KENAR UZUNLUKLARI GEOMETRİK DİZİ OLUŞTURAN TAM SAYI KENARLI ÜÇGENLER

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "KENAR UZUNLUKLARI GEOMETRİK DİZİ OLUŞTURAN TAM SAYI KENARLI ÜÇGENLER"

Transkript

1 ORTAÖĞRETİM ÖĞRENCİLERİ ARASI ARAŞTIRMA PROJELERİ YARIŞMASI (01 013) KENAR UZUNLUKLARI GEOMETRİK DİZİ OLUŞTURAN TAM SAYI KENARLI ÜÇGENLER Fatih KORKUSUZ Şehit Fazıl Yıldırım Anadolu Lisesi Eskişehir Kadir Erdem KARACA Haı Ahmet Kanatlı Anadolu Lisesi Eskişehir Osman EKİZ Danışman Öğretmen ESKİŞEHİR 013 1

2 ÖZET Kenar uzunlukları ile alanı tam sayı olan üçgenlere heron üçgenleri denir. Heron üçgenlerinin özelliklerinin inelenmesi sırasında ortaya çıkan çoğu problem sayılar teorisini ilgilendiren problemlerdir. Bu alan geometri ile sayılar teorisinin iç içe olduğu bir çalışma alanıdır. Tarih boyuna bir çok matematikçi heron üçgenleri üzerine çalışmalar yapmıştır. Biz bu çalışmada kenarları geometrik dizi oluşturan tam sayı kenarlı üçgenlerin elde edilebilmesi için gerekli şartları ortaya koyduk. Bir parametreye bağlı olarak bu tip üçgenleri üretmeye çalıştık. Bu üçgenlerin açıortay, kenar ortay, yükseklik ve alan bağıntıları bulunup rasyonel değer alıp alamayaakları üzerinde durulmuştur. Ayrıa bu üçgenlerin iç açıları için alt ve üst sınırlar bulunmaya çalışılmıştır.

3 İÇİNDEKİLER Özet İçindekiler 3 1. Kaynak Araştırması. Ön Bilgiler 3. Geometrik Orta Üçgenleri Primitif Geometrik Orta Üçgeni ve Üreteçleri Bazı Primitif Geometrik Orta Üçgenleri 1. Primitif Geometrik Orta üçgeninde Açıortay, Kenarortay ve Yükseklik Bağıntıları 1.1. PGO Üçgeninin Kenarortay Uzunlukları 1.. PGO Üçgeninin Açıortay Bağıntıları PGO Üçgeninde Yükseklik Bağıntıları 17.. PGO Üçgeninde Alan Bağıntısı PGO Üçgeninin Açıları Arasındaki Bağıntılar PGO Üçgeninin Alanının Alabileeği En Büyük Değer 1 5. k Geometrik Orta Üçgeni 1 6. Sonuçlar ve Tartışma 7. Kaynaklar 3

4 1. KAYNAK ARAŞTIRMASI Heron üçgenleri ve bunun özel bir ailesi olan Pisagor üçgenleri üzerine Sierpinski, Rosen, Guy, Beauregard ve Suryanarayan, Buhholz ve MaDougall, Sastry, Zelator, Kramer, Lua gibi matematikçiler çeşitli çalışmalar yapmıştır. Eşen (010) ve Darıyeri (006) çalışmalarında heron üçgenleri üzerinde yapılan çalışmaların kronolojik sıralaması hakkında bilgi vermiştir. Buhholz ve MaDougall (1999), kenarları geometrik ve aritmetik dizi biçiminde olan rasyonel alanlı üçgenler ve kirişler dörtgenleri üzerinde çalışmıştır. Kenarları aritmetik olan üçgenlerin sonsuz bir ailesi için tam bir karakterizasyon verilmiştir ve ayrıa geometrik diziden oluşan kenarlara sahip hiçbir üçgenin olamayaağı gösterilmiştir.(eşen, 010) Yapılan çalışmalar inelendiğinde kenarları aritmetik dizi oluşturan heron üçgenleri üzerine kapsamlı araştırmalar yapılmıştır. Fakat kenarları geometrik ve harmonik dizi oluşturan üçgenler üzerine yapılan araştırmalar ise az sayıdadır. Bunun bir sebebi bu şekildeki üçgenlerinin alanlarının tam sayı olmamasıdır. Çünkü, Buhholz ve MaDougall (1999), kenarları geometrik diziden oluşan kenarlara sahip bir üçgenin heron üçgeni olamayaağını göstermiştir.. ÖN BİLGİLER Bu bölümde daha sonraki bölümlerde kullanılaak tanım ve teoremler verilmiştir. Tanım.1. a ve b iki tamsayı ve a 0 olsun. b = a. olaak şekilde bir tamsayısı varsa a, b yi böler veya b, a ile bölünür deriz ve bu durumu a b şeklinde ifade ederiz. (Erdoğan&Yılmaz, 008)

5 Tanım.. b ve iki tamsayı olsun. Eğer bir a 0 tamsayısı için a b ve a koşulları gerçekleniyor ise a ya, b ve tamsayılarının bir ortak böleni denir. Bir b 0 tamsayısının bölenleri sonlu sayıdadır. O halde b ve den en az birisi sıfırdan farklı ise bu iki tamsayının ortak bölenlerinin sayısı sonludur. (Erdoğan&Yılmaz, 008) Tanım.3. b ve, en az birisi sıfırdan farklı iki tamsayı olsun. i) d b, d ii) a b, a a d iii) d 0 koşullarına uyan bir d tamsayısına b ve tamsayılarının en büyük ortak böleni (e.b.o.b.) denir ve (b,) şeklinde gösterilir. (Erdoğan&Yılmaz, 008) Tanım.. (a,b) 1 ise a ve b tamsayılarına aralarında asaldır deriz. (Erdoğan&Yılmaz, 008) Tanım.5. p 1 tamsayısı verilsin. Eğer p nin ±1 ve ± p den başka böleni yoksa p tamsayısı bir asal sayıdır deriz. Asal olmayan bir tamsayıya bileşik sayı diyeeğiz. (Erdoğan&Yılmaz, 008) Tanım.6. ( p, p + ) seklindeki asal sayı çiftlerine asal sayı ikizi, ( p, p +, p + 6) asal sayılarına asal sayı üçüzü, ( p, p +, p + 6, p + 8) seklindeki asal sayılara da asal sayı dördüzü adı verilir. (Erdoğan&Yılmaz, 008) Tanım.7. a, b, m ; m 0 tam sayıları verilsin. Eğer m a b) ise a, b ye m modülüne göre kongrüent dir denir ve a b (modm) şeklinde gösterilir. (Erdoğan&Yılmaz, 008) Tanım.8. Her m 0 tamsayısını, m yi geçmeyen ve m ile aralarında asal olan tamsayıların sayısına eşleyen fonksiyona Euler in -fonksiyonu adı verilir ve m nin resmi (m) ile gösterilir. (Erdoğan&Yılmaz, 008) 5

6 Tanım.9. Bir tam sayının karesi şeklinde ifade edilebilen sayılara tam kare sayılar denir. Teorem.1. mn, 1 ve mn tam kare ise m ve n de tam karedir. Teorem.. a tek tam sayı ise 1mod a 0mod olur. a ve a çift tam sayı ise Teorem.3. x xy y z denkleminin negatif olmayan tamsayılardaki tüm çözümleri k (Andreesu&Andria, 00) Z olmak üzere x, yz, k,0, k, 0, kk, üçlüleridir. Teorem.. x xy y z denkleminin negatif olmayan tamsayılardaki tüm çözümleri k Z olmak üzere x, yz, k,0, k, 0, kk,, kkk,, üçlüleridir. (Andreesu&Andria, 00) Teorem.5. x çift tam sayı ise x 0 mod16 ve x tek tam sayı ise x 1 9mod16 ve x çift tam sayı ise x 0mod16 ve x tek tam sayı ise x 1mod16 Tanım.10. Üç açısı da dar açı olan üçgene dar açılı üçgen, bir açısı dik olan üçgene dik açılı üçgen, bir açısı geniş olan üçgene geniş açılı üçgen denir. (Küpeli, 010) Tanım.11. Kenar uzunlukları birbirinden farklı olan üçgene çeşitkenar üçgen, herhangi iki kenar uzunluğu eşit olan üçgene ikizkenar üçgen, üç kenar uzunluğu da birbirine eşit olan üçgene eşkenar üçgen denir. (Küpeli, 010) Tanım.1. Üçgenin bir köşesini karşısındaki kenarın orta noktasına birleştiren doğru parçasına üçgenin o kenarına ait kenarortayı denir. Üçgenin bir köşesindeki 6

