Ebat: px
Şu sayfadan göstermeyi başlat:

Download ""

Transkript

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 Venn Diyagramları Kategorik önermelerle ilgili işlemlerde kümeler arası ilişkileri göz önüne almak bu konuda bize yardımcı olur. Bir kategorik önerme, kesişen iki daire ile temsil edilir ve buradaki daireler önermede geçen iki terimin (öznenin ve yüklemin) işaret ettiği nesne kümeleridirler. Dairenin içinde kalan alan kümenin elemanlarını, dışında kalan alan ise bu kümenin tümleyeninin elemanlarını temsil eder. İki dairenin kesişim bölgesi ise, bu iki kümenin eğer varsa ortak elemanlarını temsil eder. Bir kümenin veya bir kümenin bir kısmının hiç elemanı yoksa, diyagramdan bu bölgeyi hariç tuttuğumuzu veya çıkardığımızı göstermek için bu bölgeyi taralı olarak işaretleriz. Örneğin E önermesi, yani Hiçbir S, P değildir önermesi, S kümesi ile P kümesinin hiç ortak elemanının bulunmadığını dile getirir. Venn diyagramında bunu, kesişen iki daire ve kesişim bölgesinin taralı olarak işaretlenmesi ile gösteririz, böylece taralı alanı hariç tuttuğumuzu ve bu alanın hiç eleman içermediğini belirtmiş oluruz: Burada önemli olan husus şudur: diyagramda taralı olmayan boş bölgeler hakkında bilgimiz yoktur, bu bölgeler bir eleman içerebilir de içermeyebilir de. Zira önermemiz bize taralı alan hakkında belirli bir bilgi vermekte fakat diğer bölgeler hakkında bir bilgi vermemektedir. Öyleyse bu bölgeleri, diyagramda temsil edilen önermenin, bir elemana sahip olmak konusunda yasak koymadığı alanlar olarak görmeliyiz. Tüm S ler P dir şeklindeki A önermesi, S, P nin bir altkümesidir anlamına gelmektedir, yani S, aynı zamanda P nin de bir elemanı olmayan hiçbir elemana sahip değildir. Dolayısıyla diyagramda, S nin P dışında kalan bölgesi taralı olarak işaretlenerek çıkarılmıştır: Bir kümenin veya bir kümenin bir bölgesinin hiç değilse bir eleman veya en az bir eleman içerdiğini göstermek için bu bölgenin içine bir çarpı (X) işareti koyarız. O halde, Bazı S ler P dir şeklindeki I önermesi, S ve P kümelerinin en az bir ortak elemana sahip olduklarını dile getirdiği için, bunu, kesişim bölgesine bir (X) işareti koymak suretiyle gösteririz: 1

60 Ve Bazı S ler P değildir şeklindeki O önermesi de aynı şekilde, S nin P ye ait olmayan en az bir elemanı bulunduğunu dile getirdiği için, bunu, P dışında kalan S bölgesine bir (X) işareti koymak suretiyle gösteririz: Tekrar etmek gerekirse, bir önermeyi temsil eden diyagramda, taralı olarak işaretlenmeyen bölgeler ile bir çarpı (X) işareti içermeyen bölgeler, önermenin bize bir bilgi sunmadığı alanlardır. Bu alanların bir eleman içerip içermediği konusunda önerme bir şey söylememektedir. S-olmayan veya P-olmayan gibi, karşıt kavramların terimlerini içeren önermeleri diyagramda gösterirken, bütün diyagramı içine alan bir çerçeve kullanmak faydalıdır. Çerçevenin içindeki bölge tüm varlıkların/elemanların kümesini temsil eder ve evren olarak adlandırılır. Bir terimin karşıtı olan elemanlar o halde, bu terimi temsil eden dairenin dışında fakat çerçevenin içinde kalan bölge ile temsil edilir. Örnek: Tüm S-olmayanlar, P dir önermesini temsil eden bir Venn diyagramı çiziniz. Çözüm: Bu önerme biçimi bize, S nin karşıtı olan elemanların P nin bir alt kümesi olduğunu dile getiriyor. Bu da şu demektir ki, S nin tümleyeni olan bölgenin P dışında kalan kısmı hariç tutulacaktır. Diyagramda S nin tümleyen bölgesi, S nin dışında fakat çerçevenin içinde kalan bölge ile temsil edilir. Taralı alan S nin tümleyenini temsil ediyor. Bu bölgenin P dışında kalan kısmının boş olduğunu yani hiç eleman içermediğini göstermek için taralı olarak işaretleriz: 2

61 Venn diyagramında dört temel bölge veya alan vardır: Bu alanlardan her biri ya taranmış, boyanmış olabilir (yani hariç tutulmuş olabilir) veya çarpı ile işaretlenmiş olabilir (yani boş olmadığına işaret edilmiş olabilir). Dolayısıyla toplam sekiz tane farklı Venn diyagramı bulunabilir: 3

