Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi"

Transkript

1 Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi 1

2 Ana bileşenler dönüşümü 2

3 Yöntem, minimum korelasyonlu bilgileri sıkıştırarak veri grubu hakkında maksimum bilginin çıkarılmasını sağladığı için, çok kanallı verilere görsel yorumlama veya sınıflandırma öncesi uygulandığında, verilerden bilgi çıkarılmasını kolaylaştırmaktadır. Dönüşümde, uydu görüntülerindeki parlaklık değerleri, yeni bir koordinat sisteminde yeniden hesaplanır. n kanallı orijinal veri dizisinde mevcut olan tüm bilgiler n den daha az sayıda ki yeni kanallara veya bileşenlere sıkıştırılır. Elde edilen ana bileşen verileri,orijinal veri değerlerinin basit bir lineer kombinasyonudur. 3

4 Spektral Dönüşümler Ana Bileşen Dönüşümü Ana bileşen dönüşümünde amaç, bilgi tekrarı olmayan korelasyonsuz (birbirine ortogonal) bileşenler elde etmektir. Elde edilen bileşenlerin bağımsız olmaları, orijinal verinin çok boyutlu Normal (Gauss) dağılımına uygun olmasına bağlıdır. Dönüşüm sonucu, orijinal bantların lineer bir kombinasyonudur:

5 Spektral Dönüşümler Ana Bileşen Dönüşümü Ana bileşenler, büyük varyans değerine sahip bileşenden küçük varyanslı bileşene doğru sıralanır. Böylece en büyük varyans (veri değişkenliği) 1. ana bileşende ve daha sonra 2. ana bileşende olacak şekilde devam eder. Genellikle bu işlem sonucunda tüm ana bileşenler yerine toplamda veri değişkenliğinin yaklaşık %90-95 lik kısmını içeren ana bileşenler dikkate alınarak veri boyutunda etkin indirgeme sağlanır. 5

6 Diğer bir ifade ile görüntüyü oluşturan piksellerin temsil ettikleri coğrafi alanların arasındaki uzaklıklar, görüntüde uniform olmayan bir şekilde hatalı olarak gösterilir. Bunun sonucu cisimlerin şekil, büyüklük ve konum gibi özellikleri görüntü düzleminde bozulur. Uydu görüntü verilerinin bu distorsiyonlar için düzeltilerek bir harita projeksiyon sistemiyle tutarlı hale getirilmesi işlemine rektifikasyon adı verilir. 6

7 Geometrik Dönüşüm-Rektifikasyon Geometrik distorsiyonların görüntünün bütününde aynı anda giderilmesinde kullanılan genel olarak iki yaklaşım söz konusudur: 1. yaklaşım: Görüntünün piksel piksel topoğrafik distorsiyonları düzeltilerek, harita gibi ortografik izdüşüm özelliğine sahip bir duruma getirilmesi işlemin olan ortorektifikasyon dur sistematik bir yaklaşım distorsiyon düzeltmeleri distorsiyonun türü ve büyüklüğünün modellenmesiyle hesaplanır. Bu yaklaşım distorsiyonun tipi (örn. uydu konumu, durumu, tarama açısı, Dünya nın dönüşü,bakış oranı, panoramik etki, vb.) iyi karakterize edilebildiğinde çok etkili olmaktadır. Topoğrafik rölyefe bağlı geometrik distorsiyonların düzeltilmesi için yeryüzünün Dijital Yükseklik Modeli gereklidir.

8 Geometrik Dönüşüm-Rektifikasyon 2. yaklaşım: İkinci yaklaşımda distorsiyonlu görüntüdeki piksellerin koordinatları ile bunların karşılık geldiği arazideki koordinatları arasında (harita yardımıyla) matematiksel bağlantı kurulur. distorsiyonun tipi ve kaynağı hakkında herhangi bir bilgiye gerek olmaksızın görüntü geometrisi düzeltilir. platformdan bağımsız ve ilk etapta en çok tercih edilen bir yaklaşımdır. Bu matematiksel ilişkilendirme yaklaşımı distorsiyonların fiziksel modellendiği birinci yaklaşımla birlikte hibrit (melez) olarak da kullanılabilir. Birinci yaklaşımla algılayıcı, uydu platformu ve yeryüzü kaynaklı distorsiyonlar düzeltildikten sonra geriye kalan artık distorsiyonlar ikinci yaklaşımla düzeltilebilir.

9 9

10 10

11 Görüntü Zenginleştirme Görüntü zenginleştirmede amaç; Görsel analiz için görüntülerin algılanabilirliğini veya yorumlanabilirliğini arttırmak veya diğer otomatik görüntü işleme tekniklerine daha iyi girdi görüntüsü sağlamaktır. Bu amaca yönelik olarak Spektral Mekânsal dönüşümler kullanılmaktadır.

12 Görüntü Zenginleştirme Mekânsal Dönüşümler Mekânsal dönüşümler, uzaktan algılama görüntülerindeki bilgiyi çıkartmak veya değiştirmek için uygulanırlar. En yaygın dönüşüm uygulaması mekânsal filtrelemedir. Mekânsal filtreleme yöntemleri görüntü içindeki bazı özellikleri bu özelliklerin mekânsal frekanslarına dayanarak vurgulamak veya yok etmek için kullanılır. Mekânsal frekans, görüntünün belirli bir alanına ait yansıtım değerlerindeki değişim oranına karşılık gelen doku bilgisiyle belirlenir. Değişim oranı fazla olan bir bölge kaba dokulu özellik göstermekte olup yüksek mekânsal frekansa sahiptir.

13 Görüntü Zenginleştirme Mekânsal Dönüşümler Filtreleme görüntü üzerinde bir filtre varmış gibi düşünüp her piksel değerinin yeniden hesaplanmasıdır. Filtreleme işleminin amaçları netleştirme nokta yada çizgisel bozuklukları giderme belirli ayrıntıları ortaya çıkarma görüntüyü yumuşatma kenar keskinleştirme veya kenar bulma gibi işlemler gerçekleştirilir.

