MUTFAK ARMATÜRÜ TASARIMININ KULLANICILARIN GÖRSEL ALGILARINA GÖRE LOJİSTİK REGRESYON YOLUYLA BELİRLENMESİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "MUTFAK ARMATÜRÜ TASARIMININ KULLANICILARIN GÖRSEL ALGILARINA GÖRE LOJİSTİK REGRESYON YOLUYLA BELİRLENMESİ"

Transkript

1 Endüstri Mühendisliði Dergisi Cilt: 9 Sayý: Sayfa: (7-3) Makina Mühendisleri Odasý MUTFAK ARMATÜRÜ TASARIMININ KULLANICILARIN GÖRSEL ALGILARINA GÖRE LOJİSTİK REGRESON OLULA BELİRLENMESİ Ezgi AKTAR DEMİRTAŞ, A. Sermet ANAGÜN, Gülser KÖKSAL * Eskişehir Osmangazi Universitesi, Endüstri Mühendisliği Bölümü, 6030, Eskişehir Tel: (0 ) e-osta: Orta Doğu Teknik Üniversitesi, Endüstri Mühendisliği Bölümü, 063, Ankara Tel: (0 3) 0 64 e-osta: Geliş Tarihi: 7 Kasım 007 ; Kabul Ediliş Tarihi: 9 Haziran 008 Bu makale kez düzeltilmek üzere 38 gün yazarlarda kalmıştır. ÖZET aılan çalışmada, mutfak armatürü tasarımında kullanıcı hislerini analiz ederek tasarım sürecine dahil etmek ve kullanıcıların görsel algılarına göre tasarım niteliklerinin düzeylerini eniyilemek üzere iki aşamalı bir yaklaşım önerilmiş ve uygulanmıştır. İlk aşamada kullanıcıların 38 farklı mutfak armatürünü, görsel algıları ölçmede kullanılan kansei sözcüğüne göre bir anlamsal farklılıklar ölçeğinde değerlendirmeleri istenmiştir. Elde edilen verilerden hareketle kullanıcıların genel tercih uanları ile kansei sözcük uanları arasındaki ilişki Doğrusal Regresyon ve Sıralı Lojistik Regresyon (SLOGREG) kullanılarak araştırılmıştır. İkinci aşamada, kullanıcıların genel tercih uanlarını enbüyükleyen tasarım düzeyleri SLOGREG ile belirlenerek doğrulama çalışmaları yaılmıştır. aılan çalışma; kullanıcı odaklı ürün tasarımında kullanabilecek etkili bir yaklaşım önermekte ve bu yaklaşımı mutfak armatürlerinin tasarımı üzerinde göstermektedir. Anahtar Sözcüler: Kullanıcı Odaklı Ürün Tasarımı, Mutfak Armatürü, Kansei Mühendisliği, Sıralı Lojistik Regresyon SINK MIXER DESIGN FOR VISUAL PERCEPTIONS OF USERS B LOGISTIC REGRESSION ABSTRACT In this study; a two-stage integrated aroach is roosed and imlemented to exlore user senses about sink mixers and otimization of design levels for visual ercetions. At the first stage, users have been asked to judge 38 different mixer designs by using a semantic differential (SD) scale for image (kansei) words about their visual ercetions. Then the relationshis between general reference and kansei scores of users are investigated by Linear Regression and Ordinal Logistic Regression (OLOGREG). At the second stage; the best design arameter levels for visual ercetions are determined to maximize general reference scores by OLOGREG, and the results are validated. This study rooses an aroach that can be used for user centered roduct design in general and demonstrates it for the design of sink mixers. Keywords: User Centred Product Design, Sink Mixer, Kansei Engineeering, Ordinal Logistic Regression * İletişim yazarı 7

2 Ezgi Aktar Demirtaş, A. Sermet Anagün, Gülser Köksal. GİRİŞ Ulusal ve uluslararası azarlarda rekabetin inanılmaz boyutlara ulaştığı günümüzde, kullanıcı istek ve beklentilerini karşılayan ürünleri azara en kısa sürede ve uygun fiyatla sunabilen firmalar önemli bir rekabet avantajına sahi olacaktır. Rekabet ortamında başarılı olmak isteyen firmaların kullanıcı odaklı tasarıma yönelmeleri gerekmektedir. Kalite Fonksiyon ayılımı (KF) ve KF yi destekleyen Üretilebilirlik ve Montaj için Tasarım, Değer Mühendisliği, Hata Türü ve Etkileri Analizi gibi yöntemler; ürünün erformans, uygunluk, güvenilirlik, dayanıklılık ve maliyet boyutlarını dikkate alarak kullanıcı odaklı ürünlerin tasarlanmasına yardımcı olur. Mevcut çalışmalarda ürün erformansına ilişkin beklentiler dikkate alınmakla birlikte, ürünün kullanıcıda uyandırdığı hissel beklentileri dikkate alan çalışmaların sayısı da giderek artmaktadır (Khalid ve Helander, 006). Nagamachi tarafından Hiroşima Üniversitesi nde geliştirilen Kansei Mühendisliği (KM) kullanıcıların göstermiş oldukları sikolojik ve fizyolojik tekilerden ve hislerini ifade eden sözcüklerden (kansei sözcükleri) hareketle, ürüne duydukları hisleri ölçmek ve bu hisleri tasarım sürecine dahil etmek için kullanılmakta, ürün tasarımında estetik ve algılanan kalite boyutuna odaklanılmaktadır (Nagamachi, 99). Kansei Mühendisliği önceden seçilen ürün alanına bağlı kalacak şekilde her biri bir vektör uzayını tarayan iki tanımlama sürecine göre yaılandırılır. Bu süreçler semantik olarak adlandırılan ve kullanıcı hislerini ifade eden kansei sözcük uzayının ve ürün özellikleri uzayının taranmasıdır. Daha sonra hangi ürün özelliklerinin (tasarım nitelikleri ve ilgili düzeyleri) hangi hisleri etkilediğini belirleyebilmek için sentezleme aşamasına geçilir. Sentezleme sonrasında doğrulama çalışmaları yaılarak gerekli görüldüğü durumlarda her iki vektör uzayı güncellenir ve sentezleme işlemi tekrarlanır (Shütte, 00). Literatürdeki KM uygulamalarını iki gruta tolamak mümkündür. İlk grutaki çalışmalar bir ürün ya da ürün grubu ile ilgili kullanıcı hislerinin (kansei sözcükleri) ve ürün imajlarının belirlenmesine yöneliktir (Zhang ve Shen, 999; Han vd., 000; Chuang ve Mab, 00; Karlsson, 003; Liu, 003; Khalid ve Helander, 004; Creusen ve Schoormans, 00; Hsiao ve Chen, 006). İkinci grutaki çalışmalar ise kullanıcıların genel tercihlerini etkileyen kansei sözcüklerinin ve sözcükler ile tasarım düzeyleri arasındaki ilişkilerin belirlenmesine yöneliktir. Araştırmacılar; kullanıcıların genel tercihlerini etkileyen kansei sözcüklerinin belirlenmesinde genel olarak Doğrusal Regresyon öntemi ni (Zhang ve Shen, 999; Hsu vd., 000, Chuang vd., 00), sözcükler ile tasarım düzeyleri arasındaki ilişkinin belirlenmesinde ise Korelasyon, Regresyon ve Konjoint Analizi gibi istatistiksel yöntemler ile aay Sinir Ağları (SA), bulanık SA, gri ilişkisel analiz ve kaba kümeleme gibi diğer yöntemleri kullanmıştır. Jindo ve Hirasago (997), Nakada (997), Kwon (999), un vd. (999), Kim vd. (003) sözcükler ile tasarım düzeyleri arasındaki ilişkiyi Korelasyon ve Regresyon Analizi; Hsu vd. (000), Chuang vd. (00) Konjoint Analizi; Hsiao and Huang (00), Hsiao ve Tsai (00); Lai vd. (00) ve Lai vd. (006) ise SA ve diğer yöntemler ile belirlemiştir. Analizlerde kullanılan verilerin elde edilmesi aşamasında Osgood vd. (97) tarafından geliştirilen Anlamsal Farklılıklar ölçeği kullanılmaktadır. Ürünler olumlu-olumsuz kansei sözcük çiftlerine göre -9 lu ölçekte değerlendirilir. Sıralı ölçekle ölçülen bu veriler kategorik yaıdadır. Dolayısı ile analizlerde mevcut istatistiksel yöntemleri kullanmak bazı sakıncalar yaratmaktadır. Örneğin Doğrusal Regresyon Analizi nin kullanılabilmesi için kullanıcıların genel tercih ve kansei sözcük uanlarının ürünler bazında ortalaması alınarak bağımlı ve bağımsız değişkenler sürekli hale getirilmektedir. Ancak sıralı ölçekle ölçülen verilerin ortalamasını almak doğru değildir. Ayrıca, ortalama değerlerin kullanılması veri kaybına neden olmakta, genel tercihe etki edebilecek bazı etkileşimler göz ardı edilmektedir. Benzer şekilde Konjoint Analizi ile ikili 8