62 Eğer bir bölge taralı veya boyanmış ise, bu durum, o bölgede hiçbir eleman bulunamaz demektir, yani bu bölge boş kümedir. Eğer bir bölge çarpı ile işaretlenmiş ise, bu durum, o bölgede en az bir eleman var demektir, yani bu bölge boş küme değildir. Diğer yandan, toplam dört tane olan kategorik önermenin her biri için sekiz farklı biçim olabilir. Özne S veya S-olmayan olabilir, özne P veya P-olmayan olabilir, yüklem S veya S-olmayan olabilir, yüklem P veya P-olmayan olabilir. Demek ki toplam 32 farklı biçim olabilir: Tümel olumlunun sekiz farkı biçimi: Tümel olumsuzun sekiz farklı biçimi: Tüm S ler P dir. (SaP) Hiçbir S, P değildir. (SeP) Tüm S ler P-olmayan dır. (SaP ) Hiçbir S, P-olmayan değildir. (SeP ) Tüm S-olmayan lar P dir. (S ap) Hiçbir S-olmayan, P değildir. (S ep) Tüm S-olmayan lar P-olmayan dır. (S ap ) Hiçbir S-olmayan, P-olmayan değildir. (S ep ) Tüm P ler S dir. (PaS) Hiçbir P, S değildir. (PeS) Tüm P ler S-olmayan dır. (PaS ) Hiçbir P, S-olmayan değildir. (PeS ) Tüm P-olmayan lar S dir. (P as) Hiçbir P-olmayan, S değildir. (P es) Tüm P-olmayan lar S-olmayan dır. (P as ) Hiçbir P-olmayan, S-olmayan değildir. (P es ) Tikel olumlunun sekiz farklı biçimi: Tikel olumsuzun sekiz farklı biçimi: Bazı S ler P dir. (SiP) Bazı S ler P değildir. (SoP) Bazı S ler P-olmayan dır. (SiP ) Bazı S ler P-olmayan değildir. (SoP ) Bazı S-olmayan lar P dir. (S ip) Bazı S-olmayan lar P değildir. (S op) Bazı S-olmayan lar P-olmayan dır. (S ip ) Bazı S-olmayan lar P-olmayan değildir. (S op ) Bazı P ler S dir. (PiS) Bazı P ler S değildir. (PoS) Bazı P ler S-olmayan dır. (PiS ) Bazı P ler S-olmayan değildir. (PoS ) Bazı P-olmayan lar S dir. (P is) Bazı P-olmayan lar S değildir. (P os) Bazı P-olmayan lar S-olmayan dır. (P is ) Bazı P-olmayan lar S-olmayan değildir. (P os ) Kategorik önermelerin Venn şemasında nasıl gösterileceğini anlamak için onları kümeler arası ilişkiler cinsinden okumayı denemeliyiz. Aşağıda dört temel kategorik önermeden her birinin bu anlamda nasıl okunması/anlaşılması gerektiği belirtilmiştir: 4

63 A Tüm S ler P dir. S, P nin alt kümesidir, yani P-olmayan S lerin kümesi boştur. E Hiçbir S, P değildir. S ve P nin ortak elemanı yoktur, yani kesişim kümesi boştur. I Bazı S ler P dir. S ile P nin en az bir ortak elemanı vardır, yani kesişim kümesi boş değildir. O Bazı S ler P değildir. P-olmayan S lerin kümesi boş değildir. Tekrarlamak gerekirse, kümenin boş olduğunu göstermek için o kümeye işaret eden bölgeyi tararız veya boyarız, kümenin boş olmadığını göstermek için de o kümeye işaret eden bölgeye bir çarpı koyarız. Bölgenin taralı veya boyalı olması o bölgenin çıkarıldığı ya da yasaklandığı (eleman içeremez) anlamına gelirken, çarpı işareti o bölgede en az bir eleman bulunduğu anlamına gelir. Bu bilgiler ışığında, 32 farklı biçimden hangilerinin hangi Venn diyagramı ile gösterildiği ise aşağıda belirtilmiştir: SaP P as P es SeP PaS S ap S ep PeS SaP PaS SeP PeS S ap P as S ep P es 5

64 SiP P is SoP P os PiS S ip PoS S op SiP PiS SoP PoS S ip P is S op P os 6

65 Doğrudan Çıkarımlar Bir kategorik önermeden diğer bir kategorik önermenin çıkarsandığı çıkarımlara doğrudan çıkarımlar denir. Bunlar, öncül bir önerme ve sonuç bir önerme olmak üzere sadece iki önermeden oluşan çıkarımlardır. Doğrudan çıkarımlar üç çeşittir: evirme, devirme, çevirme. Evirme (conversion) Öncülün öznesi sonucun yüklemi ve öncülün yüklemi sonucun öznesi olduğu çıkarımlardır. öncülün Öznesi öncülün Yüklemi sonucun Yüklemi sonucun Öznesi Hiçbir S, P değildir. Bazı S ler P dir. Evrik (converse) Evrik (converse) Hiçbir P, S değildir. Bazı P ler S dir. Tüm S ler P dir. Bazı S ler P değildir. Evrik (converse) Evrik (converse) Tüm P ler S dir. Bazı P ler S değildir. Evirme çıkarımları: E ve I biçimi için geçerli. A ve O biçimi için geçersizdir. Örnekler: Hiçbir bilgisayar, canlı değildir. Hiçbir canlı, bilgisayar değildir. (geçerli) Bazı kuşlar sarı renklidir. Bazı sarı renkli şeyler kuştur. (geçerli) Tüm bilgisayarlar cansızdır. Tüm cansızlar bilgisayardır. (geçersiz) Bazı kuşlar sarı renkli değildir. Bazı sarı renkli şeyler kuş değildir. (geçersiz)

