KENAR UZUNLUKLARI GEOMETRİK DİZİ OLUŞTURAN TAM SAYI KENARLI ÜÇGENLER

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "KENAR UZUNLUKLARI GEOMETRİK DİZİ OLUŞTURAN TAM SAYI KENARLI ÜÇGENLER"

Transkript

1 ORTAÖĞRETİM ÖĞRENCİLERİ ARASI ARAŞTIRMA PROJELERİ YARIŞMASI (01 013) KENAR UZUNLUKLARI GEOMETRİK DİZİ OLUŞTURAN TAM SAYI KENARLI ÜÇGENLER Fatih KORKUSUZ Şehit Fazıl Yıldırım Anadolu Lisesi Eskişehir Kadir Erdem KARACA Haı Ahmet Kanatlı Anadolu Lisesi Eskişehir Osman EKİZ Danışman Öğretmen ESKİŞEHİR 013 1

2 ÖZET Kenar uzunlukları ile alanı tam sayı olan üçgenlere heron üçgenleri denir. Heron üçgenlerinin özelliklerinin inelenmesi sırasında ortaya çıkan çoğu problem sayılar teorisini ilgilendiren problemlerdir. Bu alan geometri ile sayılar teorisinin iç içe olduğu bir çalışma alanıdır. Tarih boyuna bir çok matematikçi heron üçgenleri üzerine çalışmalar yapmıştır. Biz bu çalışmada kenarları geometrik dizi oluşturan tam sayı kenarlı üçgenlerin elde edilebilmesi için gerekli şartları ortaya koyduk. Bir parametreye bağlı olarak bu tip üçgenleri üretmeye çalıştık. Bu üçgenlerin açıortay, kenar ortay, yükseklik ve alan bağıntıları bulunup rasyonel değer alıp alamayaakları üzerinde durulmuştur. Ayrıa bu üçgenlerin iç açıları için alt ve üst sınırlar bulunmaya çalışılmıştır.

3 İÇİNDEKİLER Özet İçindekiler 3 1. Kaynak Araştırması. Ön Bilgiler 3. Geometrik Orta Üçgenleri Primitif Geometrik Orta Üçgeni ve Üreteçleri Bazı Primitif Geometrik Orta Üçgenleri 1. Primitif Geometrik Orta üçgeninde Açıortay, Kenarortay ve Yükseklik Bağıntıları 1.1. PGO Üçgeninin Kenarortay Uzunlukları 1.. PGO Üçgeninin Açıortay Bağıntıları PGO Üçgeninde Yükseklik Bağıntıları 17.. PGO Üçgeninde Alan Bağıntısı PGO Üçgeninin Açıları Arasındaki Bağıntılar PGO Üçgeninin Alanının Alabileeği En Büyük Değer 1 5. k Geometrik Orta Üçgeni 1 6. Sonuçlar ve Tartışma 7. Kaynaklar 3

4 1. KAYNAK ARAŞTIRMASI Heron üçgenleri ve bunun özel bir ailesi olan Pisagor üçgenleri üzerine Sierpinski, Rosen, Guy, Beauregard ve Suryanarayan, Buhholz ve MaDougall, Sastry, Zelator, Kramer, Lua gibi matematikçiler çeşitli çalışmalar yapmıştır. Eşen (010) ve Darıyeri (006) çalışmalarında heron üçgenleri üzerinde yapılan çalışmaların kronolojik sıralaması hakkında bilgi vermiştir. Buhholz ve MaDougall (1999), kenarları geometrik ve aritmetik dizi biçiminde olan rasyonel alanlı üçgenler ve kirişler dörtgenleri üzerinde çalışmıştır. Kenarları aritmetik olan üçgenlerin sonsuz bir ailesi için tam bir karakterizasyon verilmiştir ve ayrıa geometrik diziden oluşan kenarlara sahip hiçbir üçgenin olamayaağı gösterilmiştir.(eşen, 010) Yapılan çalışmalar inelendiğinde kenarları aritmetik dizi oluşturan heron üçgenleri üzerine kapsamlı araştırmalar yapılmıştır. Fakat kenarları geometrik ve harmonik dizi oluşturan üçgenler üzerine yapılan araştırmalar ise az sayıdadır. Bunun bir sebebi bu şekildeki üçgenlerinin alanlarının tam sayı olmamasıdır. Çünkü, Buhholz ve MaDougall (1999), kenarları geometrik diziden oluşan kenarlara sahip bir üçgenin heron üçgeni olamayaağını göstermiştir.. ÖN BİLGİLER Bu bölümde daha sonraki bölümlerde kullanılaak tanım ve teoremler verilmiştir. Tanım.1. a ve b iki tamsayı ve a 0 olsun. b = a. olaak şekilde bir tamsayısı varsa a, b yi böler veya b, a ile bölünür deriz ve bu durumu a b şeklinde ifade ederiz. (Erdoğan&Yılmaz, 008)

5 Tanım.. b ve iki tamsayı olsun. Eğer bir a 0 tamsayısı için a b ve a koşulları gerçekleniyor ise a ya, b ve tamsayılarının bir ortak böleni denir. Bir b 0 tamsayısının bölenleri sonlu sayıdadır. O halde b ve den en az birisi sıfırdan farklı ise bu iki tamsayının ortak bölenlerinin sayısı sonludur. (Erdoğan&Yılmaz, 008) Tanım.3. b ve, en az birisi sıfırdan farklı iki tamsayı olsun. i) d b, d ii) a b, a a d iii) d 0 koşullarına uyan bir d tamsayısına b ve tamsayılarının en büyük ortak böleni (e.b.o.b.) denir ve (b,) şeklinde gösterilir. (Erdoğan&Yılmaz, 008) Tanım.. (a,b) 1 ise a ve b tamsayılarına aralarında asaldır deriz. (Erdoğan&Yılmaz, 008) Tanım.5. p 1 tamsayısı verilsin. Eğer p nin ±1 ve ± p den başka böleni yoksa p tamsayısı bir asal sayıdır deriz. Asal olmayan bir tamsayıya bileşik sayı diyeeğiz. (Erdoğan&Yılmaz, 008) Tanım.6. ( p, p + ) seklindeki asal sayı çiftlerine asal sayı ikizi, ( p, p +, p + 6) asal sayılarına asal sayı üçüzü, ( p, p +, p + 6, p + 8) seklindeki asal sayılara da asal sayı dördüzü adı verilir. (Erdoğan&Yılmaz, 008) Tanım.7. a, b, m ; m 0 tam sayıları verilsin. Eğer m a b) ise a, b ye m modülüne göre kongrüent dir denir ve a b (modm) şeklinde gösterilir. (Erdoğan&Yılmaz, 008) Tanım.8. Her m 0 tamsayısını, m yi geçmeyen ve m ile aralarında asal olan tamsayıların sayısına eşleyen fonksiyona Euler in -fonksiyonu adı verilir ve m nin resmi (m) ile gösterilir. (Erdoğan&Yılmaz, 008) 5