14 Uzaysal alan (spatial domain) görüntü düzleminde doğrudan piksellere uygulanır g(x,y) = T[f(x,y)] f(x,y): giriş görüntüsü g(x,y):işlenmiş görüntü T : tanımlanan operatör 14

15 En yaygın kullanılan mekânsal filtreleme yöntemi, belirli bir genişliğe sahip hareketli pencere (kernel) kullanımıdır. örneğin 3 x 3, 5 x 5, 7 x 7,..., vb. 15

16 Filtreler (mask) NxN boyutunda Piksel Piksel dönüşümü Komşuluğa bağlı lokal operatörlerdir Lineer ve lineer olmayan 16

17 Görüntü Zenginleştirme Mekânsal Dönüşümler

18 Görüntü Zenginleştirme Mekânsal Dönüşümler Her bir piksel için gezdirilen bu pencerenin ağırlık değerleriyle eşleştirildiği lokal görüntü parlaklık değerleri karşılıklı çarpılır ve bu çarpımlar toplanır. Elde edilen sonuç pencere merkezindeki piksele yeni değer olarak atanır. Daha sonra bu pencere satır veya sütün yönünde 1 piksel ötelenir. Bu öteleme ve aritmetik işlemlerin bütününe konvolüsyon denir.

19 Filtre boyutları 3x3,5x5,7x7,9x9,11x11 şeklinde olabilir. Filtre matrisi tanımlandığı amaca yönelik olarak işleme alınır Yukarıdaki verilen filtre matrisi ile görüntüyü filtrelemek istediğimizde bu matrisi tüm görüntü üzerinde 3x3 lük pikseller üzerinden uygularız. 19

20 i-1,j-1 i,j-1 i+1,j-1 i-1,j i,j i+1,j i-1,j+1 i,j+1 i+1,j+1 g (i,j)=(-1*g i,j-1 )+(-1* g i-1,j )+(5* g i,j )+(-1* g i+1,j )+(-1* g i,j+1 )olur. Örneğin 1,1 koordinatlı pikselin filtrelenmiş değerini bulmak istersek: g 1,1 = * =96 benzer şekilde g 4,5 in filtrelenmiş değerini bulmak istersek: g 4,5 = * =136 20

21 Görüntü Zenginleştirme Mekânsal Dönüşümler Pencerenin ağırlık değerleri değiştirilerek görüntüdeki mekânsal özellikleri vurgulayan veya azaltan filtreler oluşturulur. Yansıtım değeri değişiminin az olduğu düşük mekânsal frekansların vurgulanıp yüksek frekanslı detayların zayıflatılmak istendiği uygulamalarda Alçak Geçirgenli filtrelerin kullanımı uygundur. Tam tersi durumda ise Yüksek Geçirgenli filtre kullanılır.

22 Frekans alan yönteminde (frequency domain) görüntüler önce frekans alana dönüştürülür Fourier dönüşümü İyileştirme işleminden sonra ters fourier uygulanarak sonuç görüntü elde edilir. Fourier dönüşümü sonucunda görüntüde yüksek frekanslar kenarlarda, alçak frekanslar ise ortada toplanır. 22

23 Görüntü Zenginleştirme Mekânsal Dönüşümler Alçak geçirgenli filtreler (Low Pass Filter) görüntüyü yumuşatırken (ortalamda bilgi muhafaza edilir), Yüksek geçirgenli (High Pass Filter) filtreler görüntünün ortalama bilgisini zayıflatan bir etkiye sahiptir. Yaygın kullanımda alçak geçirgenli filtrenin ağırlıklarının toplamı 1, yüksek geçirgenli filtrenin ağırlıklarının toplamı ise 0 olacak şekilde ağırlıklandırma yapılır. Ancak yüksek geçirgenli filtrelemede bu genellemenin dışında kalan farklı kernel çeşitleri de kullanılmaktadır.

24 Alçak geçirgenli filtreler büyük homojen alanlarda benzer tonları vurgulamak ve Küçük detayları gidermek için (yüksek frekanslı gri değerleri düzleştirir) Sonuç görüntü pürüzsüz, keskin olmayan bir görüntüdür Lineer germe Alçak geçirgenli filtre 24

25 HPF belli bir frekanstan büyük frekansa ait bilgileri serbest bırakarak diğerlerini durduran filtredir Şeklin merkezindeki frekansları süzerken Kenarlardaki yüksek frekansların geçişine izin vermektedir Kontrast ve kenar belirginliğini artırır 25

26 Görüntü Zenginleştirme Mekânsal Dönüşümler Alçak ve yüksek geçirgenli filtreleme için kullanılan 3 x 3 kernel örnekleri;

27 Görüntü Zenginleştirme Mekânsal Dönüşümler Örnek/ Alçak geçirgenli filtre şeklinde verilen 8bit lik bir görüntü parçasının tam merkezindeki 50 parlaklık değerinin alçak geçirgenli bir filtreyle filtrelenmiş değeri; Bu sonuç 14 sayısına yuvarlanarak merkezdeki pikselin yeni parlaklık değeri bulunur. Filtreleme sonucunda orjinal piksel değeri (50) azalarak yeni elde edilen değer (14) ile görüntü yumuşatılır. Diğer bir ifade ile sonuç görüntüsü daha düşük mekânsal frekansa (penceredeki diğer piksel değerlerine benzer) sahip olur.

28 3x3 alçak geçirgenli 7x7 alçak geçirgenli 21x21 alçak geçirgenli 28

29 Görüntü Zenginleştirme Mekânsal Dönüşümler Örnek/ Yüksek geçirgenli filtre Aynı görüntü parçasının tam merkezindeki 50 parlaklık değerinin yukarıda solda verilen yüksek geçirgenli kenar saptayıcı filtre ile filtrelenmiş değeri; (10 x x x x x x x x x 0)= 160 Filtreleme sonucunda orjinal piksel değerinin (50) penceredeki diğer piksel değerlerine göre mekânsal frekansı arttırılarak yeni elde edilen değer (160) ile görüntüdeki yüksek frekans zenginleştirilir.

30 Görüntü Zenginleştirme Mekânsal Dönüşümler Landsat TM kırmızı bantın 5 x 5 boyutlu alçak ve yüksek geçirgenli filtreme ile elde edilen konvolüsyon sonuçları verilmektedir (a) Kırmızı bant görüntüsü (b) Alçak geçirgenli filtreme (c) Yüksek geçirgenli filtreme

31 Görüntü Zenginleştirme Mekânsal Dönüşümler Bu filtrelerden başka Istatistiksel Morfolojik Gradyen ölçek-mekan Filtreleri gibi daha bir çok farklı filtre çeşidi vardır.