66 Devirme (contraposition) Öncülün öznesinin tümleyeni, sonucun yüklemi ve öncülün yükleminin tümleyeni, sonucun öznesi olduğu çıkarımlardır. (öncülün Öznesi) (öncülün Yüklemi) sonucun Yüklemi sonucun Öznesi Tüm S ler P dir. Bazı S ler P değildir. Tüm P-olmayan lar S-olmayan dır. Devrik (contrapositive) Devrik (contrapositive) Bazı P-olmayan lar S-olmayan değildir. Hiçbir S, P değildir. Hiçbir P-olmayan, S-olmayan değildir. Devrik (contrapositive) Bazı S ler P dir. Bazı P-olmayan lar S-olmayan dır. Devrik (contrapositive) Devirme çıkarımları: A ve O biçimi için geçerli. E ve I biçimi için geçersizdir. Örnekler: Tüm camlar kırılgandır. Bazı sıvılar tuzlu değildir. Hiçbir cam, yumuşak değildir. Tüm kırılgan-olmayan şeyler cam-olmayandır. (geçerli) Bazı tuzlu-olmayan şeyler sıvı-olmayan değildir. (geçerli) Hiçbir yumuşak-olmayan, cam-olmayan değildir. (geçersiz) Bazı sıvılar tuzludur. Bazı tuzlu-olmayan şeyler sıvı-olmayandır. (geçersiz)

67 Çevirme (obversion) Öncül olumluysa sonucun olumsuz, öncül olumsuzsa sonucun olumlu yapıldığı ve öncülün yükleminin tümleyeni, sonucun yüklemi olduğu çıkarımlardır. Nitelik değişir: olumlu (öncülün Yüklemi) olumsuz olumsuz olumlu sonucun Yüklemi Tüm S ler P dir. Bazı S ler P dir. Hiçbir S, P-olmayan değildir. Çevrik (obverse) Bazı S ler P-olmayan değildir. Çevrik (obverse) Hiçbir S, P değildir. Tüm S ler P-olmayan dır. Çevrik (obverse) Bazı S ler P değildir. Bazı S ler P-olmayan dır. Çevrik (obverse) Devirme çıkarımları: Bütün biçimler için geçerlidir. Örnekler: Tüm kediler miyavlar. Hiçbir kedi, miyavlamayan değildir. (geçerli) Bazı insanlar uzun boyludur. Bazı insanlar uzun boylu-olmayan değildir. (geçerli) Hiçbir tekerlek, yuvarlak-olmayan değildir. Bazı insanlar esmer-olmayan değildir. Tüm tekerlekler yuvarlaktır. (geçerli) Bazı insanlar esmerdir. (geçerli)

68 Evirme, devirme ve çevirmenin dışında, bir de kategorik önermelerin Aristoteles karesinde bulundukları karşılıklı konumlardan kaynaklanan çıkarımlardan bahsedilebilir. Aristoteles karesi üç tür ilişki tanımlamaktadır: karşıtlık, altıklık ve çelişiklik. Yani bir kategorik önermeyi karşıtına, altığına veya çelişiğine dönüştürmek suretiyle bir çıkarımda bulunmaktan söz edilebilir. Bunların içinde sadece iki tanesi geçerlidir: bir tümel önermeden altığını çıkarsamak geçerlidir. İki tümel önerme var, A ve E. Bunların altıkları da sırasıyla I ve O dur. Demek ki A dan I yi ve E den O yu çıkarmak geçerlidir. Geçerli Karşıolum Çıkarımları: A E I O Bu durumu Aristoteles karesinde göstermek de mümkündür. Aristoteles karesinde karenin sağ ve sol kenarlarına çizilen aşağı işaret eden iki ok çizgisi, bize bu geçerli çıkarımları hatırlamakta yardımcı olacaktır: A E I O Örnekler: Tüm kediler miyavlar. Bazı kediler miyavlar. (geçerli) Tüm insanlar uzun boyludur. Hiçbir kedi, miyavlayan değildir. Bazı insanlar uzun boyludur. (geçerli) Bazı kediler miyavlayan değildir. (geçerli) Hiçbir insan, uzun boylu değildir. Bazı insanlar uzun boylu değildir. (geçerli)

Öncülün öznesi sonucun yüklemi ve öncülün yüklemi sonucun öznesi olduğu çıkarımlardır.

Öncülün öznesi sonucun yüklemi ve öncülün yüklemi sonucun öznesi olduğu çıkarımlardır. Doğrudan Çıkarımlar Bir kategorik önermeden diğer bir kategorik önermenin çıkarsandığı çıkarımlara doğrudan çıkarımlar denir. Bunlar, öncül bir önerme ve sonuç bir önerme olmak üzere sadece iki önermeden

Detaylı

Tüm S-olmayanlar, P dir önermesini temsil eden bir Venn diyagramı çiziniz.