3 Mutfak Armatürü Tasarımının Kullanıcıların Görsel Algılarına Göre Lojistik Regresyon oluyla Belirlenmesi etkileşim etkilerini hesalamak mümkün değildir. Mevcut çalışmalarda kansei sözcüklerinin ve tasarım düzeylerinin genel tercih üzerindeki etkisi araştırılırken ikili etkileşim etkileri ihmal edilmiştir. Diğer taraftan SA gibi karmaşık yöntemler kullanılarak modelleme yamak zordur. Firma çalışanlarının bu ti yöntemleri ve yöntemlere ilişkin yazılım ve araçları ratik ve etkili bir şekilde kullanmasını beklemek mümkün değildir. Bu sebele kansei sözcükleri ve tasarım düzeyleri ile genel tercih uanı arasındaki ilişkinin araştırılmasında, bağımlı ve bağımsız değişkenlerin sıralı ölçekle ölçüldüğü durumlarda kullanılabilen, ikili etkileşim etkilerini dikkate alan ve istatistiksel bir yöntem olan Sıralı Lojistik Regresyon (SLOGREG) önerilmiştir. aılan çalışmada, seçilen ürün alanına bağlı kalacak şekilde sözcük ve ürün özellikleri uzayı taranarak, sentezleme aşamasına geçilmiştir. Sentezleme aşaması iki adımdan oluşmaktadır. İlk adımda genel tercihe etki eden kansei sözcükleri ile genel tercih uanı arasındaki ilişki Doğrusal Regresyon ve SLOGREG ile araştırılarak sonuçlar karşılaştırılmıştır. İkinci adımda ise genel tercih uanları ile tasarım düzeyleri arasındaki ilişki SLOGREG ile araştırılarak kullanıcıların görsel algılarına göre eniyi tasarım düzeyleri belirlenmiştir. İlk adımdaki SLOGREG modeli, ikinci adımda SLOGREG in önerdiği en çok tercih edilen tasarım seçeneklerinin kullanıcılar tarafından nasıl betimlendiği ve bu ürünlerin imajları hakkında bilgi vermektedir. aılan doğrulama çalışmaları da SLOGREG modelinin önerdiği tasarım seçeneklerinin tercih edilme olasılığının yüksek olduğunu ve kullanıcılar tarafından beğenilen ürün imajlarının birinci adımda elde edilen SLOGREG modeli ile uyumlu olduğunu göstermektedir.. ÜRÜN ALANININ SEÇİMİ Uygulamanın yaıldığı lavabo, banyo, mutfak armatürleri ve banyo aksesuarları tasarlayan ve üreten firmada tasarımcıların oluşturduğu kavramsal tasarımların üretilebilir hale getirilmesinden önce kullanıcı hislerinin analizi ve tasarım sürecine dahil edilmesine yönelik bir çalışmanın yaılmadığı bilinmektedir. Çalışma konusu olarak, ise lavabo ve banyo armatürüne kıyasla, kullanıcıların duygu ve hislerini etkileyebilecek daha fazla faktöre sahi olan mutfak armatürleri seçilmiştir Fazla sayıda ürünün kullanıcılarca değerlendirilmesi zor ve zaman alıcı olduğundan çalışma; azarlama bölümünden alınan bilgiler doğrultusunda kullanıcılarca daha çok tercih edilen lavaboya montajlı, standart, su çıkış borusu gövdenin üzerinde, tek açma-kaama kollu ve fiyatları da birbirine yakın olan ev tii modellerle sınırlı tutulmuştur. 3. SEMANTİK UZAIN TARANMASI Üzerinde çalışılacak ürünün belirlenmesinden sonra kullanıcıların görsel algılarını ifade eden kansei sözcükleri Shütte nin (00) önerdiği gibi mevcut literatür, ürün katalogları, dergiler ve kullanım kılavuzlarını inceleyerek ve satış temsilcileri, otansiyel ve deneyimli kullanıcılarla yaılan yüz yüze görüşmeler sonucunda tolanmış, olumlu-olumsuz sözcük çiftleri olarak listelenmiştir. Kullanıcıların bu sözcükleri kullanarak ürünlere ilişkin çizimleri değerlendirecek olmalarından dolayı, görsel hisleri açıklayan sözcüklerin ön landa olmasına dikkat edilmiştir. Armatürde kol ve su çıkış borusunun şekilsel olarak kavrama ve kullanım kolaylığını etkilediği düşünüldüğünden kavramak zor-kolay, yıkama için elverişli-elverişsiz sözcük çiftleri de listede yer almıştır. Çok sayıda sözcük kullanmak anket süresini uzatarak veri kalitesinin düşmesine de sebe olacağından görsel hisleri ifade eden 47 sözcük çiftinin tasarım bölümünde görev yaan bir yönetici ve iki ürün tasarımcısı tarafından akınlık Diyagramı ile grulanması istenmiştir. aılan grulama işlemi sonucunda Tablo de görülen sözcük grubu elde edilmiş, kullanıcıların ürünle ilgili genel tercihlerini ölçmek için ise genel olarak kötü-iyi sözcük çifti de listeye eklenmiştir. 9

4 Ezgi Aktar Demirtaş, A. Sermet Anagün, Gülser Köksal Tablo. Kansei Sözcük Çiftleri.Kavramak zor-kolay.mat-parlak 9.ıkama için elverişsiz-elverişli.sıradan-sıradışı 6.Geleneksel-enilikçi 0.Uçuk-Makul 3.Parçalar uyumsuz-uyumlu 7.Kaba-Zarif.Köşeli-uvarlak 4.Göze batıyor-hita ediyor 8.Sade-Gösterişli.Genel olarak İyi-Kötü 4. ÜRÜN ÖZELLİKLERİ UZAININ TARANMASI KM literatüründe ürüne ilişkin nitelik ve düzeylerin ne şekilde belirleneceğine dair çok kaynak bulunmamaktadır. Ancak ürünle ilgili teknik belgeler, konu ile ilgili literatür, kullanım kılavuzları, uzmanlar ve deneyimli kullanıcılarla yaılan görüşmeler nitelik ve düzeylerin belirlenmesinde kullanılabilir (Shütte, 00). Analizlerde kullanılacak nitelik sayısı genellikle 6-7 olu bu sayı 0- e kadar çıkarken, düzey sayısı - arasında değişmektedir. Seçilen niteliklere ilişkin düzey sayıları, kestirimi yaılacak arametre sayısını vermektedir (Malhotra, 996). Tek açma kaama kollu mutfak armatürleri kendine özgü nitelik ve düzeyleri olan iki ana gruba ayrılmıştır. Grular açma-kaama kolunun konumu (yanda ve üstte) dikkate alınarak oluşturulmuştur. Açma kaama kolu üstte ve yanda olan modellere ilişkin nitelik ve düzeyler Tablo ve Tablo 3 te gösterilmiştir. Açma-kaama kolu yanda olan mutfak armatürleri için tolam tasarım alternatifi sayısı =6, üstte olan modeller için ise 3 4 =44 adettir. Ancak fazla sayıda alternatifin tasarlanması ya da her birinin üretilerek kullanıcıya sunulması ratikte mümkün değildir. Ayrıca, kullanıcıların tüm alternatifleri sıralamasını ya da uanlamasını istemek sağlıklı sonuç vermeyebilir. Bu sebele Taguchi nin L-6 ortogonal tasarımı (Phadke, 989) kullanılarak, açma-kaama kolu yanda ve üstte olan iki ürün grubu için 6 farklı ürün kombinasyonu elde edilmiştir. Ürün kombinasyonlarına ilişkin üç boyutlu çizimler oluşturulmuştur. Kullanıcıların görsel algıları; elde edilen ürün kombinasyonları ve iyasada mevcut olan 3 er ürünün üç boyutlu çizimleri kullanılarak ölçülmüştür. Açma-kaama kolu üstte ve yanda olan modeller için elde edilen kombinasyonlar Şekil ve Şekil de gösterilmiştir. Şekil ve Şekil deki son üç ürün iyasada mevcut olan ürünlerdir. Tablo. Açma-kaama Kolu Üstte Olan Modellere İlişkin Nitelik ve Düzeyler Nitelikler Düzeyler Gövde Geometrisi.Silindirik.Tek Gövde 3.Kübik Boru Tii.Köşeli.uvarlak 3.Kuğu Kol Tii.Düz.Delikli 3.Çubuk 4.Joystick Renk.Krom.Mat Krom 3.Krom Altın 4.Granit Tablo 3. Açma-kaama Kolu anda Olan Modellere İlişkin Nitelik ve Düzeyler Nitelikler Düzeyler Gövdenin.atay.Dikey Konumu Gövde Geometrisi.Silindirik.Konik 3.Kübik Boru Tii.Köşeli.L-Tii 3.uvarlak Kol Tii.Düz.Delikli 3.Çubuk Renk.Krom.Mat Krom 3.Krom Altın 4.Granit 0

5 Mutfak Armatürü Tasarımının Kullanıcıların Görsel Algılarına Göre Lojistik Regresyon oluyla Belirlenmesi Şekil.Tasarım Seçenekleri (Kol Üstte) Şekil. Tasarım Seçenekleri (Kol anda)

6 Ezgi Aktar Demirtaş, A. Sermet Anagün, Gülser Köksal. SENTEZLEME Sentezleme aşamasında, kansei sözcükleri ile ürün çizimlerinin kullanıcılar tarafından eşleştirilebilmesi için bir anket tasarlanmıştır. Tasarlanan anket iki bölümden oluşmaktadır. İlk bölümde, kullanıcıların kişisel bilgilerini içeren cinsiyet, medeni durum, sosyal statü, gelir seviyesi ve yaş gibi demografik sorular yer almaktadır. İkinci bölümde ise ürünlerin kansei sözcüklerine göre değerlendirilebilmesi için 7 li Anlamsal Farklılıklar ölçeği kullanılmıştır. Hazırlanan anketin güvenilirliğini, faktör yaılarını ve geçerliliğini test etmek üzere hedef kitle ile benzer özellikler gösteren farklı yaş, cinsiyet, meslek ve gelir grularından 38 kişiye anket uygulanmıştır. Kullanıcılara farklı ürün seçeneklerinden biri rassal olarak gösterilerek ankette yer alan soruyu cevalamaları istenmiştir. SPSS kullanılarak yaılan güvenilirlik analizleri sonucunda elde edilen Cronbach alfa katsayısı 0,66 tir. Cronbach alfa katsayısının 0,6 dan yüksek olması ölçeğin oldukça güvenilir olduğunu göstermektedir (Özdamar, 00). Güvenilir bulunan anketler kullanılarak Şekil ve de yer alan ürünler tüm örneklem grubu tarafından değerlendirilerek sonuçlar analiz edilmiştir. Firmanın azarlama yetkilileri ve azar araştırmalarına göre; mutfak armatürünü kullanan kişilerin %70 ini kadınlar oluşturmaktadır. İç iyasada bu markayı tercih eden tüm kullanıcıların sayısı (anakütledeki birey sayısı) ise tam olarak bilinmemektedir. Bu sebele bu markayı tercih eden () ve etmeyen (-) kullanıcı oranı 0. olarak kabul edilmiş (Kish, 99); () no lu eşitlik kullanılarak, %9 güven seviyesinde (α=0.0), % hata ayı ile (e= 0.0) gereken örnek büyüklüğü 96 olarak hesalanmıştır. z / ( ) n () e Kullanıcı kitlesinin %70 i kadınlardan oluştuğu için tabakalı örneklemedeki orantılı dağıtım yaklaşımı kullanılarak 70 i kadın, 30 u erkek olmak üzere 00 kullanıcıya anket uygulanmıştır. Tercih uanı üzerinde etkisi olan kansei sözcüklerinin belirlenmesi aşamasında literatürdeki Doğrusal Regresyon Analizi ve önerilen SLOGREG kullanılarak, her iki yöntemle elde edilen modeller karşılaştırılmıştır... Kansei sözcükleri ile genel tercih uanı arasındaki ilişkinin Doğrusal Regresyon Analizi ile belirlenmesi X i X i Her ürün için, her i kansei sözcüğünün aldığı ortalama uan ( X ) ve ortalama genel tercih i uanından ( ) oluşan veri kullanılarak, ve X i ler arasındaki ilişki Doğrusal Regresyon Analizi ile araştırılmıştır. Tolam sözcük sayısı olduğundan, ikili etkileşimlerin dikkate alınmadığı modeldeki tolam bağımsız X i değişken sayısı, ikili etkileşimlerle X i birlikte tolam değişken sayısı ise 66 olmaktadır. Analizlerde uan ortalamalarının kullanılmasından X i dolayı tolam gözlem sayısı ise 38 dir. Değişken sayısının gözlem sayısından fazla olması (serbestlik dereceleri) ve bu sebele tüm ikili etkileşimlerin modele dahil edilememesi nedeniyle Adım Adım Regresyon (Stewise Regression), İleriye Doğru Seçim (Forward Selection), Geriye Doğru Eleme (Backward Elimination) ve Eniyi Alt Kümeler (Best Subsets) yöntemleri kullanılarak çeşitli modeller elde edilmiştir. Hiyerarşik olmayan yaklaşım benimsenerek bu modeller içinden standart hatası (s) en düşük, belirlilik katsayısı (R-sq) en yüksek olan model seçilmiş, analiz sonuçları Tablo 4 te sunulmuştur. Buna göre model, verideki değişimin %74,9'unu açıklayabilmektedir. Modelde yer alan sabit terim dışındaki terimlerin herbiri anlamlılık testini geçmiştir ( 0,0). aılan artık değer analizleri, modelin varsayımlarının sağlandığını göstermektedir. Modelde; göze batıyor-göze hita ediyor, yıkama için elverişsiz-elverişli, köşeli-yuvarlak sözcükleri ile kaba-zarif ve yıkama için elverişsizelverişli etkileşimleri yer almaktadır. Model incelendiğinde, göze hita eden yuvarlak geometriye sahi yumuşak hatlı armatürler kullanıcıların genel tercih uan ortalamasını artırmaktadır. ıkama için elverişli olmasının yanı sıra kullanıcı tarafından zarif olarak tanımlanan armatürlerin de genel tercih uan ortalamasını artırdığını söylemek mümkündür. X i