7 açısını iki eş parçaya ayıran ışının, köşe ile karşı kenar arasında kalan parçasına, üçgenin o köşesine ait açıortayı denir. Üçgenin bir köşesinden karşı kenara veya bu kenarın uzantısına dik olarak çizilen doğru parçasına üçgenin bu kenarına ait yüksekliği denir. (Küpeli, 010) Teorem.6. [Üçgen Eşitsizliği]. Bir üçgende bir kenar uzunluğu diğer iki kenarın uzunlukları toplamından küçük, farkının mutlak değerinden büyüktür. (Küpeli, 010) Teorem.7. [Kenarortay Teoremi]. Bir ABC üçgeninde BC kenarına ait kenarortay uzunluğu V a olmak üzere A a Va b dir. (Küpeli, 010) V a V a = b + - a B // D // C Teorem.8. [Açıortay Teoremi]. Kenar uzunlukları ab,, olan ABC üçgeninin A açısına ait açıortayı AD ve AD na A olsun. Bu durumda; m(bad) = m(cad) B D C i) AB BD ii) na AB AC BD DC iii) AC DC a BD ve b DC ab b bağıntıları mevuttur. 7

8 sayısına altın oran denir ve genellikle sembolü ile göste- Tanım rilir. Tanım.1. a 1, a, a 3 reel sayı dizisinin aritmetik dizi olması için gerek ve yeter şart a a1 a olmasıdır. a1, a, a 3 reel sayı dizisinin geometrik dizi olması için gerek ve yeter şart a a1 a olmasıdır. a1, a, a 3 reel sayı dizisinin harmonik dizi olması için gerek ve yeter şart (Zelator, K., 008) 1 1 1,, a a a 1 3 dizisinin aritmetik diz olmasıdır. Teorem.9. [Kosinüs Teoremi]. Bir ABC üçgeninde A a b bosa b os b a a B os dir. (Gürlü, 003) a b ab C B a C Tanım.15. Kenar uzunlukları ile alanı tam sayı olan üçgene heron üçgenini denir. (Kramer&Lua, 000) ab Teorem.10. Kenar uzunlukları a, b, ve yarı çevre uzunluğu da u olan bir ABC üçgeninin alanı A(ABC) ise AABC uu au bu dir. (Gürlü, 003) 8

9 3. GEOMETRİK ORTA ÜÇGENLERİ 3.1. Primitif Geometrik Orta Üçgeni ve Üreteçleri Tanım ab,, pozitif tam sayılar olmak üzere kenar uzunlukları ab,, olan ABC üçgeninde ab bağıntısı var ise bu üçgene geometrik orta üçgeni denir. Eğer a ile b aralarında asal ise üçgene primitif geometrik orta üçgeni denir. Kısaa P.G.O şeklinde ifade edilir. C a b = ab B A Biz ilk olarak geometrik orta üçgeni olma şartlarını ortaya koymaya çalışalım. Genelliği bozmadan a b kabul edelim. ab, d olsun. O halde aralarında asal a 1 ve b 1 pozitif tam sayıları için a da1 ve b db1 olur. Bu durumda ab d ab 1 1 olur. Son denklemin sol tarafı tam kare olduğundan sağ tarafı da tam kare olmalıdır. Teorem.1 den a1 p ve b1 q olaak şekilde aralarında asal pozitif p, q tam sayıları vardır. d p q dpq, a dp ve b dq olmalıdır. Bu durumda a, b, dp, dq, dpq üçlüsü elde edilir. a, b, dp, dq, dpq ile ab,, p, q, pq belirttiği üçgenler benzerdir. O yüzden ab,, p, q, pq üçlülerinin üçlüsünün belirttiği 9

10 üçgen primitif geometrik orta üçgeni olur. Burada pq, ikilisine PGO üçgeninin üreteçleri denir. Sonuç p, q aralarında asal pozitif iki tam sayı olmak üzere bir P.G.O üçgeninin uzunlukları p, q, pq formunda olmalıdır. C p q B pq A Şimdi p, q, pq üçlüsünün hangi hallerde üçgen eşitsizliğini sağladığına bakalım. p, q, pq üçlüsünün bir üçgen belirtebilmesi için üçgen eşitsizliğini sağlaması gerekir. Bu durumda i) ii) b a pqq p ab p q pq iii) a b p pq q eşitsizliklerinin aynı anda sağlanması gerekir. i) Eğer pqq p pqq p pq p q olup p q olduğundan bu eşitsizlik daima doğrudur. ii - iii) Eğer ab p q pq olmalıdır. Bu eşitsizlik daima doğru değildir. Bu durumda seçilen her aralarında asal p, q pozitif tam sayıları ile P.G.O üçgeni elde edemeyiz. Şimdi p q pq eşitsizliğini sağlayan p, q tam sayıları arasındaki ilişkiyi bulalım. 10

11 p q olduğundan p q pq p pqq 0 olur. Son eşitsizliğin her iki yanını q ile bölersek p p 1 0 q q p olup t 1 q için t t 1 eşitsizliği elde edilir. 1 5 t t t 1 5 t t olur. t 1 olduğundan 1 5 p t 1 q olur. Eğer p q olursa ab,, p, p, p olup kenar uzunlukları 1 olan eşkenar üçgenin benzeri olan üçgenler elde edilir. Bundan sonra p q şartını sağlayan PGO üçgenleri üzerinde duralım. Bu durumda aşağıdaki sonuu elde ederiz. Sonuç 3.1.., altın oran ve p q olmak üzere, aralarında asal pozitif p, q tam p sayılarının PGO üçgeni belirtebilmesi için 1 eşitsizliğinin sağlanması q gerekir. Bu durumda p a 51 a q b b olmalıdır. O halde PGO üçgeni olan ABC üçgeninin kenarları arasında eşitsizliği mevuttur. a b 3.. Bazı Primitif Geometrik Orta üçgenleri. Verilen herhangi bir pozitif q tam sayısı yardımıyla PGO üçgenleri elde edilebilir. 11

12 q 51 1 p q p a p b pq q p yok yok yok yok 1 p p p p p p p p Tablo 1 Tabloda verilen bir q tam sayısı için kaç tane ab,, üçlüsü elde edilebileeğine dair bazı örnekler verilmiştir. 1

13 51 Sonuç Verilen bir q tam sayısı için q dan büyük q dan küçük q ile aralarında asal sayıların sayısı kadar ab,, üçlüsü elde edilebilmektedir. Fakat q ya bağlı bir formül elde edilmemiştir. Sonuç 3... PGO üçgeninin üreteçleri olan pq, ikilisi asal sayı ikilisi olabilmektedir. Bu duruma dair örnekler tablo 1 de mevuttur. Bu ikililerin sonlu mu, 51 sonsuz mu olduğunu ise q asal olmak üzere q ile q arasında daima bir asal olup olmadığı ile ilgilidir. Bu aralıkta daima asal sayı olup olmadığı ile ilgili bir bilgiye ulaşamadık. Şimdi PGO üçgeninin üreteçleri olan pq, ikilisi ikiz asallardan oluşabilir mi? Sorusuna evap arayalım. Eğer pq, ikilisi ikiz asallar ise p q olup 1 eşitsizliğinden q 51 q q q q q olmalıdır. Bu durumda 3 q olur. Sonuç q, 3 ten büyük bir asal ise ise q, q ikiz asal ikilisi bir PGO üreteidir. 13