32 Kenar Çıkartma Filtreleri Kenarlar, piksellerin parlaklık fonksiyonlarının aniden değiştiği yerlerdir. En yaygın kullanılan kenar belirleme algoritmaları: Roberts Prewitt Sobel Canny

33 Görüntü Gradyenti f(x,y) sürekli fonksiyonun gradyenti bir vektördür ve vektörün büyüklüğü vektörün doğrultusu boyunca her bir birimdeki değişikliğin büyüklüğünü ifade eder. f(x,y) fonksiyonunun 1. derece türevidir, lineer filtredir Ortadaki görüntü x yönündeki granyent: görüntüde yatay x yondeki yoğunluk değişimini gösterir. Gri değerler küçük, siyah yada beyza pikseller büyük gradyente sahiptir. 33

34 Roberts Filtresi Dört element kullanılır, lineer olmayan filtre Bu filtre iki köşegen yönünde kenar tarar. Kernel matrisi şöyledir: [1,1,0;1,0,-1;0,-1,-1] veya [2,1,0;1,0,-1;0,-1,-2]

35 Sobel Filtresi Sobel operatörü yatay ve düşey yönde keskinlikleri yakalar. 3x3 lük pencere alanına uygulanır Eksenler üzerindeki piksellere daha çok ağırlık verir. Lineer olmayan filtre

36 NDK%3A-Part-2 36

37 Roberts operator Sobel operator 37

38 Prewitt Filtresi Bu filtrede sobel filtresi gibi düşey ve yatay keskinlik yakalar. Sabit sayı 2 yerine 1 kullanılır 3x3 lük pencere alanına uygulanır Dikey ve yatay yönlerde ayrı eğimleri hesaplar Kernel matrisi sobelden farklıdır. Matrsin dizimi şöyledir: [1,0,-1;1,0,-1;1,0,-1] veya [1,1,1;0,0,0;-1,-1,-1].

39 39

40 Canny Kenar Belirleme Algoritması Kenar bulmada son derece etkin bir algoritmadır. Önce görüntüdeki gürültü bir sigma değerine göre üretilen Gaussian çekirdekle konvolusyonu alınarak azaltılır. Daha sonra, gradyent operatörü uygulanarak, kenar gradyent büyüklüğü ve yönü hesaplanır. Kenarlar, non maxima baskılama uygulanarak inceltilir. Son olarak görüntü, ikili eşikleme uygulanarak istenmeyen ayrıntılardan arındırılır.

41 41

42 42

43 Log ve Laplace Filtresi Log Filtresi :Bu filtreye Marr-Hildreth (Laplacian of Gaussian LoG) algoritması denir. Gaussion filtresine Laplası alınarak işlem yapar. Laplace Filtresi Laplace operatörü her yöndeki keskinleştirme yapmaya yarar. f(x,y) fonksiyonunun 2. derece türevidir

44 Laplace Operatörü Sobel operatörü yatay ve düşey yönde keskinlikleri yakalamayı sağlarken Laplace operatörü her yönde keskinleştirme yapmaya yarar

45 Bir görüntü Laplace filtresi ile konvolüsyon yapılır ve orijinal görüntüden çıkartılırsa keskinleştirme operatörü elde edilir. 45

46 46

47 47

48 Ortalama değer filtresi Görüntüdeki piksel değerleri yerine piksellerin komşu pikseller ile olan ortalaması alınarak değerlerin yeniden hesaplanmasıdır. Görüntüde gri değerler arasındaki keskin geçişler azalır, kenarlarda bulanıklaşma (blur) görülür. 48

49 49

50 Ham görüntü 3x3 5x5 7x7 15x15 25x25 50

51 Medyan/ortanca filtresi Gürültü azaltmak için kullanılan lineer olmayan bir yöntemdir Kenar bilgisini korurken rastgele gürültüleri giderir Komşuluk ilişkileri göz önüne alınır Salt & Pepper etkisinin giderilmesinde kullanılır

52 52

53 Mod filtresi Filtre çerçevesinin kapladığı alanda bulunan görüntü piksellerinin gri değerlerinin modu alınarak yeni değer belirlenir

54 Gauss filtresi Ortalama filtresinin ağırlıklandırılmış Gauss dağılımlı gelişmiş bir türüdür = g, x ve y koordinatlarındaki Gauss fonksiyonu σ ise Gauss fonksiyonunun keskinliğini ya da yumuşaklığını belirleyecek olan Gauss dağılımının standart sapma değeridir. h 54

55 ORNEK CS474/674 - Prof. Bebis 55

56 56

57 57

58 Morfolojik filtreler Matematiksel morfoloji geometrik yapılar ile uğraşmaktadır Görüntülerdeki objeleri görüntünün diğer bölgelerinden ayırt etmek için kullanılmaktadır. İkili görüntüler üzerinde uygulanan yöntem, daha sonra gri düzeyli görüntüler için de geliştirilmiştir 58

59 Topolojik ve geometrik olarak Büyüklük, Şekil, İç ve dış bükeylik, Bağımlılık, Uzaklık, Ayrıklık, birleşiklik gibi devamlılık ve boşluk kavramlarını ilgilendiren konuları karakterize etmek

60 En çok kullanılan morfolojik operatörler: Genleşme/Genişleme (dilation) Aşınma (erosion) Açınım (opening) Kapanım (closing) 60

61 Morfolojinin temel amacı, daha önceden belirlenmiş bir piksel grubunu görüntü üzerinde gezdirip, ne kadarının uyduğu veya uymadığı durumunu incelemektir Bunların bir merkez noktası bulunmakta olup, işlenecek resmin her bir pikseli bu noktaya oturtularak işlem yapılmaktadır 61

62 Genişleme ile görüntü içerisindeki objeler büyür veya kalınlaşır. Aşınmada ise tam tersi incelme veya büzülme olur. Operatörlerin etkileri yapıtaşı elemanının yapısına veya büyüklüğüne bağlıdır. Aşınma ve genişlemenin birbiri ardına kullanılması ile açılma (opening) ve kapanma (closing) denilen üst seviye operatörler oluşturulur. 62

63 Genişleme operatörünün kullanılması 63

64 Aşınma işleminde, yapıtaşı elemanının görüntü üzerindeki kısım ile tamamen uyuşması durumunda, yapıtaşı elemanının merkez noktası dışındaki yerler arka plan halini alır. Aşınma operatörünün kullanılması 64

65 Orijinal görüntü Genleşmiş görüntü Aşınmış görüntü Hedef boşluk belirginleştirme ve kapatma

66 Orijinal görüntü Genleşmiş görüntü Aşınmış görüntü original dilation closing

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2016-2017 Öğretim Yılı Bahar Dönemi 1 Ana bileşenler dönüşümü 2 Yöntem, minimum korelasyonlu bilgileri sıkıştırarak veri grubu hakkında maksimum

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Görüntü Zenginleştirme Spektral Dönüşümler Spektral dönüşümler Kontrast zenginleştirme Doğrusal/Lineer

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 6 Kenar, Köşe, Yuvarlak Tespiti Alp Ertürk alp.erturk@kocaeli.edu.tr KENAR TESPİTİ Kenar Tespiti Amaç: Görüntüdeki ani değişimleri / kesintileri algılamak Şekil bilgisi elde