7 Mutfak Armatürü Tasarımının Kullanıcıların Görsel Algılarına Göre Lojistik Regresyon oluyla Belirlenmesi Tablo 4. Doğrusal Regresyon Modeli Regresyon Modeli _ort = X X X X7*X9 Tahminleyici Katsayı St.Hata T P Sabit terim X X X X7*X S = R-Sq = 74.9% R-Sq(adj) = 7.9% Varyans Analizi Kaynak Sd SS MS F P Regresyon Hata Tolam Kansei sözcükleri ile genel tercih uanı arasındaki ilişkinin Sıralı Lojistik Regresyon Analizi ile belirlenmesi Lojistik Regresyon, bağımlı değişkenin kategorik (ikili, üçlü, çoklu), bağımsız değişkenlerin sürekli/ kategorik olduğu durumlarda, aralarındaki ilişkinin belirlenmesinde kullanılır. Bu yöntemde bağımsız değişkenlerin (X i ) bağımlı değişken () üzerindeki etkileri olasılık olarak hesalanmaktadır. SLOGREG, bağımlı değişkenlerin sıralı ölçekle ölçüldüğü durumlarda kullanılmaktadır (Hosmer ve Lemeshow, 000). SLOGREG ile tüm sözcüklerin ikili etkileşimleri k: Değerlendirmede kullanılacak sözcük sayısı (k=) a i : i. duruma ilişkin sabit terim (i=,,m-) x j : j. Kansei sözcüğü için tercih uanı β j : j. Kansei sözcüğüne ilişkin katsayı (j=,,k) θ i : i. duruma ilişkin lojit bağlantı fonksiyonu (i=,,m-) λ i : i durumunu da içeren birikimli olasılık değeri Tüm sözcük ve ikili etkileşimlerin yer aldığı modelde katsayıları önemli bulunan sözcük ve etkileşimler P ( i ) ; i P ( m ), i,..., m m () i i k k k a X X X, i,..., m i j j ij i j j i j log ( i ) ;, i,..., m e i i e i (3) (4) modele dahil edilmiş, uan ortalamaları yerine her bir kullanıcının uanı dikkate alınmıştır. Hosmer ve Lemeshow (000) tarafından kullanılan notasyonun yazarlar tarafından çalışmaya uyarlanmış hali izleyen şekildedir: m: Karşılaşılabilecek durum (bağımlı değişkenin alabileceği değer) sayısı (m=7) (<0,0) için analizler tekrarlanmış, elde edilen lojit model λ için () no lu eşitlikte gösterilmiştir: 4, 80066, X 00, X 08, X , X 009, X 0 044, X 0077, X Pearson ve Sama χ istatistiğine ilişkin değerleri sırası ile 0,98 ve olarak hesalanmıştır. Elde edilen 3 0, 89X 4 () 3

8 Ezgi Aktar Demirtaş, A. Sermet Anagün, Gülser Köksal değerlerinin 0,0 ten büyük olması % anlamlılık düzeyinde modelin verilere uymadığını söylemek için yeterli istatistiksel kanıt olmadığını göstermektedir. Modelde ikili etkileşim etkilerinin kritik olmadığı görülmektedir. Ancak bu durum her zaman geçerli olmayabilir. Örneğin; yuvarlak hatlı ya da mat renkli ürünler daha çok tercih edilirken yuvarlak hatlı olu mat olmayan (arlak renkli) ürünler kullanıcılar tarafından daha çok beğenilebilir. Doğrusal Regresyon Analizi ile elde edilen modele göre göze hita eden, yuvarlak hatlara sahi; hem yıkama için elverişli hem de zarif olan ürünler genel beğeniyi arttırırken; () no lu eşitlikte gösterilen SLOGREG modeline göre; kavraması kolay, sıradışı, göze hita eden, arlak olmayan (mat), zarif, iddaalı olmayan (makul) ve yuvarlak hatlara sahi armatürler lojit fonksiyonun değerini ve λ olasılığını azaltmakta, tercih uanlarının in üzerinde olma olasılığını ise artırmaktadır. Elde edilen model; tercih uanı yüksek olan armatürlerin kullanıcılar tarafından nasıl betimlendiği bilgisini vermektedir. Bu bilgi; yeni ürün tasarımında ya da mevcut tasarımların iyileştirilme sürecinde kullanılabilir. Prototi aşamasındaki ürünleri kullanıcılara betimleterek, genel beğenilerini bu modeli kullanarak tahmin etmek ve böylece ürünleri hızlıca test etmek mümkün olabilir. 6. ENİİ TASARIM DÜZELERİNİN BELİRLENMESİ Açma-kaama kolu üstte ve yanda olan modeller için kullanıcıların armatürü genel olarak nasıl buldunuz sorusuna vermiş oldukları uanları eniyileyen tasarım düzeyleri SLOGREG ile belirlenmiştir. Literatürde Hsu vd. (000) ve Chuang vd. (00) tarafından kullanılan Konjoint Analizi nde tasarım niteliklerine ilişkin önem oranlarının ve düzey fayda katsayılarının hesalanması yöntemin bir üstünlüğüdür. Önem oranı gövde geometrisi, kol tii, renk gibi niteliklerin; fayda katsayıları ise niteliklere ilişkin düzeylerin kullanıcıların tercihleri üzerindeki etkisini belirlemekte kullanılmaktadır. Diğer taraftan Konjoint Analizi ile ikili ve daha yüksek mertebeden etkileşim etkilerinin hesalanamaması sonuçların doğruluğunu etkilemektedir. SLOGREG, Konjoint Analizi nin yarattığı bu sakıncayı ortadan kaldırmaktadır. SLOGREG analizinde ikili etkileşim etkilerinin hesalanabilmesi için tasarım düzeyleri; açma-kaama kolu üstte olan modeller için Tablo te görüldüğü gibi kukla değişkenler şeklinde ifade edilmiştir. Tablo. Tasarım Düzeylerine İlişkin Kukla Değişkenler (Kol Üstte) G. Geometri X X Silindirik 0 0 Tek Gövde 0 Kübik 0 Boru Tii X 3 X 4 Köeli 0 0 uvarlak 0 Kuu 0 Kol Tii X X 6 X 7 Düz Delikli 0 0 Çubuk 0 0 Joystick 0 0 Renk X 8 X 9 X 0 Krom Mat Krom 0 0 Krom Altn 0 0 Granit 0 0 S P S S t e y a ı l a n a n a l i z l e r s o n u c u n d a ; P( )olasılığını hesalamada kullanılan lojit fonksiyon (θ ) elde edilmiştir (6 no lu eşitlik): Elde edilen modelin verilere uygunluğu (goodness of fit) incelendiğinde Pearson ve Sama χ istatistiklerine ilişkin değerlerinin 0,4 ve 0,7 olarak hesalandığı 30, 0, 00( X ) 4, 84( X 4, ( X 94, ( X 7 ) 038, ( X ), ( X ), 49( X )( X ) 497, ( X 3 8 ) 84, ( X ) 30, ( X 9 )( X 4 0 ), 48 ( X 3 ) 769, ( X ) 686, ( X ) ) 80, ( X )( X ) 844, ( X )( X ) )( X ) 3, 09( X )( X ) (6) 4

9 Mutfak Armatürü Tasarımının Kullanıcıların Görsel Algılarına Göre Lojistik Regresyon oluyla Belirlenmesi Tablo 6 da görülmektedir. değerlerinin 0,0 ten büyük olması da modelin % anlamlılık düzeyinde verilere uyduğunu göstermektedir. Tablo 6. Modelin Verilere Uygunluk Testi (Kol Üstte) serbestlik derecesi Pearson 3, ,4 Sama 3, ,7 (6) no lu eşitliğe göre (θ ) değerini enküçükleyen ve P( 6) olasılığını enbüyükleyen düzeyler X vektörü ile gösterilmiştir: X = (0,0,,0,0,0,,0,0,) θ = -, P( )=0,098 P( 6)= - P( )=0,90 dir. Diğer bir ifade ile silindirik gövdeli, yuvarlak borusu olan, joystick kollu, granit renkli bir armatür için P( 6) çıkma olasılığı 0,90 dir. Benzer şekilde, açma-kaama kolu yanda olan modeller için tasarım düzeyleri Tablo 7 de görüldüğü gibi kukla değişkenler şeklinde ifade edilmiştir. SPSS te yaılan analizler sonucunda; P( ) olasılığını hesalamada kullanılan lojit fonksiyon (θ ) elde edilmiştir (7 no lu eşitlik): Pearson ve Sama χ istatistiklerine ilişkin değerleri 0,68 ve 0,07 olarak hesalanmıştır (Tablo 8). değerlerinin 0,0 ten büyük olması verilerin % anlamlılık düzeyinde modele uyduğunu göstermektedir. Analiz sonuçlarına göre en iyi tasarım seçeneği X vektörü ile gösterilmiştir: X = (,,0,,0,,0,0,0,0) θ = -3,38 336, 337, ( X ) 3, 49( X ) 087, ( X ) 3, 70( X ) 03, ( X ) 4, 034( X ) 0, 087( X ), 499 ( X ) 090, ( X ), 9 ( X ) 7, ( X )( X ) 0, 784( X )( X ) 607, ( X )( X ) 98, ( X )( X ) 4, 8( X )( X ) (7) Tablo 7. Tasarım Düzeylerine İlişkin Kukla Değişkenler (Kol anda) G. Konum X atay 0 Dikey G. Geometri X X 3 Silindirik 0 0 Konik 0 Kübik 0 Boru Tii X 4 X Köeli 0 0 L-tii 0 uvarlak 0 Kol Tii X 6 X 7 Düz 0 0 Delikli 0 Çubuk 0 Renk X 8 X 9 X 0 Krom Mat Krom 0 0 Krom Altn 0 0 Granit 0 0