Tüm S-olmayanlar, P dir önermesini temsil eden bir Venn diyagramı çiziniz. Venn Diyagramları Kategorik önermelerle ilgili işlemlerde kümeler arası ilişkileri göz önüne almak bu konuda bize yardımcı olur. Bir kategorik önerme, kesişen iki daire ile temsil edilir ve buradaki daireler

Detaylı

II.Ünite: KLASİK MANTIK (ARİSTO MANTIĞI)

II.Ünite: KLASİK MANTIK (ARİSTO MANTIĞI) II.Ünite: KLASİK MANTIK (ARİSTO MANTIĞI) A. KAVRAM, TERİM - Kavramlar Arası İlişkiler - İçlem - kaplam ilişkisi - Beş tümel - Tanım B. ÖNERMELER - Önermeler Arası İlişkiler C. ÇIKARIM Ve Türleri - Kıyas

Detaylı

A Tüm S ler P dir. Tümel olumlu. E Hiçbir S, P değildir. Tümel olumsuz. I Bazı S ler P dir. Tikel olumlu. O Bazı S ler P değildir.

A Tüm S ler P dir. Tümel olumlu. E Hiçbir S, P değildir. Tümel olumsuz. I Bazı S ler P dir. Tikel olumlu. O Bazı S ler P değildir. Yargı cümlelerinde sınıf terimler birbirlerine tüm ve bazı gibi deyimlerle bağlanırlar. Bunlara niceleyiciler denir. Niceleyiciler de aynen doğruluk fonksiyonu operatörleri (önerme eklemleri) gibi mantıksal

Detaylı

Bir önermenin anlamlı olması onun belli bir doğruluk değeri taşıması demektir. Doğru bir önerme de yanlış bir önerme de anlamlıdır.

Bir önermenin anlamlı olması onun belli bir doğruluk değeri taşıması demektir. Doğru bir önerme de yanlış bir önerme de anlamlıdır. 1 FEL 201: KLAİK MANTIK DER NOTLARI-2 KONU: ÖNERME ÖNERMENİN DOĞAI Önerme, yargı bildiren/belirten cümledir. Yargı bildirmeyen/belirtmeyen cümle örnekleri: oru cümleleri, emir cümleleri, ünlem cümleleri

Detaylı

KÜMELER. İyi tanımlanmış nesneler topluluğuna küme denir. Bir küme, birbirinden farklı nesnelerden oluşur. Bu nesneler somut veya soyut olabilir.

KÜMELER. İyi tanımlanmış nesneler topluluğuna küme denir. Bir küme, birbirinden farklı nesnelerden oluşur. Bu nesneler somut veya soyut olabilir. 1 KÜMELER İyi tanımlanmış nesneler topluluğuna küme denir. ir küme, birbirinden farklı nesnelerden oluşur. u nesneler somut veya soyut olabilir. Kümeyi oluşturan nesnelerin her birine eleman(öğe) denir.

Detaylı

TEST - 1 ÖDEV TESTİ elemanlı alt kümelerinin sayısı 3 elemanlı alt kümelerinin. 1. A = {1, {2}, {1, 2}, 3, Ø} kümesi için aşağıdakilerden

TEST - 1 ÖDEV TESTİ elemanlı alt kümelerinin sayısı 3 elemanlı alt kümelerinin. 1. A = {1, {2}, {1, 2}, 3, Ø} kümesi için aşağıdakilerden 10 Kümeler ÖDEV TESTİ TEST - 1 6. 5 elemanlı alt kümelerinin sayısı 3 elemanlı alt kümelerinin sayısına eşit olan bir kümenin en az 6 elemanlı kaç alt kümesi vardır? ) 24 ) 28 C) 37 D) 38 E) 42 1. = {1,

Detaylı

Örnek...1 : Örnek...2 : A = { a, {a}, b, c, {b, d}, d }, B = { {a}, {c, d}, c, d, x, Δ } k ümeleri için s( AUB) kaçtır?

Örnek...1 : Örnek...2 : A = { a, {a}, b, c, {b, d}, d }, B = { {a}, {c, d}, c, d, x, Δ } k ümeleri için s( AUB) kaçtır? KÜMELER 2 İKİ KÜMENİN BİRLEŞİMİ A ve B gibi iki kümeden, A' ya veya B' ye ait olan elemanlardan oluşan yeni kümeye A ile B' nin birleşimi denir ve AUB ile gösterilir. Bu gösterim A birleşim B di ye okunur.

Detaylı

SONUÇ YAYINLARI. 9. Sınıf Kümeler

SONUÇ YAYINLARI. 9. Sınıf Kümeler 9. SINIF SONUÇ YYINLRI 9. Sınıf Kümeler Bu kitabın tamamının ya da bir kısmının, kitabı yayımlayan şirketin önceden izni olmaksızın elektronik, mekanik, fotokopi ya da herhangi bir kayıt sistemiyle çoğaltılması,

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

Sunum ve Sistematik 1. BÖLÜM: ÖNERMELER

Sunum ve Sistematik 1. BÖLÜM: ÖNERMELER Sunum ve Sistematik. ÜNİTE: MANTIK KONU ÖZETİ Bu başlık altında, ünitenin en can alıcı bilgileri, kazanım sırasına göre en alt başlıklara ayrılarak hap bilgi niteliğinde konu özeti olarak sunulmuştur..