Detaylı

GÖRÜNTÜ İŞLEME - (7.Hafta) KENAR BELİRLEME ALGORİTMALARI

GÖRÜNTÜ İŞLEME - (7.Hafta) KENAR BELİRLEME ALGORİTMALARI GÖRÜNTÜ İŞLEME - (7.Hafta) KENAR BELİRLEME ALGORİTMALARI Bu konuda bir çok algoritma olmasına rağmen en yaygın kullanılan ve etkili olan Sobel algoritması burada anlatılacaktır. SOBEL FİLTRESİ Görüntüyü

Detaylı

Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı fkarsli@ktu.edu.tr

Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı fkarsli@ktu.edu.tr Uasal Görüntü İileştirme/Filtreleme Doç. Dr. Fevi Karslı karsli@ktu.edu.tr İileştirme Herhangi bir ugulama için, görüntüü orijinalden daha ugun hale getirmek Ugunluğu her bir ugulama için sağlamak. Bir

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2015-2016 Öğretim Yılı Bahar Dönemi 1 Görüntü Zenginleştirme Mekânsal Dönüşümler Mekânsal dönüşümler, uzaktan algılama görüntülerindeki bilgiyi

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 4 DÖNÜŞÜMLER UZAYSAL FİLTRELEME

GÖRÜNTÜ İŞLEME HAFTA 4 DÖNÜŞÜMLER UZAYSAL FİLTRELEME GÖRÜNTÜ İŞLEME HAFTA 4 DÖNÜŞÜMLER UZAYSAL FİLTRELEME DERS İÇERİĞİ Histogram İşleme Filtreleme Temelleri HİSTOGRAM Histogram bir resimdeki renk değerlerinin sayısını gösteren grafiktir. Histogram dengeleme

Detaylı

Hafta 5 Uzamsal Filtreleme

Hafta 5 Uzamsal Filtreleme BLM429 Görüntü İşlemeye Giriş Hafta 5 Uzamsal Filtreleme Yrd. Doç. Dr. Caner ÖZCAN If the facts don't fit the theory, change the facts. ~Einstein İçerik 3. Yeğinlik Dönüşümleri ve Uzamsal Filtreleme Temel

Detaylı

MOD419 Görüntü İşleme

MOD419 Görüntü İşleme MOD419 Görüntü İşleme Ders Kitabı: Digital Image Processing by Gonzalez and Woods Puanlama: %30 Lab. %20 Vize %10 Quizes %40 Final %60 devam mecburiyeti Görüntü İşleme ye Giriş Görüntü İşleme Nedir? Özellikle

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2015-2016 Öğretim Yılı Bahar Dönemi 1 Ön İşleme-Radyometrik Düzeltme Atmosferik Düzeltme Atmosferik etkilerin giderilmesinde kullanılan radyometrik

Detaylı

Uzaktan Algılama Uygulamaları

Uzaktan Algılama Uygulamaları Aksaray Üniversitesi Uzaktan Algılama Uygulamaları Doç.Dr. Semih EKERCİN Harita Mühendisliği Bölümü sekercin@aksaray.edu.tr 2010-2011 Bahar Yarıyılı Uzaktan Algılama Uygulamaları GÖRÜNTÜ İŞLEME TEKNİKLERİ

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Ön İşleme-Radyometrik Düzeltme Atmosferik Düzeltme Atmosferik etkilerin giderilmesinde kullanılan radyometrik

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 5 Görüntü Süzgeçleme ve Gürültü Giderimi Alp Ertürk alp.erturk@kocaeli.edu.tr Motivasyon: Gürültü Giderimi Bir kamera ve sabit bir sahne için gürültüyü nasıl azaltabiliriz?

Detaylı

Görüntü İşleme Dersi Ders-8 Notları

Görüntü İşleme Dersi Ders-8 Notları Görüntü İşleme Dersi Ders-8 Notları GRİ SEVİYE DÖNÜŞÜMLERİ Herhangi bir görüntü işleme operasyonu, görüntüdeki pikselin gri seviye değerlerini dönüştürme işlemidir. Ancak, görüntü işleme operasyonları;

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2016-2017 Öğretim Yılı Bahar Dönemi 1 Geçen ders Mekansal/Konumsal/Geometrik(Spatial resolution) Radyometrik Spektral Zamansal 2 Dijital /Sayısal

Detaylı

AKÜ TEKNOLOJİ FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ

AKÜ TEKNOLOJİ FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÖRÜNTÜ İŞLEME DERS-8 YARDIMCI NOTLARI -2018 Gri Seviye Dönüşümleri Herhangi bir görüntü işleme operasyonu, görüntüdeki pikselin gri seviye değerlerini dönüştürme işlemidir. Ancak, görüntü işleme operasyonları;

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Yüksek ve düşük spektral çözünürlüğe sahip dijital görüntülerdeki temel avantaj ve dezavantajlar aşağıda

Detaylı

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 Görüntü İşleme K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 İçerik Görüntü İşleme Nedir? Görüntü Tanımlamaları Görüntü Operasyonları Görüntü İşleme

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2016-2017 Öğretim Yılı Bahar Dönemi 1 Görüntü Zenginleştirme Mekânsal Dönüşümler Mekânsal dönüşümler, uzaktan algılama görüntülerindeki bilgiyi

Detaylı

Dr. Öğt. Üyesi Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Dr. Öğt. Üyesi Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (GEO/JDF338) Dr. Öğt. Üyesi Saygın ABDİKAN 2017-2018 Öğretim Yılı Bahar Dönemi 1 Dersin Kaynakları 1. Rafael C. Gonzales, Richard E. Woods, Digital image processing, New Jersey:

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 25 Ekim

Detaylı

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur.

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur. Görüntü İşleme Görüntü işleme, dijital bir resim haline getirilmiş olan gerçek yaşamdaki görüntülerin bir girdi resim olarak işlenerek, o resmin özelliklerinin ve görüntüsünün değiştirilmesidir. Resimler

Detaylı

ULUSAL COĞRAFİ BILGİ SISTEMLERİ KONGRESİ 30 Ekim 02 Kasım 2007, KTÜ, Trabzon

ULUSAL COĞRAFİ BILGİ SISTEMLERİ KONGRESİ 30 Ekim 02 Kasım 2007, KTÜ, Trabzon ULUSAL COĞRAFİ BILGİ SISTEMLERİ KONGRESİ 30 Ekim 02 Kasım 2007, KTÜ, Trabzon Uydu Verilerinin Farklı Yöntemlerle Karılması ve Sonuçların Karşılaştırılması Öğr. Gör. Bora UĞURLU Prof. Dr. Hülya YILDIRIM

Detaylı

Dijital Görüntü İşleme Teknikleri

Dijital Görüntü İşleme Teknikleri Teknikleri Ders Notları, 2013 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 08 Ekim 2013 Salı 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar, kaynaklar.