6 Tanım.9. Bir tam sayının karesi şeklinde ifade edilebilen sayılara tam kare sayılar denir. Teorem.1. mn, 1 ve mn tam kare ise m ve n de tam karedir. Teorem.. a tek tam sayı ise 1mod a 0mod olur. a ve a çift tam sayı ise Teorem.3. x xy y z denkleminin negatif olmayan tamsayılardaki tüm çözümleri k (Andreesu&Andria, 00) Z olmak üzere x, yz, k,0, k, 0, kk, üçlüleridir. Teorem.. x xy y z denkleminin negatif olmayan tamsayılardaki tüm çözümleri k Z olmak üzere x, yz, k,0, k, 0, kk,, kkk,, üçlüleridir. (Andreesu&Andria, 00) Teorem.5. x çift tam sayı ise x 0 mod16 ve x tek tam sayı ise x 1 9mod16 ve x çift tam sayı ise x 0mod16 ve x tek tam sayı ise x 1mod16 Tanım.10. Üç açısı da dar açı olan üçgene dar açılı üçgen, bir açısı dik olan üçgene dik açılı üçgen, bir açısı geniş olan üçgene geniş açılı üçgen denir. (Küpeli, 010) Tanım.11. Kenar uzunlukları birbirinden farklı olan üçgene çeşitkenar üçgen, herhangi iki kenar uzunluğu eşit olan üçgene ikizkenar üçgen, üç kenar uzunluğu da birbirine eşit olan üçgene eşkenar üçgen denir. (Küpeli, 010) Tanım.1. Üçgenin bir köşesini karşısındaki kenarın orta noktasına birleştiren doğru parçasına üçgenin o kenarına ait kenarortayı denir. Üçgenin bir köşesindeki 6

7 açısını iki eş parçaya ayıran ışının, köşe ile karşı kenar arasında kalan parçasına, üçgenin o köşesine ait açıortayı denir. Üçgenin bir köşesinden karşı kenara veya bu kenarın uzantısına dik olarak çizilen doğru parçasına üçgenin bu kenarına ait yüksekliği denir. (Küpeli, 010) Teorem.6. [Üçgen Eşitsizliği]. Bir üçgende bir kenar uzunluğu diğer iki kenarın uzunlukları toplamından küçük, farkının mutlak değerinden büyüktür. (Küpeli, 010) Teorem.7. [Kenarortay Teoremi]. Bir ABC üçgeninde BC kenarına ait kenarortay uzunluğu V a olmak üzere A a Va b dir. (Küpeli, 010) V a V a = b + - a B // D // C Teorem.8. [Açıortay Teoremi]. Kenar uzunlukları ab,, olan ABC üçgeninin A açısına ait açıortayı AD ve AD na A olsun. Bu durumda; m(bad) = m(cad) B D C i) AB BD ii) na AB AC BD DC iii) AC DC a BD ve b DC ab b bağıntıları mevuttur. 7

8 sayısına altın oran denir ve genellikle sembolü ile göste- Tanım rilir. Tanım.1. a 1, a, a 3 reel sayı dizisinin aritmetik dizi olması için gerek ve yeter şart a a1 a olmasıdır. a1, a, a 3 reel sayı dizisinin geometrik dizi olması için gerek ve yeter şart a a1 a olmasıdır. a1, a, a 3 reel sayı dizisinin harmonik dizi olması için gerek ve yeter şart (Zelator, K., 008) 1 1 1,, a a a 1 3 dizisinin aritmetik diz olmasıdır. Teorem.9. [Kosinüs Teoremi]. Bir ABC üçgeninde A a b bosa b os b a a B os dir. (Gürlü, 003) a b ab C B a C Tanım.15. Kenar uzunlukları ile alanı tam sayı olan üçgene heron üçgenini denir. (Kramer&Lua, 000) ab Teorem.10. Kenar uzunlukları a, b, ve yarı çevre uzunluğu da u olan bir ABC üçgeninin alanı A(ABC) ise AABC uu au bu dir. (Gürlü, 003) 8

9 3. GEOMETRİK ORTA ÜÇGENLERİ 3.1. Primitif Geometrik Orta Üçgeni ve Üreteçleri Tanım ab,, pozitif tam sayılar olmak üzere kenar uzunlukları ab,, olan ABC üçgeninde ab bağıntısı var ise bu üçgene geometrik orta üçgeni denir. Eğer a ile b aralarında asal ise üçgene primitif geometrik orta üçgeni denir. Kısaa P.G.O şeklinde ifade edilir. C a b = ab B A Biz ilk olarak geometrik orta üçgeni olma şartlarını ortaya koymaya çalışalım. Genelliği bozmadan a b kabul edelim. ab, d olsun. O halde aralarında asal a 1 ve b 1 pozitif tam sayıları için a da1 ve b db1 olur. Bu durumda ab d ab 1 1 olur. Son denklemin sol tarafı tam kare olduğundan sağ tarafı da tam kare olmalıdır. Teorem.1 den a1 p ve b1 q olaak şekilde aralarında asal pozitif p, q tam sayıları vardır. d p q dpq, a dp ve b dq olmalıdır. Bu durumda a, b, dp, dq, dpq üçlüsü elde edilir. a, b, dp, dq, dpq ile ab,, p, q, pq belirttiği üçgenler benzerdir. O yüzden ab,, p, q, pq üçlülerinin üçlüsünün belirttiği 9

10 üçgen primitif geometrik orta üçgeni olur. Burada pq, ikilisine PGO üçgeninin üreteçleri denir. Sonuç p, q aralarında asal pozitif iki tam sayı olmak üzere bir P.G.O üçgeninin uzunlukları p, q, pq formunda olmalıdır. C p q B pq A Şimdi p, q, pq üçlüsünün hangi hallerde üçgen eşitsizliğini sağladığına bakalım. p, q, pq üçlüsünün bir üçgen belirtebilmesi için üçgen eşitsizliğini sağlaması gerekir. Bu durumda i) ii) b a pqq p ab p q pq iii) a b p pq q eşitsizliklerinin aynı anda sağlanması gerekir. i) Eğer pqq p pqq p pq p q olup p q olduğundan bu eşitsizlik daima doğrudur. ii - iii) Eğer ab p q pq olmalıdır. Bu eşitsizlik daima doğru değildir. Bu durumda seçilen her aralarında asal p, q pozitif tam sayıları ile P.G.O üçgeni elde edemeyiz. Şimdi p q pq eşitsizliğini sağlayan p, q tam sayıları arasındaki ilişkiyi bulalım. 10

11 p q olduğundan p q pq p pqq 0 olur. Son eşitsizliğin her iki yanını q ile bölersek p p 1 0 q q p olup t 1 q için t t 1 eşitsizliği elde edilir. 1 5 t t t 1 5 t t olur. t 1 olduğundan 1 5 p t 1 q olur. Eğer p q olursa ab,, p, p, p olup kenar uzunlukları 1 olan eşkenar üçgenin benzeri olan üçgenler elde edilir. Bundan sonra p q şartını sağlayan PGO üçgenleri üzerinde duralım. Bu durumda aşağıdaki sonuu elde ederiz. Sonuç 3.1.., altın oran ve p q olmak üzere, aralarında asal pozitif p, q tam p sayılarının PGO üçgeni belirtebilmesi için 1 eşitsizliğinin sağlanması q gerekir. Bu durumda p a 51 a q b b olmalıdır. O halde PGO üçgeni olan ABC üçgeninin kenarları arasında eşitsizliği mevuttur. a b 3.. Bazı Primitif Geometrik Orta üçgenleri. Verilen herhangi bir pozitif q tam sayısı yardımıyla PGO üçgenleri elde edilebilir. 11

12 q 51 1 p q p a p b pq q p yok yok yok yok 1 p p p p p p p p Tablo 1 Tabloda verilen bir q tam sayısı için kaç tane ab,, üçlüsü elde edilebileeğine dair bazı örnekler verilmiştir. 1

13 51 Sonuç Verilen bir q tam sayısı için q dan büyük q dan küçük q ile aralarında asal sayıların sayısı kadar ab,, üçlüsü elde edilebilmektedir. Fakat q ya bağlı bir formül elde edilmemiştir. Sonuç 3... PGO üçgeninin üreteçleri olan pq, ikilisi asal sayı ikilisi olabilmektedir. Bu duruma dair örnekler tablo 1 de mevuttur. Bu ikililerin sonlu mu, 51 sonsuz mu olduğunu ise q asal olmak üzere q ile q arasında daima bir asal olup olmadığı ile ilgilidir. Bu aralıkta daima asal sayı olup olmadığı ile ilgili bir bilgiye ulaşamadık. Şimdi PGO üçgeninin üreteçleri olan pq, ikilisi ikiz asallardan oluşabilir mi? Sorusuna evap arayalım. Eğer pq, ikilisi ikiz asallar ise p q olup 1 eşitsizliğinden q 51 q q q q q olmalıdır. Bu durumda 3 q olur. Sonuç q, 3 ten büyük bir asal ise ise q, q ikiz asal ikilisi bir PGO üreteidir. 13