10 Ezgi Aktar Demirtaş, A. Sermet Anagün, Gülser Köksal Tablo 8. Modelin Verilere Uygunluk Testi (Kol anda) serbestlik derecesi Pearson 7,090 0,68 Sama 3,83 0,069 P( )=0,033 P( 6)= - P( )=0,967 dir. Dikey ve konik gövdeli, L-tii su çıkış borusu olan, delikli açma-kaama kollu, krom bir armatürün genel tercih uanının 6 ve üzerinde çıkma olasılığı dir. P( 6) olasılığını enbüyükleyen düzeylere karşı gelen tasarım seçenekleri Şekil 3 te sunulmuştur. 7. DOĞRULAMA SLOGREG modeli ile elde edilen ve Şekil 3 te görülen tasarım seçeneklerinin kullanıcılar tarafından gerçekten tercih edili edilmediğini ve ürün imajlarının ilk aşamadaki SLOGREG modeli ile uyumlu olu olmadığını belirlemek için doğrulama çalışması yaılmıştır. Erdural ın (006) kullanmış olduğu ve EK de özetlenen Delta öntemi ile P( 6) olasılıkları için güven aralıkları oluşturulmuştur. Açma-kaama kolu üstte olan ürünlerde P( 6) olasılığı için güven aralıkları 0,0 ( için L,U ) ( 0, 83, 0, 9 ) 0,0 ( için L,U ) ( 0, 80, 0, 96 ) Açma-kaama kolu yanda olan ürünlerde olasılığı için güven aralıkları 0,0 ( için L,U ) ( 0, 89, 0, 986 ) 0,0 ( için L,U ) ( 0, 8, 0, 99 ) Şekil 3 teki tasarım seçenekleri 3 kişi tarafından değerlendirilerek elde edilen P( 6) olasılıklarının oluşturulan güven aralığı içerisinde olu-olmadığı belirlenmiştir. Açma-kaama kolu üstte olan ürün için 3 kullanıcıdan 9 unun genel tercih uanı ve in üzerinde; 8 inin genel tercih uanı ise 6 ve 7 dir. Bu durumda P( 6) olasılığı 0,80 olmaktadır. %9 ve %99 güven seviyesinde P( 6) olasılığına ilişkin güven aralığının alt sınır değerleri sırası ile, %83 ve %80 olarak hesalanmıştır. Bu durumda tasarım seçeneğinin %99 güven seviyesinde güven aralığı içerisinde olduğu görülmektedir. SLOGREG modelinin önerdiği tasarım seçeneklerinin kullanıcıların zihinlerinde yarattığı imajın bölüm 4. de elde edilen modelle uyumlu olu olmadığını belirlemek için kansei sözcüklerine verilen uanlar ve (-4) eşitlikleri kullanılarak P( 6) olasılığı hesalanmış, sonuçlar gerçek uan değerleri ile EK. nin son iki sütununda karşılaştırılmıştır. Son iki Şekil 3. P( 6) Olasılığını Enbüyükleyen Tasarım Seçenekleri 6

11 Mutfak Armatürü Tasarımının Kullanıcıların Görsel Algılarına Göre Lojistik Regresyon oluyla Belirlenmesi sütun incelendiğinde, tahminlemenin %86 oranında doğru olduğu görülmektedir. Ayrıca EK. deki tabloya göre 3 kullanıcının si açma-kaama kolunun kolay kavranabildiğini, si sıradışı olduğunu, 7 si arçaların birbiri ile uyumlu olduğunu, 33 ü göze hita eden bir ürün olduğunu düşünmektedir. Ürün 33 kullanıcıda mat hissi yaratmıştır. 8 kullanıcı, ürünü zarif ve makul olarak değerlendirmektedir. Ürün 3 kullanıcıda yuvarlak hatlara sahi izlenimi yaratmıştır. Bu durumda sözcükler ile genel tercih uanı arasındaki ilişkinin belirlenmesinde kullanılan SLOGREG modelinin geçerli ve genel tercih uanlarını tahminlemede etkili olduğu söylenebilir. Açma-kaama kolu yanda olan ürünler için 3 kullanıcıdan 30 u ürüne 6 ve 7 uan vermişlerdir. Bu durumda P( 6) olasılığı 0.86 olmaktadır. Doğrulama sonucunda elde edilen olasılık değeri, %99 güven seviyesinde P( 6) olasılığına ilişkin güven aralığının içerisinde yer almaktadır. Kansei uanları dikkate alınarak elde edilen tahmini P( 6) olasılıkları ile gerçek uanlar karşılaştırıldığında tahminlemenin %83 oranında doğru yaıldığı görülmektedir (EK 3). 3 kullanıcının 3 i açma-kaama kolunun kolay kavranabildiğini, 7 si sıradışı, 3 si arçaların birbiri ile uyumlu ve 3 i göze hita eden bir ürün olduğunu düşünmektedir. Ürün 30 kullanıcıda mat hissi yaratmıştır. 30 kullanıcı, ürünü zarif, 9 kullanıcı makul olarak değerlendirmektedir. Ürün 7 kullanıcıda yumuşak (yuvarlak) hatlara sahi izlenimi yaratmıştır. Su çıkış borusunun L-tii olması ürünün sert hatlı ve köşeli olduğunu düşündürmektedir. Elde edilen sonuçlara göre kansei sözcükleri ile genel tercih uanları arasındaki ilişkiyi belirlemekte kullanılan SLOGREG modelinin açma-kaama kolu yanda olan ürünler için de geçerli olduğu teyit edilmiştir. 8. SONUÇ VE ÖNERİLER aılan çalışmanın ilk aşamasında mutfak armatürleri için kullanıcı hislerini etkileyen ürün imajları, ikinci aşamada ise açma-kaama kolu üstte ve yanda olan ürün gruları için kullacıların görsel algılarını eniyileyen tasarım düzeyleri SLOGREG ile belirlenmiştir. İlk aşamadaki model, ikinci aşamada en çok tercih edildiği belirlenen tasarım seçeneklerinin kullanıcılar tarafından ne şekilde betimlendiğini göstermektedir. Diğer bir ifade ile bu model, kullanıcılar tarafından beğenilen ürünlerin imajları hakkında iuçları vermektedir. SLOGREG modelinin önerdiği tasarım seçeneklerinin kullanıcılar tarafından tercih edili edilmediği ve bu ürünlerin kullanıcıların zihinlerinde oluşturduğu imajın ilk aşamada elde edilen modelle uyumlu olu olmadığını test etmek için doğrulama çalışmaları yaılmıştır. Elde edilen tasarım seçeneklerinin 3 kişilik bir kullanıcı grubu tarafından değerlendirilmesi istenmiş, tercihlere göre elde edilen olasılıkların ilgili güven aralıklarında olu olmadığı kontrol edilmiştir. Ayrıca kullanıcıların SLOGREG in önerdiği tasarım seçeneklerini ilk aşamada elde edilen modelle uyumlu şekilde betimledikleri de görülmüştür. Çalışmada kullanılan yaklaşım genel olarak ürün tasarımı otimizasyonunda kullanılabilecek, mevcut alternatiflerin zayıf yanlarını gideren etkili bir yaklaşımdır. Bu yaklaşım; kategorik yaıdaki verilerin analizinde kullanılabilmekte, etkileşim etkilerini dikkate almakta öte yandan modelleme aşamasında belirli bir uzmanlık gerektirmektedir. Doğrulama sonuçları somut olarak göstermiştir ki; SLOGREG modelinin önerdiği ürünlerin 6 ve üzerinde uan alması olasılığı, oldukça yüksektir. Maliyet ve zaman kısıtları nedeniyle yalnızca tüm kullanıcılar için SLOGREG modeli oluşturularak en iyi tasarım düzeyleri belirlenmiş, en iyi düzeylere karşı gelen ürünler için doğrulama çalışmaları yaılmıştır. Analizler farklı kullanıcı gruları için tekrar edilerek firmaya sunulabilir. Böylece firmadaki karar vericilere hangi müşteri gruları için hangi seçeneğin sunulacağı konusunda yardımcı olunabilir. Benzer çalışma firmanın üretmekte olduğu diğer ürün gruları (banyo, lavabo armatürleri, banyo aksesuarları) için de yaılarak en iyi tasarım düzeyleri belirlenebilir. aılan çalışmalar, kullanıcıların görsel algılarına göre en iyi tasarım seçeneklerini belirlemeye yöneliktir. 7

12 Ezgi Aktar Demirtaş, A. Sermet Anagün, Gülser Köksal Bir sonraki aşamada kullanıcıyı görsel yönden tatmin eden ürünün güvenilirliğini, sağlamlığını ve erformansını en iyilemek gerekmektedir. Bu bağlamda; Kalite Fonksiyon ayılımı, Üretilebilirlik ve Montaj için Tasarım, Hata Türü ve Etkileri Analizi, Deney Tasarımı ve Değer Analizi gibi yöntemlerden yararlanılarak kullanıcıyı tatmin eden, kolay üretilebilir ve montajlanabilir, düşük maliyetli rototiler ile seri üretim aşamasına geçmek mümkün olabilir. KANAKÇA. Chuang, M.C., Chang, C.C., Hsu, S. H. 00. Percetual factors underlying user references toward roduct form of mobile hones, International Journal of Industrial Ergonomics, 7, Chuang, M.C., Mab.C. 00. Exressing the exected roduct images in roduct design of micro-electronic roducts, International Journal of Industrial Ergonomics, 7, Creusen, M.E.H., Schoormans, J.P.L. 00. The different roles of roduct aearance in consumer choice, The Journal of Product Innovation Management,, Erdural, S A Method for Robust Design of Products or Processes with Categorical Resonse, METU, Ankara.. Han, S.H., un, M.H., Kim, K.J., Kwank, J Evaluation of roduct usability: develoment and validation of usability dimensions and design elements based on emirical models, International Journal of Industrial Ergonomics, 6 (4), Hosmer, D.W., Lemeshow, S Alied Logistic Regression (nd edition), John Wiley & Sons, New ork. 7. Hsiao, K.A., Chen, L.L Fundamental dimensions of affective resonses to roduct shaes, International Journal of Industrial Ergonomics, 36, Hsiao, S.W., Huang, H.C. 00. A neural network based aroach for roduct form design, Design Studies, 3, Hsiao, S.W., Tsai, H.C. 00. Alying a hybrid aroach based on fuzzy neural network and genetic algorithm to roduct form design, International Journal of Industrial Ergonomics, 3 (), Hsu, S.H., Chuang, M.C., Chang, C.C A semantic diferential study of designers and users roduct form ercetion, International Journal of Industrial Ergonomics,, Jindo, T., Hirasago, K Alication studies to car interior of Kansei engineering, International Journal of Industrial Ergonomics, 9, Karlsson, B.S.A., Aronsson, N., Sevensson, K.A Using semantic environment descrition as a tool to evaluate car interiors, Ergonomics, 46 (3-4), Khalid, H.M., Helander, M.G A framework for affective customer needs in roduct design, Theoretical Issues in Ergonomics, (), Khalid, H.M., Helander, M.G Customer emotional needs in roduct design, Concurrent Engineering: Research and Alication, 4 (3), Kim, J., Lee, J., Choi, D Designing emotionally evocative homeages: an emirical study of the quantitative relations between design factors and emotianal dimensions, International Journal of Human- Comuter Studies, 9, Kish, L. 99. Survey Samling, John Wiley and Sons, New ork. 7. Kwon, K.S Human sensibility ergonomics in roduct design, International Journal of Cognitive Ergonomics, 3 (), Lai, H.H., Lin,.C., eh, C.H. 00. Form design of roduct image using grey relational analysis and neural network models, Comuters and Industrial Engineering, 3, Lai, H.H., Lin,.C., eh, C.H., Wei, C.H Useroriented design for the otimal combination on roduct design, International Journal of Production Economics, 00 (), Liu, Engineering aesthetics and aesthetic ergonomics: theoritical foundations and dual rocess research methodology, Ergonomics, 46 (3-4), Malhotra, N.K Marketing Research, An Alied Orientation, Prentice Hall International, Georgia Institute of Technology.. Nagamachi, M. 99. Kansei Engineering: A new ergonomic consumer-oriented technology for roduct develoment, International Journal of Industrial Ergonomics,, Nakada, K Kansei engineering research on the design of construction machinery, International Journal of Industrial Ergonomics, 9, Osgood, C.E., Suci, G.J., Tannenbaum, P.H. 97. The Measurement of Meaning, Chamagne, University of Ilinois Press.. Özdamar, K. 00. Paket Programlar ile İstatistiksel Veri 8