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Piksel / dpi Piksel en küçük anlamlı birim dpi = dot per inch/ 1 inch teki nokta sayısı 1 inch =25.4 mm

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2015-2016 Öğretim Yılı Bahar Dönemi 1 Piksel / dpi Piksel en küçük anlamlı birim dpi = dot per inch/ 1 inch teki nokta sayısı 1 inch =25.4 mm

Detaylı

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında ucuz ve hızlı sonuç alınabilen uzaktan algılama tekniğinin, yenilenebilir

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Vize. İris Segmentation. Selçuk BAŞAK 08501008

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Vize. İris Segmentation. Selçuk BAŞAK 08501008 Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Bilgisayarla Görme Vize İris Segmentation Selçuk BAŞAK 08501008 Not: Ödevi hazırlamak için geliştirdiğim program ve kaynak

Detaylı

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü 3.2. Raster Veriler Satırlar Piksel/hücre büyüklüğü Sütunlar 1 Görüntü formatlı veriler Her piksel için gri değerleri kaydedilmiştir iki veya üç bant (RGB) çok sayıda bant Fotoğraf, uydu görüntüsü, ortofoto,

Detaylı

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun.

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Doç.Dr.Mehmet MISIR-2013 TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında

Detaylı

Görüntü İşleme Ders-7 AND, NAND. % bir görüntüde küçük bir alanın kesilip çıkartılması. >> y=imread('headquarters-2and.jpg');

Görüntü İşleme Ders-7 AND, NAND. % bir görüntüde küçük bir alanın kesilip çıkartılması. >> y=imread('headquarters-2and.jpg'); Görüntü İşleme Ders-7 AND, NAND % bir görüntüde küçük bir alanın kesilip çıkartılması. >> x=imread('headquarters-2.jpg'); >> y=imread('headquarters-2and.jpg'); >> x=rgb2gray(x); >> y=rgb2gray(y); >> imshow(y)

Detaylı

GÖRÜNTÜ İŞLEME - (5.Hafta)

GÖRÜNTÜ İŞLEME - (5.Hafta) GÖRÜNTÜ İŞLEME - (5.Hafta) RESİM YUMUŞATMA (BULANIKLAŞTIRMA-BLURRING) FİLTRELERİ Görüntü işlemede, filtreler görüntüyü yumuşatmak yada kenarları belirginleştirmek için dijital filtreler kullanılır. Bu

Detaylı

Bilgisayar ne elde eder (görüntüden)? Dijital Görüntü İşleme Fevzi Karslı, KTÜ. 08 Ekim 2013 Salı 51

Bilgisayar ne elde eder (görüntüden)? Dijital Görüntü İşleme Fevzi Karslı, KTÜ. 08 Ekim 2013 Salı 51 Bilgisayar ne elde eder (görüntüden)? 08 Ekim 2013 Salı 51 Zorluk 1: bakış açısı 2012, Selim Aksoy 08 Ekim 2013 Salı 52 Zorluk 2: aydınlatma 08 Ekim 2013 Salı 53 Zorluk 3: oklüzyon (ölü bölge oluşumu)

Detaylı

İkili (Binary) Görüntü Analizi

İkili (Binary) Görüntü Analizi İkili (Binary) Görüntü Analizi İkili görüntü analizine giriş Eşikleme (Thresholding) Matematiksel morfoloji Piksel ve komşulukları (neighborhoods) Bağlantılı bileşenler analizi (Connected components analysis)

Detaylı

NDEN BELİRLENEBİLME LME POTANSİYELİ UYDU GÖRÜNTÜLERİNDEN

NDEN BELİRLENEBİLME LME POTANSİYELİ UYDU GÖRÜNTÜLERİNDEN BİNALARIN YÜKSEK Y ÇÖZÜNÜRLÜKLÜRLÜKL UYDU GÖRÜNTÜLERİNDEN NTÜLER NDEN BELİRLENEBİLME LME POTANSİYELİ Dilek KOÇ SAN dkoc@metu metu.edu.tr Orta Doğu u Teknik Üniversitesi, Jeodezi ve Coğrafi Bilgi Teknolojileri

Detaylı

BLG325.1 SINYAL ISLEME DERSİ BİLGİ PAKETİ. Haftalık Ders Planı

BLG325.1 SINYAL ISLEME DERSİ BİLGİ PAKETİ. Haftalık Ders Planı Düzey : Lisans Ders Kodu : BLG325.1 Ders Adı : SINYAL ISLEME BLG325.1 SINYAL ISLEME DERSİ BİLGİ PAKETİ lık Ders Planı 1 : İşaret ve sistem tanımı, ayrık zamanlı ve sürekli zamanlı sistemler, ayrık değerli

Detaylı

Görüntü İyileştirme Teknikleri. Hafta-6

Görüntü İyileştirme Teknikleri. Hafta-6 Görüntü İyileştirme Teknikleri Hafta-6 Doç. Dr. Oğuz Güngör Karadeniz Teknik Üniversitesi Harita Mühendisliği Bölümü 6080 Trabzon ogungor@ktu.edu.tr İndisler Görüntü İyileştirme Teknikleri Radyometrik

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 06 Kasım

Detaylı

Görüntü Segmentasyonu (Bölütleme)

Görüntü Segmentasyonu (Bölütleme) Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 20 Aralık 2014 Cumartesi 1 Görüntü Segmentasyonu 20 Aralık 2014 Cumartesi 2 Gestalt kanunları Görüntü

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 4 İkili Görüntüler, Topoloji ve Morfoloji Alp Ertürk alp.erturk@kocaeli.edu.tr İkili (binary) görüntüler Gri skala veya renkli bir görüntünün eşiklenmesi ile elde edilirler.

Detaylı

İkili (Binary) Görüntü Analizi

İkili (Binary) Görüntü Analizi İkili (Binary) Görüntü Analizi İkili görüntü analizine giriş Eşikleme (Thresholding) Matematiksel morfoloji Piksel ve komşulukları (neighborhoods) Bağlantılı bileşenler analizi (Connected components analysis)

Detaylı

İMGE İŞLEME Ders-7. Morfolojik İmge İşleme. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm. (Yrd. Doç. Dr. M.