14 . PRİMİTİF GEOMETRİK ORTA ÜÇGENİNDE AÇIORTAY, KENAR ORTAY VE YÜKSEKLİK BAĞINTILARI. 1. PGO Üçgeninin Kenarortay Uzunlukları Burada önelikle üçgenin kenarortay uzunlukları p ve q parametrelerine bağlı olarak elde edileek ardından kenarortay uzunluklarının rasyonel olup olamayaağı sorusuna evap aranaaktır. Kenarortay Teoreminden; V a b p q V p q V p q p q V p q p q olur. Benzer şekilde V q p q p a ve V p p q q b bağıntıları elde edilebilir. Şimdi kenarortay uzunluklarının rasyonel olup olamayaağına bakalım. V ifadesinin bir rasyonel sayı belirtmesi için p q p q ifadesi tam kare olmalıdır. O halde p q p q x olaak şekilde bir x tam sayısının olması gerekir. p ile q aralarında asal olduğundan ikisi de tek veya biri tek biri çift olmalıdır. i) p ile q tek sayılar olsun. Bu durumda Teorem.5 den p q 1mod16 p 1 9mod16 ve q 1 9mod16 olup q p 19mod16 olur. Bu durumda p q p q mod16 (*) olur., 1

15 Diğer taraftan p ile q tek olduğundan x de tek olmalıdır. Bu x 1 9mod16 olaaktır. Bu ise (*) ile çelişir. O halde p q p q tam kare olamaz. ii) p ile q dan biri tek biri çift olsun. Simetriden dolayı p tek q çift olsun. Teo- rem.5 den pq 0 mod16 olup p q p q 1mod16 0,1, 9 mod16 x olması ile çelişir. O halde alamaz. olur. V hiçbir zaman rasyonel değer Şimdi V a ve V b rasyonel olup olmayaağına bakalım. p ile q aralarında asal olduğundan ikisi de tek veya biri tek biri çift olmalıdır. i) p ile q tek sayılar olsun. Bu durumda Teorem.5 den p q 1mod q p q p 1 3 mod olur. Bu durumda Teorem.5 den q p q p tam kare olamaz. ii) p ile q dan biri tek biri çift olsun. Simetriden dolayı p tek q çift olsun. Bu du- rumda Teorem.5 den p 1mod ve 0mod q p q p 1 3 mod q olur. Bu durumda Teorem.5 den q p q p tam kare olamaz. O halde V a rasyonel değer alamaz. Benzer şekilde V nin de rasyonel değer alamayaağı gösterilebilir. Sonuç.1.1. Bir PGO üçgeninin kenar ortay uzunlukları rasyonel olamaz... PGO Üçgeninin Açıortay Bağıntıları Burada önelikle üçgenin açıortay uzunlukları p ve q parametrelerine bağlı olarak elde edileek ardından açıortay uzunluklarının rasyonel olup olamayaağı sorusuna evap aranaaktır. 15

16 Açıortay teoreminden; pq pq p q p q C 1 n p q p q p q p q p q p q olduğundan olmalıdır. pq nc p q p q p q p q p q pq p q (*) n C nin rasyonel olması için p q p q ifadesi tam kare olmalıdır. Bu ise Teorem.3 den dolayı mümkün değildir. Diğer taraftan üçgen eşitsizliğinden p q pq p q p q p q 3p q p q p q p q p q p q pq olur. p q ab (*) dan n Ha, b C pq ab olur. Açıortay teoreminden; 5 3 pq p q pq p A n pq pq q pq pq pq pq olduğundan n A pq q pq p q pq p p q pq q pq p q pq p p q olur. Benzer şekilde n B pq p pq q p pq q p q 16

17 bağıntıları elde edilir. n A nın rasyonel olabilmesi için pq q pq p q pq p ifadesi tam kare olmalıdır. p ile q aralarında asal olduğundan pq, q pq p ve q pq p ifadeleri aralarında asal olur. Bu durumda bu ifadelerin her biri Teorem.1 den dolayı tam kare olmalıdır. Di- ğer taraftan Teorem.3 den q pq p ifadesinin tam kare olmasını sağlayan pozitif p, q ikilisi yoktur. Dolayısı ile n A rasyonel olamaz. Benzer şekilde n B de rasyonel olamaz. Sonuç..1. ABC üçgeni P.G.O üçgeni ise n C rasyonel değer alamaz ve n C uzunluğu a ile b nin harmonik ortasından küçüktür. Ayrıa n A ve n B de rasyonel değer alamaz..3. PGO Üçgeninde Yükseklik Bağıntıları ABC, PGO üçgeni olsun. C den AB ye inilen dikme ayağı D ve BD AD pq x olsun. C x, p q B x D pq-x A CA AD CB BD p x q pq x p x q p q pqx x p q p q x olur. pq h CB x olduğundan h p q p q p pq 17

18 h p q p q p q p q p q pq p q p q 3p q p q olduğundan pq p q p q 3p q p q pq bağıntısını elde ederiz. h nin rasyonel olabilmesi için p q p q 3p q p q ifadesi tam kare olmalıdır. Önelikle p q p q ile 3p q p q ifadelerinin aralarında asal olduğunu gösterelim. p ile q aralarında asal olduğundan ikisi de tek ya da biri tek diğeri çift olmalıdır. Her iki durumda da p q p q ifadesi tek olaaktır. p q p q ile 3p q p q ifadelerinin en büyük ortak bölenine d diyelim. Bu durumda d tek olmalıdır. 3p q p q p q p q p q p q p q p q ifadesi d ile bölünmelidir. olduğundan p q p q ifadesi d ile bölündüğünden d p q olmalıdır. d tek olduğundan d p q olup p ile q aralarında asal olduğundan d p yada dq olmalıdır. d p ise d p q p q olduğundan dq olmalıdır. p ile q aralarında asal olduğundan d 1 olur. Bu durumda p q p q ile p q p q 3p q p q 3p q p q aralarında asal olmalıdır. O halde ifadesinin tam kare olması için p q p q ile 3p q p q tam kare olmalıdır. Diğer taraftan Teorem.3 den p q p q tam kare olamaz. Bu durumda h rasyonel olamaz. Sonuç.3.1. ABC, P.G.O üçgeni ise h rasyonel değer alamaz. 18

19 .. PGO Üçgeninde Alan Bağıntısı Buhholz & MaDougall (1999) çalışmasında tam sayı kenarlı ve kenarları geometrik dizi oluşturan üçgenlerin alan formülünü heron formülünü kullanarak bulmuş ve alanın rasyonel olamayaağını göstermişlerdir. Biz ise yukarıda bulduğumuz yükseklik bağıntısı yardımıyla alan bağıntısını bulup Buhholz & MaDougall ile aynı sonua ulaştık. Şimdi alan bağıntısını elde edelim. Üçgenin alanı S olmak üzere; 3 h pq p q p q p q p q S olduğundan pq S p q p q 3p q p q olur. Teorem.3 den P.G.O üçgeninin alanı da rasyonel olamaz. Kenar uzunlukları tam sayı olan üçgenin alanı irrasyonel olduğundan hiçbir yüksekliği rasyonel olamaz. Sonuç..1. ABC, PGO üçgeni ise yükseklikleri ve alanı irrasyoneldir..5. PGO Üçgeninin Açıları Arasındaki Bağıntılar Bu bölümde P.G.O üçgeninin açıları için alt ve üst sınırlar elde edilmeye çalışıldı. Ayrıa üçgenin dar veya geniş açılı olabilmesini sağlayan p, q değerleri bulunmaya çalışıldı. Kosinüs teoreminden a b osc ab p q p q osc pq 19