Detaylı

MODERN (SEMBOLİK) MANTIK

MODERN (SEMBOLİK) MANTIK MODERN (SEMBOLİK) MANTIK A. ÖNERMELER MANTIĞI 1. Önermelerin Sembolleştirilmesi Önermeler mantığında her bir yargı, q, r... gibi sembollerle ifade edilir. Örnek: Dünya gezegendir. Dünya nın şekli elistir.

Detaylı

Cebir Notları. Kümeler. Gökhan DEMĐR, KÜME KAVRAMI

Cebir Notları. Kümeler. Gökhan DEMĐR, KÜME KAVRAMI , 2006 MC Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Kümeler KÜME KVRMI Kümenin tanım yoktur. undan dolayı kümeyi tanıtmaya çalışalım. Küme kavramında bir topluluk, bir kolleksiyon ifadesi vardır.

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

Kategorik Yargılar. Bazı dört ayaklı hayvanlar antiloptur. Tüm antiloplar otçuldur. Bazı dört ayaklı hayvanlar otçuldur.

Kategorik Yargılar. Bazı dört ayaklı hayvanlar antiloptur. Tüm antiloplar otçuldur. Bazı dört ayaklı hayvanlar otçuldur. Kategorik Yargılar Önermeler mantığı sadece doğruluk değeri işlemlerini (doğruluk değerinin saptanmasını) ve bununla ilgili operatörleri (önerme eklemlerini) göz önüne alır. Söz konusu bu doğruluk fonksiyonu

Detaylı

GEOMETRİK KAVRAMLAR. 1. Nokta: Geometrinin en temel terimidir.. biçiminde gösterilir. Boyutu yoktur.

GEOMETRİK KAVRAMLAR. 1. Nokta: Geometrinin en temel terimidir.. biçiminde gösterilir. Boyutu yoktur. GEOMETRİK KAVRAMLAR Geometrinin temelini oluşturan bazı kavramları bir sıraya koymalıyız ki daha anlaşılabilir olsun. Geometride özel anlamı olan ifadelere geometrik terim denir. Nokta, doğru, açı, kare,

Detaylı

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir?

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir? 8. SINIF. Üslü Sayılar - = T olduğuna göre T kaçtır? A) - B) - C) D) 7 TEST.. 0 - işleminin sonucu kaç basamaklı bir sayıdır? A) B) C) 6 D) 7. n =- 7 için n ifadesinin değeri kaçtır? A) - 8 B) - C) 8 D)

Detaylı

KÜMELER 05/12/2011 0

KÜMELER 05/12/2011 0 KÜMELER 05/12/2011 0 KÜME NEDİR?... 2 KÜMELERİN ÖZELLİKLERİ... 2 KÜMELERİN GÖSTERİLİŞİ... 2 EŞİT KÜME, DENK KÜME... 3 EŞİT OLMAYAN (FARKLI) KÜMELER... 3 BOŞ KÜME... 3 ALT KÜME - ÖZALT KÜME... 4 KÜMELERDE

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48 İÇİNDEKİLER Önsöz...2 Önermeler ve İspat Yöntemleri...3 Küme Teorisi...16 Bağıntı...26 Fonksiyon...38 İşlem...48 Sayılabilir - Sonlu ve Sonsuz Kümeler...56 Genel Tarama Sınavı...58 Önermeler ve İspat Yöntemleri

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

Starboard dosya aç dosyayı seçerek Andropi teach menu içe aktar dosyayı seçiyoruz nesne olarak seç

Starboard dosya aç dosyayı seçerek Andropi teach menu içe aktar dosyayı seçiyoruz nesne olarak seç Not: Starboard programında dosya aç kısmından dosyayı seçerek açabilirsiniz. Yazı karakterlerinde bozulma oluyorsa program kapatılıp tekrar açıldığında yazı düzelecektir. Ben yaptığımda düzelmişti. Andropi

Detaylı

6.8 Aşağıdaki biçimlerin neden birer ikb olmadıklarını açıklayınız.

6.8 Aşağıdaki biçimlerin neden birer ikb olmadıklarını açıklayınız. 6.7 x ( Fx zgzx) biçiminin bir ikb olduğunu gösteriniz. Kural 1 gereği Fa ve Gba birer ikb dir. Bu durumda, kural 2 ve 4 gereği, sırasıyla Fa ve zgza birer ikb dir. Bu iki biçime kural 3 ün uygulanması

Detaylı

3. Düzlem: Her yönde sonsuza uzandığı kabul edilir. Sayılmaz çoğunlukta doğru ve noktalardan oluşmuştur.

3. Düzlem: Her yönde sonsuza uzandığı kabul edilir. Sayılmaz çoğunlukta doğru ve noktalardan oluşmuştur. DERS : GEOMETRİ KONU : GEOMETRİK KAVRAMLAR Geometrinin temelinde her soruda karşılaşacağımız terimler kavramlar vardır bu derste onları işleyeceğiz. Geometride özel anlamı olan ifadelere geometrik terim

Detaylı

Yüklemler Mantığında Çözümleyici Çizelgeler (Çürütme Ağaçları)

Yüklemler Mantığında Çözümleyici Çizelgeler (Çürütme Ağaçları) Yüklemler Mantığında Çözümleyici Çizelgeler (Çürütme Ağaçları) Daha önce kanıtlamaların geçerliliği üzerine söylenenlerden hatırlanacağı gibi, bir kanıtlamanın geçerli olabilmesi için o kanıtlamadaki öncüller

Detaylı

Çözümleyici Çizelgeler (Çürütme Ağaçları)

Çözümleyici Çizelgeler (Çürütme Ağaçları) Çözümleyici Çizelgeler (Çürütme Ağaçları) İki veya üçten fazla cümle harfi içeren ikb ler söz konusu olduğunda doğruluk tablosu, denetleme yapmak için hantal ve yetersiz bir yöntem haline gelmektedir.