İMGE İŞLEME Ders-7. Morfolojik İmge İşleme. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm. (Yrd. Doç. Dr. M. İMGE İŞLEME Ders-7 Morfolojik İmge İşleme (Yrd. Doç. Dr. M. Kemal GÜLLÜ) Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm Hazırlayan: M. Kemal GÜLLÜ Morfoloji Biyolojinin canlıların

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA

COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA Coğrafi Bilgi Sistemleri ve Uzaktan Algılama Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA 1 Coğrafi Bilgi Sistemleri ve Uzaktan Algılama İçindekiler

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi Uzaktan Algılama (JDF439) Görüntü İyileştirme, Geometrik Düzeltme Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) 2016-2017 Öğretim Yılı Güz Dönemi 1 Görüntü Zenginleştirme Görüntü zenginleştirmede amaç; Görsel

Detaylı

GÖRÜNTÜ İŞLEME - (6.Hafta) GÖRÜNTÜ NETLEŞTİRME ALGORİTMALARI

GÖRÜNTÜ İŞLEME - (6.Hafta) GÖRÜNTÜ NETLEŞTİRME ALGORİTMALARI GÖRÜNTÜ İŞLEME - (6.Hafta) GÖRÜNTÜ NETLEŞTİRME ALGORİTMALARI NETLEŞTİRME/KESKİNLEŞTİRME FİLTRESİ (Sharpening Filter) Bu algoritma orjinal görüntüden, görüntünü yumuşatılmış halini çıkararak belirgin kenarların

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Final

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Final Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Bilgisayarla Görme Final Harris ve Moravec Köşe Belirleme Metotları Selçuk BAŞAK 08501008 Not: Ödevi hazırlamak için geliştirdiğim

Detaylı

Trafik Yoğunluk Harita Görüntülerinin Görüntü İşleme Yöntemleriyle İşlenmesi

Trafik Yoğunluk Harita Görüntülerinin Görüntü İşleme Yöntemleriyle İşlenmesi Trafik Yoğunluk Harita Görüntülerinin Görüntü İşleme Yöntemleriyle İşlenmesi ISITES 2016 4 TH INTERNATIONAL SYMPOSIUM ON INNOVATIVE TECHNOLOGIES IN ENGINEERING AND SCIENCE Dr. G. Çiğdem Çavdaroğlu ISITES,

Detaylı

TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon

TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon Lazer Tarama Verilerinden Bina Detaylarının Çıkarılması ve CBS İle Entegrasyonu

Detaylı

UZAKTAN ALGILAMA Görüntü Verisinin Düzeltilmesi ve Geliştirilmesi

UZAKTAN ALGILAMA Görüntü Verisinin Düzeltilmesi ve Geliştirilmesi UZAKTAN ALGILAMA Görüntü Verisinin Düzeltilmesi ve Geliştirilmesi Yrd. Doç. Dr. Aycan M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF439 UZAKTAN ALGILAMA DERSİ NOTLARI http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İzdüşüm merkezi(o):

Detaylı

Görüntü Segmentasyonu (Bölütleme) Dijital Görüntü İşleme Fevzi Karslı, KTÜ Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır.

Görüntü Segmentasyonu (Bölütleme) Dijital Görüntü İşleme Fevzi Karslı, KTÜ Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 16 Ocak 2014 Perşembe 1 Görüntü Segmentasyonu 16 Ocak 2014 Perşembe 2 Görüntüden Objelere Bir objeyi

Detaylı

Uzaktan Algılama (3) Yrd. Doç. Dr. Özgür ZEYDAN Renk Teorileri

Uzaktan Algılama (3) Yrd. Doç. Dr. Özgür ZEYDAN   Renk Teorileri Uzaktan Algılama (3) Yrd. Doç. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Eklemeli renk teorisi Çıkarmalı renk teorisi 1 RGB (Red Green - Blue) Kavramı Red Green - Blue RGB-Mixer

Detaylı

AMAÇ Araçlardaki Kamera Sistemleri

AMAÇ Araçlardaki Kamera Sistemleri SUNU PLANI AMAÇ OPEN CV GÖRÜNTÜ EŞİKLEME KENAR BULMA ŞEKİL BULMA GÖRÜNTÜ GENİŞLETME VE BOZMA GÖRÜNTÜ DOLDURMA AFFİNE DÖNÜŞÜMÜ PERSPEKTİF DÖNÜŞÜM KUŞ BAKIŞI GÖRÜNTÜ DÖNÜŞÜMÜ AMAÇ Araçlardaki Kamera Sistemleri

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 7 SIFT ve Öznitelik Eşleme Alp Ertürk alp.erturk@kocaeli.edu.tr Panorama Oluşturma Görüntü mozaikleme, panorama oluşturma gibi tüm uygulamalar için öncelikle ilgili görüntülerin

Detaylı

NEIGHBOURHOOD PROCESSING (KOMŞULUK İLİŞKİLİ İŞLEMLERİ- BÖLGESEL İŞLEMLER-UZAYSAL FİLTRELEME) BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr.

NEIGHBOURHOOD PROCESSING (KOMŞULUK İLİŞKİLİ İŞLEMLERİ- BÖLGESEL İŞLEMLER-UZAYSAL FİLTRELEME) BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. NEIGHBOURHOOD PROCESSING (KOMŞULUK İLİŞKİLİ İŞLEMLERİ- BÖLGESEL İŞLEMLER-UZAYSAL FİLTRELEME) BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN 1 KOMŞULUK İLİŞKİLİ İŞLEMLER (UZAYSAL FİLİTRELER) Noktasal

Detaylı

İmage segmentasyon (Görüntü Bölütleme)

İmage segmentasyon (Görüntü Bölütleme) İmage segmentasyon (Görüntü Bölütleme) Segmantasyon (Bölütleme) Segmentasyon genellikle görüntü analizinin ilk aşamasıdır. Görüntü bölütleme, bir görüntüyü her biri içerisinde farklı özelliklerin tutulduğu

Detaylı

Uydu Görüntülerinin. Rektifikasyon ve Registrasyonu. Hafta - 5

Uydu Görüntülerinin. Rektifikasyon ve Registrasyonu. Hafta - 5 Uydu Görüntülerinin Rektifikasyon ve Registrasyonu Hafta - 5 1 Rektifikasyon Uydulardan veya uçaklardan elde edilen ham uzaktan algılama görüntüleri Dünya nın düzensiz yüzeyinin temsilidir. Nispeten dümdüz

Detaylı

Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri

Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Eklemeli renk teorisi Çıkarmalı renk teorisi 1 RGB (Red Green - Blue) Kavramı Red Green - Blue RGB-Mixer