20 p, q için osc p q pq p q 3p q pq p q 3 osc..(1) olur. pq p q p q p q pq p q 3 3 olup (1) den pq 1 osc olmalıdır. Bu durumda 0 mc 60 olur. Sonuç ab şartını sağlayan P.G.O, ABC üçgeninde mc 60 eşitsizliği mevuttur. ABC üçgeninin eşkenar olması durumunda eşitlik durumu elde edilir. Kosinüs teoreminden q q p p os A olur. 3 pq Eğer A açısı geniş ise os A 0 q q p p pq 3 0 q p q p 0 q p 5p 0 q p 5p q p 5 p q 5 p p q 51 p 5 1 q p olmalıdır. Bu durumda 5 1 b a 51 b a bağıntısı olmalıdır. Sonuç.5.. ABC, PGO üçgeni olmak üzere; 0 mb b a 0

21 0 mb ba b eşitsizlikleri mevuttur..6. PGO Üçgeninin Alanının Alabileeği En Büyük Değer p q p q 3p q p q S olduğunu bulmuştuk. p q x y 3y x y alırsak AABC olur. x y3y x x xy 3y (*) dir. Diğer taraftan p q p q olduğundan x y olur. x y y p q x ve x y y x y y 3y x xy 3y 3y olur. (*) dan için eşitlik durumu elde edilir. x y3yx 3 S olur. p q 3 Sonuç.6.1. ABC, PGO üçgeni ise S eşitsizliği mevuttur. Eşitlik olması için üçgenin eşkenar olması gerekir. 5. k GEOMETRİK ORTA ÜÇGENİ Bu bölümde geometrik orta üçgeninin bir çeşit genelleşmesi olan k Geometrik orta üçgenini tanımlayıp kenarları arasındaki ilişkiyi vereeğiz. Tanım 5.1. p, q aralarında asal pozitif tam sayılar ve k Z olmak üzere bir ABC üçgeninin kenar uzunlukları p, q, kpqolan üçgene k geometrik orta üçgeni denir. Şimdi bu üçgenin kenarları arasındaki ilişkiyi elde edelim. 1

22 Genelliği bozmadan p q kabul edelim. Üçgen eşitsizliğinden i) p q kpq p q olmalıdır. Bu durumda p q olduğundan p q kpq p kpqq 0 ve 0 p kpq q eşitsizlik sitemini çözmeliyiz. Bu eşitsizliklerin her iki tarafı q ile bölünürse p p k 1 0 q q ve p p 0 k 1 q q p p k 1 0 q q olur. p k k 1 q p p 0 k 1 q q k k p olur. Bu iki eşitsizlik birleştirilirse q k k p k k eşitsizliği elde edilir. q Sonuç 5.1. ABC üçgeninin k geometrik orta üçgeni olabilmesi için k k p k k eşitsizliğinin sağlanması gerekir. q 6. Sonuçlar ve Tartışma Tarih boyuna çeşitli matematikçiler heron üçgenleri hakkında kapsamlı çalışmalar yapmışlardır. Heron üçgenlerinin bir alt gurubu olan aritmetik üçgenler hakkında da epey çalışma mevuttur. Anak kenarları tam sayı ve kenar uzunlukları geometrik dizi olan üçgenler heron üçgeni olmadığından hakkında fazla bir çalışma yapılmamıştır. Biz ise çalışmamızda bu üçgenlerin özelliklerini ele aldık. Tek bir parametre yardımıyla bu üçgenlerin elde edilebileeğini gösterdik. Fakat elde edilebileek üçgen sayısını formüle edemedik. Bu tip üçgenlerin kenar uzunlukları, yar-

23 dımı eleman uzunlukları ve açıları arasında bağıntılar elde edilmiş ayrıa yardımı eleman uzunlukları ile alanın rasyonel değer alamayaağı gösterilmiştir. Son olarak bu üçgenlerin bir genellemesi olan k geometrik orta üçgeni kavramı verilmiş ve bu üçgenin kenarları arasındaki ilişki elde edilmiştir. 3

24 7. KAYNAKLAR [1] Andreesu, T., Andria, D., 00, An Introdution to Diophantine Equations, GIL Publishing House p [] Buhholz, R. H. and MaDougall, J. A., 1999, Heron Quadrilaterals with Sides in Arithmeti Progression, Bull. Aus. Math. So., p [3] Darıyeri, M. 006., Heron Üçgenlerinin Bazı özellikleri Üzerine Bir Araştırma, Basılmamış Yüksek Lisans Tezi [] Erdoğan, M., Yılmaz, G., 008, Çözümlü problemlerle Soyut Cebir ve Sayılar Teorisi, Beykent Üniversitesi Yayınları [5] Eşen, T., 010, Açıları ve Kenarları Aritmetik, Geometrik ve Harmonik Dizi Oluşturan Üçgenler ile x 3y z Diophantine Denklemi Arasındaki İlişkiler Üzerine Bir Araştırma, Basılmamış yüksek lisans tezi [6] Gürlü, Ö., 003, Meraklısına Geometri, Zambak Yayınları [7] Kramer, A. V., Lua, F., 000, Some Remarks on Heron Triangles, Ata. Aad.Paed. Agriensis, Setio Mathematiae 7, p [8] Küpeli, S. 010., 100 Yılın Olimpiyat Sorularıyla Geometri, Altın nokta Yayınevi, İzmir [9] Zelator, K., 008, Triangle Angles and Sides in Progression and the Diophantine Equation x 3y z, arxiv: (pdf).

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI x13. ULUSAL MATEMATİK OLİMPİYATI - 005 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 1. AB = olmak üzere, A

Detaylı

TAKSİ DÜZLEMİNDE FINSLER-HADWIGER EŞİTSİZLİĞİ

TAKSİ DÜZLEMİNDE FINSLER-HADWIGER EŞİTSİZLİĞİ ÖZEL EGE LİSESİ KSİ DÜZLEMİNDE FINSLER-HDWIGER EŞİSİZLİĞİ HZIRLYN ÖĞRENCİ: Eray ÖZER DNIŞMN ÖĞREMEN: Gizem GÜNEL İZMİR 0 İÇİNDEKİLER. PROJENİN MCI... GİRİŞ............. YÖNEM.... 4. ÖN BİLGİLER..... 4

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır?

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır? Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994 Matematik Soruları ve Çözümleri 4.10 +.10 1. 4 10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 = 4 4 (40+

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

Ö.S.S. 1994. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 43. olduğuna göre a kaçtır?

Ö.S.S. 1994. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 43. olduğuna göre a kaçtır? Ö.S.S. 1994 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ 4.10 1. 4 10 +.10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 4 4 (40+ ).10 10 4 4 4 (98² 98²) 00.9.

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ ADAYIN ÞÝFRESÝ BURAYA YAPIÞTIR DEVLET OLGUNLUK SINAVI DEVLET SINAV MERKEZÝ MATEMATÝK - TEMEL SEVÝYE MATEMATÝK TEMEL SEVÝYE Testin Çözme Süresi: 180 dakika Haziran, 2009 yýlý BÝRÝNCÝ deðerlendiricinin þifresi

Detaylı

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI.

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI. Sayfa1 9. Ulusal serimya İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI 2011 Sayfa2 1. Bir ABCD konveks dörtgeninde AD 10 cm ise AB CB? m( Dˆ ) 90, ( ˆ) 150 0 0 m C ve m Aˆ m Bˆ ( ) ( ) olarak

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

Sıfırdan farklı a, b, c tam sayıları için aşağıdaki özellikler sağlanır.

