLAR 4 6 8 9 1 11 ÖSS-YGS - - - 1 - - 1 - - 1/1 MUTLAK DEĞER ε R olmk üzere;, -, ise < ise ve b reel syı olmk üzere; 1) dır Eğer ise dır ) 14) + n n Z olmk üzere dır 1) f ( ) > g( ) f ( )

Detaylı

MATEMATİK 1 TESTİ (Mat 1)

MATEMATİK 1 TESTİ (Mat 1) ÖSS MT-1 / 008 MTMTİK 1 TSTİ (Mt 1) 1. u testte 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik 1 Testi için yrıln kısmın işretleyiniz. 1. 1 + 4 1 ( ) 4. syısı b 0 ) b syısının kç ktıdır? ) b ) b işleminin

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi Kesir.. Trlı lnı gösteren kesri bulunuz. kesrini ile genişlettiğimizde elde edilecek kesri bulunuz.. Yndki şekilde bir bütün 8 eş prçy bölünmüş ve bu prçlrdn tnesi trnmıştır. Trlı lnı gösteren kesir syısı

Detaylı

6. 3x2-8x - 3 = O denkleminin negatif kökü asagidakilerden. 7. mx2 - (2m2 + i) x + 2m = O denkleminin köklerinden

6. 3x2-8x - 3 = O denkleminin negatif kökü asagidakilerden. 7. mx2 - (2m2 + i) x + 2m = O denkleminin köklerinden ikinci Dereceden Denklemler, tçözüm Kümesi, Köklerin Varligi. (m - 9) x + x - 6 = o denkleminin ikinci dereceden bir bilinmeyenli denklem olmasi için, m degeri asagidakilerden hangisi olamaz? A) - B) -

Detaylı

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI 2011 Şut KIVIRMA İŞEMİNİN ŞEKİ ve BOYUTARI Hzırlyn: Adnn YIMAZ AÇINIM DEĞERERİ 50-21 DİKKAT: İyi niyet, ütün dikkt ve çm krşın ynlışlr olilir. Bu nedenle onucu orumluluk verecek ynlışlıklr için, hiçir

Detaylı

S C. I n t e r n a t i. n a l. d d e. Eski Büyükdere Asfaltı No: 17/A Güney Plaza Kat: 5 Maslak-İstanbul / TÜRKİYE

S C. I n t e r n a t i. n a l. d d e. Eski Büyükdere Asfaltı No: 17/A Güney Plaza Kat: 5 Maslak-İstanbul / TÜRKİYE T ULULRR DENETİ VE....Ş. K Th: 05.07.2012 y: 2012/83 Ku: İ R K Ü L E R 83 Nu G Vg kü y R O R Ö: By kk v ğ şh g y yp ö ü k vg py k v ş şk g y ğ G Vg kü (GVK-83/2012-5/By Ekk -3) 2012/83 u kü y k. Ek Büyük

Detaylı

B - GERĐLĐM TRAFOLARI:

B - GERĐLĐM TRAFOLARI: ve Seg.Korum_Hldun üyükdor onrım süresinin dh uzun olmsı yrıc rnın izole edilmesini gerektirmesi; rızlnmsı hlinde r tdiltını d gerektireilmesi, v. nedenlerle, özel durumlr dışınd tercih edilmezler. - GERĐLĐM

Detaylı

420 Sıra No lu Vergi Usul Kanunu Genel Tebliği Yayınlandı

420 Sıra No lu Vergi Usul Kanunu Genel Tebliği Yayınlandı T ULULRR DENETĠ VE....ġ. K Th: 07.12.2012 y: 2012/128 Ku: İ R K Ü L E R R O R 420 N u Vg Uu Kuu G Tğ y Ö: Ej y Dü Kuuu ğ kk v ğg ğ şk v g y ög (OB) ü kşk; kk v ğg g ük g çk y ğ 420 N u Vg Uu Kuu G Tğ 2012/128

Detaylı

kpss matematik geometri tamamı çözümlü kenan osmanoğlu / kerem köker

kpss matematik geometri tamamı çözümlü kenan osmanoğlu / kerem köker kpss soru bankası tamamı çözümlü sözel adaylar için matematik geometri kenan osmanoğlu / kerem köker ÖN SÖZ Değerli daylar, Okul ve meslek yaşamının en önemli sınavlarından birine, Kamu Personeli Seçme