Detaylı

UZAKTAN ALGILAMA- UYGULAMA ALANLARI

UZAKTAN ALGILAMA- UYGULAMA ALANLARI UZAKTAN ALGILAMA- UYGULAMA ALANLARI Doç. Dr. Nebiye Musaoğlu nmusaoglu@ins.itu.edu.tr İTÜ İnşaat Fakültesi Jeodezi ve Fotogrametri Mühendisliği Bölümü Uzaktan Algılama Anabilim Dalı UZAKTAN ALGILAMA-TANIM

Detaylı

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER SUNU PLANI Analog sayısal çevirici FIR Filtreler IIR Filtreler Adaptif Filtreler Pan-Tompkins Algoritması Araş. Gör. Berat Doğan 08/04/2015

Detaylı

Görüntü İyileştirme Teknikleri. Hafta-8

Görüntü İyileştirme Teknikleri. Hafta-8 Görüntü İyileştirme Teknikleri Hafta-8 1 Spektral İyileştirme PCA (Principal Component Analysis) Dönüşümü. Türkçesi Ana Bileşenler Dönüşümü Decorrelation Germe Tasseled Cap RGB den IHS ye dönüşüm IHS den

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME Hafta Hafta 1 Hafta 2 Hafta 3 Hafta 4 Hafta 5 Hafta 6 Hafta 7 Hafta 8 Hafta 9 Hafta 10 Hafta 11 Hafta 12 Hafta 13 Hafta 14 Konu Giriş Digital Görüntü Temelleri-1

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 2 Kuvvet Vektörleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö.Soyuçok. 2 Kuvvet Vektörleri Bu bölümde,

Detaylı

DİJİTAL UYDU GÖRÜNTÜSÜ Raster Veri

DİJİTAL UYDU GÖRÜNTÜSÜ Raster Veri DİJİTAL UYDU GÖRÜNTÜSÜ Raster Veri DİJİTAL UYDU GÖRÜNTÜSÜ Görüntü boyutu Dijital bir görüntü, elemanları, uzaydaki x,y konumlarına karşılık gelen noktaları n f(x,y) parlaklık değerlerini içeren bir matristir.

Detaylı

TEMEL GÖRÜNTÜ BİLGİSİ

TEMEL GÖRÜNTÜ BİLGİSİ TEMEL GÖRÜNTÜ BİLGİSİ FOTOĞRAF/GÖRÜNTÜ KAVRAMI VE ÖZELLİKLERİ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF345 TEMEL GÖRÜNTÜ BİLGİSİ DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz/ İÇERİK

Detaylı

Uzaktan Alg ılamaya Giriş Ünite 6 - Görüntü O t r orektifikasyonu

Uzaktan Alg ılamaya Giriş Ünite 6 - Görüntü O t r orektifikasyonu Uzaktan Algılamaya Giriş Ünite 6 - Görüntü Ortorektifikasyonu Ortorektifikasyon Uydu veya uçak platformları ile elde edilen görüntü verisi günümüzde haritacılık ve CBS için temel girdi kaynağını oluşturmaktadır.

Detaylı

FİLTRELEME YÖNTEMİ İLE DİGİTAL GÖRÜNTÜ ZENGİNLEŞTİRME VE ÖRNEK BİR YAZILIM. ÖzĢen ÇORUMLUOĞLU b , Selçuklu, Konya. GümüĢhane

FİLTRELEME YÖNTEMİ İLE DİGİTAL GÖRÜNTÜ ZENGİNLEŞTİRME VE ÖRNEK BİR YAZILIM. ÖzĢen ÇORUMLUOĞLU b , Selçuklu, Konya. GümüĢhane FİLTRELEME YÖNTEMİ İLE DİGİTAL GÖRÜNTÜ ZENGİNLEŞTİRME VE ÖRNEK BİR YAZILIM Cihan ALTUNTAġ a*, ÖzĢen ÇORUMLUOĞLU b a Selçuk Üniversitesi, Mühendislik Mimarlık Fakültesi, Harita Mühendisliği Bölümü, 42075,

Detaylı

AKÜ TEKNOLOJİ FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ

AKÜ TEKNOLOJİ FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÖRÜNTÜ İŞLEME DERS-9 YARDIMCI NOTLARI -2018 Hızlı Fourier Dönüşümü Matlab Örnekleri: fftshow() fonksiyonu function [ ] = fftshow(f) fl=log(1+abs(f)); fm=max(fl(:)); figure,imshow(im2uint8(fl/fm)); end

Detaylı

İLERİ GÖRÜNTÜ İŞLEME Ders-1

İLERİ GÖRÜNTÜ İŞLEME Ders-1 İLERİ GÖRÜNTÜ İŞLEME Ders- Elektromanyetik Spektrum Görünür Bölge 7 nm 4 nm Temel Kavramlar (Prof. Dr. Sarp ERTÜRK) 9/24/24 2 Hazırlayan: M. Kemal GÜLLÜ Sayısal İmge Gösterimi f x, y imgesi örneklendiğinde

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2015-2016 Öğretim Yılı Bahar Dönemi 1 A- Enerji Kaynağı / Aydınlatma B- Işıma ve atmosfer C- Hedef nesneyle etkileşim D- Nesneden yansıyan /

Detaylı

Ünite 5 - Veri Görüntü

Ünite 5 - Veri Görüntü Uzaktan Algılamaya Giriş Ünite 5 - Veri Görüntü Önişleme Görüntü Önişleme Sayısal Görüntü ü Önişleme, sayısal görüntülerin ül bilgisayari yardımı ile iyileştirikmesi ve yorumlanmasını içerir. SayısalGörüntüÖnişlemesinde

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İçerik Tanımlar

Detaylı

GÖRÜNTÜ İŞLEME - (8.Hafta) RESMİ ALT BÖLGELERE AYIRMA

GÖRÜNTÜ İŞLEME - (8.Hafta) RESMİ ALT BÖLGELERE AYIRMA GÖRÜNTÜ İŞLEME - (8.Hafta) RESMİ ALT BÖLGELERE AYIRMA BAĞLANTILI BİLEŞEN ETİKETLEME (Çift Geçiş Metodu) Bir resim üzerindeki aynı renk koduna sahip bölgelerin ortaya çıkarılması, birbirinden ayrılması

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 İletişim bilgileri sabdikan@beun.edu.tr 0 372 2574010 1718 http://geomatik.beun.edu.tr/abdikan/ Öğrenci

Detaylı

Frekans domain inde İşlemler. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN

Frekans domain inde İşlemler. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN Frekans domain inde İşlemler BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN Domain Dönüşümü Dönüşüm, bir sinyalin, başka parametrelerle ifade edilmesi şeklinde düşünülebilir. Ters dönüşüm ise,