13 Mutfak Armatürü Tasarımının Kullanıcıların Görsel Algılarına Göre Lojistik Regresyon oluyla Belirlenmesi Analizi (Çok Değişkenli Analizler),. Basım, Etam A.Ş., Eskişehir. 6. Phadke, M Quality Engineering Using Robust Design, Prentice Hall, New Jersey. 7. Shütte, S. 00. Integrating Kansei Engineering Methodology in Product Develoment, Linköing Studies in Science and Technology, Sweden. 8. un, M.H., Han, S.H., Kim, K.J., Han, S Measuring customer ercetions on roduct usability: develoment of image and imression attributes of consumer electronic roducts, Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Texas, Zhang, L., Shen, W Sensory Evaluation of Commercial Truck Interiors, SAE Technical Paer Series, Michigan. EK. Güven Aralığı Hesabı P ( 6) olasl için güven aralklar izleyen ekilde hesalanmaktadr: : lgilenilen olayn gerçekleme olasl Cov ( ) G : Kovaryans matrisi ( o k /, /, /,... / ) Var ( ) G Cov ( ) G T q ln( ) Var ( q) ( ) q için güven aral; L q z / Var ( q) U q z Var ( ) / q için güven aral; Var ( ) U U e L L e 9

14 Ezgi Aktar Demirtaş, A. Sermet Anagün, Gülser Köksal EK. Doğrulama Sonuçları (Kol Üstte) Kullanc X X X 3 X 4 X X 7 X 0 X P ( ) P ( 6) ,49 0,09 > ,4 0,88 > ,48 0, > ,393 0,607 > ,608 > ,4 0,48 > ,60 0, ,0 0,49 > ,688 0, ,479 0, > ,49 0,08 > ,36 0,63 > ,674 0, ,407 0,93 > ,334 0,666 > ,337 0,663 > , 0, ,77 0, ,449 0, > ,4 0,78 > ,40 0,0 > ,486 0,4 > ,49 0,0 > ,47 0, > ,66 0, ,470 0,30 > ,60 0, ,464 0,36 > ,3 0,68 > ,4 0, ,48 0,4 > ,487 0,3 > ,38 0,6 > ,30 0,470 <= ,46 0,39 > 6 30

15 Mutfak Armatürü Tasarımının Kullanıcıların Görsel Algılarına Göre Lojistik Regresyon oluyla Belirlenmesi EK 3. Doğrulama Sonuçları (Kol anda) Kullanc X X X 3 X 4 X X 7 X 0 X P ( ) P ( 6) ,46 0,44 > ,443 0,7 > ,00 0, ,44 0, > ,4 0,78 > ,40 0,90 > ,86 0, ,408 0,9 > ,490 0,0 > ,493 0,07 > ,0 0, ,6 0,739 > ,43 0,87 > ,433 0,67 > ,476 0,4 > ,99 0,70 > ,496 0,04 > ,9 0, ,49 0,7 > ,4 0,7 > ,487 0,3 > ,3 0, ,43 0,69 > ,49 0,09 > ,687 0, ,4 0,49 > ,670 0, ,49 0,08 > ,383 0,67 > ,367 0,633 > ,493 0,07 > ,48 0,7 > ,49 0,09 > ,08 0,49 <= ,3 0,469 <= 3

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2 Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi Cilt 5, Sayı:2, 2003 YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI Sibel SELİM 1 Efe SARIBAY

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Üniversitelerde Yapılan Öğrenci Memnuniyet Anketinin Grey Evaluation Metodu ile Ölçülmesi

Üniversitelerde Yapılan Öğrenci Memnuniyet Anketinin Grey Evaluation Metodu ile Ölçülmesi Üniversitelerde Yapılan Öğrenci Memnuniyet Anketinin Grey Evaluation Metodu ile Ölçülmesi *1 Yusuf Hayırsever ve 2 Salih Görgünoğlu *1 Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, Karabük, Türkiye

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı ARAŞTIRMA MODELLİLERİNDE KULLANILACAK İSTATİSTİKLERİ BELİRLEME ÖLÇÜTLERİ Parametrik mi Parametrik Olmayan mı? Kullanılacak İstatistikleri Belirleme Ölçütleri Değişken Sayısı Tek değişkenli (X) İki değişkenli

Detaylı

Sosyal Bilimler İçin Veri Analizi El Kitabı

Sosyal Bilimler İçin Veri Analizi El Kitabı 292 Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 18 (2012) 292-297 KİTAP İNCELEMESİ Sosyal Bilimler İçin Veri Analizi El Kitabı Editör Doç. Dr. Şener BÜYÜKÖZTÜRK Dilek SEZGİN MEMNUN 1 Bu çalışmada,

Detaylı

TRAFĠK KAZA ĠSTATĠSTĠKLERĠNE ANALĠTĠK BĠR BAKIġ. Prof.Dr.Tülay Saraçbaşı Hacettepe Üniversitesi İstatistik Bölümü, Ankara. Özet

TRAFĠK KAZA ĠSTATĠSTĠKLERĠNE ANALĠTĠK BĠR BAKIġ. Prof.Dr.Tülay Saraçbaşı Hacettepe Üniversitesi İstatistik Bölümü, Ankara. Özet TRAFĠK KAZA ĠSTATĠSTĠKLERĠNE ANALĠTĠK BĠR BAKIġ Prof.Dr.Tülay Saraçbaşı Hacettepe Üniversitesi İstatistik Bölümü, Ankara Özet Trafik kazasına neden olan etkenler sürücü, yaya, yolcu olmak üzere insana

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ Ezgi Özkara a, Hatice Yanıkoğlu a, Mehmet Yüceer a, * a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü, Malatya, 44280 myuceer@inonu.edu.tr

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

ELEKTRONİK MÜHENDİSLİĞİ NDE KİMYA EĞİTİMİNİN GEREKLİLİĞİNİN İKİ DEĞİŞKENLİ KORELASYON YÖNTEMİ İLE İSTATİSTİKSEL OLARAK İNCELENMESİ

ELEKTRONİK MÜHENDİSLİĞİ NDE KİMYA EĞİTİMİNİN GEREKLİLİĞİNİN İKİ DEĞİŞKENLİ KORELASYON YÖNTEMİ İLE İSTATİSTİKSEL OLARAK İNCELENMESİ ELEKTRONİK MÜHENDİSLİĞİ NDE KİMYA EĞİTİMİNİN GEREKLİLİĞİNİN İKİ DEĞİŞKENLİ KORELASYON YÖNTEMİ İLE İSTATİSTİKSEL OLARAK İNCELENMESİ Güven SAĞDIÇ Dokuz Eylül Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik

Detaylı

T.C. Hitit Üniversitesi. Sosyal Bilimler Enstitüsü. İşletme Anabilim Dalı

T.C. Hitit Üniversitesi. Sosyal Bilimler Enstitüsü. İşletme Anabilim Dalı T.C. Hitit Üniversitesi Sosyal Bilimler Enstitüsü İşletme Anabilim Dalı X, Y, Z KUŞAĞI TÜKETİCİLERİNİN YENİDEN SATIN ALMA KARARI ÜZERİNDE ALGILANAN MARKA DENKLİĞİ ÖĞELERİNİN ETKİ DÜZEYİ FARKLILIKLARININ

Detaylı

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri Elementary Education Online, 12(1), k: 1 6, 2013. İlköğretim Online, 12(1), b:1 6, 2013. [Online]: http://ilkogretim online.org.tr KİTAP İNCELEMESİ SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri

Detaylı

FEN BİLGİSİ ÖĞRETMEN ADAYLARININ FEN BRANŞLARINA KARŞI TUTUMLARININ İNCELENMESİ

FEN BİLGİSİ ÖĞRETMEN ADAYLARININ FEN BRANŞLARINA KARŞI TUTUMLARININ İNCELENMESİ FEN BİLGİSİ ÖĞRETMEN ADAYLARININ FEN BRANŞLARINA KARŞI TUTUMLARININ İNCELENMESİ Sibel AÇIŞLI 1 Ali KOLOMUÇ 1 1 Artvin Çoruh Üniversitesi, Eğitim Fakültesi, İlköğretim Bölümü Özet: Araştırmada fen bilgisi

Detaylı

Kalite Fonksiyon Yayılımı için Yeni Bir Yaklaşım: Bir Uygulama

Kalite Fonksiyon Yayılımı için Yeni Bir Yaklaşım: Bir Uygulama Kalite Fonksiyon Yayılımı için Yeni Bir Yaklaşım: Bir Uygulama Elif Kılıç-Delice 1, Zülal Güngör 2 1 Atatürk Üniversitesi, Endüstri Mühendisliği Bölümü, Erzurum 2 Gazi Üniversitesi, Endüstri Mühendisliği

Detaylı

ulu Sosy Anahtar Kelimeler: .2014, Makale Kabul Tarihi:21.10.2014 2014, Cilt:11, 163-184

ulu Sosy Anahtar Kelimeler: .2014, Makale Kabul Tarihi:21.10.2014 2014, Cilt:11, 163-184 ulu.2014, Makale Kabul Tarihi:21.10.2014 Sosy Anahtar Kelimeler: 2014, Cilt:11, 163184 The Relaionship Between Social Capital of Schools And Organizational Image Based On Perceptions of Teachers Abstract:The

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

UYGULAMA 1 SPSS E GİRİŞ. SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir.