Detaylı

Minterm'e Karşı Maxterm Çözümü

Minterm'e Karşı Maxterm Çözümü Minterm'e Karşı Maxterm Çözümü Şimdiye kadar mantık sadeleştirme problemlerine Çarpımlar-ın-Toplamı (SOP) çözümlerini bulduk. Her bir SOP çözümü için aynı zamanda Toplamlar-ın-Çarpımı (POS) çözümü de vardır,

Detaylı

İçindekiler. 3. Sonlu ve Sonsuz Kümeler Denk ve Eşit Kümeler Kümelerde Birleşim ve Kesişim

İçindekiler. 3. Sonlu ve Sonsuz Kümeler Denk ve Eşit Kümeler Kümelerde Birleşim ve Kesişim İçindekiler 1. Küme Kavramı...6-7 2. Kümelerin Gösterimi...8-15 3. Sonlu ve Sonsuz Kümeler... 16-17 4. lt Küme Kavramı... 18-27 5. Denk ve şit Kümeler... 28-29 6. Kümelerde irleşim ve Kesişim... 31-41

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ 1. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için

Detaylı

Küme Temel Kavramları

Küme Temel Kavramları Kümeler Kümeler Küme, matematiksel anlamda tanımsız bir kavramdır. Bu kavram "nesneler topluluğu veya yığını" olarak yorumlanabilir. Bu tanımdaki "nesne" soyut ya da somut bir şeydir; fakat her ne olursa

Detaylı

TEOG. Kümeler KÜME VE ELEMAN KAVRAMI ÖRNEK KÜMELERİN GÖSTERİMİ ÖRNEK ÖRNEK KÜMENİN ELEMAN SAYISI ÖRNEK 3. ORTAK ÖZELLİK YÖNTEMİ 1.

TEOG. Kümeler KÜME VE ELEMAN KAVRAMI ÖRNEK KÜMELERİN GÖSTERİMİ ÖRNEK ÖRNEK KÜMENİN ELEMAN SAYISI ÖRNEK 3. ORTAK ÖZELLİK YÖNTEMİ 1. TEOG ümeler ÜE VE EEN VRI Elemanları belirlenebilen, belirli bir anlam taşıyan canlı ya da cansız varlıkların veya kavramların oluşturduğu topluluğa küme denir. ümeyi oluşturan varlıkların, kavramların

Detaylı

THE ENGLISH SCHOOL GİRİŞ SINAVI 2015. Süre: 1 saat ve 30 dakika

THE ENGLISH SCHOOL GİRİŞ SINAVI 2015. Süre: 1 saat ve 30 dakika THE ENGLISH SCHOOL GİRİŞ SINAVI 2015 MATEMATİK BİRİNCİ SINIF Süre: 1 saat ve 30 dakika Tüm soruları cevaplayınız. Tüm işlemlerinizi gösteriniz ve cevaplarınızı soru kâğıdında ılan uygun yerlere yazınız.

Detaylı

İÇİNDEKİLER ÖNERMELER BİLEŞİK ÖNERMELER AÇIK ÖNERMELER İSPAT YÖNTEMLERİ

İÇİNDEKİLER ÖNERMELER BİLEŞİK ÖNERMELER AÇIK ÖNERMELER İSPAT YÖNTEMLERİ - MANTIK İÇİNDEKİLER Safa No Test No ÖNERMELER...-... - BİLEŞİK ÖNERMELER...-... -6 AÇIK ÖNERMELER...-6... 7-8 İSPAT YÖNTEMLERİ...7-8... 9-9 - KÜMELER KÜMELERDE TEMEL KAVRAMLAR...9-4... - KÜMELERDE İŞLEMLER...5-6...

Detaylı

Önermelerin doğru veya yanlış olabilmesine doğruluk değerleri denir.

Önermelerin doğru veya yanlış olabilmesine doğruluk değerleri denir. A. MANTIĞIN ALANI ve İLKELERİ 1- Mantığın Tanımı Mantığın temel amacı (bilimsel dilden günlük dile kadar tüm alanlardaki) ifadeleri genel bir yöntemle inceleyerek doğruluk ya da yanlışlık yargısıyla değerlendirebilmektir.