14 . PRİMİTİF GEOMETRİK ORTA ÜÇGENİNDE AÇIORTAY, KENAR ORTAY VE YÜKSEKLİK BAĞINTILARI. 1. PGO Üçgeninin Kenarortay Uzunlukları Burada önelikle üçgenin kenarortay uzunlukları p ve q parametrelerine bağlı olarak elde edileek ardından kenarortay uzunluklarının rasyonel olup olamayaağı sorusuna evap aranaaktır. Kenarortay Teoreminden; V a b p q V p q V p q p q V p q p q olur. Benzer şekilde V q p q p a ve V p p q q b bağıntıları elde edilebilir. Şimdi kenarortay uzunluklarının rasyonel olup olamayaağına bakalım. V ifadesinin bir rasyonel sayı belirtmesi için p q p q ifadesi tam kare olmalıdır. O halde p q p q x olaak şekilde bir x tam sayısının olması gerekir. p ile q aralarında asal olduğundan ikisi de tek veya biri tek biri çift olmalıdır. i) p ile q tek sayılar olsun. Bu durumda Teorem.5 den p q 1mod16 p 1 9mod16 ve q 1 9mod16 olup q p 19mod16 olur. Bu durumda p q p q mod16 (*) olur., 1

15 Diğer taraftan p ile q tek olduğundan x de tek olmalıdır. Bu x 1 9mod16 olaaktır. Bu ise (*) ile çelişir. O halde p q p q tam kare olamaz. ii) p ile q dan biri tek biri çift olsun. Simetriden dolayı p tek q çift olsun. Teo- rem.5 den pq 0 mod16 olup p q p q 1mod16 0,1, 9 mod16 x olması ile çelişir. O halde alamaz. olur. V hiçbir zaman rasyonel değer Şimdi V a ve V b rasyonel olup olmayaağına bakalım. p ile q aralarında asal olduğundan ikisi de tek veya biri tek biri çift olmalıdır. i) p ile q tek sayılar olsun. Bu durumda Teorem.5 den p q 1mod q p q p 1 3 mod olur. Bu durumda Teorem.5 den q p q p tam kare olamaz. ii) p ile q dan biri tek biri çift olsun. Simetriden dolayı p tek q çift olsun. Bu du- rumda Teorem.5 den p 1mod ve 0mod q p q p 1 3 mod q olur. Bu durumda Teorem.5 den q p q p tam kare olamaz. O halde V a rasyonel değer alamaz. Benzer şekilde V nin de rasyonel değer alamayaağı gösterilebilir. Sonuç.1.1. Bir PGO üçgeninin kenar ortay uzunlukları rasyonel olamaz... PGO Üçgeninin Açıortay Bağıntıları Burada önelikle üçgenin açıortay uzunlukları p ve q parametrelerine bağlı olarak elde edileek ardından açıortay uzunluklarının rasyonel olup olamayaağı sorusuna evap aranaaktır. 15

16 Açıortay teoreminden; pq pq p q p q C 1 n p q p q p q p q p q p q olduğundan olmalıdır. pq nc p q p q p q p q p q pq p q (*) n C nin rasyonel olması için p q p q ifadesi tam kare olmalıdır. Bu ise Teorem.3 den dolayı mümkün değildir. Diğer taraftan üçgen eşitsizliğinden p q pq p q p q p q 3p q p q p q p q p q p q pq olur. p q ab (*) dan n Ha, b C pq ab olur. Açıortay teoreminden; 5 3 pq p q pq p A n pq pq q pq pq pq pq olduğundan n A pq q pq p q pq p p q pq q pq p q pq p p q olur. Benzer şekilde n B pq p pq q p pq q p q 16

17 bağıntıları elde edilir. n A nın rasyonel olabilmesi için pq q pq p q pq p ifadesi tam kare olmalıdır. p ile q aralarında asal olduğundan pq, q pq p ve q pq p ifadeleri aralarında asal olur. Bu durumda bu ifadelerin her biri Teorem.1 den dolayı tam kare olmalıdır. Di- ğer taraftan Teorem.3 den q pq p ifadesinin tam kare olmasını sağlayan pozitif p, q ikilisi yoktur. Dolayısı ile n A rasyonel olamaz. Benzer şekilde n B de rasyonel olamaz. Sonuç..1. ABC üçgeni P.G.O üçgeni ise n C rasyonel değer alamaz ve n C uzunluğu a ile b nin harmonik ortasından küçüktür. Ayrıa n A ve n B de rasyonel değer alamaz..3. PGO Üçgeninde Yükseklik Bağıntıları ABC, PGO üçgeni olsun. C den AB ye inilen dikme ayağı D ve BD AD pq x olsun. C x, p q B x D pq-x A CA AD CB BD p x q pq x p x q p q pqx x p q p q x olur. pq h CB x olduğundan h p q p q p pq 17

18 h p q p q p q p q p q pq p q p q 3p q p q olduğundan pq p q p q 3p q p q pq bağıntısını elde ederiz. h nin rasyonel olabilmesi için p q p q 3p q p q ifadesi tam kare olmalıdır. Önelikle p q p q ile 3p q p q ifadelerinin aralarında asal olduğunu gösterelim. p ile q aralarında asal olduğundan ikisi de tek ya da biri tek diğeri çift olmalıdır. Her iki durumda da p q p q ifadesi tek olaaktır. p q p q ile 3p q p q ifadelerinin en büyük ortak bölenine d diyelim. Bu durumda d tek olmalıdır. 3p q p q p q p q p q p q p q p q ifadesi d ile bölünmelidir. olduğundan p q p q ifadesi d ile bölündüğünden d p q olmalıdır. d tek olduğundan d p q olup p ile q aralarında asal olduğundan d p yada dq olmalıdır. d p ise d p q p q olduğundan dq olmalıdır. p ile q aralarında asal olduğundan d 1 olur. Bu durumda p q p q ile p q p q 3p q p q 3p q p q aralarında asal olmalıdır. O halde ifadesinin tam kare olması için p q p q ile 3p q p q tam kare olmalıdır. Diğer taraftan Teorem.3 den p q p q tam kare olamaz. Bu durumda h rasyonel olamaz. Sonuç.3.1. ABC, P.G.O üçgeni ise h rasyonel değer alamaz. 18

19 .. PGO Üçgeninde Alan Bağıntısı Buhholz & MaDougall (1999) çalışmasında tam sayı kenarlı ve kenarları geometrik dizi oluşturan üçgenlerin alan formülünü heron formülünü kullanarak bulmuş ve alanın rasyonel olamayaağını göstermişlerdir. Biz ise yukarıda bulduğumuz yükseklik bağıntısı yardımıyla alan bağıntısını bulup Buhholz & MaDougall ile aynı sonua ulaştık. Şimdi alan bağıntısını elde edelim. Üçgenin alanı S olmak üzere; 3 h pq p q p q p q p q S olduğundan pq S p q p q 3p q p q olur. Teorem.3 den P.G.O üçgeninin alanı da rasyonel olamaz. Kenar uzunlukları tam sayı olan üçgenin alanı irrasyonel olduğundan hiçbir yüksekliği rasyonel olamaz. Sonuç..1. ABC, PGO üçgeni ise yükseklikleri ve alanı irrasyoneldir..5. PGO Üçgeninin Açıları Arasındaki Bağıntılar Bu bölümde P.G.O üçgeninin açıları için alt ve üst sınırlar elde edilmeye çalışıldı. Ayrıa üçgenin dar veya geniş açılı olabilmesini sağlayan p, q değerleri bulunmaya çalışıldı. Kosinüs teoreminden a b osc ab p q p q osc pq 19

20 p, q için osc p q pq p q 3p q pq p q 3 osc..(1) olur. pq p q p q p q pq p q 3 3 olup (1) den pq 1 osc olmalıdır. Bu durumda 0 mc 60 olur. Sonuç ab şartını sağlayan P.G.O, ABC üçgeninde mc 60 eşitsizliği mevuttur. ABC üçgeninin eşkenar olması durumunda eşitlik durumu elde edilir. Kosinüs teoreminden q q p p os A olur. 3 pq Eğer A açısı geniş ise os A 0 q q p p pq 3 0 q p q p 0 q p 5p 0 q p 5p q p 5 p q 5 p p q 51 p 5 1 q p olmalıdır. Bu durumda 5 1 b a 51 b a bağıntısı olmalıdır. Sonuç.5.. ABC, PGO üçgeni olmak üzere; 0 mb b a 0