Sıfırdan farklı a, b, c tam sayıları için aşağıdaki özellikler sağlanır. SAYILAR TEORİSİ 1 Bölünebilme Bölme Algoritması: Her a ve b 0 tam sayıları için a = qb + r ve 0 r < b olacak şekilde q ve r tam sayıları tek türlü belirlenebilir. r sayısı a nın b ile bölümünden elde edilen

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI 6. SINIF 5. SINIF TÜM KONULARI 1.ÜNİTE: Geometrik Şekiller 1) Verileri Düzenleme, Çokgenler ve Süsleme 2) Dörtgenler 3)

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

BÖLÜM IV. olsa r s(mod p) bulunur ki, bu mümkün değildir. Ayrıca bu sayı takımındaki hiçbir sayı p tarafından bölünmez.

BÖLÜM IV. olsa r s(mod p) bulunur ki, bu mümkün değildir. Ayrıca bu sayı takımındaki hiçbir sayı p tarafından bölünmez. BÖLÜM IV (KÜÇÜK FERMAT VE WİLSON TEOREMLERİ Teorem 4. (Fermat Teoremi F a olan bir asal sayı olsun. Bu durumda a (mod İsat: a sayısının a a a K ( a gibi ilk ( katından oluşan sayı takımını gözönüne alalım.

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI 3 201412-1

Ortak Akıl MATEMATİK DENEME SINAVI 3 201412-1 Ortak Akıl YGS MATEMATİK DENEME SINAVI 011-1 Ortak Akıl Adem ÇİL Ayhan YANAĞLIBAŞ Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN Kadir ALTINTAŞ Köksal YİĞİT

Detaylı

SAYILAR TEORÝSÝNE GÝRÝÞ

SAYILAR TEORÝSÝNE GÝRÝÞ OLÝMPÝK MATEMATÝK SERÝSÝ MATEMATÝK OLÝMPÝYATLARINA HAZIRLIK ÝÇÝN MERAKLISINA SAYILAR TEORÝSÝNE GÝRÝÞ ÖMER GÜRLÜ ALTIN NOKTA YAYINEVÝ ÝZMÝR - 2013 Copyright Altýn Nokta Basým Yayýn Daðýtým Biliþim ISBN

Detaylı

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5 1 14 ve 1 sayılarına tam bölünebilen üç basamaklı kaç farklı doğal sayı vardır? x = 14.a = 1b x= ekok(14, 1 ).k, (k pozitif tamsayı) x = 4.k x in üç basamaklı değerleri istendiğinden k =, 4, 5, 6, 7,,

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN

LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN Konu Anlatımlı Örnek Çözümlü Test Çözümlü Test Sorulu Karma Testli GEOMETRİ 1 Hazırlayan Erol GEDİKLİ Matematik

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi KAĞIT KATLAMA YOLUYLA KESİRLERİN BELİRLENMESİ Onur NURTAN Danışman Öğretmen: Mustafa YAZAGAN Özel Atacan Anadolu Lisesi Özet: Kare biçimindeki kağıdı tam iki eş parçaya ayıran kırışığına kağıdımızı katlayarak

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

2012 YGS MATEMATİK Soruları

2012 YGS MATEMATİK Soruları 01 YGS MATEMATİK Soruları 1. 10, 1, 0, 0, işleminin sonucu kaçtır? A) B), C) 6 D) 6, E) 7. + ABC 4 x 864 Yukarıda verilenlere göre, çarpma işleminin sonucu kaçtır? A) 8974 B) 907 C) 9164 D) 94 E) 98. 6

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

AB a c ~B D ZS= 6. Sekildeki açilar ger. çek ölçülerde çizil. seydi, asagidakilerden hangisi yanlis olurdu? ÜÇGENDE AÇi-KENAR BAGINTILARI (TEST - 1)

AB a c ~B D ZS= 6. Sekildeki açilar ger. çek ölçülerde çizil. seydi, asagidakilerden hangisi yanlis olurdu? ÜÇGENDE AÇi-KENAR BAGINTILARI (TEST - 1) G/NT/LR/ ÖLÜM -3 GEOMETRi SORU NKSI ÜÇGENE Çi-KENR GINTILRI (TEST - 1)...._...-...u u _. - _. _. -... - -- -.- u "' U"' u - --._----'u--- --- _u._-.. "- 1. m()=80,ii>ici ise x in alabileegi en büyük tamsayi

Detaylı

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde KPSS Genel Yetenek Genel Kültür MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2015 KPSS ye Pegem Yayınları ile hazırlanan adayların, 100'ün üzerinde soruyu kolaylıkla

Detaylı

SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde. Lise ve Ön Lisans Adayları İçin MATEMATİK

SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde. Lise ve Ön Lisans Adayları İçin MATEMATİK KPSS Genel Yetenek Genel Kültür Lise ve Ön Lisans Adayları İçin MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2014 KPSS ye Pegem Yayınları ile hazırlanan adayların,

Detaylı

X. Ulusal İlköğretim Matematik Olimpiyatı

X. Ulusal İlköğretim Matematik Olimpiyatı X. Ulusal İlköğretim Matematik Olimpiyatı B 1. Bir kentten diğerine giden bir otobüs, yolun ilk yarısını 40 km/saat, ikinci yarısını ise 60 km/saat hızla gittiyse, otobüsün ortalama hızı kaç km/saat olmuştur?

Detaylı

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun.

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun. 11. Cauchy Teoremi ve p-gruplar Bu bölümde Lagrange teoreminin tersinin doğru olduğu bir özel durumu inceleyeceğiz. Bu teorem Cauchy tarafından ispatlanmıştır. İlk olarak bu teoremi sonlu değişmeli gruplar

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 1 YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 RASYONEL SAYILAR KÜMESİ VE ÖZELLİKLERİ 07 BASİT EŞİTSİZLİKLER

Detaylı

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1 . Alanı 36 5 olan bir ABC ikizkenar üçgeninde ==2 ise bu üçgende B den AC ye inilen dikmenin ayağının C noktasına olan uzaklığı nedir? ) 2,8) 3) 3,2 ) 3,7 ) 4, 2. Ayrıt uzunlukları 4, 0 ve 4 5 olan dikdörtgenler

Detaylı

Test 16. 1. Teorem: a R ve a 1 ise 1 1. 4. İddia: 5 = 3 tür. 2. Teorem: x Z ve. Kanıt: Varsayalım ki, 1 olsun. a 1

Test 16. 1. Teorem: a R ve a 1 ise 1 1. 4. İddia: 5 = 3 tür. 2. Teorem: x Z ve. Kanıt: Varsayalım ki, 1 olsun. a 1 Test 6. Teorem: a R ve a ise a dir. Kanıt: Varsayalım ki, olsun. a a olduğundan a 0 dır. Bu durumda, eşitsizliğin yönü değişmeden, a a olur. Demek ki, a a dir. Fakat bu durum a hipotezi ile çelişmektedir.

Detaylı

Bu ders materyali 06.09.2015 23:17:19 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir.

Bu ders materyali 06.09.2015 23:17:19 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir. -- Bu ders materyali 06.09.05 :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından UYGULAMA-00 Cevap: x- -x- x- =0 denklemini sağlayan x değeri kaçtır? UYGULAMA-00 Cevap: x x x 5 + = + denklemini

Detaylı

17 ÞUBAT 2016 5. kontrol

17 ÞUBAT 2016 5. kontrol 17 ÞUBAT 2016 5. kontrol 3 puanlýk sorular 1. Tuna ve Coþkun un yaþlarý toplamý 23, Coþkun ve Ali nin yaþlarý toplamý 24 ve Tuna ve Ali nin yaþlarý toplamý 25 tir. En büyük olanýn yaþý kaçtýr? A) 10 B)

Detaylı

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A KDENİZ ÜNİVERSİTESİ 18. ULUSL NTLY MTEMTİK OLİMPİYTLRI BİRİNCİ ŞM SORULRI SINV TRİHİ VESTİ:30 MRT 2013 - Cumartesi 10.00-12.30 Bu sınav 25 sorudan oluşmaktadır vesınav süresi 150 dakikadır. SINVL İLGİLİ

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar 1. Kazanım : ir üçgenin iç açılarının ölçüleri toplamının 180, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği.