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

Bölüm 2 Varlık-İlişki Veri Modeli: Araçlar ve Teknikler. Fundamentals, Design, and Implementation, 9/e

Bölüm 2 Varlık-İlişki Veri Modeli: Araçlar ve Teknikler. Fundamentals, Design, and Implementation, 9/e Bölüm 2 Varlık-İlişki Veri Modeli: Araçlar ve Teknikler Fundamentals, Design, and Implementation, 9/e Üç Şema Modeli Üç şema modeli 1975 de ANSI/SPARC tarafından geliştirildi Veri modellemeninç ve rolünü

Detaylı

B. ÇOK DEĞERLİ MANTIK

B. ÇOK DEĞERLİ MANTIK B. ÇOK DEĞERLİ MANTIK İki değerli mantıkta önermeler, doğru ve yanlış olmak üzere iki değer alabilir. Çünkü özdeşlik, çelişmezlik ve üçüncü hâlin olanaksızlığı ilkelerine göre, önermeler başka bir değer

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

DOĞRULUK TABLOSU / ÇİZELGESİ İLE DENETLEME

DOĞRULUK TABLOSU / ÇİZELGESİ İLE DENETLEME DOĞRULUK TABLOSU / ÇİZELGESİ İLE DENETLEME (, q...) gibi basit bir önerme doğru veya yanlış yorumlanabileceğinden, (D) veya (Y) değerine sahi olabilir. Buna karşılık herhangi bir önerme eklemiyle kurulan

Detaylı

ÖSYM M TEMEL MATEMATİK TESTİ YGS / MAT. Diğer sayfaya geçiniz. 1. Bu testte 40 soru vardır.

ÖSYM M TEMEL MATEMATİK TESTİ YGS / MAT. Diğer sayfaya geçiniz. 1. Bu testte 40 soru vardır. TEMEL MATEMATİK TESTİ 2011 - YGS / MAT M9991.01001 1. Bu testte 40 soru vardır. 1. 2. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. işleminin sonucu kaçtır?

Detaylı

Ü ş ş ö ş ş ş ş ş ö ş ö ö ş ş ö ş ö ö ö ö ş ö ş ş ö ş ş ş ö ş ş ş ş Ç ş Ç ş ş Ö ö ö ş ş ş ö ş ş ö ö ö ö ö ş ö ş ş ş ş ş ş ş ş ş ö ş

Ü ş ş ö ş ş ş ş ş ö ş ö ö ş ş ö ş ö ö ö ö ş ö ş ş ö ş ş ş ö ş ş ş ş Ç ş Ç ş ş Ö ö ö ş ş ş ö ş ş ö ö ö ö ö ş ö ş ş ş ş ş ş ş ş ş ö ş ş ö ö ö ö ş ş ş Ü ş ş ş Ü ş ş ö ş ş ş ş ş ö ş ö ö ş ş ö ş ö ö ö ö ş ö ş ş ö ş ş ş ö ş ş ş ş Ç ş Ç ş ş Ö ö ö ş ş ş ö ş ş ö ö ö ö ö ş ö ş ş ş ş ş ş ş ş ş ö ş Ç ş Ö ö ş ş ş ş ş ö Ç Ç ş ö ş ö ö ö ö ö ö ş ş

Detaylı

2011 YGS MATEMATİK Soruları

2011 YGS MATEMATİK Soruları 0 YGS MTEMTİK Soruları. + + ) 8 ) 0 ) 6 ) E). a = 6 b = ( a)b olduğuna göre, ifadesinin değeri kaçtır? ) ) 6 ) 9 ) 8 E). (.0 ) ) 0, ) 0, ) 0, ) E) 6. x = y = 8 z = 6 olduğuna göre, aşağıdaki sıralamalardan

Detaylı

TEMEL SAYMA. Bill Gates

TEMEL SAYMA. Bill Gates Bölüm 1 TEMEL SAYMA YÖNTEMLERİ Firmamızın sahip olduğu tek şey insan düş gücüdür. Bill Gates Bu bölümde fazla kuramsal bilgi gerektirmeyen sayma problemleri üzerinde duracağız. Bu tür problemlerde sayma;

Detaylı

C. Doğru, Yanlış, Doğruluk Değeri Doğru: Bir önermenin nesnesine olan uygunluğudur. Örnek: İnsanlar ölümlüdür.

C. Doğru, Yanlış, Doğruluk Değeri Doğru: Bir önermenin nesnesine olan uygunluğudur. Örnek: İnsanlar ölümlüdür. 1. ÜNİTE MANTIĞA GİRİŞ I. ÜNİTE MANTIĞA GİRİŞ A. Mantığın Tanımı ve Konusu Mantık terimi Arapça kökenli bir sözcüktür. Söz söyleme sanatı, nutuk anlamına gelir. Batıdaki anlamı Yunanca Logos sözcüğünden

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

7 Mayıs 2006 Pazar,

7 Mayıs 2006 Pazar, TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 14. ULUSAL MATEMATİK OLİMPİYATI - 2006 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 7 Mayıs 2006 Pazar, 13.00-15.30

Detaylı

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları...

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları... ÜNİTE Safa No............................................................ 79 98 Fonksionlar Konu Özeti...................................................... 79 Konu Testleri ( 8)...........................................................