UYGULAMA 1 SPSS E GİRİŞ. SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir. 1 UYGULAMA 1 SPSS E GİRİŞ SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir. Bu menülerin işlevleri ve alt menüleri ile komutları

Detaylı

Üniversite Öğrencilerinin Akademik Başarılarını Etkileyen Faktörler Bahman Alp RENÇBER 1

Üniversite Öğrencilerinin Akademik Başarılarını Etkileyen Faktörler Bahman Alp RENÇBER 1 Çankırı Karatekin Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 3(1): 191-198 Üniversite Öğrencilerinin Akademik Başarılarını Etkileyen Faktörler Bahman Alp RENÇBER 1 Özet Bu çalışmanın amacı, üniversite

Detaylı

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8

Detaylı

OSPF PROTOKOLÜNÜ KULLANAN ROUTER LARIN MALİYET BİLGİSİNİN BULANIK MANTIKLA BELİRLENMESİ

OSPF PROTOKOLÜNÜ KULLANAN ROUTER LARIN MALİYET BİLGİSİNİN BULANIK MANTIKLA BELİRLENMESİ OSPF PROTOKOLÜNÜ KULLANAN ROUTER LARIN MALİYET BİLGİSİNİN BULANIK MANTIKLA BELİRLENMESİ Resul KARA Elektronik ve Bilgisayar Eğitimi Bölümü Teknik Eğitim Fakültesi Abant İzzet Baysal Üniversitesi, 81100,

Detaylı

ÖĞRENCİLERİNİN SINAV NOTLARI DAĞILIMININ DEĞERLENDİRİLMESİ: İNŞAAT MÜHENDİSLİĞİ ÖĞRENCİLERİ ÖRNEĞİ

ÖĞRENCİLERİNİN SINAV NOTLARI DAĞILIMININ DEĞERLENDİRİLMESİ: İNŞAAT MÜHENDİSLİĞİ ÖĞRENCİLERİ ÖRNEĞİ ÖĞRENCİLERİNİN SINAV NOTLARI DAĞILIMININ DEĞERLENDİRİLMESİ: İNŞAAT MÜHENDİSLİĞİ ÖĞRENCİLERİ ÖRNEĞİ Barış Yılmaz Celal Bayar Üniversitesi, Manisa baris.yilmaz@bayar.edu.tr Tamer Yılmaz, Celal Bayar Üniversitesi,

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Resim ÖZGEÇMİŞ 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Telefon : 386 280 45 50 Mail : kskula@ahievran.edu.tr

Detaylı

Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma

Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma Öğr. Gör. Kenan KARAGÜL, Öğr. Gör. Nigar KARAGÜL, Murat DOĞAN 3 Pamukkale Üniversitesi, Honaz Meslek Yüksek Okulu, Lojistik Programı, kkaragul@pau.edu.tr

Detaylı

Ders 1 Minitab da Grafiksel Analiz-I

Ders 1 Minitab da Grafiksel Analiz-I ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 1 Minitab da Grafiksel Analiz-I İstatistik Nedir? İstatistik kelimesi ilk olarak Almanyada devlet anlamına gelen status kelimesine dayanılarak kullanılmaya

Detaylı

SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) İÇİN MODELLEME VE BENZETİM. Dr. Murat Günal

SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) İÇİN MODELLEME VE BENZETİM. Dr. Murat Günal 1 SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) İÇİN MODELLEME VE BENZETİM Dr. Murat Günal SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) Sekröte sunulacak Yeni Ürün (veya Teknoloji) Mevcut ve gelecekteki demografik durum

Detaylı

YEMEK ATIKLARINDAN BİYOGAZ ÜRETİMİ

YEMEK ATIKLARINDAN BİYOGAZ ÜRETİMİ YEMEK ATIKLARINDAN BİYOGAZ ÜRETİMİ A. Pınar TÜZÜM DEMİR 1, S. Ferda MUTLU 1 Ege Üniversitesi, Kimya Mühendisliği Bölümü, 35100, Bornova, İzmir pinar.demir@ege.edu.tr Gazi Üniversitesi, Kimya Mühendisliği

Detaylı

İSTATİSTİK-II. Korelasyon ve Regresyon

İSTATİSTİK-II. Korelasyon ve Regresyon İSTATİSTİK-II Korelasyon ve Regresyon 1 Korelasyon ve Regresyon Genel Bakış Korelasyon Regresyon Belirleme katsayısı Varyans analizi Kestirimler için aralık tahminlemesi 2 Genel Bakış İkili veriler aralarında

Detaylı

ÜÇ YÖNLÜ LOG-LİNEER MODELLER İLE ÜNİVERSİTE ÖĞRENCİLERİNİN SİGARA, ALKOL VE NARGİLE İÇME NEDENLERİNİ ETKİLEYEN FAKTÖRLERİN BELİRLENMESİ

ÜÇ YÖNLÜ LOG-LİNEER MODELLER İLE ÜNİVERSİTE ÖĞRENCİLERİNİN SİGARA, ALKOL VE NARGİLE İÇME NEDENLERİNİ ETKİLEYEN FAKTÖRLERİN BELİRLENMESİ Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi, 8(2) ÜÇ YÖNLÜ LOG-LİNEER MODELLER İLE ÜNİVERSİTE ÖĞRENCİLERİNİN SİGARA, ALKOL VE NARGİLE İÇME NEDENLERİNİ ETKİLEYEN FAKTÖRLERİN BELİRLENMESİ Eskişehir

Detaylı

UZAYSAL VE DOLU GÖVDELİ AŞIKLARIN ÇELİK ÇATI AĞIRLIĞINA ETKİSİNİN İNCELENMESİ

UZAYSAL VE DOLU GÖVDELİ AŞIKLARIN ÇELİK ÇATI AĞIRLIĞINA ETKİSİNİN İNCELENMESİ UZAYSAL VE DOLU GÖVDELİ AŞIKLARIN ÇELİK ÇATI AĞIRLIĞINA ETKİSİNİN İNCELENMESİ Mutlu SEÇER* ve Özgür BOZDAĞ* *Dokuz Eylül Üniv., Müh. Fak., İnşaat Müh. Böl., İzmir ÖZET Bu çalışmada, ülkemizde çelik hal

Detaylı

KULLANILABİLİRLİK TESTLERİ VE UYGULAMALARI

KULLANILABİLİRLİK TESTLERİ VE UYGULAMALARI 6 İnternet sitelerinin kullanıcıların ihtiyaç ve beklentilerini karşılayıp karşılamadığının ve sitenin kullanılabilirliğinin ölçülmesi amacıyla kullanılabilirlik testleri uygulanmaktadır. Kullanılabilirlik

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

YATÇILARIN MARİNA TERCİHİNDE ALGILANAN HİZMET KALİTESİNİN MARİNA BAĞLILIĞI ÜZERİNDEKİ ETKİSİ

YATÇILARIN MARİNA TERCİHİNDE ALGILANAN HİZMET KALİTESİNİN MARİNA BAĞLILIĞI ÜZERİNDEKİ ETKİSİ YATÇILARIN MARİNA TERCİHİNDE ALGILANAN HİZMET KALİTESİNİN MARİNA BAĞLILIĞI ÜZERİNDEKİ ETKİSİ Öğr. Gör. Can KARAOSMANOĞLU Yaşar Üniversitesi - MYO Marina ve Yat İşletmeciliği Programı Doç. Dr. İpek KAZANÇOĞLU

Detaylı

Baykuş Ödülleri 2013 -Ödül Alan Projeler

Baykuş Ödülleri 2013 -Ödül Alan Projeler Baykuş Ödülleri 2013 -Ödül Alan Projeler Proje Adı: Nefaseti Ölçtük Araştırma Şirketi: Barem Research Araştırma Veren: Kale Grubu Ödül Alınan Kategori: İnovatif Baykuş Ödül Türü: Bronz Baykuş Baykuş Ödülleri

Detaylı

KIRIKKALE ÜNİVERSİTESİ FEN-EDEBIYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI

KIRIKKALE ÜNİVERSİTESİ FEN-EDEBIYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI KIRIKKALE ÜNİVERSİTESİ FEN-EDEBIYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI Kırıkkale Üniversitesi Fen-Edebiyat Fakültesi İstatistik Bölümü Lisans Programı, Kırıkkale Üniversitesi Önlisans ve Lisans

Detaylı

BĠYOLOJĠ EĞĠTĠMĠ LĠSANSÜSTÜ ÖĞRENCĠLERĠNĠN LĠSANSÜSTÜ YETERLĠKLERĠNE ĠLĠġKĠN GÖRÜġLERĠ

BĠYOLOJĠ EĞĠTĠMĠ LĠSANSÜSTÜ ÖĞRENCĠLERĠNĠN LĠSANSÜSTÜ YETERLĠKLERĠNE ĠLĠġKĠN GÖRÜġLERĠ 359 BĠYOLOJĠ EĞĠTĠMĠ LĠSANSÜSTÜ ÖĞRENCĠLERĠNĠN LĠSANSÜSTÜ YETERLĠKLERĠNE ĠLĠġKĠN GÖRÜġLERĠ Osman ÇİMEN, Gazi Üniversitesi, Biyoloji Eğitimi Anabilim Dalı, Ankara, osman.cimen@gmail.com Gonca ÇİMEN, Milli

Detaylı

ÖRNEKLEME HATALARI EK C. A. Sinan Türkyılmaz

ÖRNEKLEME HATALARI EK C. A. Sinan Türkyılmaz ÖNEKLEME HATALAI EK C A. Sinan Türkyılmaz Örneklem araştırmalarından elde edilen kestirimler (estimates) iki tip dan etkilenirler: (1) örneklem dışı lar ve (2) örneklem ları. Örneklem dışı lar, veri toplama

Detaylı

Yaklaşık Düşünme Teorisi

Yaklaşık Düşünme Teorisi Yaklaşık Düşünme Teorisi Zadeh tarafından 1979 yılında öne sürülmüştür. Kesin bilinmeyen veya belirsiz bilgiye dayalı işlemlerde etkili sonuçlar vermektedir. Genellikle bir f fonksiyonu ile x ve y değişkeni

Detaylı

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ 1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ Örneklem verileri kullanılan her çalışmada bir örneklem hatası çıkma riski her zaman söz konusudur. Dolayısıyla istatistikte bu örneklem hatasının meydana

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 4822

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 4822 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: KALİTE KONTROL Dersin Orjinal Adı: KALİTE KONTROL Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: END 8 Dersin

Detaylı

ZAMAN SERİLERİNDE REGRESYON ANALİZİ

ZAMAN SERİLERİNDE REGRESYON ANALİZİ ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

Konut Fiyatlarının Belirlenmesinde Coğrafi Bilgi Sistemleri'nin (CBS) Kullanılması: Ankara Örneği

Konut Fiyatlarının Belirlenmesinde Coğrafi Bilgi Sistemleri'nin (CBS) Kullanılması: Ankara Örneği 18. ESRI Kullanıcılar Toplantısı 07-08 Ekim 2013 ODTÜ, Ankara Konut Fiyatlarının Belirlenmesinde Coğrafi Bilgi Sistemleri'nin (CBS) Kullanılması: Ankara Örneği Tarık Türk a, Olgun Kitapçı b, Murat Fatih

Detaylı

ÖĞRETMEN ADAYLARININ PROBLEM ÇÖZME BECERİLERİ

ÖĞRETMEN ADAYLARININ PROBLEM ÇÖZME BECERİLERİ ÖĞRETMEN ADAYLARININ PROBLEM ÇÖZME BECERİLERİ Doç. Dr. Deniz Beste Çevik Balıkesir Üniversitesi Necatibey Eğitim Fakültesi Güzel Sanatlar Eğitimi Bölümü Müzik Eğitimi Anabilim Dalı beste@balikesir.edu.tr