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

18 Sağ son örnek x 3 yerine 3 x yazılacak 20 5 Soru denkleminin reel köklerinin olacak

18 Sağ son örnek x 3 yerine 3 x yazılacak 20 5 Soru denkleminin reel köklerinin olacak MAT 1 Hata 73 1 C 135 8 A 137 7 D şıkkına parantez konacak 143 Sol üst örnek Sıkça yapılan yanlış ün son cümlesi O halde. 144 Son örnek tam yerine doğal 208 9 18 yerine 18 8 5 225 2 A 246 6 Doğru cevap:

Detaylı

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28)

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28) TEMEL KAVRAMLAR 6. a ve b birer do al say r. a b = 19 oldu una göre, a + b toplam (YANIT: 8) 1. ( 4) ( 1) 6 1 i leminin sonucu (YANIT: ). ( 6) ( 3) ( 4) ( 17) ( 5) :( 11) leminin sonucu (YANIT: 38) 7.

Detaylı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı Ertuğrul US 01.09.2014 MATEMATİK PROGRAMIM Program 6 aylık (24 haftalık) bir programdır. Konuların veriliş sırasına uyularak çalışılması

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR KASIM EKİM EYLÜL Ay Hafta D.Saat i 0 04 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE SÜRE ÖĞRENME ALANI ALT ÖĞRENME ALANI Örüntü Süslemeler si KAZANIMLAR.Doğru, çokgen

Detaylı

Yükseköğretime Geçiş Sınavı (Ygs) / 11 Nisan 2010. Matematik Soruları ve Çözümleri 12 E) 25

Yükseköğretime Geçiş Sınavı (Ygs) / 11 Nisan 2010. Matematik Soruları ve Çözümleri 12 E) 25 Yükseköğretime Geçiş Sınavı (Ygs) / Nisan 00 Matematik Soruları ve Çözümleri. 0, 0,0 0, işleminin sonucu kaçtır? A) B) 4 7 C) 0 8 D) E) Çözüm 0, 0,0 0, = 0,00 0,0 0, = 0,7 0, 000 7 7. = = 000 00 0... işleminin

Detaylı

KPSS GENEL YETENEK MATEMATİK & GEOMETRİ KONU ANLATIMLI SORU BANKASI

KPSS GENEL YETENEK MATEMATİK & GEOMETRİ KONU ANLATIMLI SORU BANKASI KPSS GENEL YETENEK MATEMATİK & GEOMETRİ KONU ANLATIMLI SORU BANKASI KPSS - 011 TÜM ADAYLAR İÇİN KAMU PERSONELİ SEÇME SINAVI KONU ANLATIMLI MODÜLER SET YAZAR Recep AKSOY EDİTÖR Murat CANLI YAYIN KOORDİNATÖRÜ

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

Örnek...1 : mx+3y+12=0 ve 2x 5y+3=0 doğruları para - lelse m kaçtır?

Örnek...1 : mx+3y+12=0 ve 2x 5y+3=0 doğruları para - lelse m kaçtır? İKİ DOĞRUNUN BİRBİRİNE GÖRE DURUMU DURUM 1 PARALEL DOĞRULAR ve doğruları paralel doğrular ise eğimleri eşittir. Yani / / m 1 =m 2 Ayr ıca : a 1 x+b 1 y+c 1 =0 =0} / / a 1 a 2 = b 1 c 1 c 2 Örnek...1 :

Detaylı

Teknik Resim TEKNİK BİLİMLER MESLEK YÜKSEKOKULU. 3. Geometrik Çizimler. Yrd. Doç. Dr. Garip GENÇ

Teknik Resim TEKNİK BİLİMLER MESLEK YÜKSEKOKULU. 3. Geometrik Çizimler. Yrd. Doç. Dr. Garip GENÇ TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim Genel Bilgi Teknik resimde bir şekli çizmek için çizim takımlarından faydalanılır. Çizilecek şekil üzerinde eşit bölüntüler, paralel doğrular, teğet birleşmeler,

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI -2014

ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI -2014 ÖZEL DÜŞŞFK LİSESİ SLİH ZEKİ V. MTEMTİK ŞTIM PJELEİ YIŞMSI -0 PJENİN DI PTLEMY TEEMİ VE UYGULMLI PJEYİ HZILYNL HLİL İHİM YZII MUHMMED ENİS ŞEN PJE DNIŞMNI DULGFU TŞKIN ÖZEL MÜÜVVET EVYP KLEJİ VE FEN LİSESİ

Detaylı

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir.

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir. SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon Tanım 2: Bir grubun kendi üzerine izomorfizmine otomorfizm, grubun kendi üzerine homomorfizmine endomorfizm Sadece birebir olan

Detaylı

SAYILARIN ASAL ÇARPANLARINA AYRILMASI

SAYILARIN ASAL ÇARPANLARINA AYRILMASI ASAL SAYILAR Asal sayılar, 1 ve kendisinden başka pozitif tam böleni olmayan 1' den büyük tamsayılardır. En küçük asal sayı, 2' dir. 2 asal sayısı dışında çift asal sayı yoktur. Yani, 2 sayısı dışındaki

Detaylı

BİR SAYININ ÖZÜ VE DÖRT İŞLEM

BİR SAYININ ÖZÜ VE DÖRT İŞLEM ÖZEL EGE LİSESİ BİR SAYININ ÖZÜ VE DÖRT İŞLEM HAZIRLAYAN ÖĞRENCİ: Sıla Avar DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 2012 İÇİNDEKİLER 1. PROJENİN AMACI.. 3 2. GİRİŞ... 3 3. YÖNTEM. 3 4. ÖN BİLGİLER... 3 5.

Detaylı

ASAL SAYILAR. www.unkapani.com.tr

ASAL SAYILAR. www.unkapani.com.tr ASAL SAYILAR ve kendisinden aşka pozitif öleni olmayan den üyük doğal sayılara asal sayı denir.,, 5, 7,,, 7, 9, sayıları irer asal sayıdır. En küçük asal sayı dir. den aşka çift asal sayı yoktur. den aşka

Detaylı

ÜÇ KENAR UZUNLUĞU BELLİ OLAN ÜÇGENLERDE İKİ BİLİNMEYENLİ DENKLEM UYGULAMALARI

ÜÇ KENAR UZUNLUĞU BELLİ OLAN ÜÇGENLERDE İKİ BİLİNMEYENLİ DENKLEM UYGULAMALARI PROJE RAPORU ÜÇ KENAR UZUNLUĞU BELLİ OLAN ÜÇGENLERDE İKİ BİLİNMEYENLİ DENKLEM UYGULAMALARI Geçmiştengünümüze Matematik anlaşılması zor bir bilim dalı olarak görülmüştür.oysa mantığını bir kez kavradığımızda

Detaylı

3. a 12 8 A) 4 2 B) 3 3 C) 4 D) 5 E) 6

3. a 12 8 A) 4 2 B) 3 3 C) 4 D) 5 E) 6 10,25 3,1 1. 0,5 0,2 işleminin sonuu kaçtır? ) 5 B) 5,5 C) 6 D) 6,5 E) 7 3. a 12 8 b 27 18 olduğuna göre, a b çarpımı kaçtır? ) 4 2 B) 3 3 C) 4 D) 5 E) 6 2. 2 3 6 4.6 2 3 3 2.3 işleminin sonuu kaçtır?