21 0 mb ba b eşitsizlikleri mevuttur..6. PGO Üçgeninin Alanının Alabileeği En Büyük Değer p q p q 3p q p q S olduğunu bulmuştuk. p q x y 3y x y alırsak AABC olur. x y3y x x xy 3y (*) dir. Diğer taraftan p q p q olduğundan x y olur. x y y p q x ve x y y x y y 3y x xy 3y 3y olur. (*) dan için eşitlik durumu elde edilir. x y3yx 3 S olur. p q 3 Sonuç.6.1. ABC, PGO üçgeni ise S eşitsizliği mevuttur. Eşitlik olması için üçgenin eşkenar olması gerekir. 5. k GEOMETRİK ORTA ÜÇGENİ Bu bölümde geometrik orta üçgeninin bir çeşit genelleşmesi olan k Geometrik orta üçgenini tanımlayıp kenarları arasındaki ilişkiyi vereeğiz. Tanım 5.1. p, q aralarında asal pozitif tam sayılar ve k Z olmak üzere bir ABC üçgeninin kenar uzunlukları p, q, kpqolan üçgene k geometrik orta üçgeni denir. Şimdi bu üçgenin kenarları arasındaki ilişkiyi elde edelim. 1

22 Genelliği bozmadan p q kabul edelim. Üçgen eşitsizliğinden i) p q kpq p q olmalıdır. Bu durumda p q olduğundan p q kpq p kpqq 0 ve 0 p kpq q eşitsizlik sitemini çözmeliyiz. Bu eşitsizliklerin her iki tarafı q ile bölünürse p p k 1 0 q q ve p p 0 k 1 q q p p k 1 0 q q olur. p k k 1 q p p 0 k 1 q q k k p olur. Bu iki eşitsizlik birleştirilirse q k k p k k eşitsizliği elde edilir. q Sonuç 5.1. ABC üçgeninin k geometrik orta üçgeni olabilmesi için k k p k k eşitsizliğinin sağlanması gerekir. q 6. Sonuçlar ve Tartışma Tarih boyuna çeşitli matematikçiler heron üçgenleri hakkında kapsamlı çalışmalar yapmışlardır. Heron üçgenlerinin bir alt gurubu olan aritmetik üçgenler hakkında da epey çalışma mevuttur. Anak kenarları tam sayı ve kenar uzunlukları geometrik dizi olan üçgenler heron üçgeni olmadığından hakkında fazla bir çalışma yapılmamıştır. Biz ise çalışmamızda bu üçgenlerin özelliklerini ele aldık. Tek bir parametre yardımıyla bu üçgenlerin elde edilebileeğini gösterdik. Fakat elde edilebileek üçgen sayısını formüle edemedik. Bu tip üçgenlerin kenar uzunlukları, yar-

23 dımı eleman uzunlukları ve açıları arasında bağıntılar elde edilmiş ayrıa yardımı eleman uzunlukları ile alanın rasyonel değer alamayaağı gösterilmiştir. Son olarak bu üçgenlerin bir genellemesi olan k geometrik orta üçgeni kavramı verilmiş ve bu üçgenin kenarları arasındaki ilişki elde edilmiştir. 3

24 7. KAYNAKLAR [1] Andreesu, T., Andria, D., 00, An Introdution to Diophantine Equations, GIL Publishing House p [] Buhholz, R. H. and MaDougall, J. A., 1999, Heron Quadrilaterals with Sides in Arithmeti Progression, Bull. Aus. Math. So., p [3] Darıyeri, M. 006., Heron Üçgenlerinin Bazı özellikleri Üzerine Bir Araştırma, Basılmamış Yüksek Lisans Tezi [] Erdoğan, M., Yılmaz, G., 008, Çözümlü problemlerle Soyut Cebir ve Sayılar Teorisi, Beykent Üniversitesi Yayınları [5] Eşen, T., 010, Açıları ve Kenarları Aritmetik, Geometrik ve Harmonik Dizi Oluşturan Üçgenler ile x 3y z Diophantine Denklemi Arasındaki İlişkiler Üzerine Bir Araştırma, Basılmamış yüksek lisans tezi [6] Gürlü, Ö., 003, Meraklısına Geometri, Zambak Yayınları [7] Kramer, A. V., Lua, F., 000, Some Remarks on Heron Triangles, Ata. Aad.Paed. Agriensis, Setio Mathematiae 7, p [8] Küpeli, S. 010., 100 Yılın Olimpiyat Sorularıyla Geometri, Altın nokta Yayınevi, İzmir [9] Zelator, K., 008, Triangle Angles and Sides in Progression and the Diophantine Equation x 3y z, arxiv: (pdf).

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4 NİSAN 21 DENEMESİ 1) ABCD dikdörtgeninin AB kenarı üzerindeki M noktasından geçen ve CM doğrusuna dik olan doğru AD kenarını E noktasında kesiyor. M noktasından CE doğrusuna indirilen dikmenin ayağı P

Detaylı

ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR

ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR 1. Bir üçgende ölçüsü büyük olan açının karşısındaki kenar uzunluğu, ölçüsü küçük olan açının karşısındaki kenar uzunluğundan daha büyüktür. ABC üçgeninde m(a) >

Detaylı

Olimpiyat Eğitimi TUĞBA DENEME SINAVI

Olimpiyat Eğitimi TUĞBA DENEME SINAVI TUSİ Ortaöğretim Öğretmenleri için Olimpiyat Eğitimi TUĞBA DENEME SINAVI 10.01.2014-17.01.2014 2 1. Tuğba üç test yapar. İlkinde, 25 sorudan %60 ını, ikinci de 30 sorudan ve %70 ini ve son olarak 45 sorudan

Detaylı

EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ.

EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ. DERS : GEOMETRİ KONU : ÜÇGEN EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ. AMAN SIKILMAYIN NOT BİRAZ UZUN DA :-) Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının

Detaylı

İç bükey Dış bükey çokgen

İç bükey Dış bükey çokgen Çokgen Çokgensel bölge İç bükey Dış bükey çokgen Köşeleri: Kenarları: İç açıları: Dış açıları: Köşegenleri: Çokgenin temel elemanları Kenar Köşegen ilişkisi Bir köşe belirleyiniz ve belirlediğiniz köşeden

Detaylı

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur? 07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin

Detaylı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı A 1. Köşeleri, yarıçapı 1 olan çemberin üstünde yer alan düzgün bir n-genin çevre uzunluğunun alanına oranı 4 3 ise, n kaçtır? 3 a) 3 b) 4 c) 5 d)

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

ÜÇGENDE AÇILAR. Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir.

ÜÇGENDE AÇILAR. Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir. ÜÇGENDE AÇILAR Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir. Burada; A, B, C noktaları üçgenin köşeleri, [AB], [AC], [BC] doğru parçaları

Detaylı

Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A A) 55 B) 50 C) 45 D) 40 E) 35

Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A A) 55 B) 50 C) 45 D) 40 E) 35 Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A 1. ABC üçgeninde BF BD, EC CD olacak şekilde AC kenarı üzerinde E noktası, o BC m(ba C) 70 ise m(fd E) kaç derecedir? AB kenarı üzerinde F noktası,

Detaylı

2000 Birinci Aşama Sınav Soruları

2000 Birinci Aşama Sınav Soruları 2000 irinci şama Sınav Soruları Lise 1 Soruları 1 369 sayısı bir kaç ardışık doğal sayının toplamı olarak kaç farklı biçimde yazılabilir? )2 )3 )4 )5 )7 2 ve sayıları 2000 sayısının pozitif bölenleri olmak

Detaylı

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar. azanım : ir üçgenin iç açılarının ölçüleri toplamının 80, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği. azanım

Detaylı

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme Türkiye Ulusal Matematik Olimpiyatları Birinci Aşama Zor Deneme Sınavı 11 Haziran 2016 DENEME SINAVI 4. Deneme Soru Sayısı: 32 Sınav Süresi: 210 dakika Başarılar Dileriz... Page 1 of 9 DENEME SINAVI (4.