Detaylı

2001 ve 2008 Yılında Oluşan Krizlerin Faktör Analizi ile Açıklanması

2001 ve 2008 Yılında Oluşan Krizlerin Faktör Analizi ile Açıklanması 2001 ve 2008 Yılında Oluşan Krizlerin Faktör Analizi ile Açıklanması Mahmut YARDIMCIOĞLU Özet Genel anlamda krizler ekonominin olağan bir parçası haline gelmiştir. Sıklıkla görülen bu krizlerin istatistiksel

Detaylı

İstatistikçiler Dergisi

İstatistikçiler Dergisi www.istatistikciler.org İstatistikçiler Dergisi (28) 6-22 İstatistikçiler Dergisi COX REGRESYON MODELİ VE AKCİĞER KANSERİ VERİLERİ İLE BİR UYGULAMA Durdu KARASOY Hacettepe Üniversitesi Fen Fakültesi İstatistik

Detaylı

EĞİTİMDE YEŞİL İNSAN TÜKETİMDE YEŞİL ÜRÜN: NAZİLLİ İİBF VE NAZİLLİ MYO ÖĞRENCİLERİNE YÖNELİK BİR DUYARLILIK ANALİZİ ÇALIŞMASI

EĞİTİMDE YEŞİL İNSAN TÜKETİMDE YEŞİL ÜRÜN: NAZİLLİ İİBF VE NAZİLLİ MYO ÖĞRENCİLERİNE YÖNELİK BİR DUYARLILIK ANALİZİ ÇALIŞMASI EĞİTİMDE YEŞİL İNSAN TÜKETİMDE YEŞİL ÜRÜN: NAZİLLİ İİBF VE NAZİLLİ MYO ÖĞRENCİLERİNE YÖNELİK BİR DUYARLILIK ANALİZİ ÇALIŞMASI Hulusi DOĞAN Adnan Menderes Üniversitesi Doç. Dr. Nazilli İİBF Fakültesi hulusidogan@gmail.com

Detaylı

Kansei Mühendisliği Üzerine Bir Uygulama

Kansei Mühendisliği Üzerine Bir Uygulama 6 th International Advanced Technologies Symposium (IATS 11), 16-18 May 2011, Elazığ, Turkey Kansei Mühendisliği Üzerine Bir Uygulama C. Göloğlu 1, E. Zurnacı 2 1 Karabük Üniversitesi, Mühendislik Fakültesi,

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI

ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI Araştırmalarda incelenen olaylar göstermektedir ki tek değişkenli istatistiklerin kullanılması problemi açıklamakta yetersiz ve eksik kalmaktadır.

Detaylı

FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis

FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis Keziban KOÇAK İstatistik Anabilim Dalı Deniz ÜNAL İstatistik Anabilim Dalı ÖZET Son yıllarda

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

A UNIFIED APPROACH IN GPS ACCURACY DETERMINATION STUDIES

A UNIFIED APPROACH IN GPS ACCURACY DETERMINATION STUDIES A UNIFIED APPROACH IN GPS ACCURACY DETERMINATION STUDIES by Didem Öztürk B.S., Geodesy and Photogrammetry Department Yildiz Technical University, 2005 Submitted to the Kandilli Observatory and Earthquake

Detaylı

İLERİ ARAŞTIRMA TEKNİKLERİ ARAŞTIRMA DESENİ RESEARCH DESIGN

İLERİ ARAŞTIRMA TEKNİKLERİ ARAŞTIRMA DESENİ RESEARCH DESIGN İLERİ ARAŞTIRMA TEKNİKLERİ ARAŞTIRMA DESENİ RESEARCH DESIGN 4 Prof. Dr. Mustafa Ergün Araştırma Desenleri (modelleri) Araştırmanın alt problemlerine yanıt aramak veya denenceleri test etmek için yapılan

Detaylı

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/ Eşzamanlı (Senkron) Ardışıl Devrelerin Tasarlanması (Design) Bir ardışıl devrenin tasarlanması, çözülecek olan problemin sözle anlatımıyla (senaryo) başlar. Bundan sonra aşağıda açıklanan aşamalardan geçilerek

Detaylı

Bilgisayar ve İnternet Tutumunun E-Belediyecilik Güvenliği Algısına Etkilerinin İncelenmesi

Bilgisayar ve İnternet Tutumunun E-Belediyecilik Güvenliği Algısına Etkilerinin İncelenmesi Bilgisayar ve İnternet Tutumunun E-Belediyecilik Güvenliği Algısına Etkilerinin İncelenmesi Tuna USLU Gedik Üniversitesi İş Sağlığı ve Güvenliği Programı Özel Gebze Doğa Hastanesi Sağlık Hizmetleri A.Ş.

Detaylı

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir.

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir. ÇELĐK YÜZEYLERĐN SINIFLANDIRILMASI * Cem ÜNSALAN ** Aytül ERÇĐL * Ayşın ERTÜZÜN *Boğaziçi Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü unsalan@boun.edu.tr **Boğaziçi Üniversitesi, Endüstri Mühendisliği

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

17.10.2011. Türk Standartlari Enstitüsü'nün tanımladığı

17.10.2011. Türk Standartlari Enstitüsü'nün tanımladığı USABİLİTY ANALYSİS Kullanılabilirlik Nedir? Koray Metin 2008639026 Türk Standartlari Enstitüsü'nün tanımladığı ISO 9241 no'lu standardın bir bölümü olan "Kullanılabilirlik Kılavuzu"na göre; kullanılabilirlik,

Detaylı

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI Öğrenci Bilgileri Ad Soyad: İmza: MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI 26 Mayıs, 2014 Numara: Grup: Soru Bölüm 1 10 11 12 TOPLAM Numarası (1-9) Ağırlık 45 15 30 20 110 Alınan Puan Yönerge 1. Bu sınavda

Detaylı

Electronic Letters on Science & Engineering 2(2) (2011) Available online at www.e-lse.org

Electronic Letters on Science & Engineering 2(2) (2011) Available online at www.e-lse.org Electronic Letters on Science & Engineering 2(2) (2011) Available online at www.e-lse.org ERP: Enterprise Resource Planning Ceyda Şahbazoğlu 1, Feyzullah Temurtaş 2,* 1 Sakarya Üniversitesi, Fen Bilimleri

Detaylı

Pazar Bölümlendirmesi

Pazar Bölümlendirmesi Pazar Bölümlendirmesi Umut Al H.Ü. Bilgi ve Belge Yönetimi Bölümü umutal@hacettepe.edu.tr Pazar Bölümlendirmesi Bir kurumun ürün ve hizmetlerine talep gösteren bireylerin oranı ile kurumun ürün ve hizmetleriyle

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

Olasılık ve İstatistik (IE 220) Ders Detayları

Olasılık ve İstatistik (IE 220) Ders Detayları Olasılık ve İstatistik (IE 220) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistik IE 220 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

YÜZEYSULARI ÇALIŞMA GRUBU

YÜZEYSULARI ÇALIŞMA GRUBU 1/23 HEDEFLER Mühendislerimiz ve akademisyenlerimiz ile birlikte gelişmiş yöntem ve teknikleri kullanarak; su kaynaklarımızın planlama, inşaat ve işletme aşamalarındaki problemlere çözüm bulmak ve bu alanda

Detaylı

www.fikretgultekin.com 1

www.fikretgultekin.com 1 KORELASYON ANALĐZĐ (Correlation Analysis ) Basit Korelasyon Analizi Basit korelasyon analizinde iki değişken söz konusudur ve bu değişkenlerin bağımlıbağımsız değişken olarak tanımlanması/belirlenmesi

Detaylı

Berna ÇAĞLAR, İstanbul Aydın Üniversitesi, mbernacaglar@gmail.com

Berna ÇAĞLAR, İstanbul Aydın Üniversitesi, mbernacaglar@gmail.com E- Ticaret Sektöründe Algılanan Lojistik Hizmet Performansı ile Marka Sadakati ve Marka Güveni Arasındaki İlişki: Meslek Yüksekokulu Öğrencileri Üzerinde Bir Araştırma Berna ÇAĞLAR, İstanbul Aydın Üniversitesi,

Detaylı

DIŞ TİCARET BEKLENTİ ANKETİ NE İLİŞKİN YÖNTEMSEL AÇIKLAMA

DIŞ TİCARET BEKLENTİ ANKETİ NE İLİŞKİN YÖNTEMSEL AÇIKLAMA DIŞ TİCARET BEKLENTİ ANKETİ NE İLİŞKİN YÖNTEMSEL AÇIKLAMA 1. Amaç Dış Ticaret Beklenti Anketi (DTBA), dış ticaretimize yön veren firmaların yakın geçmişe ve mevcut duruma ilişkin değerlendirmeleri ile

Detaylı

Üç Boyutlu Serpilme (Saçılım) Grafikleri

Üç Boyutlu Serpilme (Saçılım) Grafikleri Üç Boyutlu Serpilme (Saçılım) Grafikleri 3D Scatterplot of boy vs kol vs bacak 90 boy 0 70 0 90 70 00 0 bacak 0 0 90 kol 3D Scatterplot of kol vs omuz vs kalca 90 kol 0 70 00 kalca 0 0 0 0 00 omuz Merkez

Detaylı

PSİKOLOJİK YILDIRMANIN ÖNCÜLLERİ VE SONUÇLARI: HACETTEPE ÜNİVERSİTESİ ÖRNEĞİ. Hacettepe Üniversitesi Psikometri Araştırma ve Uygulama Merkezi HÜPAM

PSİKOLOJİK YILDIRMANIN ÖNCÜLLERİ VE SONUÇLARI: HACETTEPE ÜNİVERSİTESİ ÖRNEĞİ. Hacettepe Üniversitesi Psikometri Araştırma ve Uygulama Merkezi HÜPAM PSİKOLOJİK YILDIRMANIN ÖNCÜLLERİ VE SONUÇLARI: HACETTEPE ÜNİVERSİTESİ ÖRNEĞİ Hacettepe Üniversitesi Psikometri Araştırma ve Uygulama Merkezi HÜPAM PROJENİN AMACI Bu projenin temel amacı Hacettepe Üniversitesi

Detaylı

SANAYİ İŞÇİLERİNİN DİNİ YÖNELİMLERİ VE ÇALIŞMA TUTUMLARI ARASINDAKİ İLİŞKİ - ÇORUM ÖRNEĞİ

SANAYİ İŞÇİLERİNİN DİNİ YÖNELİMLERİ VE ÇALIŞMA TUTUMLARI ARASINDAKİ İLİŞKİ - ÇORUM ÖRNEĞİ , ss. 51-75. SANAYİ İŞÇİLERİNİN DİNİ YÖNELİMLERİ VE ÇALIŞMA TUTUMLARI ARASINDAKİ İLİŞKİ - ÇORUM ÖRNEĞİ Sefer YAVUZ * Özet Sanayi İşçilerinin Dini Yönelimleri ve Çalışma Tutumları Arasındaki İlişki - Çorum