Detaylı

YGS MATEMATİK SORU BANKASI

YGS MATEMATİK SORU BANKASI YGS MATEMATİK SORU BANKASI Sebahattin ÖLMEZ www.limityayinlari.com Sınavlara Hazırlık Serisi YGS Matematik Soru Bankası ISBN: 978-60-48--9 Copyright Lmt Limit Yayınları Bu kitabın tüm hakları Lmt Limit

Detaylı

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 1 16 soruluk bir testte 5 ve 10 puanlık sorular bulunmaktadır. Soruların tamamı doğru cevaplandığında 100 puan alındığına göre testte

Detaylı

Sayılar ve Altın Oranı. Mahmut Kuzucuoğlu. 16 Ağustos 2015

Sayılar ve Altın Oranı. Mahmut Kuzucuoğlu. 16 Ağustos 2015 Sayılar ve Altın Oranı Mahmut Kuzucuoğlu Orta Doğu Teknik Üniversitesi Matematik Bölümü matmah@metu.edu.tr İlkyar-2015 16 Ağustos 2015 Ben kimim? Denizli nin Çal ilçesinin Ortaköy kasabasında 1958 yılında

Detaylı

ÖN SÖZ. Değerli Adaylar,

ÖN SÖZ. Değerli Adaylar, ÖN SÖZ eğerli daylar, Okul ve meslek yaşamının en önemli sınavlarından birine, Kamu Personeli Seçme Sınavı(KPSS) na hazırlanmaktasınız ve buradaki başarınız gelecekteki iş yaşamınızı ciddi şekilde etkileyecek.

Detaylı

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º ğlence başlıyor yor 1 º 0º üçgeninin alanı kaç birim karedir? ) ) 9 LN SI 1 LN SI 1 )1 ) üçgeninin alanı kaç birim karedir? üçgeninin alanı kaç birim karedir? ) ) ) ) ) ) üçgen, = birim, = birim, m() =

Detaylı

MESLEĞİM OKULLARI DERS REHBERLERİ 2015-2016 EĞİTİM YILI MSL106 MATEMATİK

MESLEĞİM OKULLARI DERS REHBERLERİ 2015-2016 EĞİTİM YILI MSL106 MATEMATİK MESLEĞİM OKULLARI DERS REHBERLERİ 2015-2016 EĞİTİM YILI MSL106 MATEMATİK Mesleğim Okulları na Hoşgeldiniz... İnsanlık tarihi boyunca ihtiyaçlar ekseninde mükemmeli aramak bizlerin en temel dürtülerinden

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ 15. OKULLAR ARASI MATEMATİK YARIŞMASI 9. SINIF ELEME SINAVI SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ 15. OKULLAR ARASI MATEMATİK YARIŞMASI 9. SINIF ELEME SINAVI SORULARI EGE BÖLGESİ 5. OKULLAR ARASI MATEMATİK YARIŞMASI. [( p q) q] [(p q) q ] bileşik önermesinin en sade şekli A) p B) p C) D) 0 E) q 4. A kümesinin eleman sayısı fazla; B kümesinin eleman sayısı eksik olsaydı

Detaylı

ÖZEL SAMANYOLU LİSELERİ

ÖZEL SAMANYOLU LİSELERİ ÖZEL SAMANYOLU LİSELERİ 8. İLKÖĞRETİM MATEMATİK YARIŞMASI 31 MART 2012 A KİTAPÇIĞI Bu sınav çoktan seçmeli 40 Test sorusundan oluşmaktadır. Süresi 150 dakikadır. Sınavla İlgili Uyarılar Cevap kağıdınıza,

Detaylı

10. SINIF GEOMETRİ KONU ÖZETİ

10. SINIF GEOMETRİ KONU ÖZETİ 2012 10. SINIF GEOMETRİ KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni 1. ÜNİTE: DÜZLEM GEOMETRİDE TEMEL ELEMANLAR VE İSPAT BİÇİMLERI Temel Postulatlar İspatlanamayan ve ispatına gerek duyulmayan ancak doğru

Detaylı

15. Bağıntılara Devam:

15. Bağıntılara Devam: 15. Bağıntılara Devam: Yerel Bağıntılardan Örnekler: Doğal sayılar kümesi üzerinde bir küçüğüdür (< 1 ) bağıntısı: < 1 {(x, x+1) x N} {(0,1), (1, 2), } a< 1 b yazıldığında, a doğal sayılarda bir küçüktür

Detaylı

Meslek Yüksek Okulları İçin UYGULAMALI MATEMATİK. İstanbul, 2009

Meslek Yüksek Okulları İçin UYGULAMALI MATEMATİK. İstanbul, 2009 i Meslek Yüksek Okulları İçin UYGULAMALI MATEMATİK Yrd.Doç.Dr. Kamil TEMİZYÜREK Beykent Üniversitesi Öğretim Üyesi Yrd.Doç.Dr. Nurdan ÇOLAKOĞLU Beykent Üniversitesi Öğretim Üyesi İstanbul, 2009 ii Yay

Detaylı

2012 YGS MATEMATİK SORU VE ÇÖZÜMLERİ. b 27 18. 3. a 12 8 A) 4 2 B) 3 3 C) 4 D) 5 E) 6. Çözüm : Cevap : E. 4. x ve y birer gerçel sayı olmak üzere,

2012 YGS MATEMATİK SORU VE ÇÖZÜMLERİ. b 27 18. 3. a 12 8 A) 4 2 B) 3 3 C) 4 D) 5 E) 6. Çözüm : Cevap : E. 4. x ve y birer gerçel sayı olmak üzere, 01 YGS MATEMATİK SORU VE ÇÖZÜMLERİ 1. 10, 5,1 0,5 0, işleminin sonucu kaçtır? A) 5 B) 5,5 C) 6 D) 6,5 E) 7. a 1 8 b 7 18 olduğuna göre a b çarpımı kaçtır? A) 4 B) C) 4 D) 5 E) 6 10, 5,1 105 1 41 1 5 0,

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

barisayhanyayinlari.com

barisayhanyayinlari.com YGS MATEMATİK KONU ANLATIM FASİKÜLLERİ SERİSİ 1 ISBN 978-605-84147-0-9 Baskı Tarihi Ağustos 015 Baskı Yeri: İstanbul YAYINLARI İletişim tel: (538) 90 50 19 barisayhanyayinlari.com Benim için her şey bir

Detaylı

Bu ders materyali 22.05.2015 09:35:42 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir.

Bu ders materyali 22.05.2015 09:35:42 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir. -1- Bu ders materyali.05.015 09:35:4 tarihinde matematik öğretmeni Ömer SENCAR tarafından SAYI KÜMESİ TAMAMLAYARAK BÖLÜNEBİLME KURALLARINI UYGULAMA SORU-1) "Rakamları kalansız bölünebilen sayılara TEKİN

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

SİDRE 2000 ORTAOKULU 2014 2015 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI

SİDRE 2000 ORTAOKULU 2014 2015 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI -6.09.0 DÖNÜŞÜM Sİ 5-9.09.0 ÖRÜNTÜ VE SÜSLEMELER SİDRE 000 ORTAOKULU 0 05 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI,. Doğru, çokgen ve çember modellerinden örüntüler

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 19 Haziran 2010. Geometri Soruları ve Çözümleri. ABC bir üçgen CA = CD. m(acd) = m(dcb) m(bac) = 80.