Detaylı

DİK ÜÇGEN. şekilde, m(a) = 90. [BC] kenarı hipotenüs. [AB] ve [AC] kenarları. dik kenarlardır. P İSAGOR BAĞINTISI

DİK ÜÇGEN. şekilde, m(a) = 90. [BC] kenarı hipotenüs. [AB] ve [AC] kenarları. dik kenarlardır. P İSAGOR BAĞINTISI DİK ÜÇGEN Bir açısının ölçüsü 90 olan üçgene dik üçgen denir. Dik üçgende 90 nin karşısındaki kenara hipotenüs, diğer kenarlara dik kenar adı verilir. Hipotenüs üçgenin daima en uzun kenarıdır. şekilde,

Detaylı

7 Mayıs 2006 Pazar,

7 Mayıs 2006 Pazar, TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 14. ULUSAL MATEMATİK OLİMPİYATI - 2006 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 7 Mayıs 2006 Pazar, 13.00-15.30

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

5. ÜNİTE AÇILAR, ÜÇGENLER VE MESLEKİ UYGULAMALARI

5. ÜNİTE AÇILAR, ÜÇGENLER VE MESLEKİ UYGULAMALARI 5. ÜNİTE ÇILR, ÜÇGENLER VE MESLEKİ UYGULMLRI açılar KONULR 1. çı, çı Türleri ve Mesleki Uygulamaları 2. Tümler ve ütünler çılar ÜÇGENLER 1. Üçgene it Temel ilgiler 2. Üçgen Türleri 3. Üçgenin Yardımcı

Detaylı

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84 N 0,1,,... Sayı kümesine doğal sayı kümesi denir...., 3,, 1,0,1,,3,... sayı kümesine tamsayılar kümesi denir. 1,,3,... saı kümesine sayma sayıları denir.pozitif tamsayılar kümesidir. 15 y z x 3 5 Eşitliğinde

Detaylı

Singapur Matematik Olimpiyatı Soruları

Singapur Matematik Olimpiyatı Soruları Singapur Matematik Olimpiyatı Soruları 1.) 1, 1, 1,., 1 sayıları tahtaya yazılıyor. Burak x ve y gibi iki sayı seçip bunları siliyor ve 1 2 3 2010 x+y+xy sayısını yazıyor. Burak bu işleme tahtada tek sayı

Detaylı

Öğrenci Seçme Sınavı (Öss) / 18 Nisan Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 18 Nisan Matematik Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 8 Nisan 99 Matematik Soruları ve Çözümleri. Bir sayının inin fazlası, aynı sayıya eşittir. Bu sayı kaçtır? A) B) 0 C) D) 0 E) Çözüm Sayı olsun.. + +. Bir sınıftaki toplam öğrenci

Detaylı

ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ( OCAK 2010)

ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ( OCAK 2010) ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ( OCAK 2010) 1) Bir ABC dik üçgeninde B açısı diktir. AB kenarı üzerinde alınan bir D noktası için m( BCD) m( DCA) dır. BC kenarı üzerinde alınan bir E noktası için

Detaylı

OLİMPİK GEOMETRİ ALTIN NOKTA YAYINEVİ MATEMATİK OLİMPİYATLARINA HAZIRLIK ÖMER GÜRLÜ KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ

OLİMPİK GEOMETRİ ALTIN NOKTA YAYINEVİ MATEMATİK OLİMPİYATLARINA HAZIRLIK ÖMER GÜRLÜ KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ OLİMPİK GEOMETRİ MATEMATİK OLİMPİYATLARINA HAZIRLIK KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ ÖMER GÜRLÜ ALTIN NOKTA YAYINEVİ İZMİR - 2014 İÇİNDEKİLER 1. TEMEL ÇİZİMLER... 7 2. ÜÇGENLER... 21 (Üçgende Açılar, Üçgende

Detaylı

çemberi ile O Çemberlerin birbirine göre durumlarını inceleyelim. İlk durumda alalım. olduğu takdirde O2K1

çemberi ile O Çemberlerin birbirine göre durumlarını inceleyelim. İlk durumda alalım. olduğu takdirde O2K1 . merkezli R yarıçaplı Ç çemberi ile merkezli R yarıçaplı ve noktasından geçen Ç çemberi veriliyor. Ç üzerinde, T Ç K T Ç, ve K K T K olacak şekilde bir T noktası alınıyor. Buna göre, uzunluklarından birinin

Detaylı

29 Nisan 2007 Pazar,

29 Nisan 2007 Pazar, TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI SINAVLA İLGİLİ UYARILAR: 15. ULUSAL MATEMATİK OLİMPİYATI - 2007 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı

E.Ö.Y TEKİRDAĞ S.B LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI Alt Öğrenme Alanı

E.Ö.Y TEKİRDAĞ S.B LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI Alt Öğrenme Alanı A ELÜL 9 Eylül Eylül Eylül 0 Eylül 0-07 E.Ö. TEKİRDAĞ S.B LİSESİ 9. SINIF MATEMATİK İ ILLIK PLANI Temel Kavramlar Temel Kavramlar Temel Kavramlar Temel Kavramlar. Küme kavramını örneklerle açıklar ve kümeleri

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

140. 2< a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9 2,4 2,7 3,2 3,7. a a c b ve c a a b c

140. 2< a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9 2,4 2,7 3,2 3,7. a a c b ve c a a b c 138. a ve b gerçel sayılardır. a < a, 6a b 5= 0 b ne olabilir? (11) 4 5 8 11 1 139. < 0 olmak üzere, 4 3. =? ( 3 ) a 1 140. < a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9,4,7 3,

Detaylı

ÖZEL EGE LİSESİ 10. OKULLARARASI MATEMATİK YARIŞMASI 10. SINIFLAR SORULARI

ÖZEL EGE LİSESİ 10. OKULLARARASI MATEMATİK YARIŞMASI 10. SINIFLAR SORULARI 0 KULLARARASI MATEMATİK YARIŞMASI 0 SINIFLAR SRULARI (5xy) dört basamaklı sayıdır 5 x y 6 - a 3 Yukarıdaki bölme işlemine göre y nin alabileceği değerler toplamı kaçtır? 4 m pozitif bir tamsayı olmak üzere;

Detaylı

a) BP = P H olmalıdır. b) BP = 2 P H olmalıdır. c) P H = 2 BP olmalıdır. d) Böyle bir P noktası yoktur. e) Hiçbiri

a) BP = P H olmalıdır. b) BP = 2 P H olmalıdır. c) P H = 2 BP olmalıdır. d) Böyle bir P noktası yoktur. e) Hiçbiri TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 7. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 00 Birinci Bölüm Soru kitapçığı türü A 1. Bir ikizkenar

Detaylı

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI x13. ULUSAL MATEMATİK OLİMPİYATI - 005 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 1. AB = olmak üzere, A

Detaylı

LYS 2016 GEOMETRİ ÇÖZÜMLERİ

LYS 2016 GEOMETRİ ÇÖZÜMLERİ LYS 016 GEOMETRİ ÇÖZÜMLERİ Dikdörtgenin içinde köşegeni çizerek alanı iki eşit parçaya ayırabiliriz. 7 / 36 BED üçgeni ile DEC üçgeninin alanlarının oranı, tabanları arasındaki orana eşittir. Buna göre;

Detaylı

1.DERECEDEN DENKLEMLER. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

1.DERECEDEN DENKLEMLER.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) .DERECEDEN DENKLEMLER Rüstem YILMAZ 546 550 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları 8 Ağustos 07 0. Bir Bilinmeyenli

Detaylı

[ AN ] doğrusu açıortay olduğundan;

[ AN ] doğrusu açıortay olduğundan; . Bir havuzu bir musluk 6 saatte, başka bir musluk 8 saatte dolduruyor. Bu iki musluk kapalı iken, havuzun altında bulunan üçüncü bir musluk, dolu havuzu saatte boşaltabiliyor. Üç musluk birden açılırsa,boş