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

İnşaat Sektöründe Eğitim Başarı / Başarısızlık İlişkisinin İncelenmesi

İnşaat Sektöründe Eğitim Başarı / Başarısızlık İlişkisinin İncelenmesi İnşaat Sektöründe Eğitim Başarı / Başarısızlık İlişkisinin İncelenmesi Gökhan Arslan, Serkan Kıvrak Anadolu Üniversitesi İnşaat Mühendisliği Bölümü İki Eylül Kampüsü 26555 Eskişehir Tel: (222) 321 35 50

Detaylı

REGRESYON ANALĐZĐ. www.fikretgultekin.com 1

REGRESYON ANALĐZĐ. www.fikretgultekin.com 1 REGRESYON ANALĐZĐ Regresyon analizi, aralarında sebep-sonuç ilişkisi bulunan iki veya daha fazla değişken arasındaki ilişkiyi belirlemek ve bu ilişkiyi kullanarak o konu ile ilgili tahminler (estimation)

Detaylı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Varyans Analizi (ANOVA) Kruskal-Wallis H Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek Yönlü Varyans Analizi SPSS de Tek

Detaylı

Arş. Grv. Seyhat BAYRAK Dumlupınar Üniversitesi,İİBF,Ekonometri Bölümü seyhat.bayrak@dpu.edu.tr

Arş. Grv. Seyhat BAYRAK Dumlupınar Üniversitesi,İİBF,Ekonometri Bölümü seyhat.bayrak@dpu.edu.tr HANEHALKLARI SATIN ALMA KRİTERLERİNİN ANALİZİ: MULTİNOMİNAL LOJİSTİK REGRESYON YAKLAŞIMI Doç.Dr. Mahmut ZORTUK Yrd. Doç. Dr. Eylem KOÇ Dumlupınar Üniversitesi,İİBF,Ekonometri Bölümü Dumlupınar Üniversitesi,İİBF,Ekonometri

Detaylı

A/B TESTING. Mert Hakan ÖZLÜ N14111368

A/B TESTING. Mert Hakan ÖZLÜ N14111368 A/B TESTING Mert Hakan ÖZLÜ N14111368 İÇERİK A/B Testi Nedir? A/B Testinin Amacı Nedir? A/B Testi Nasıl Uygulanır? A/B Testi Nerelerde Kullanılır? A/B Testi ile Nasıl Değişiklikler Yapılabilir? A/B Testi

Detaylı

The Study of Relationship Between the Variables Influencing The Success of the Students of Music Educational Department

The Study of Relationship Between the Variables Influencing The Success of the Students of Music Educational Department 71 Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, Yıl 9, Sayı 17, Haziran 2009, 71-76 Müzik Eğitimi Anabilim Dalı Öğrencilerinin Başarılarına Etki Eden Değişkenler Arasındaki İlişkinin İncelenmesi

Detaylı

Sayısal Yöntemler Anabilim Dalı Öğretim Üyesi, ESKİŞEHİR, esiklar@anadolu.edu.tr

Sayısal Yöntemler Anabilim Dalı Öğretim Üyesi, ESKİŞEHİR, esiklar@anadolu.edu.tr Eskişehir deki Üniversitelerde Görevli Akademik Personelin İş Tatmini ve Duygusal Tükenmişliklerinin Log-Linear Modeller ve Correspondence Analizi ile İncelenmesi Emel ŞIKLAR 1 Veysel YILMAZ 2 Duygu ÇOŞKUN

Detaylı

İŞLETMELERDE KURUMSAL İMAJ VE OLUŞUMUNDAKİ ANA ETKENLER

İŞLETMELERDE KURUMSAL İMAJ VE OLUŞUMUNDAKİ ANA ETKENLER ANKARA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ HALKLA İLİŞKİLER VE TANITIM ANA BİLİM DALI İŞLETMELERDE KURUMSAL İMAJ VE OLUŞUMUNDAKİ ANA ETKENLER BİR ÖRNEK OLAY İNCELEMESİ: SHERATON ANKARA HOTEL & TOWERS

Detaylı

İstanbul Teknik Üniversitesi Uçak ve Uzay Bilimleri Fakültesi

İstanbul Teknik Üniversitesi Uçak ve Uzay Bilimleri Fakültesi İstanbul Teknik Üniversitesi Uçak ve Uzay Bilimleri Fakültesi Maslak,34469 İstanbul UCK 328 YAPI TASARIMI Prof. Dr. Zahit Mecitoğlu ÖDEV-II: İTÜ hafif ticari helikopteri için iniş takımı analizi 110030011

Detaylı

İLKÖĞRETİM 6. ve 7. SINIF FEN ve TEKNOLOJİ DERSİ ÖĞRETİM PROGRAMININ İÇERİĞİNE VE ÖĞRENME- ÖĞRETME SÜRECİNE İLİŞKİN ÖĞRETMEN GÖRÜŞLERİ

İLKÖĞRETİM 6. ve 7. SINIF FEN ve TEKNOLOJİ DERSİ ÖĞRETİM PROGRAMININ İÇERİĞİNE VE ÖĞRENME- ÖĞRETME SÜRECİNE İLİŞKİN ÖĞRETMEN GÖRÜŞLERİ İLKÖĞRETİM 6. ve 7. SINIF FEN ve TEKNOLOJİ DERSİ ÖĞRETİM PROGRAMININ İÇERİĞİNE VE ÖĞRENME- ÖĞRETME SÜRECİNE İLİŞKİN ÖĞRETMEN GÖRÜŞLERİ Yrd.Doç.Dr.Cavide DEMİRCİ Uzman Esra ÇENGELCİ ESOGÜ Eğitim Fakültesi

Detaylı

Türkiye de Yaygın Kullanılan Web Portallarının Kullanıcı Hislerine Dayanılarak Kansei Mühendisliği ile Değerlendirilmesi

Türkiye de Yaygın Kullanılan Web Portallarının Kullanıcı Hislerine Dayanılarak Kansei Mühendisliği ile Değerlendirilmesi Türkiye de Yaygın Kullanılan Web Portallarının Kullanıcı Hislerine Dayanılarak Kansei Mühendisliği ile Değerlendirilmesi Şenol ERDOĞMUŞ 1 Eylem KOÇ 2 Sevgi AYHAN 3 Özet Türkiye de yaygın olarak kullanılan

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

İç Mimari için BIM 1. bölüm

İç Mimari için BIM 1. bölüm İç Mimari için BIM 1. bölüm BIM (Yapı Bilgi Sistemi) hakkındaki görüşler genellikle binanın dış tasarımı ve BIM in mimari tasarımın bu alanına getirdiği faydalar üzerine odaklanır. Binaların katı modelleri,

Detaylı

ENERJĐ ELDESĐNDE ORTALAMA RÜZGAR HIZI ÖLÇÜM ARALIĞI ve HELLMANN KATSAYISININ ÖNEMĐ: SÖKE ÖRNEĞĐ

ENERJĐ ELDESĐNDE ORTALAMA RÜZGAR HIZI ÖLÇÜM ARALIĞI ve HELLMANN KATSAYISININ ÖNEMĐ: SÖKE ÖRNEĞĐ ENERJĐ ELDESĐNDE ORTALAMA RÜZGAR HIZI ÖLÇÜM ARALIĞI ve HELLMANN KATSAYISININ ÖNEMĐ: SÖKE ÖRNEĞĐ Mete ÇUBUKÇU1 mecubuk@hotmail.com Doç. Dr. Aydoğan ÖZDAMAR2 aozdamar@bornova.ege.edu.tr ÖZET 1 Ege Üniversitesi

Detaylı

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Marmara Üniversitesi U.B.F. Dergisi YIL 2005, CİLT XX, SAyı 1 YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Yrd. Doç. Dr. Ebru ÇACLAYAN' Arş. Gör. Burak GÜRİş" Büyüme modelleri,

Detaylı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1 Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı Mart 2015 0 SORU 1) Bulanık Küme nedir? Bulanık Kümenin (fuzzy

Detaylı

Öğrenim Bilgisi. Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü (2000) Uygulamalı İstatistik

Öğrenim Bilgisi. Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü (2000) Uygulamalı İstatistik Sema BEHDİOĞLU E-posta : sema.behdioglu@dpu.edu.tr Telefon : 0 (274) 265 20 31-2116 Öğrenim Bilgisi Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü (2000) Uygulamalı İstatistik Yüksek Anadolu

Detaylı

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Umut Al umutal@hacettepe.edu.tr BBY 375, 16 Ekim 2015-1 Plan İlgili kavramlar Tablo ne zaman kullanılır? Grafik nasıl üretilir? Örnekler Dikkat edilmesi

Detaylı

01.02.2013. Statistical Package for the Social Sciences

01.02.2013. Statistical Package for the Social Sciences Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

Endüstri Mühendisliği - 1. yarıyıl. Academic and Social Orientation. 441000000001101 Fizik I Physics I 3 0 1 4 4 6 TR

Endüstri Mühendisliği - 1. yarıyıl. Academic and Social Orientation. 441000000001101 Fizik I Physics I 3 0 1 4 4 6 TR - - - - - Bölüm Seçin - - - - - Gönder Endüstri Mühendisliği - 1. yarıyıl 141000000001101 Akademik ve Sosyal Oryantasyon Academic and Social Orientation 1 0 0 1 0 1 TR 441000000001101 Fizik I Physics I

Detaylı

daha çok göz önünde bulundurulabilir. Öğrencilerin dile karşı daha olumlu bir tutum geliştirmeleri ve daha homojen gruplar ile dersler yürütülebilir.

daha çok göz önünde bulundurulabilir. Öğrencilerin dile karşı daha olumlu bir tutum geliştirmeleri ve daha homojen gruplar ile dersler yürütülebilir. ÖZET Üniversite Öğrencilerinin Yabancı Dil Seviyelerinin ve Yabancı Dil Eğitim Programına Karşı Tutumlarının İncelenmesi (Aksaray Üniversitesi Örneği) Çağan YILDIRAN Niğde Üniversitesi, Sosyal Bilimler

Detaylı

Business & Management Studies: An International Journal Vol.:3 Issue:2 Year:2015, ss. 220-233

Business & Management Studies: An International Journal Vol.:3 Issue:2 Year:2015, ss. 220-233 Business & Management Studies: An International Journal Vol.:3 Issue:2 Year:2015, ss. 220-233 BMSIJ http://dx.doi.org/10.15295/bmij.v3i2.113 İNTERNET BANKACILIĞI E-HİZMET KALİTESİNİN KULLANICILAR TARAFINDAN

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

ÜAS DA SUNULAN BİLDİRİLER KAPSAMINDA İMALAT İŞLETMELERİNİN ÜRETİM SORUNLARINA BAKIŞI

ÜAS DA SUNULAN BİLDİRİLER KAPSAMINDA İMALAT İŞLETMELERİNİN ÜRETİM SORUNLARINA BAKIŞI V. Ulusal Üretim Araştırmaları Sempozyumu, İstanbul Ticaret Üniversitesi, 25-27 Kasım 2005 ÜAS DA SUNULAN BİLDİRİLER KAPSAMINDA İMALAT İŞLETMELERİNİN ÜRETİM SORUNLARINA BAKIŞI Halil SAVAŞ Pamukkale Üniversitesi

Detaylı

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir.

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. BİYOİSTATİSTİK Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. Veri Analiz Bilgi El ile ya da birtakım bilgisayar programları

Detaylı