Lisans Yerleştirme Sınavı 1 (Lys 1) / 19 Haziran 2010. Geometri Soruları ve Çözümleri. ABC bir üçgen CA = CD. m(acd) = m(dcb) m(bac) = 80. Lisans Yerleştirme Sınavı (Lys ) / 9 Haziran 00 Geometri Soruları ve Çözümleri. ABC bir üçgen CA = CD m(acd) = m(dcb) m(bac) = 80 m(abc) = x Yukarıdaki verilere göre x kaç derecedir? A) 40 B) 45 C) 50

Detaylı

6. Rakamları farklı, iki basamaklı farklı beş doğal sayının. 7. A = 7 + 11 + 15 + 19 + + 99 veriliyor.

6. Rakamları farklı, iki basamaklı farklı beş doğal sayının. 7. A = 7 + 11 + 15 + 19 + + 99 veriliyor. Bölüm: Doğal Sayılar ve Tamsayılar Test: Temel Kavramlar. abc ve cba üç basamaklı doğal sayılardır. abc cba = 97 olduğuna göre, abc biçiminde yazılabilecek en küçük doğal sayının rakamları toplamı A) B)

Detaylı

sözel geometri soruları

sözel geometri soruları YAYINLARI sözel geometri soruları LYS Konu Testi: 01 1. Bir üçgenin bir iç aç s n n ölçüsü di er iki iç aç s n n ölçüleri toplam na eflittir. Bu üçgen için afla dakilerden hangisi kesinlikle do rudur?

Detaylı

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I Üniversite Hazırlık / YGS Kolay Temel Matematik 0 KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I. 8 ( 3 + ) A) 7 B) 8 C) 9 D) 0 E) 6. 3! 3 ( 3 3)": ( 3) A) B) 0 C) D) E) 3. 7 3. + 5 A) 6 B) 7 C) 8 D) 0

Detaylı

GEOMETRİ. 1.1 Benzer Üçgenler. Gösterimler:

GEOMETRİ. 1.1 Benzer Üçgenler. Gösterimler: GEOMETRİ 1 Üçgenler Gösterimler: Bir ABC üçgeni için aşağıdaki gösterimleri kullanacağız: Kenar uzunlukları: BC = a, CA = b, AB = c Açılar: Â, ˆB, Ĉ (Trigonometrik ifadelerde açı işareti kullanılmayacak.)

Detaylı

2013-2014 ATAKÖY CUMHURİYET ANADOLU LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI

2013-2014 ATAKÖY CUMHURİYET ANADOLU LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI 0-0 ATAKÖY CUMHURİYET ANADOLU LİSESİ 9. SINIF MATEMATİK İ YILLIK PLANI Temel Kavramlar 9... Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler. 6 EYLÜL 0 EYLÜL Temel Kavramlar

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ MODÜLER ARİTMETİK

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ MODÜLER ARİTMETİK ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ MODÜLER ARİTMETİK ÇANAKKALE 2012 ÖNSÖZ Bu kitap Çanakkale Onsekiz Mart Üniversitesi Matematik Bölümünde lisans dersi olarak Cebirden

Detaylı

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER YILLAR 00 00 00 00 00 00 007 008 009 00 ÖSS-YGS - - - - - - - - BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER a,b R ve a 0 olmak üzere ab=0 şeklindeki denklemlere Birinci dereceden bir bilinmeyenli denklemler

Detaylı

Ar tık Matematiği Çok Seveceksiniz!

Ar tık Matematiği Çok Seveceksiniz! Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir. BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı

Detaylı

TAM DEĞER ARDIŞIK TOPLAMLAR

TAM DEĞER ARDIŞIK TOPLAMLAR ÖZEL EGE LİSESİ TAM DEĞER VE ARDIŞIK TOPLAMLAR HAZIRLAYAN ÖĞRENCİ: Tilbe GÖKÇEL DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 01 İÇİNDEKİLER 1. PROJENİN AMACI.... GİRİŞ..YÖNTEM. ÖN BİLGİLER.. 5.ARDIŞIK TOPLAMLARIN

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

İLKÖĞRETİM MATEMATİK SOYUT CEBİR LİNEER CEBİR

İLKÖĞRETİM MATEMATİK SOYUT CEBİR LİNEER CEBİR ÖABT 205 Soruları yakalayan komisyon tarafından hazırlanmıştır. ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ÖABT İLKÖĞRETİM MATEMATİK SOYUT CEBİR LİNEER CEBİR Konu Anlatımı Özgün Sorular Ayrıntılı Çözümler Test Stratejileri

Detaylı

ÖZEL SERVERGAZİ LİSELERİ

ÖZEL SERVERGAZİ LİSELERİ S E R İ M Y A ÖZEL SERVERGAZİ LİSELERİ VII. İ L K Ö Ğ R E T İ M O K U L L A R I A R A S I M A T E M A T İ K Y A R I Ş M A S I AÇIKLAMALAR Bu sınav çoktan seçmeli 35 ve 3 klasik sorudan oluşmaktadır. Sınav

Detaylı

Ossmat.com Matematik-Fizik-Kimya-Biyoloji Hakkında Herşey (ana sayfaya git)

Ossmat.com Matematik-Fizik-Kimya-Biyoloji Hakkında Herşey (ana sayfaya git) Facebook Fun Sayfamız Twitter Sayfamız Ossmat.com Matematik-Fizik-Kimya-Biyoloji Hakkında Herşey (ana sayfaya git) (adsbygoogle = window.adsbygoogle []).push({}); Çıkmış Soru Çözümlerİ Çözümleri Matematik

Detaylı

+. = (12 - ).12 = 12.12 -.12 = 144 1 = 143. b a b. a - = 3 ab 1 = 3b. b - = 12 ab 1 = 12a. Đşleminin sonucu kaçtır? + = 230 23 + = 10 + 23 = 33 : 3

+. = (12 - ).12 = 12.12 -.12 = 144 1 = 143. b a b. a - = 3 ab 1 = 3b. b - = 12 ab 1 = 12a. Đşleminin sonucu kaçtır? + = 230 23 + = 10 + 23 = 33 : 3 Ö.S.S. 000 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ., 0,, + Đşleminin sonucu kaçtır? 0, A) B) C) D) E) Çözüm, 0,, + 0, 0 + 0 +. + : Đşleminin sonucu kaçtır? A) B) C) D) E) Çözüm + : ( ) +. ( - ).. -. b a. a - ve

Detaylı

Şekildeki gibi yarıçapları 1 cm olan üç çember birbirine teğettir. Bu çemberler arasındaki a- lan kaç cm 2 dir? A) π. E) π+ 2 3. Çözüm: üçgendir. 2.

Şekildeki gibi yarıçapları 1 cm olan üç çember birbirine teğettir. Bu çemberler arasındaki a- lan kaç cm 2 dir? A) π. E) π+ 2 3. Çözüm: üçgendir. 2. . + - + + - x y x y x y x y ifadesi aşağıdakilerden hangisine eşittir? ) - B) - C) - x y x y x y D) - E ) 5 - x y x y + - + + - 5 - x y x y x y x y x y. Verilen şekilde açıların ölçüleri verilmiştir. En

Detaylı

4. BÖLÜM GEOMETRİK ÇİZİMLER

4. BÖLÜM GEOMETRİK ÇİZİMLER 4. ÖLÜM GEOMETRİK ÇİZİMLER MHN 113 Teknik Resim ve Tasarı Geometri 2 4. GEOMETRİK ÇİZİMLER 4.1. ir doğruyu istenilen sayıda eşit parçalara bölmek 1. - doğrusunun bir ucundan herhangi bir açıda yardımcı

Detaylı

NAPOLEON PROBLEMİNE FARKLI BİR BAKIŞ

NAPOLEON PROBLEMİNE FARKLI BİR BAKIŞ ÖZEL EGE LİSESİ NAPOLEON PROBLEMİNE FARKLI BİR BAKIŞ HAZIRLAYAN ÖĞRENCİLER: Fatma Gizem DEMİRCİ Hasan Atakan İŞBİLİR DANIŞMAN ÖĞRETMEN: Gülşah ARACIOĞLU İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI... 3 2.

Detaylı