Detaylı

TAKSİ DÜZLEMİNDE FINSLER-HADWIGER EŞİTSİZLİĞİ

TAKSİ DÜZLEMİNDE FINSLER-HADWIGER EŞİTSİZLİĞİ ÖZEL EGE LİSESİ KSİ DÜZLEMİNDE FINSLER-HDWIGER EŞİSİZLİĞİ HZIRLYN ÖĞRENCİ: Eray ÖZER DNIŞMN ÖĞREMEN: Gizem GÜNEL İZMİR 0 İÇİNDEKİLER. PROJENİN MCI... GİRİŞ............. YÖNEM.... 4. ÖN BİLGİLER..... 4

Detaylı

ÖABT Sayılar Teorisi KONU TESTİ Tam Sayılarda Bölünebilme

ÖABT Sayılar Teorisi KONU TESTİ Tam Sayılarda Bölünebilme ÖABT Sayılar Teorisi KONU TESTİ Tam Sayılarda Bölünebilme ÇÖZÜMLER. a b ve b a a b, a, b a b a b ve b c a c olduğundan a b ve c d ise a c b d olmayabilir. ve 5., ve olduğundan sonsuz çözüm vardır...9.9

Detaylı

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu 016-017 Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları 1) 3. [15 3(8: )] 9 =? a) 16 b) 14 c) 0 d) 14 e) 16 6)

Detaylı

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA İÇİNDEKİLER Matematiğe Giriş... Temel Kavramlar... Bölme - Bölünebilme Kuralları... 85 EBOB - EKOK... Rasyonel Sayılar... Basit Eşitsizlikler... 65 Mutlak

Detaylı

26 Nisan 2009 Pazar,

26 Nisan 2009 Pazar, TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 17. ULUSAL MATEMATİK OLİMPİYATI - 2009 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 26 Nisan 2009 Pazar, 13.00-15.30

Detaylı

DOĞRUNUN ANALİTİK İNCELEMESİ

DOĞRUNUN ANALİTİK İNCELEMESİ Koordinatlar DOĞRUNUN ANALİTİK İNCELEMESİ Bilindiği gibi, düzlemdeki her bir noktaya bir (a,b) sıralı ikilisi, her bir (a,b) sıralı ikilisine bir nokta karşılık gelir. Eğer bir A noktasına karşılık gelen

Detaylı

14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI

14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI 14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI - 008 SORU -1 1 0.7 0.1 0.48 = 0.018 0.8 0. eşitliğini sağlayan sayısı kaçtır? [ 0.15] SORU - c d d c a b 4 c d b b a ifadesinin i i sayısal ldeğeri

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır?

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır? Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994 Matematik Soruları ve Çözümleri 4.10 +.10 1. 4 10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 = 4 4 (40+

Detaylı

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR 7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR KONULAR 1. DOĞRUDA AÇILAR 2. Açı 3. Açının Düzlemde Ayırdığı Bölgeler 4. Açı Ölçü Birimleri 5. Ölçülerine Göre Açılar 6. Açıortay 7. Tümler Açı 8. Bütünler Açı 9. Ters

Detaylı

DEVREK ANADOLU LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI Alt Öğrenme Alanı

DEVREK ANADOLU LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI Alt Öğrenme Alanı ELÜL TRİH/SÜRE HFT Eylül 0Eylül Eylül 7 Eylül STİ LNI 0-0 DEVREK NDOLU LİSESİ 9. SINIF MTEMTİK İ ILLIK PLNI lt de Temel Kavramlar de Temel Kavramlar de Temel Kavramlar de Temel Kavramlar de de de de. Küme

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINAV SORULARI 1. 1999 ÖSS a, b, c pozitif gerçel (reel) sayılar olmak üzere a+ b ifadesindeki her sayı 3 ile çarpılırsa aşağıdakilerden hangisi elde c edilir? 3 a+ b A) B) c a+ 3b C)

Detaylı

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde 1. Aşağıdaki kümelerden hangisi sonsuz küme belirtir? A) A = { x 4 < x < 36,x N} B) B = { x 19 < x,x asal sayı} C) C = { x x = 5k,0 < x < 100,k Z} D) D = { x x = 5, x Z} E) E = { x x < 19,x N}. A, B ve

Detaylı

Özel Kasımoğlu Coşkun Fen Lisesi

Özel Kasımoğlu Coşkun Fen Lisesi 4.04.0 tarihinde Okan Üniversitesi Matematik Bölümü tarafından düzenlenen Liselerarası Matematik Yarışması na aşağıda listelenen on iki lise katıldı. Özel Kasımoğlu Coşkun Fen Lisesi Habire Yahşi Anadolu

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

ÖZEL YUNUS GÜNER FEN ve ANADOLU LĐSESĐ MATEMATĐK OLĐMPĐYATI KTS 1

ÖZEL YUNUS GÜNER FEN ve ANADOLU LĐSESĐ MATEMATĐK OLĐMPĐYATI KTS 1 ÖZEL YUNUS GÜNER FEN ve ANADOLU LĐSESĐ MATEMATĐK OLĐMPĐYATI KTS 1 Süre: 150 dakika ÖĞRENCĐNĐN ADI SOYADI: SINAVLA ĐLGĐLĐ UYARILAR: Bu sınav çoktan seçmeli 36 sorudan oluşmaktadır. Her sorunun sadece bir

Detaylı

Mustafa Özdemir İrtibat İçin : veya Altın Nokta Yayınevi

Mustafa Özdemir İrtibat İçin : veya Altın Nokta Yayınevi 2 Matematik Olimpiyatlarına Hazırlık 4 Mustafa Özdemir MATEMATİK OLİMPİYATLARINA HAZIRLIK 4 (336 sayfa) ANALİZ CEBİR 1 TANITIM DÖKÜMANI (Kitabın içeriği hakkında bir bilgi verilmesi amacıyla bu döküman

Detaylı

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler ORGANİZASYON ŞEMASI 1. BÖLÜM Mantık... 7. BÖLÜM Sayılar... 13 3. BÖLÜM Rasyonel Sayılar... 93 4. BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler... 103 5. BÖLÜM Mutlak Değer... 113 6. BÖLÜM Çarpanlara Ayırma...

Detaylı

1. Bir ayrıtının uzunluğu 1 olan küpler üst üste konularak tüm alanı A olan bir kare dik prizma yapılırsa, A sayısı aşağıdakilerden hangisi olabilir?

1. Bir ayrıtının uzunluğu 1 olan küpler üst üste konularak tüm alanı A olan bir kare dik prizma yapılırsa, A sayısı aşağıdakilerden hangisi olabilir? 1. Bir ayrıtının uzunluğu 1 olan küpler üst üste konularak tüm alanı A olan bir kare dik prizma yapılırsa, A sayısı aşağıdakilerden hangisi olabilir? a) 12 b) 16 c) 26 d) 36 e) 44 2. Aşağıdakilerden hangisi

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

I F L. IĞDIR FEN LİSESİ MÜDÜRLÜĞÜ 2010 YILI 8. SINIFLAR I. MATEMATİK OLİMPİYAT YARIŞMASI Soru kitapçığı türü A 15 Mayıs 2010 Cumartesi,

I F L. IĞDIR FEN LİSESİ MÜDÜRLÜĞÜ 2010 YILI 8. SINIFLAR I. MATEMATİK OLİMPİYAT YARIŞMASI Soru kitapçığı türü A 15 Mayıs 2010 Cumartesi, I F L IĞDIR FEN LİSESİ MÜDÜRLÜĞÜ 2010 YILI 8. SINIFLAR I. MATEMATİK OLİMPİYAT YARIŞMASI Soru kitapçığı türü A 15 Mayıs 2010 Cumartesi, 10.00-12.30 ÖĞRENCİNİN ADI SOYADI T.C. KİMLİK NO OKULU / SINIFI SALON

Detaylı

2017 MÜKEMMEL YGS MATEMATİK

2017 MÜKEMMEL YGS MATEMATİK 2017 MÜKEMMEL YGS MATEMATİK 1. 2,31 0,33 0,65 0,13 + 3,6 0,6 işleminin sonucu kaçtır? A)0,5 B) 0,8 C)0,9 D)5 E)8 4. Üç basamaklı ABB doğal sayısı 4 e ve 9 a kalansız bölünmektedir. Buna göre, A+B toplamının