Detaylı

MORFOLOJİK GÖRÜNTÜ FİLTRELERİ İLE İKONOS GÖRÜNTÜLERİNDEN OTOMATİK BİNA ÇIKARIMI

MORFOLOJİK GÖRÜNTÜ FİLTRELERİ İLE İKONOS GÖRÜNTÜLERİNDEN OTOMATİK BİNA ÇIKARIMI TMMOB Harita ve Kadastro Mühendisleri Odası 12. Türkiye Harita Bilimsel ve Teknik Kurultayı 11 15 Mayıs 2009, Ankara MORFOLOJİK GÖRÜNTÜ FİLTRELERİ İLE İKONOS GÖRÜNTÜLERİNDEN OTOMATİK BİNA ÇIKARIMI U.Acar

Detaylı

Hafta 12 Morfolojik Görüntü İşleme

Hafta 12 Morfolojik Görüntü İşleme BLM429 Görüntü İşlemeye Giriş Hafta 12 Morfolojik Görüntü İşleme Yrd. Doç. Dr. Caner ÖZCAN Biçim ve özellik, yüz ve dudak.. Tıpkı kardeşim gibi büyüdüm.. Benzerliklerimiz sanki beni o yaptı.. Ve birimiz

Detaylı

JDF821 UZAKTAN ALGILAMA GÖRÜNTÜLERİNDEN DETAY ÇIKARIMI Sunu2

JDF821 UZAKTAN ALGILAMA GÖRÜNTÜLERİNDEN DETAY ÇIKARIMI Sunu2 JDF821 UZAKTAN ALGILAMA GÖRÜNTÜLERİNDEN DETAY ÇIKARIMI Sunu2 Yrd. Doç. Dr. Aycan M. MARANGOZ FOTOGRAMETRİ ANABİLİM DALI SUNULARI http://jeodezi.beun.edu.tr/marangoz 2012-2013 Öğretim Yılı Bahar Dönemi

Detaylı

Güzide Miray PERİHANOĞLU 1, Ufuk ÖZERMAN 2, Dursun Zafer ŞEKER 3

Güzide Miray PERİHANOĞLU 1, Ufuk ÖZERMAN 2, Dursun Zafer ŞEKER 3 1013 [936] DİJİTAL GÖRÜNTÜ İŞLEME TEKNİKLERİ KULLANILARAK GÖRÜNTÜLERDEN DETAY ÇIKARIMI Güzide Miray PERİHANOĞLU 1, Ufuk ÖZERMAN 2, Dursun Zafer ŞEKER 3 1 Öğr. Gör., Yüzüncü Yıl Üniversitesi, Mülkiyet Koruma

Detaylı

Dijital Görüntü İşleme ve İyileştirme

Dijital Görüntü İşleme ve İyileştirme Dijital Görüntü İşleme ve İyileştirme Ortalama ve Standart Sapma: Görüntüdeki ri değerlerin, ortalaması ve standart sapması olarak ifade edilir. Ortalama tüm örüntüye ait parlaklığı ifade ederken, standart

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

Bölüm 4 Yoğunluk Dönüşümleri ve Histogram İşleme

Bölüm 4 Yoğunluk Dönüşümleri ve Histogram İşleme BLM429 Görüntü İşlemeye Giriş Bölüm 4 Yoğunluk Dönüşümleri ve Histogram İşleme Dr. Öğr. Üyesi Caner ÖZCAN It makes all the difference whether one sees darkness through the light or brightness through the

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

İSTANBUL TEKNİK ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ İSTANBUL TEKNİK ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ BİTİRME PROJESİ Karar Ağacı ve SOM Ağı ile Doku Bölütleme Hazırlayan Cem Mutlu, 040090365 Danışman Prof. Dr. Zümray

Detaylı

HABERLEŞMENIN AMACI. Haberleşme sistemleri istenilen haberleşme türüne göre tasarlanır.

HABERLEŞMENIN AMACI. Haberleşme sistemleri istenilen haberleşme türüne göre tasarlanır. 2 HABERLEŞMENIN AMACI Herhangi bir biçimdeki bilginin zaman ve uzay içinde, KAYNAK adı verilen bir noktadan KULLANICI olarak adlandırılan bir başka noktaya aktarılmasıdır. Haberleşme sistemleri istenilen

Detaylı

BİYOMETRİK İRİS SINIFLANDIRMA SİSTEMLERİ

BİYOMETRİK İRİS SINIFLANDIRMA SİSTEMLERİ BİYOMETRİK İRİS SINIFLANDIRMA SİSTEMLERİ Emre DANDIL, K.İBRAHİM KAPLAN Akademik Bilişim 2013 İnternet ve bilgisayar teknolojilerinin etkin kullanılmaya başlanması ile birlikte, bazı kişisel bilgilere veya

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

FOTOYORUMLAMA UZAKTAN ALGILAMA

FOTOYORUMLAMA UZAKTAN ALGILAMA FOTOYORUMLAMA VE UZAKTAN ALGILAMA (Photointerpretation and Remote Sensing) 1 Ders İçeriği Hava fotoğrafının tanımı Fotogrametrinin geometrik ilkeleri Fotogrametride fotoğrafik temel ilkeler Stereoskopik

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ FOTOGRAMETRİ ANABİLİM DALI SUNULARI JDF435 UZAKTAN ALGILAMA DERSİ NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ FOTOGRAMETRİ ANABİLİM DALI SUNULARI JDF435 UZAKTAN ALGILAMA DERSİ NOTLARI UZAKTAN ALGILAMA Sayısal Görüntü ve Özellikleri GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ FOTOGRAMETRİ ANABİLİM DALI SUNULARI JDF435 UZAKTAN ALGILAMA DERSİ NOTLARI http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI FOTOGRAMETRİ I GEOMETRİK ve MATEMATİK TEMELLER Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

Canon XEED SX800. Özellikler

Canon XEED SX800. Özellikler Canon XEED SX800 Projektörler LCOS teknolojisi ve doğal SXGA+ çözünürlükle, XEED SX800 mükemmel görüntüleri rekabetçi bir fiyatla sunar. Canon un 1,5x zoom lensi esnek yerleşim ve kusursuz görüntü geometrisi

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI FOTOGRAMETRİ I GEOMETRİK ve MATEMATİK TEMELLER Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 9 Stereo Görüntüleme Alp Ertürk alp.erturk@kocaeli.edu.tr Tek Kamera Geometrisi??? x Tek Kamera Geometrisi Tek Kamera Geometrisi İğne Deliği Kamera Modeli ) /, / ( ),, (

Detaylı