Detaylı

o f S C I n t e r n a t i o n a l P o d d e Eski Büyükdere Asfaltı No: 17/A Güney Plaza Kat: 5 Maslak-İstanbul / TÜRKİYE

o f S C I n t e r n a t i o n a l P o d d e Eski Büyükdere Asfaltı No: 17/A Güney Plaza Kat: 5 Maslak-İstanbul / TÜRKİYE T ULULRR DENETİ K Th: 17.05.2012 y: 2012/57 Ku: İ R K Ü L E R R O R 117 Nu Kv Tvk Ouş Tvk O, Tvk T İş v Tvk pck O Kuu v Kuuuş L Ö: Dh öc 46 Nu kü yyğ 117 Nu Kv Tvk vk v vk uuck ş y g ğşkk y ğ Kv Tvk u

Detaylı

e i n b u l b u b u b u b u

e i n b u l b u b u b u b u ŞEHRİN KODU YENİDEN TANIMLANIYOR 4 5 YEŞİLİN YENİ KODU 7 %80 YEŞİL ALAN 36 MUTLU GELECEĞİN YENİ KODU 8 9 310 11 SPORTMEN YAŞAMIN YENİ KODU 2 Bk 90 Lük Dr Rpy Hzmr 7/24 Güvk (Kpı Dvr Kmr Sm) 210 Arçık Oprk

Detaylı

KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2

KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2 Sf No.........................................................8-7 Prol....................................................................... 9 - Etkinlikler.....................................................................

Detaylı

Metropol Yayınları YÖS 2009 Metropol Publications

Metropol Yayınları YÖS 2009 Metropol Publications > > etropol Yınlrı YÖS 009 etropol Pulictions. ve. sorulrd, gruptki kümelerin şekilleri irer rkml gösterilerek I gruptki sılr elde edilmiştir. Soru işretile elirtilen kümenin hngi sıl gösterildiğini ulunuz.

Detaylı

1.9.2. Koordinat Sisteminin İfade Edilişi

1.9.2. Koordinat Sisteminin İfade Edilişi Şeki.4: Robot koordinat sistemi.9.. Koordinat Sisteminin İfade Ediişi Koordinat sistemi, dikdörtgen, siindirik ve kutupsa koordinatara göre ayrı ayrı ifade ediir. Şeki.5: Koordinat tarifi Örnek : Dikdörtgen

Detaylı

COS işlevi Sözdizimi COS sayı Sayı Uyarılar Örnek 1 Formül Açıklama (Sonuç) 2 3 4 SİN işlevi Sözdizimi SİN sayı Sayı Uyarı

COS işlevi Sözdizimi COS sayı Sayı Uyarılar Örnek 1 Formül Açıklama (Sonuç) 2 3 4 SİN işlevi Sözdizimi SİN sayı Sayı Uyarı COS işlevi Verilen açının kosinüsünü verir. COS(sayı) Sayı kosinüsünü istediğiniz radyan cinsinden açıdır. çı derece cinsindense, açıyı radyana dönüştürmek için ya Pİ()/80 ile çarpın ya da RDYN işlevini

Detaylı

H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Kısım Bir Reel Değişkeli Foksiyolar Teorisi Prof.Dr.Hüseyi Çakallı 3 H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Reel

Detaylı

ege yayıncılık Oran Orant Özellikleri TEST : 91 a + 3b a b = 5 2 0,44 0,5 = 0,22 oldu una göre, a + b en az kaçt r? A) 3 B) 11 C) 14 D) 15 E) 16

ege yayıncılık Oran Orant Özellikleri TEST : 91 a + 3b a b = 5 2 0,44 0,5 = 0,22 oldu una göre, a + b en az kaçt r? A) 3 B) 11 C) 14 D) 15 E) 16 Orn Ornt Özellikleri TEST : 91 1. 0,44 0,5 = 0,22 5. + 3 = 5 2 2. 3. 4. oldu un göre, kçt r? A) 0,2 B) 0,25 C) 0,5 D) 0,6 E) 0,75 y = 3 4 + y oldu un göre, y orn kçt r? A) 7 B) 1 C) 1 D) 7 E) 10 oldu un

Detaylı

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları...

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları... ÜNİTE Safa No............................................................ 79 98 Fonksionlar Konu Özeti...................................................... 79 Konu Testleri ( 8)...........................................................

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı