İLERİ GÖRÜNTÜ İŞLEME Ders-1

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İLERİ GÖRÜNTÜ İŞLEME Ders-1"

Transkript

1 İLERİ GÖRÜNTÜ İŞLEME Ders- Elektromanyetik Spektrum Görünür Bölge 7 nm 4 nm Temel Kavramlar (Prof. Dr. Sarp ERTÜRK) 9/24/24 2 Hazırlayan: M. Kemal GÜLLÜ Sayısal İmge Gösterimi f x, y imgesi örneklendiğinde M satır ve N sütunluk bir sayısal imge oluşur. Sayısal İmge Gösterimi Bazen sayısal imge gösterimi:,, a i, j f xi y j f i j Resim elemanı (piksel) Sayısallaştırmda genellikle uzamsal boyutlar önemli değildir. Donanımsan açıdan asıl önemli olan, gri ton seviyesinin 2 nin kuvveti olmasıdır. L 2, L : imgenin dinamik aralığı (dynamic range). k 9/24/24 3 9/24/24 4 Sayısal İmge Gösterimi Sayısal İmge Sayısal imgeyi saklamak için gerekli olan bit sayısı: Uzamsal çözünürlük: bm Nk 28x28 64x64 M N : 256x256 52x52 24x24 9/24/24 5 9/24/24 6

2 Sayısal İmge Bit derinliği: devirme B A B j, i A( i, j) i,..., N, j,..., M L=8 L=7 L=6 L=5 9/24/24 7 L=4 L=3 L=2 L= 24 Eylül 24 8 düşeyde çevirme B i, M j A( i, j) i,..., N, j,..., M döndürme 9, 8, 27 gibi açılarda döndürme işlemlerini kolayca gerçekleştirebiliriz. Bu açıların dışındaki değerlerde ise açısal döndürme işlemlerinin (Sin x, Cos x değerlerini kullanarak) yapılması gerekmektedir. Bunun yerine, Matlab hazır işlevlerinden imrotate kullanılabilir. 24 Eylül 24 9 Ir=imrotate(I,açı,yöntem); açı: saat yönünün tersi dönülecek açı değeri. yöntem: döndürme işlemi sonrasında yeni piksel değerlerinin hesaplanacağı aradeğerleme yöntemi. nearest, bilinear, bicubic, Örn; Ir=imrotate(I,45, bilinear ); 24 Eylül 24 kırpma B i, j A( n i, n j) i,..., m, j,..., m n, n başlangıç noktası m, m pencere boyutları öteleme B i, j A( in, jn ) i n,..., N, j n,..., M n, n başlangıç noktası 24 Eylül Eylül

3 öteleme Öteleme işlemi yapan bir Matlab işlevi yazalım: function [B]=my_otele(A,n,n2) [w,h]=size(a); B=zeros(w,h); boyut değiştirme-yakınlaştırma Yakınlaştırma, düşük piksel boyutlu bir imgenin piksel boyutunun yazılımsal olarak arttırılmasıdır. Sayısal yakınlaştırma (digital zoom). for i=n:w for j=n2:h B(i,j)=A(i-n+,j-n2+); end end Burada for döngüleri yerine tek bir satır yazarak aynı işlem yapılabilir.? 24 Eylül Eylül 24 4 boyut değiştirme-yakınlaştırma boyut değiştirme-yakınlaştırma Boyut büyültmede daha yumuşak geçişler için: Hangisi daha görünür? 24 Eylül Eylül 24 6 boyut değiştirme-uzaklaştırma boyut değiştirme Birden fazla pikselin değeri çeşitli matematiksel işlemlerden geçirilerek bir piksele atanır. Matlab ile boyut değiştirme için imresize adındaki işlev kullanılabilmektedir. Is=imresize(I,oran,yöntem); oran yöntem : giriş imgesinin boyutunun değişme oranını verir. oran> (büyütme), oran< (küçültme). : boyut değiştirmede kullanılacak aradeğerleme yöntemi. Örn; Is=imresize(I,.97, bicubic ); 24 Eylül Eylül

4 İmge oluşturma İmge oluşturma (28,28) merkezli, yarıçapı 8 piksel beyaz bir daire Eylül Eylül 24 2 İmge oluşturma Ortalama ve Değişinti??? A B Bir imgenin örnek ortalaması (sample mean): C = X / 255 Örnek değişintisi (sample variance): Örnek standart sapması (sample std. dev.): 24 Eylül Eylül Nokta İşlemleri Parlaklık Ayarı Piksellerden oluşan imge uzayına uzamsal düzlem (spatial domain) denir. Uzamsal düzlem işlemleri aşağıdaki gösterimle ifade edilmektedir.,, g xy Tf xy işlev Buradaki T işlevi, doğrudan (x,y) pikselini işleyebileceği gibi, (x,y) pikselinin komşuluklarını da hesaba katabilir.,, f xy, b g xy T f xy s r b b> ise parlaklık artar b< ise parlaklık azalır 24 Eylül orjinal b = -5 b = Eylül

5 Karşıtlık (Kontrast) Ayarı Parlaklık+Karşıtlık Ayarı,, af x, y g xy Tf xy s ar a> ise karşıtlık artar a< ise karşıtlık azalır Kısmi-doğrusal dönüşüm orjinal a =.5 a = 2 24 Eylül Eylül Eşikleme Olumsuzlama g g 255 T 255 s r f Sonuçta ikili (binary) imge oluşuyor. 255 s L r L s r f 24 Eylül Eylül Her bir gri ton seviyesinin ([,255]) imgedeki bulunma sıklığını (frekansını) gösterir. Yani imgedeki piksellerin dağılımı hakkında bilgi verir. İmge pekiştirmede sıkça kullanılmaktadır. hrk nk rk : k. gri seviye nk : k. gri seviyedeki toplam piksel sayısı normalize edildiğinde ise gri seviyelerin imge içerisindeki bulunma olasılıklarını verir. imgedeki toplam piksel sayısı İlgili seviyenini olasılık değeri / p rk nk n k,,..., L MATLAB imhist işlevi gri ton seviyesi 24 Eylül Eylül

6 Karanlık imge Parlak imge Piksel konum bilgisi bulunmaz! 24 Eylül Eylül Eşitleme Karşıtlığı düşük imge Amaç: İmgedeki düşük görünürlüğü iyileştirmek. Olasılık dağılımına bağlı olarak doğrusal olmayan dönüşüm gerçekleştirilir. Bu sayede, bulunma olasılığı yüksek pikseller arası fazlaca açılırken, düşük olasılıklı seviyeler birbirine daha yakın hale gelir. cdf v cdf min cdf v round L M N cdf min Karşıtlığı yüksek imge 24 Eylül Eylül Eşitleme Piksel Komşuluk İşlemleri İmgenin olasılık dağılım fonksiyonu doğrusallaştırılmaktadır. Doğrusallaştırılmış cdf Her bir piksel için yeni bir değer hesaplanmaktadır. İlgili pikselin yeni değeri, komşu piksellerin değerleri de dikkate alınarak bulunur. Kullanılacak piksellerin ağırlıkları, yapılacak işleme bağlı olarak değişmektedir. Kenar bulma, gürültü giderme, imge keskinleştirme, yumuşatma gibi işlemlerde kullanlmaktadır. Hesapsal yükü, nokta işlemlerine göre oldukça fazla olabilmektedir. 24 Eylül Eylül

7 İki fonksiyonun etkileşimi olarak ifade edilebilir. f * g f g t d İmge (işaret) işlemede sıkça kullanılmaktadır. Sistemin, giriş işaretine etkisini vermektedir. Evrişimin ayrık zamanlı 2-boyutlu ifadesi: g x, y k* f m n,, k i j f xi y j im jn k,, evrişim çekirdeği (convolution kernel) f, giriş imgesi g, çıkış imgesi xy,, ilgili piksel konumu 2m,2n, çekirdeğin yatay ve düşey uzunluğu Evrişim çekirdeği (kernel) genelde, evrişim maskesi (convolution mask) veya evrişim penceresi (convolution window) olarak da adlandırılabilmektedir. 24 Eylül Eylül g x, y k* f m n ki, j f xi, y j im jn * 2 2 Giriş imgesi Evrişim çekirdeği Çıkış imgesi 24 Eylül MATLAB da 2-boyutlu evrişim conv2 işlevi ile yapılabilmektedir. Bunun yanında imge süzgeçlerken genellikle imfilter işlevi kullanılmaktadır. 24 Eylül 24 4 Evrişim işleminde kenar bölgelerindeki taşma durumunda olası işlemler: Kenar bölgelerini işlememe, Kenar bölgelerini kesme, Kenar bölgelerinde evrişim çekirdeğini kırpma, Kenar bölgelerini aynen kopyalama (imge boyutları büyür), Kenar bölgelerini aynalayarak kopyalama (imge boyutları büyür)... Hesapsal yük: mn, boyutlu bir evrişim çekirdeği kullanıldığında bir piksel için çıkış değerinin hesaplanmasında gerekli işlem sayısı: mnçarpmamn toplama Delta fonksiyonu (Birim Dürtü) Kaydır ve çıkart 24 Eylül Eylül

8 Uzamsal Frekans Kavramı İmgede pikseller arasındaki yumuşak geçişler uzamsal düşük frekanslara karşılık gelir. /8 /8 /8 /8 /8 /8 /8 /8 Kenar bulma Sert geçişler (kenarlar, nesne sınırları...) uzamsal yüksek frekanslara karşılık gelir. k/8 k/8 k/8 k/8 k k/8 k/8 k/8 k/8 Kenar pekiştirme 24 Eylül Eylül Yumuşatma -Yumuşatma En temel evrişim çekirdeğidir. İmgedeki gürültü etkilerini azaltır. Kenarları yumuşatır. /9 /25 Çekirdek boyutunun yumuşatmaya etkisi: Orjinal imge 3x3 5x5 24 Eylül x9 5x5 35x35 24 Eylül Ortanca (Median) Süzgeç Ortanca (Median) Süzgeç Süzgeçleme işlemi, pencere içerisindeki piksellerin sıralanması temelinde yapmaktadır. Doğrusal olmayan bir süzgeçlemedir. Dürtü ve tuz-biber gürültülerinin giderilmesinde etkin başarım sağlamaktadır. İmgenin kenar bölgelerini bozmaktadır. Tuz ve biber gürültüsünün (salt and pepper noise) ortanca süzgeç ile giderilmesi 25, 28, 29, 34, 38, 4, 45, 46, 56 Yeni piksel değeri Gürültü eklenmiş imge 3x3 ortalama süzgeç ile gürültü giderme 3x3 ortanca süzgeç ile gürültü giderme 24 Eylül 24 MATLAB da imgeye gürültü eklemek için imnoise işlevi kullanılmaktadır Eylül 24 MATLAB da ortanca süzgeçleme için medfilt2 işlevi kullanılmaktadır. 48 8

9 RGB Renk Modeli Her pikselin kırmızı, yeşil ve mavi renk bileşeni için bir değeri mevcuttur. RGB Modeli Genelde her bileşenin gösterimi için 8 bit kullanılmaktadır. B blue magenta cyan white Kids image Red color components of the image black red R G green yellow Green color components of the image Blue color components of the image 24 Eylül Eylül 24 5 HSI Modeli H (hue): renk S (saturation): doygunluk I (intensity): ışıklılık HSI Modeli İlk değer baskın renk (hue) değerini göstermektedir (.:kırmızı,.33 yeşil,.67 mavi,.: kırmızı). İkinci değer rengin doygunluğunu kodlamakatadır (.: renksiz (gri).: canlı renk (grisiz). Son değer de ışıklılığı göstermektedir (.: siyah.: aydınlık). Kids image Hue components of the image Saturation components of the image Intensity components of the image 24 Eylül Eylül

İMGE İŞLEME Ders-2. İmge Dosya Tipleri ve Temel İşlemler. (Yrd. Doç. Dr. M. Kemal GÜLLÜ)

İMGE İŞLEME Ders-2. İmge Dosya Tipleri ve Temel İşlemler. (Yrd. Doç. Dr. M. Kemal GÜLLÜ) İMGE İŞLEME Ders-2 İmge Dosya Tipleri ve Temel İşlemler (Yrd. Doç. Dr. M. Kemal GÜLLÜ) Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm Hazırlayan: M. Kemal GÜLLÜ MATLAB temel bilgiler

Detaylı

İMGE İŞLEME Ders-2. İmge Dosya Tipleri ve Temel İşlemler. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm

İMGE İŞLEME Ders-2. İmge Dosya Tipleri ve Temel İşlemler. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm İMGE İŞLEME Ders-2 İmge Dosya Tipleri ve Temel İşlemler (Yrd. Doç. Dr. M. Kemal GÜLLÜ) Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm Hazırlayan: M. Kemal GÜLLÜ MATLAB temel bilgiler

Detaylı

İMGE İŞLEME Ders-2. İmgeler, Dosya Tipleri ve Temel İşlemler. (Prof. Dr. Sarp ERTÜRK)

İMGE İŞLEME Ders-2. İmgeler, Dosya Tipleri ve Temel İşlemler. (Prof. Dr. Sarp ERTÜRK) İMGE İŞLEME Ders-2 İmgeler, Dosya Tipleri ve Temel İşlemler (Prof. Dr. Sarp ERTÜRK) Görüntüleme 29 Eylül 2013 2 Video 29 Eylül 2013 3 Video İşaretlerinin İletimi 29 Eylül 2013 4 Tarama 29 Eylül 2013 5

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 5 Görüntü Süzgeçleme ve Gürültü Giderimi Alp Ertürk alp.erturk@kocaeli.edu.tr Motivasyon: Gürültü Giderimi Bir kamera ve sabit bir sahne için gürültüyü nasıl azaltabiliriz?

Detaylı

BLG325.1 SINYAL ISLEME DERSİ BİLGİ PAKETİ. Haftalık Ders Planı

BLG325.1 SINYAL ISLEME DERSİ BİLGİ PAKETİ. Haftalık Ders Planı Düzey : Lisans Ders Kodu : BLG325.1 Ders Adı : SINYAL ISLEME BLG325.1 SINYAL ISLEME DERSİ BİLGİ PAKETİ lık Ders Planı 1 : İşaret ve sistem tanımı, ayrık zamanlı ve sürekli zamanlı sistemler, ayrık değerli

Detaylı

Bölüm 7 Renkli Görüntü İşleme

Bölüm 7 Renkli Görüntü İşleme BLM429 Görüntü İşlemeye Giriş Bölüm 7 Renkli Görüntü İşleme Dr. Öğr. Üyesi Caner ÖZCAN Genç sanatçının, rengin sadece tanımlayıcı değil aynı zamanda kişisel ifade anlamına geldiğini anlaması renge dokunmasından

Detaylı

İMGE İŞLEME. (Yrd. Doç. Dr. M. Kemal GÜLLÜ)

İMGE İŞLEME. (Yrd. Doç. Dr. M. Kemal GÜLLÜ) İMGE İŞLEME (Yrd. Doç. Dr. M. Kemal GÜLLÜ) Değerlendirme Ara dönem notu: %20 ödev, %80 sınav Final notu: %30 sınav, %70 dönem ödevi Geçme Notu: %40 ara dönem + %60 final 3/16/2012 2 İçerik Temel Kavramlar

Detaylı

Bilgisayar ne elde eder (görüntüden)? Dijital Görüntü İşleme Fevzi Karslı, KTÜ. 08 Ekim 2013 Salı 51

Bilgisayar ne elde eder (görüntüden)? Dijital Görüntü İşleme Fevzi Karslı, KTÜ. 08 Ekim 2013 Salı 51 Bilgisayar ne elde eder (görüntüden)? 08 Ekim 2013 Salı 51 Zorluk 1: bakış açısı 2012, Selim Aksoy 08 Ekim 2013 Salı 52 Zorluk 2: aydınlatma 08 Ekim 2013 Salı 53 Zorluk 3: oklüzyon (ölü bölge oluşumu)

Detaylı

Bölüm 4 Yoğunluk Dönüşümleri ve Histogram İşleme

Bölüm 4 Yoğunluk Dönüşümleri ve Histogram İşleme BLM429 Görüntü İşlemeye Giriş Bölüm 4 Yoğunluk Dönüşümleri ve Histogram İşleme Dr. Öğr. Üyesi Caner ÖZCAN It makes all the difference whether one sees darkness through the light or brightness through the

Detaylı

Gama ışını görüntüleme: X ışını görüntüleme:

Gama ışını görüntüleme: X ışını görüntüleme: Elektronik ve Hab. Müh. Giriş Dersi Görüntü İşleme Yrd. Doç. Dr. M. Kemal GÜLLÜ Uygulama Alanları Gama ışını görüntüleme: X ışını görüntüleme: Uygulama Alanları Mor ötesi bandı görüntüleme: Görünür ve

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ

GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ GÖRÜNTÜ ALGILAMA Üç temel zar ile kaplıdır. 1- Dış Zar(kornea ve Sklera) 2- Koroid 3- Retina GÖRÜNTÜ ALGILAMA ---Dış Zar İki kısımdan oluşur. Kornea ve

Detaylı

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 Görüntü İşleme K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 İçerik Görüntü İşleme Nedir? Görüntü Tanımlamaları Görüntü Operasyonları Görüntü İşleme

Detaylı

Frekans Spektrumu. frekans. dalga boyu

Frekans Spektrumu. frekans. dalga boyu İmge Kavramı Sayısal İmge (Digital Image), çeşitli yollarla elde edilen bilgilerin görsel olarak saklanmasına ve gösterimine olanak sağlayan yapılardır. Her türlü iki boyutlu bilgi imge olarak ele alınabilir.

Detaylı

MKT430 İmge İşlemenin Temelleri Bahar Dönemi Final Sınavı

MKT430 İmge İşlemenin Temelleri Bahar Dönemi Final Sınavı -Grup A- KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ 3 HAZİRAN 216 MKT43 İmge İşlemenin Temelleri 215-216 Bahar Dönemi Final Sınavı Öğretim Üyesi: Prof. Dr. Hasan OCAK Sınav Süresi:

Detaylı

DİJİTAL GÖRÜNTÜ İŞLEME

DİJİTAL GÖRÜNTÜ İŞLEME DİJİTAL GÖRÜNTÜ İŞLEME Prof. Dr. Oğuz Güngör Karadeniz Teknik Üniversitesi Jeodezi ve Fotogrametri Mühendisliği Bölümü 61080 Trabzon ogungor@ktu.edu.tr 1 Renk Nedir? 2 En basit anlamıyla renk maddelerden

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 25 Ekim

Detaylı

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur.

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur. Görüntü İşleme Görüntü işleme, dijital bir resim haline getirilmiş olan gerçek yaşamdaki görüntülerin bir girdi resim olarak işlenerek, o resmin özelliklerinin ve görüntüsünün değiştirilmesidir. Resimler

Detaylı

MOD419 Görüntü İşleme

MOD419 Görüntü İşleme MOD419 Görüntü İşleme Ders Kitabı: Digital Image Processing by Gonzalez and Woods Puanlama: %30 Lab. %20 Vize %10 Quizes %40 Final %60 devam mecburiyeti Görüntü İşleme ye Giriş Görüntü İşleme Nedir? Özellikle

Detaylı

Hafta 2 Görüntünün Alınması ve Sayısallaştırılması

Hafta 2 Görüntünün Alınması ve Sayısallaştırılması BLM429 Görüntü İşlemeye Giriş Hafta 2 Görüntünün Alınması ve Sayısallaştırılması Yrd. Doç. Dr. Caner ÖZCAN When something can be read without effort, great effort has gone into its writing. ~E. J. Poncela

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 06 Kasım

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı fkarsli@ktu.edu.tr

Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı fkarsli@ktu.edu.tr Uasal Görüntü İileştirme/Filtreleme Doç. Dr. Fevi Karslı karsli@ktu.edu.tr İileştirme Herhangi bir ugulama için, görüntüü orijinalden daha ugun hale getirmek Ugunluğu her bir ugulama için sağlamak. Bir

Detaylı

MMT 106 Teknik Fotoğrafçılık 3 Digital Görüntüleme

MMT 106 Teknik Fotoğrafçılık 3 Digital Görüntüleme MMT 106 Teknik Fotoğrafçılık 3 Digital Görüntüleme 2010-2011 Bahar Yarıyılı Ar. Gör. Dr. Ersoy Erişir 1 Konvansiyonel Görüntüleme (Fotografi) 2 Görüntü Tasarımı 3 Digital Görüntüleme 3.1 Renkler 3.2.1

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN Grafik Programlama Bilgisayar kullanılırken monitörlerde iki tür ekran moduyla karşılaşılır. Bu ekran modları Text modu ve Grafik modu dur. Text modunda ekran 25 satır ve 80 sütundan

Detaylı

İMGE İŞLEME Ders-7. Morfolojik İmge İşleme. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm. (Yrd. Doç. Dr. M.

İMGE İŞLEME Ders-7. Morfolojik İmge İşleme. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm. (Yrd. Doç. Dr. M. İMGE İŞLEME Ders-7 Morfolojik İmge İşleme (Yrd. Doç. Dr. M. Kemal GÜLLÜ) Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm Hazırlayan: M. Kemal GÜLLÜ Morfoloji Biyolojinin canlıların

Detaylı

Görüntü İyileştirme Teknikleri. Hafta-8

Görüntü İyileştirme Teknikleri. Hafta-8 Görüntü İyileştirme Teknikleri Hafta-8 1 Spektral İyileştirme PCA (Principal Component Analysis) Dönüşümü. Türkçesi Ana Bileşenler Dönüşümü Decorrelation Germe Tasseled Cap RGB den IHS ye dönüşüm IHS den

Detaylı

Eyüp Ersan SÜLÜN Photoshop CS4 Kullanım Kursu ADOBE PHOTOSHOP KATMAN HARMANLAMA (KARIŞTIRMA) MODLARI

Eyüp Ersan SÜLÜN Photoshop CS4 Kullanım Kursu ADOBE PHOTOSHOP KATMAN HARMANLAMA (KARIŞTIRMA) MODLARI Eyüp Ersan SÜLÜN Photoshop CS4 Kullanım Kursu ADOBE PHOTOSHOP KATMAN HARMANLAMA (KARIŞTIRMA) MODLARI Photoshop ile çalışırken, katmanlar üzerinde kullanılan nesneleri ve renkleri bir biri ile karıştırarak

Detaylı

Bölüm 6 Görüntü Onarma ve Geriçatma

Bölüm 6 Görüntü Onarma ve Geriçatma BLM429 Görüntü İşlemeye Giriş Bölüm 6 Görüntü Onarma ve Geriçatma Dr. Öğr. Üyesi Caner ÖZCAN Gördüğümüz şeyler tek başlarına ne gördüğümüz değildir... Hislerimizin algı yeteneğinden ayrı olarak nesnelerin

Detaylı

Rasterize işlemi: Aynı işlem shapeler için de geçerlidir.

Rasterize işlemi: Aynı işlem shapeler için de geçerlidir. Rasterize işlemi: Type katmanında silgi, fırça, gradient vs. kullanılmaz. Kullanılması için rasterize işlemini yapmak gerekir. Katmana sağ tıklanarak Rasterize type tıklanır ve type katmanı normal katmana

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Dijital görüntü işlemede temel kavramlar Sayısal Görüntü İşleme; bilgisayar yardımı ile raster verilerin

Detaylı

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun.

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Doç.Dr.Mehmet MISIR-2013 TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında

Detaylı

Gri Seviye Dönüşümleri ve Uzaysal Filtreleme. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN

Gri Seviye Dönüşümleri ve Uzaysal Filtreleme. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN Gri Seviye Dönüşümleri ve Uzaysal Filtreleme BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN GRİ SEVİYE DÖNÜŞÜMLERİ Herhangi bir görüntü işleme operasyonu, görüntüdeki pikselin gri seviye değerlerini

Detaylı

SİSTEM BİRİMİ VE EKRAN KOMUTLARI

SİSTEM BİRİMİ VE EKRAN KOMUTLARI BÖLÜM 6 SİSTEM BİRİMİ VE EKRAN KOMUTLARI Ekran komutları ekrandaki görüntü tasarımı için kullanılan komutlardır. Bu komutların program içinde kullanılabilmesi için, program başlığı satırından sonra USES

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME Hafta Hafta 1 Hafta 2 Hafta 3 Hafta 4 Hafta 5 Hafta 6 Hafta 7 Hafta 8 Hafta 9 Hafta 10 Hafta 11 Hafta 12 Hafta 13 Hafta 14 Konu Giriş Digital Görüntü Temelleri-1

Detaylı

Dijital Görüntü İşleme Teknikleri

Dijital Görüntü İşleme Teknikleri Teknikleri Ders Notları, 2015 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 19 Ekim 2015 Pazartesi 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar,

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 6 Kenar, Köşe, Yuvarlak Tespiti Alp Ertürk alp.erturk@kocaeli.edu.tr KENAR TESPİTİ Kenar Tespiti Amaç: Görüntüdeki ani değişimleri / kesintileri algılamak Şekil bilgisi elde

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 8 Multispektral Görüntüleme ve Uygulamaları Alp Ertürk alp.erturk@kocaeli.edu.tr Multispektral Görüntüleme Her piksel için birkaç adet spektral kanalda ölçüm değeri

Detaylı

Bilgisayarla Fotogrametrik Görme

Bilgisayarla Fotogrametrik Görme Bilgisayarla Fotogrametrik Görme Dijital Görüntü ve Özellikleri Yrd. Doç. Dr. Mustafa DİHKAN 1 Dijital görüntü ve özellikleri Siyah-beyaz resimler için değer elemanları 0-255 arasındadır. 256 farklı durum

Detaylı

Görüntü İşleme Dersi Ders-8 Notları

Görüntü İşleme Dersi Ders-8 Notları Görüntü İşleme Dersi Ders-8 Notları GRİ SEVİYE DÖNÜŞÜMLERİ Herhangi bir görüntü işleme operasyonu, görüntüdeki pikselin gri seviye değerlerini dönüştürme işlemidir. Ancak, görüntü işleme operasyonları;

Detaylı

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında ucuz ve hızlı sonuç alınabilen uzaktan algılama tekniğinin, yenilenebilir

Detaylı

Yukarıdaki program çalıştırıldığında aşağıdaki sonucu elde ederiz.

Yukarıdaki program çalıştırıldığında aşağıdaki sonucu elde ederiz. HIZLI ÇALIŞAN ve AZ HAFIZA KULLANAN MATLAB PROGRAMI YAZMA: Matlab programlarında eğer döngüler kullanılıyor bunların içlerindeki komutların yapılması belirli bir süre alır. Matlab programlarının hızını

Detaylı

Bölüm 2 Görüntünün Alınması ve Sayısallaştırılması

Bölüm 2 Görüntünün Alınması ve Sayısallaştırılması BLM429 Görüntü İşlemeye Giriş Bölüm 2 Görüntünün Alınması ve Sayısallaştırılması Dr. Öğr. Üyesi Caner ÖZCAN When something can be read without effort, great effort has gone into its writing. ~E. J. Poncela

Detaylı

AKÜ TEKNOLOJİ FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ

AKÜ TEKNOLOJİ FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÖRÜNTÜ İŞLEME DERS-8 YARDIMCI NOTLARI -2018 Gri Seviye Dönüşümleri Herhangi bir görüntü işleme operasyonu, görüntüdeki pikselin gri seviye değerlerini dönüştürme işlemidir. Ancak, görüntü işleme operasyonları;

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi Uzaktan Algılama (JDF439) Hiperspektral ve termal bantlı uydular Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) 2016-2017 Öğretim Yılı Güz Dönemi 1 3 4 5 SPOT 6 6 Geçen ders: Mikrodalga algılama sistemleri Gündüz

Detaylı

Görüntü İşleme Ders-7 AND, NAND. % bir görüntüde küçük bir alanın kesilip çıkartılması. >> y=imread('headquarters-2and.jpg');

Görüntü İşleme Ders-7 AND, NAND. % bir görüntüde küçük bir alanın kesilip çıkartılması. >> y=imread('headquarters-2and.jpg'); Görüntü İşleme Ders-7 AND, NAND % bir görüntüde küçük bir alanın kesilip çıkartılması. >> x=imread('headquarters-2.jpg'); >> y=imread('headquarters-2and.jpg'); >> x=rgb2gray(x); >> y=rgb2gray(y); >> imshow(y)

Detaylı

KIFSAD LIGHTROOM 2 EĞİTİM DOKÜMANI

KIFSAD LIGHTROOM 2 EĞİTİM DOKÜMANI KIFSAD LIGHTROOM 2 EĞİTİM DOKÜMANI LIGHTROOM 2 Program açıldıktan sonra File / Import Photos From Disk menüsüne tıklanarak yüklenmek istenen fotoğraflar için seçim penceresi açılır. CTRL tuşuna basılı

Detaylı

GÖRÜNTÜ İŞLEME UYGULAMALARI. Arş. Gör. Dr. Nergis TURAL POLAT

GÖRÜNTÜ İŞLEME UYGULAMALARI. Arş. Gör. Dr. Nergis TURAL POLAT GÖRÜNTÜ İŞLEME UYGULAMALARI Arş. Gör. Dr. Nergis TURAL POLAT İçerik Görüntü işleme nedir, amacı nedir, kullanım alanları nelerdir? Temel kavramlar Uzaysal frekanslar Örnekleme (Sampling) Aynalama (Aliasing)

Detaylı

Hafta 5 Uzamsal Filtreleme

Hafta 5 Uzamsal Filtreleme BLM429 Görüntü İşlemeye Giriş Hafta 5 Uzamsal Filtreleme Yrd. Doç. Dr. Caner ÖZCAN If the facts don't fit the theory, change the facts. ~Einstein İçerik 3. Yeğinlik Dönüşümleri ve Uzamsal Filtreleme Temel

Detaylı

İkili (Binary) Görüntü Analizi

İkili (Binary) Görüntü Analizi İkili (Binary) Görüntü Analizi İkili görüntü analizine giriş Eşikleme (Thresholding) Matematiksel morfoloji Piksel ve komşulukları (neighborhoods) Bağlantılı bileşenler analizi (Connected components analysis)

Detaylı

TEMEL GRAFİK TASARIM AÇIK-KOYU, IŞIK-GÖLGE

TEMEL GRAFİK TASARIM AÇIK-KOYU, IŞIK-GÖLGE TEMEL GRAFİK TASARIM AÇIK-KOYU, IŞIK-GÖLGE Öğr. Gör. Ruhsar KAVASOĞLU 23.10.2014 1 Işık-Gölge Işığın nesneler, objeler ve cisimler üzerinde yayılırken oluşturduğu açık orta-koyu ton (degrade) değerlerine

Detaylı

AKÜ TEKNOLOJİ FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ

AKÜ TEKNOLOJİ FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÖRÜNTÜ İŞLEME DERS-6 YARDIMCI NOTLARI -2018 İMGE MANTIKSAL FONKSİYONLARI İmge matrisleri arasında aritmetik işlemler yapılabildiği gibi Mantıksal işlemler de yapılabilmektedir. Bu mantıksal işlemler piksel

Detaylı

İkili (Binary) Görüntü Analizi

İkili (Binary) Görüntü Analizi İkili (Binary) Görüntü Analizi İkili görüntü analizine giriş Eşikleme (Thresholding) Matematiksel morfoloji Piksel ve komşulukları (neighborhoods) Bağlantılı bileşenler analizi (Connected components analysis)

Detaylı

SAYISAL GÖRÜNTÜ İŞLEMENİN TEMELLERİ 2. HAFTA YRD. DOÇ. DR. BURHAN BARAKLI

SAYISAL GÖRÜNTÜ İŞLEMENİN TEMELLERİ 2. HAFTA YRD. DOÇ. DR. BURHAN BARAKLI SAYISAL GÖRÜNTÜ İŞLEMENİN TEMELLERİ 2. HAFTA YRD. DOÇ. DR. BURHAN BARAKLI Nerden çıktı bu sayısal görüntü işleme? SGİ Kullanan Alanlara Örnekler Sayısal görüntü işleme, uygulama alanlarına göre farklılar

Detaylı

Hafta 3 Görüntü İşleme ile İlgili Temel Kavramlar

Hafta 3 Görüntü İşleme ile İlgili Temel Kavramlar BLM429 Görüntü İşlemeye Giriş Hafta 3 Görüntü İşleme ile İlgili Temel Kavramlar Yrd. Doç. Dr. Caner ÖZCAN Those who wish to succeed must ask the right preliminary questions. (Başarmak isteyenler doğru

Detaylı

Görüntü İyileştirme Teknikleri. Hafta-6

Görüntü İyileştirme Teknikleri. Hafta-6 Görüntü İyileştirme Teknikleri Hafta-6 Doç. Dr. Oğuz Güngör Karadeniz Teknik Üniversitesi Harita Mühendisliği Bölümü 6080 Trabzon ogungor@ktu.edu.tr İndisler Görüntü İyileştirme Teknikleri Radyometrik

Detaylı

6. ÇİZİM İŞLEMLERİ 3 6.1. 2 Boyutlu Eğri Çizimi x ve y vektörleri ayni boyutta ise bu vektörleri ekrana çizdirmek için plot(x,y) komutu kullanılır.

6. ÇİZİM İŞLEMLERİ 3 6.1. 2 Boyutlu Eğri Çizimi x ve y vektörleri ayni boyutta ise bu vektörleri ekrana çizdirmek için plot(x,y) komutu kullanılır. 6. ÇİZİM İŞLEMLERİ 3 6.1. 2 Boyutlu Eğri Çizimi x ve y vektörleri ayni boyutta ise bu vektörleri ekrana çizdirmek için plot(x,y) komutu kullanılır. A =[ 7 2 5 ]; B =[ 5 4 8 ]; plot(a,b); İstenildigi takdirde

Detaylı

************************************************** % karanlık ve aydınlık yapma x=imread('headquarters-2k.png'); %karanlık görüntü imshow(x)

************************************************** % karanlık ve aydınlık yapma x=imread('headquarters-2k.png'); %karanlık görüntü imshow(x) ************************************************** % karanlık ve aydınlık yapma x=imread('headquarters-2k.png'); %karanlık görüntü imshow(x) x=x-30; %daha da karanlık yapıyoruz. figure imshow(x) x=x+100;

Detaylı

İMGE İŞLEME Ders-9. İmge Sıkıştırma. Dersin web sayfası: (Yrd. Doç. Dr. M.

İMGE İŞLEME Ders-9. İmge Sıkıştırma. Dersin web sayfası:  (Yrd. Doç. Dr. M. İMGE İŞLEME Ders-9 İmge Sıkıştırma (Yrd. Doç. Dr. M. Kemal GÜLLÜ) Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm Hazırlayan: M. Kemal GÜLLÜ İmge Sıkıştırma Veri sıkıştırmanın

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 4 DÖNÜŞÜMLER UZAYSAL FİLTRELEME

GÖRÜNTÜ İŞLEME HAFTA 4 DÖNÜŞÜMLER UZAYSAL FİLTRELEME GÖRÜNTÜ İŞLEME HAFTA 4 DÖNÜŞÜMLER UZAYSAL FİLTRELEME DERS İÇERİĞİ Histogram İşleme Filtreleme Temelleri HİSTOGRAM Histogram bir resimdeki renk değerlerinin sayısını gösteren grafiktir. Histogram dengeleme

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 2 MATLAB ve Görüntü İşleme Alp Ertürk alp.erturk@kocaeli.edu.tr MATLAB Matrix Laboratory nin kısaltmasıdır Bir çok uygulamada kolaylık sağlayacak özelleşmiş parçaları

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 4 İkili Görüntüler, Topoloji ve Morfoloji Alp Ertürk alp.erturk@kocaeli.edu.tr İkili (binary) görüntüler Gri skala veya renkli bir görüntünün eşiklenmesi ile elde edilirler.

Detaylı

Uzaktan Algılama (3) Yrd. Doç. Dr. Özgür ZEYDAN Renk Teorileri

Uzaktan Algılama (3) Yrd. Doç. Dr. Özgür ZEYDAN   Renk Teorileri Uzaktan Algılama (3) Yrd. Doç. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Eklemeli renk teorisi Çıkarmalı renk teorisi 1 RGB (Red Green - Blue) Kavramı Red Green - Blue RGB-Mixer

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

AKÜ TEKNOLOJİ FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ

AKÜ TEKNOLOJİ FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÖRÜNTÜ İŞLEME DERS-9 YARDIMCI NOTLARI -2018 Hızlı Fourier Dönüşümü Matlab Örnekleri: fftshow() fonksiyonu function [ ] = fftshow(f) fl=log(1+abs(f)); fm=max(fl(:)); figure,imshow(im2uint8(fl/fm)); end

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

ARA DEĞER KESTİRİM (İNTERPOLASYON) YÖNTEMLERİ VE MADEN YATAKLARINA UYGULANMASI GEO405 JEOLOJİ MÜHENDİSLİĞİ NDE TASARIM DR.

ARA DEĞER KESTİRİM (İNTERPOLASYON) YÖNTEMLERİ VE MADEN YATAKLARINA UYGULANMASI GEO405 JEOLOJİ MÜHENDİSLİĞİ NDE TASARIM DR. ARA DEĞER KESTİRİM (İNTERPOLASYON) YÖNTEMLERİ VE MADEN YATAKLARINA UYGULANMASI GEO405 JEOLOJİ MÜHENDİSLİĞİ NDE TASARIM DR. SİNAN AKISKA 3B YÜZEY ve YER ALTI MODELLEMELERİ NASIL YAPILIYOR? REZERV HESAPLARI

Detaylı

AKÜ TEKNOLOJİ FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ

AKÜ TEKNOLOJİ FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÖRÜNTÜ İŞLEME DERS-12 YARDIMCI NOTLARI -2018 ÇALIŞMA SORULARI Soru 1: (256x256) boyutlarında gri seviye bir görüntü dosyası olan cameraman.tif dosyasını Matlab ortamında 4 eşit parçaya bölünüz. Her bir

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 12 Video, Optik Akış ve Takip Alp Ertürk alp.erturk@kocaeli.edu.tr Video Video, farklı zamanlarda alınan çerçeveler dizisidir Videolar, iki boyut uzamsal, üçüncü boyut zaman

Detaylı

Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri

Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Eklemeli renk teorisi Çıkarmalı renk teorisi 1 RGB (Red Green - Blue) Kavramı Red Green - Blue RGB-Mixer

Detaylı

CCD KAMERA KULLANARAK SAYISAL GÖRÜNTÜ İŞLEME YOLUYLA GERÇEK ZAMANLI GÜVENLİK UYGULAMASI

CCD KAMERA KULLANARAK SAYISAL GÖRÜNTÜ İŞLEME YOLUYLA GERÇEK ZAMANLI GÜVENLİK UYGULAMASI CCD KAMERA KULLANARAK SAYISAL GÖRÜNTÜ İŞLEME YOLUYLA GERÇEK ZAMANLI GÜVENLİK UYGULAMASI Serhan COŞAR serhancosar@yahoo.com Oğuzhan URHAN urhano@kou.edu.tr M. Kemal GÜLLÜ kemalg@kou.edu.tr İşaret ve Görüntü

Detaylı

GÖRÜNTÜ İŞLEME - (6.Hafta) GÖRÜNTÜ NETLEŞTİRME ALGORİTMALARI

GÖRÜNTÜ İŞLEME - (6.Hafta) GÖRÜNTÜ NETLEŞTİRME ALGORİTMALARI GÖRÜNTÜ İŞLEME - (6.Hafta) GÖRÜNTÜ NETLEŞTİRME ALGORİTMALARI NETLEŞTİRME/KESKİNLEŞTİRME FİLTRESİ (Sharpening Filter) Bu algoritma orjinal görüntüden, görüntünü yumuşatılmış halini çıkararak belirgin kenarların

Detaylı

DEPREM HESABI. Doç. Dr. Mustafa ZORBOZAN

DEPREM HESABI. Doç. Dr. Mustafa ZORBOZAN BETONARME YAPI TASARIMI DEPREM HESABI Doç. Dr. Mustafa ZORBOZAN Mart 2009 GENEL BİLGİ 18 Mart 2007 ve 18 Mart 2008 tarihleri arasında ülkemizde kaydedilen deprem etkinlikleri Kaynak: http://www.koeri.boun.edu.tr/sismo/map/tr/oneyear.html

Detaylı

Bölüm 3 Görüntü İşleme ile İlgili Temel Kavramlar

Bölüm 3 Görüntü İşleme ile İlgili Temel Kavramlar BLM429 Görüntü İşlemeye Giriş Bölüm 3 Görüntü İşleme ile İlgili Temel Kavramlar Dr. Öğr. Üyesi Caner ÖZCAN Those who wish to succeed must ask the right preliminary questions. (Başarmak isteyenler doğru

Detaylı

I Ş I ĞIN RENKLERE AYRILMASI

I Ş I ĞIN RENKLERE AYRILMASI Ünite-4 Ş ĞN RENLERE AYRLAS Beyaz şık Prizmaya gönderilen beyaz ışık demeti prizmadan kırıldıktan sonra renklere ayrılır. Sırasıyla bu renkler kırmızı, turuncu, sarı, yeşil, mavi ve mordur. Bu olaya beyaz

Detaylı

Tester UAK-1 S RENK ANALİZLERİ TEST SONUÇLARI

Tester UAK-1 S RENK ANALİZLERİ TEST SONUÇLARI Itru Fibre Tester RENK ANALİZLERİ TEST SONUÇLARI 1992-2007 Itru Group Ltd Renk Analiz Test Sonuçları 2 1- Ham Bez Renk Analizleri 200 pixel per inchten 9600 pixel per inche kadar taranan bezlerin 1024*800

Detaylı

NEIGHBOURHOOD PROCESSING (KOMŞULUK İLİŞKİLİ İŞLEMLERİ- BÖLGESEL İŞLEMLER-UZAYSAL FİLTRELEME) BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr.

NEIGHBOURHOOD PROCESSING (KOMŞULUK İLİŞKİLİ İŞLEMLERİ- BÖLGESEL İŞLEMLER-UZAYSAL FİLTRELEME) BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. NEIGHBOURHOOD PROCESSING (KOMŞULUK İLİŞKİLİ İŞLEMLERİ- BÖLGESEL İŞLEMLER-UZAYSAL FİLTRELEME) BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN 1 KOMŞULUK İLİŞKİLİ İŞLEMLER (UZAYSAL FİLİTRELER) Noktasal

Detaylı

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ 2018/2019 GYY BİTİRME ÇALIŞMASI ÖNERİ FORMU. (Doç.Dr. M.

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ 2018/2019 GYY BİTİRME ÇALIŞMASI ÖNERİ FORMU. (Doç.Dr. M. KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ 2018/2019 GYY BİTİRME ÇALIŞMASI ÖNERİ FORMU (Doç.Dr. M. Kemal GÜLLÜ) Derinlik kamerası ile alınan modellerin birleştirilmesi Derinlik kamerası,

Detaylı

GÖRÜNTÜ İŞLEME - (8.Hafta) RESMİ ALT BÖLGELERE AYIRMA

GÖRÜNTÜ İŞLEME - (8.Hafta) RESMİ ALT BÖLGELERE AYIRMA GÖRÜNTÜ İŞLEME - (8.Hafta) RESMİ ALT BÖLGELERE AYIRMA BAĞLANTILI BİLEŞEN ETİKETLEME (Çift Geçiş Metodu) Bir resim üzerindeki aynı renk koduna sahip bölgelerin ortaya çıkarılması, birbirinden ayrılması

Detaylı

Hafta 4 Yoğunluk Dönüşümleri ve Histogram İşleme

Hafta 4 Yoğunluk Dönüşümleri ve Histogram İşleme BLM429 Görüntü İşlemeye Giriş Hafta 4 Yoğunluk Dönüşümleri ve Histogram İşleme Yrd. Doç. Dr. Caner ÖZCAN It makes all the difference whether one sees darkness through the light or brightness through the

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 3 Uzaktan Algılama Temelleri Alp Ertürk alp.erturk@kocaeli.edu.tr Elektromanyetik Spektrum Elektromanyetik Spektrum Görünür Işık (Visible Light) Mavi: (400 500 nm) Yeşil:

Detaylı

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER SUNU PLANI Analog sayısal çevirici FIR Filtreler IIR Filtreler Adaptif Filtreler Pan-Tompkins Algoritması Araş. Gör. Berat Doğan 08/04/2015

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ SINIF DEĞERLENDİRME SINAVI

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ SINIF DEĞERLENDİRME SINAVI T.C. MİLLÎ EĞİTİM BAKANLIĞI 05-06. SINIF DEĞERLENDİRME SINAVI - 4 05-06.SINIF FEN BİLİMLERİ TESTİ (LS ) DEĞERLENDİRME SINAVI - 4 Adı ve Soyadı :... Sınıfı :... Öğrenci Numarası :... SORU SAISI : 80 SINAV

Detaylı

ANALOG VİDEO TEMELLERİ

ANALOG VİDEO TEMELLERİ ANALOG VİDEO TEMELLERİ Video sinyali; bir görüntünün kamera vasıtası ile elektriksel hale dönüştürülmesiyle oluşan sinyaldir.video sinyali ilk zamanlarda renksiz (siyah/beyaz) olarak iafade edilebilmiş

Detaylı

Görüntü Restorasyonu. BMÜ-357 Sayısal Görüntü İşeme Yrd. Doç. Dr. İlhan AYDIN

Görüntü Restorasyonu. BMÜ-357 Sayısal Görüntü İşeme Yrd. Doç. Dr. İlhan AYDIN Görüntü Restorasyonu BMÜ-357 Sayısal Görüntü İşeme Yrd. Doç. Dr. İlhan AYDIN Görüntü İyileştirme (İmage restoration) Görüntü restorasyonu konusu, bir görüntünün oluşumu esnasında oluşabilen veri kayıplarını

Detaylı

T.C. NAMIK KEMAL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ

T.C. NAMIK KEMAL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ İMGE İŞLEME YÖNTEMLERİ İLE KAYISILARDA YAPRAK DELEN HASTALIĞI SONUCU OLUŞAN LEKELERİN TESPİTİ Mustafa KARHAN Yüksek Lisans Tezi Elektronik ve Haberleşme Mühendisliği Anabilim Dalı Danışman: Yrd. Doç. Dr.

Detaylı

Dijital Fotogrametri

Dijital Fotogrametri Dijital Fotogrametri 2016-2017, Bahar YY Fevzi Karslı (Prof. Dr.) Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 20 Mart 2017 Pazartesi Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, kavramlar,

Detaylı

TEMEL GÖRÜNTÜ BİLGİSİ

TEMEL GÖRÜNTÜ BİLGİSİ TEMEL GÖRÜNTÜ BİLGİSİ FOTOĞRAF/GÖRÜNTÜ KAVRAMI VE ÖZELLİKLERİ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF345 TEMEL GÖRÜNTÜ BİLGİSİ DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz/ İÇERİK

Detaylı

BMÜ-357 Sayısal Görüntü İşleme. MATLAB İLE GÖRÜNTÜ İŞLEME Yrd. Doç. Dr. İlhan AYDIN

BMÜ-357 Sayısal Görüntü İşleme. MATLAB İLE GÖRÜNTÜ İŞLEME Yrd. Doç. Dr. İlhan AYDIN BMÜ-357 Sayısal Görüntü İşleme MATLAB İLE GÖRÜNTÜ İŞLEME Yrd. Doç. Dr. İlhan AYDIN Sayısal Görüntü İşleme: Sensörlerden gelen görüntünün bilgisayara aktarılıp üzerinde herhangi bir işlem yapılması ve ardından

Detaylı

GÖRÜNTÜ İŞLEME - (3.Hafta)

GÖRÜNTÜ İŞLEME - (3.Hafta) GÖRÜNTÜ İŞLEME - (3.Hafta) GEOMETRİK DÖNÜŞÜMLER Geometrik dönüşümler resim üzerindeki her pikselin bir konumdan (x 1,y 1 ) başka bir konuma (x 2,y 2 ) haritalanmasıdır. Bununla ilgili olarak aşağıdaki

Detaylı

MS WORD 5. BÖLÜM. Şekil 3. 100. Sayfa Düzeni Sekmesi. Şekil 3. 101. Temalar Grubu

MS WORD 5. BÖLÜM. Şekil 3. 100. Sayfa Düzeni Sekmesi. Şekil 3. 101. Temalar Grubu MS WORD 5. BÖLÜM Bölüm Adı: SAYFA DÜZENİ Bölümün Amacı: Sayfa yapısı ve düzenini değiştirmek. Neler Öğreneceksiniz? Bu bölümü bitiren kişi: 1. Ofis temalarını bilir. 2. Kenar boşluklarını, sayfa yönlendirmesini,

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Final

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Final Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Bilgisayarla Görme Final Harris ve Moravec Köşe Belirleme Metotları Selçuk BAŞAK 08501008 Not: Ödevi hazırlamak için geliştirdiğim

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Sayısal Görüntü İşleme BIL413 7 3+0 3 5 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Seçmeli / Yüz Yüze

Detaylı

Hafta 7 Görüntü Onarma ve Geriçatma (Kısım 1)

Hafta 7 Görüntü Onarma ve Geriçatma (Kısım 1) BLM429 Görüntü İşlemeye Giriş Hafta 7 Görüntü Onarma ve Geriçatma (Kısım 1) Yrd. Doç. Dr. Caner ÖZCAN Gördüğümüz şeyler tek başlarına ne gördüğümüz değildir... Hislerimizin algı yeteneğinden ayrı olarak

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Proje

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Proje Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Bilgisayarla Görme Proje Renk ve Şekil Temelli Trafik İşareti Tespiti Selçuk BAŞAK 08501008 1. Not: Ödevi hazırlamak için

Detaylı

YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri-

YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri- YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri- Hazırlayan Yrd. Doç. Selçuk Üniversitesi Mühendislik Fakültesi - Endüstri Mühendisliği Bölümü Giriş Zaman içerisinde tamamen önceden kestirilemeyecek şekilde

Detaylı

BİLGİSAYAR UYGULAMALARI Şırnak Üniversitesi Mühendislik Fakültesi Güz Dönemi Arş.Gör. Eren DEMİR ve Arş.Gör. Veysel KIŞ (

BİLGİSAYAR UYGULAMALARI Şırnak Üniversitesi Mühendislik Fakültesi Güz Dönemi Arş.Gör. Eren DEMİR ve Arş.Gör. Veysel KIŞ ( BİLGİSAYAR UYGULAMALARI Şırnak Üniversitesi Mühendislik Fakültesi 2018-19 Güz Dönemi Arş.Gör. Eren DEMİR ve Arş.Gör. Veysel KIŞ (e-mail: edemir@sirnak.edu.tr ) 04.10.2018 1 Matrisler ile İşlem Yapma Toplama

Detaylı

WEB GRAFİK TASARIMI. 2. Şekil A) B) C) D) E) A) B) C) D) E)

WEB GRAFİK TASARIMI. 2. Şekil A) B) C) D) E) A) B) C) D) E) 2019 BAHAR DÖNEM SONU - A WEB GRAFİK TASARIMI A 1. 2. 3. Aşağıdakilerden hangisi RGB modunun kullanım alanlarından biri değildir? Web tasarım Elektronik grafik ürünler İnteraktif CD tasarımı Ekran sunumları

Detaylı

Radyolojik Görüntüleme Sistemlerinde Görüntü Kalitesinin Sayısal Olarak Değerlendirilmesi. Yard. Doç. Dr. Özlem Birgül 23 Kasım 2013, Antalya

Radyolojik Görüntüleme Sistemlerinde Görüntü Kalitesinin Sayısal Olarak Değerlendirilmesi. Yard. Doç. Dr. Özlem Birgül 23 Kasım 2013, Antalya Radyolojik Görüntüleme Sistemlerinde Görüntü Kalitesinin Sayısal Olarak Değerlendirilmesi Yard. Doç. Dr. Özlem Birgül 23 Kasım 2013, Antalya Amaç - Gelişen dedektör teknolojisi ile farklı dedektörlerin

Detaylı

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ Deneyde dolu alan tarama dönüşümünün nasıl yapıldığı anlatılacaktır. Dolu alan tarama

Detaylı