Detaylı

2016 UOMO 1. Aşama. A) 15 B) 17 C) 19 D) 21 E) 23 Çözüm. Denklemi düzenleyelim:

2016 UOMO 1. Aşama. A) 15 B) 17 C) 19 D) 21 E) 23 Çözüm. Denklemi düzenleyelim: 016 UOMO 1. Aşama 1. Bir ABC üçgeninde BE ve CD kenarortayları birbirine dik ve BE = 18, CD = 7 ise AF kenarortayının uzunluğu kaçtır? A) 43 B) C) 45 D) 3 E) 4 Çözüm. Üçgenin ağırlık merkezi G olmak üzere,

Detaylı

SİVAS FEN LİSESİ. Soru Kitapçığı Türü. 25 Nisan 2015 Cumartesi, 9:30 12:30

SİVAS FEN LİSESİ. Soru Kitapçığı Türü. 25 Nisan 2015 Cumartesi, 9:30 12:30 SİVAS FEN LİSESİ SİVAS İL MERKEZİ ORTAOKUL 1. MATEMATİK OLİMPİYATI SINAVI 015 ÖĞRENCİNİN ADI SOYADI : T.C. KİMLİK NO : OKUL / SINIFI : SINAVLA İLGİLİ UYARILAR: Soru Kitapçığı Türü A 5 Nisan 015 Cumartesi,

Detaylı

Ö.S.S. 1994. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 43. olduğuna göre a kaçtır?

Ö.S.S. 1994. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 43. olduğuna göre a kaçtır? Ö.S.S. 1994 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ 4.10 1. 4 10 +.10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 4 4 (40+ ).10 10 4 4 4 (98² 98²) 00.9.

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. Problem 5. PURPLE COMET MATEMATİK BULUŞMASI Nisan c Copyright Titu Andreescu and Jonathan Kane

Problem 1. Problem 2. Problem 3. Problem 4. Problem 5. PURPLE COMET MATEMATİK BULUŞMASI Nisan c Copyright Titu Andreescu and Jonathan Kane PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 İLKÖĞRETİM - PROBLEMLERİ c Copyright Titu Andreescu and Jonathan Kane Çeviri Sibel Kılıçarslan CANSU ve Fatih Kürşat CANSU Problem 1 Eğer 125 + n + 135 + 2n

Detaylı

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi TEST: 6 5. 1. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12 2. 6. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi aşağıdakilerden hangisidir? A) 7x+5y=35 B) 7x-5y=35

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

VEKTÖRLER. DOĞRU PARÇASI: Doğrunun A ve B noktaları ile bunların arasında kalan bütün noktalarından oluşan kümeye [AB] DOĞRU PARÇASI denir.

VEKTÖRLER. DOĞRU PARÇASI: Doğrunun A ve B noktaları ile bunların arasında kalan bütün noktalarından oluşan kümeye [AB] DOĞRU PARÇASI denir. VEKTÖRLER DOĞRU PRÇSI: Doğrunun ve B noktaları ile bunların arasında kalan bütün noktalarından oluşan kümeye [B] DOĞRU PRÇSI denir. Doğrultusu (üzerinde bulunduğu doğru) ve uzunluğundan söz edilebilir.

Detaylı

1. Hem % 15 i, hem de % 33 ü tam sayı olan en küçük pozitif sayı nedir? c)

1. Hem % 15 i, hem de % 33 ü tam sayı olan en küçük pozitif sayı nedir? c) TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 10. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2005 Soru kitapçığı türü A 1. Hem % 15 i, hem de % 33

Detaylı

IX. Ulusal İlköğretim Matematik Olimpiyatı

IX. Ulusal İlköğretim Matematik Olimpiyatı IX. Ulusal İlköğretim Matematik Olimpiyatı B 1. Bir su tankerinin tam doluyken toplam ağırlığı x ton; yarı yarıya doluyken toplam ağırlığı y ton ise, boş tankerin ağırlığı kaç tondur? a) 2x 2y b) 2y x

Detaylı

16. ULUSAL MATEMATİK OLİMPİYATI

16. ULUSAL MATEMATİK OLİMPİYATI TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 16. ULUSAL MATEMATİK OLİMPİYATI - 2008 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 27 Nisan 2008 Pazar, 13.00-15.30

Detaylı

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 1. ve y aralarında asal iki doğal sayıdır. 7 y 11 olduğuna göre, y farkı 5. 364 sayısının en büyük asal böleni A) 3 B) 7 C) 11 D) 13 E) 17 A) B) 3 C) 4

Detaylı

II. DERECEDEN DENKLEMLER Test -1

II. DERECEDEN DENKLEMLER Test -1 II. DERECEDEN DENKLEMLER Test -. 5 {, 5} {, 5} { 5, } {, 5} {, 5} 5. 5 {,, } {,, } {,, } {,, } {,, }.. 5 7 7 5 5,, 5 5, 5 5, 5 5, 6. 7. 5 95 { 5,, } {,, 5} { 5,, 9} {,, 5} { 9,, 5} 6 66 {, } {,, } {,,

Detaylı

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI.

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI. Sayfa1 9. Ulusal serimya İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI 2011 Sayfa2 1. Bir ABCD konveks dörtgeninde AD 10 cm ise AB CB? m( Dˆ ) 90, ( ˆ) 150 0 0 m C ve m Aˆ m Bˆ ( ) ( ) olarak

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

1998 ÖSS A) 30 B) 27 C) 18 D) 9 E) 5 A) 8000 B) 7800 C) 7500 D) 7200 E) 7000

1998 ÖSS A) 30 B) 27 C) 18 D) 9 E) 5 A) 8000 B) 7800 C) 7500 D) 7200 E) 7000 998 ÖSS. Rakamları sıfırdan farklı, beş basamaklı bir sayının yüzler ve binler basamağındaki rakamlar yer değiştirildiğinde elde edilen yeni sayı ile eski sayı arasındaki fark en çok kaç olabilir? 6. ve

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

Köklü Sayılar ,1+ 0,1+ 1, 6= m 10 ise m kaçtır? ( 8 5 ) 2x 3. + a =? (4)

Köklü Sayılar ,1+ 0,1+ 1, 6= m 10 ise m kaçtır? ( 8 5 ) 2x 3. + a =? (4) Köklü Sayılar.,+ 0,+, 6= m 0 ise m kaçtır ( 8 5 ). a= ise a + a (). : :... = 8 0 0... eşitliğini sağlayan değeri nedir (). 99.0+.6+ (75) 5. + : + 8 7 8 () 6. > 0 ve = olduğuna göre ( ) + a+ b 7. a, b R

Detaylı

İSTANBUL III. BİLİM OLİMPİYATI

İSTANBUL III. BİLİM OLİMPİYATI İSTANBUL III. BİLİM OLİMPİYATI MATEMATİK SBELIAN Bu çalışma notunda İstanbul Bilim Olimpiyatı matematik sorularının bir bölümünün soru metinleri ve çözümleri verilmiştir. Soruların tamamının yayın hakkı

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 10. SINIF TEST SORULARI A) 80 B) 84 C) 88 D) 102 E) 106

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 10. SINIF TEST SORULARI A) 80 B) 84 C) 88 D) 102 E) 106 1. n bir doğal sayı olmak üzere, n! sayısının sondan k basamağı 0 dır. Buna göre, k tamsayısı aşağıdakilerden hangisi olamaz? 3. (x+y+z+t ) 6 ifadesinin açılımında kaç terim vardır? A) 80 B) 84 C) 88 D)

Detaylı

12-A. Sayılar - 1 TEST

12-A. Sayılar - 1 TEST -A TEST Sayılar -. Birbirinden farklı beş pozitif tam sayının toplamı 0 dur. Bu sayılardan sadece ikisi den büyüktür. Bu sayılardan üç tanesi çift sayıdır. Buna göre bu sayılardan en büyüğü en çok kaç

Detaylı

ales dört bin soru tarzına en yakın EŞİT AĞIRLIK ve SAYISAL ADAYLARA ALES SORU BANKASI Kenan Osmanoğlu - Kerem Köker - Savaş Doğan

ales dört bin soru tarzına en yakın EŞİT AĞIRLIK ve SAYISAL ADAYLARA ALES SORU BANKASI Kenan Osmanoğlu - Kerem Köker - Savaş Doğan ales 2015 tarzına en yakın dört bin soru EŞİT AĞIRLIK ve SAYISAL ADAYLARA ALES SORU BANKASI Kenan Osmanoğlu - Kerem Köker - Savaş Doğan Kenan Osmanoğlu - Kerem Köker - Savaş Doğan ALES Eşit Ağırlık ve

Detaylı

2. Dereceden Denklemler

2. Dereceden Denklemler . Dereceden Denklemler Yazım hataları olabilir. Tam olarak tashih edilmemiştir. Hataları osmanekiz000@gmail.com mail adresine bildirilseniz makbule geçer.. a + b + 5c = c(a + b) ise a b =? C: 9. ( 4) (

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI 6. SINIF 5. SINIF TÜM KONULARI 1.ÜNİTE: Geometrik Şekiller 1) Verileri Düzenleme, Çokgenler ve Süsleme 2) Dörtgenler 3)

Detaylı

2004 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

2004 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI 4 II MATEMATİK YARIŞMASI I AŞAMA SORULARI 4? 4 4 A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? 5 A) B) C) - D) E) - 8 4 x x

Detaylı

PROJEYİ HAZIRLAYANLAR YUSUFHAN BAŞER BERKE SERTEL NAİLE ÇOLAK

PROJEYİ HAZIRLAYANLAR YUSUFHAN BAŞER BERKE SERTEL NAİLE ÇOLAK KESİN PROJE RAPORU PROJENİN ADI: ÜÇGENİN ELEMANLARI ARASINDAKİ SİMETRİK FONKSİYONLAR PROJEYİ HAZIRLAYANLAR YUSUFHAN BAŞER BERKE SERTEL OKUL ADI VE ADRESİ ÖZEL KÜLTÜR FEN LİSESİ Ataköy 9.-10. Kısım, 34156

Detaylı

Çarpanlar ve Katlar

Çarpanlar ve Katlar 8.1.1. Çarpanlar ve Katlar 8.1.2. Üslü İfadeler 8.1.3. Kareköklü İfadeler 8.2.1. Cebirsel İfadeler ve Özdeşlikler 8.1.1.1 Verilen pozitif tam sayıların çarpanlarını bulur; pozitif tam sayıları üslü ifade

Detaylı

8. SINIF MATEMATIK KAZANIM ODAKLI SORU BANKASI

8. SINIF MATEMATIK KAZANIM ODAKLI SORU BANKASI 8. SINIF MATEMATIK KAZANIM ODAKLI SORU BANKASI Tudem Eğitim Hiz. San. ve Tic. A.Ş 1476/1 Sokak No: 10/51 Alsancak/Konak/ÝZMÝR Yazarlar: Tudem Yazý Kurulu Dizgi ve Grafik: Tudem Grafik Ekibi Baský ve Cilt:

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-I ÇERÇEVE PROGRAMI. :Kesikkapı Mah. Atatürk Cad.No.79 Fethiye /MUĞLA

ÖZEL ÖĞRETİM KURSU MATEMATİK-I ÇERÇEVE PROGRAMI. :Kesikkapı Mah. Atatürk Cad.No.79 Fethiye /MUĞLA ÖZEL ÖĞRETİM KURSU MATEMATİK-I ÇERÇEVE PROGRAMI 1.KURUMUN ADI 2.KURUMUN ADRESİ 3.KURUCUNUN ADI :Tercih Özel Öğretim Kursu :Kesikkapı Mah. Atatürk Cad.No.79 Fethiye /MUĞLA : ARTI ÖZEL EĞİTİM ÖĞRETİM Danışmanlık

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder.

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder. LENDİRME ŞEMASI ÜNİTE Üslü 1. Bir tam sayının negatif kuvvetini belirler ve rasyonel sayı olarak ifade eder.. Ondalık kesirlerin veya rasyonel sayıların kendileriyle tekrarlı çarpımını üslü sayı olarak

Detaylı

6. Ali her gün cebinde kalan parasının (2009) a, b ve c farklı pozitif tamsayılar, 9. x, y, z pozitif gerçek sayılar,

6. Ali her gün cebinde kalan parasının (2009) a, b ve c farklı pozitif tamsayılar, 9. x, y, z pozitif gerçek sayılar, 1. 9 2 x 2 ifadesinin açılımında sabit x terim kaç olur? A) 672 B) 84 C) 1 D) -84.E) -672 6. Ali her gün cebinde kalan parasının %20 sini harcamaktadır. Pazartesi sabahı haftalığını alan Ali ni Salı günü

Detaylı

olmak üzere C noktasının A noktasına uzaklığı ile AB nin orta dikmesine olan uzaklığının oranının α değerinden bağımsız olduğunu gösteriniz.

olmak üzere C noktasının A noktasına uzaklığı ile AB nin orta dikmesine olan uzaklığının oranının α değerinden bağımsız olduğunu gösteriniz. GOMTRİ 05/0/0. bir üçgen m() =, m() = 90 +, = 5 br, = 7 br, olduğuna göre = x kaç br dir? 5 m 9 0 m 9 0 5 90+ 7 x Çözüm: den ye çıkılan dikmenin doğrusunu kestiği nokta olsun. bir dik üçgen ve bir ikizkenar

Detaylı

SERİMYA 2003 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

SERİMYA 2003 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI SERİMYA 00 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI. + + 5 0 + + + 0 40 toplamının sonucu kaçtır? A) 5 B) C) D) E) + 4. a,b,c Z olmak üzere, a + b + c 7 = 6 ise, a.b.c kaçtır? A) 6 B) 8 C) D) 6 E) 8 y.

Detaylı

FERMAT VE EULER TEOREMLERİ

FERMAT VE EULER TEOREMLERİ FERMAT VE EULER TEOREMLERİ 1. 8 103 sayısı 13 e bölündüğünde elde edilen kalanı bulunuz. Çözüm: Fermat teoreminden 8 12 1 (mod 13) 8 103 (8 12 ) 8 8 7 8 7 2 21 2 9 2 4 2 4 2 3 3 2 5 (mod 13). 2. 3 619

Detaylı

Öğrenci Seçme Sınavı (Öss) / 15 Nisan Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 15 Nisan Matematik Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 5 Nisan 990 Matematik Soruları ve Çözümleri. 0,0703.(0,3 0,) işleminin sonucu kaçtır? A) 0,00703 B) 0,0703 C) 0,703 D) 0,0703 E) 0,00703 Çözüm 0,0703.(0,3 0,) 0,0703.0, 0,00703.

Detaylı

Matematik A A ile B nin Kartezyen Çarpımı: A Kümesinden B nin Farkı: A Kümesinden B ye Fonksiyon: Açı: Açık Önerme: Açıortay: Açısal Bölge: Aksiyom:

Matematik A A ile B nin Kartezyen Çarpımı: A Kümesinden B nin Farkı: A Kümesinden B ye Fonksiyon: Açı: Açık Önerme: Açıortay: Açısal Bölge: Aksiyom: Matematik A A ile B nin Kartezyen Çarpımı: Birinci bileşeni A dan, ikinci bileşeni B den alınarak elde edilen ikililerin kümesidir. A Kümesinden B nin Farkı: A kümesinin B kümesi ile ortak olmayan elemanlarından

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 10. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 10. SINIF TEST SORULARI . a 6 b a b 8 ifadesinin açılımında b çarpanının bulunmadığı terim aşağıdakilerden hangisidir?. Bir toplulukta en az iki kişinin yılın aynı ayı ve haftanın aynı gününde doğduğu kesin bilindiğine göre,

Detaylı

ise, yazılı olarak çözmeniz gereken 3 problemden oluşmakta olup, süresi 75 dakikadır. Elinizdeki

ise, yazılı olarak çözmeniz gereken 3 problemden oluşmakta olup, süresi 75 dakikadır. Elinizdeki TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 11. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2006 Birinci Bölüm Soru kitapçığı türü A SINAV TARİHİ

Detaylı