Detaylı

9. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları

9. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları 9. Sınıf Matemat k Ders İşleme Defter KÜMELER - 1 Altın Kalem Yayınları Küme: B rb r nden farklı nesneler n oluşturduğu topluluklar küme şekl nde adlandırılır. Kümey oluşturan nesneler n y bel rlenm ş

Detaylı

3. TABAKA KAVRAMI ve V-KURALI

3. TABAKA KAVRAMI ve V-KURALI 1 3. T VRMI ve V-URLI Tabaka nedir? lt ve üst sınırlarıyla bir diğerinden ayrılan, kendine has özellikleri olan, sabit hidrodinamik koşullar altında çökelmiş, 1 cm den daha kalın, en küçük litostratigrafi

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

Olimpiyat Eğitimi CANSU DENEME SINAVI

Olimpiyat Eğitimi CANSU DENEME SINAVI TUSİ Ortaöğretim Öğretmenleri için Olimpiyat Eğitimi CANSU DENEME SINAVI 15.11.2013-29.11.2013 2 1. Bir x sayısı x = 1 1 + x eşitliğini sağlamaktadır. x 1 x hangisidir? in en basit hali aşağıdakilerden

Detaylı

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Kümeler 5 44 Fonksiyonlar 1 45 88 Fonksiyonlar 2 89 124 Sayma Kuralları 125 140 Faktöriyel

Detaylı

Editör Prof.Dr.Hüseyin Subhi Erdem KLASİK MANTIK

Editör Prof.Dr.Hüseyin Subhi Erdem KLASİK MANTIK Editör Prof.Dr.Hüseyin Subhi Erdem KLASİK MANTIK Yazarlar Doç.Dr. Aytekin Özel Doç. Dr.Mustafa Yıldız Yrd.Doç.Dr. Abdullah Durakoğlu Yrd.Doç.Dr. Cengiz İskender Özkan Yrd.Doç.Dr. Mustafa Kaya Yrd.Doç.Dr.

Detaylı

Faz Dönüşümleri ve Faz (Denge) Diyagramları

Faz Dönüşümleri ve Faz (Denge) Diyagramları Faz Dönüşümleri ve Faz (Denge) Diyagramları 1. Giriş Bir cisim bağ kuvvetleri etkisi altında en düşük enerjili denge konumunda bulunan atomlar grubundan oluşur. Koşullar değişirse enerji içeriği değişir,

Detaylı

ÇEMBER KARMA / TEST-1

ÇEMBER KARMA / TEST-1 ÇMR RM / S-... Verilenlere göre, m( ) ) ) 0 ) ) 0 ) Verilenlere göre, m(g ) ) ) ) 6 ) 0 ) 60 0 0 G 0 ) ) ) ) ) 8 L 0 [] [] = {} m( ) = 0 m() = 0 ve üçgenlerinin çevrel çemberi m( ) = 0 m() = 0 m() = üçgen

Detaylı

( 2x+1, 3y 1. Örnek...4 : A = {1, 2, 3} ve B = {a, b} kümeleri için, AxB ve BxA kümelerini liste biçimde yazınız.

( 2x+1, 3y 1. Örnek...4 : A = {1, 2, 3} ve B = {a, b} kümeleri için, AxB ve BxA kümelerini liste biçimde yazınız. SIRALI İKİLİ a ve b'nin (a,b) biçiminde tek bir eleman olarak yazılmasına sıralı ikili ya da kısaca ikili denir. Burada a' ya ikilinin birinci bileşeni, b' ye ise ikinci bileşeni denir. Örneğin ; (4, 3)

Detaylı

DERS 2. Fonksiyonlar

DERS 2. Fonksiyonlar DERS Fonksionlar.1. Fonksion Kavramı. Her bilim dalının önemli bir işlevi, çeşitli nesneler vea büüklükler arasında eşlemeler kurmaktır. Böle bir eşleme kurulması tahmin ürütme olanağı verir. Örneğin,

Detaylı

KAVRAMLARIN ANLAMINI KARŞITLARI BELİRLER

KAVRAMLARIN ANLAMINI KARŞITLARI BELİRLER KAVRAMLARIN ANLAMINI KARŞITLARI BELİRLER Rıza FİLİZOK Kastım odur şehre varam Feryad ü figan koparam Yunus Emre Büyük dilbilimci Saussure ün dilin bir sistem olduğunu ve anlamın karşıtlıklardan (mukabil/opposition)

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1 . Alanı 36 5 olan bir ABC ikizkenar üçgeninde ==2 ise bu üçgende B den AC ye inilen dikmenin ayağının C noktasına olan uzaklığı nedir? ) 2,8) 3) 3,2 ) 3,7 ) 4, 2. Ayrıt uzunlukları 4, 0 ve 4 5 olan dikdörtgenler

Detaylı

2012 YGS MATEMATİK Soruları

2012 YGS MATEMATİK Soruları 01 YGS MATEMATİK Soruları 1. 10, 1, 0, 0, işleminin sonucu kaçtır? A) B), C) 6 D) 6, E) 7. + ABC 4 x 864 Yukarıda verilenlere göre, çarpma işleminin sonucu kaçtır? A) 8974 B) 907 C) 9164 D) 94 E) 98. 6

Detaylı

Bölüm 3. Klasik Mantık ve Bulanık Mantık. Serhat YILMAZ 1

Bölüm 3. Klasik Mantık ve Bulanık Mantık. Serhat YILMAZ 1 Bölüm 3. Klasik Mantık ve Bulanık Mantık Serhat YILMAZ serhaty@kocaeli.edu.tr 1 Klasik Mantık ve Bulanık Mantık Bulanık kümeler, bulanık mantığa bulanıklık kazandırır. Bulanık kümelerde yürütme işini işleçler

Detaylı

Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri Veri modelleri, veriler arasında ilişkisel ve sırasal düzeni gösteren kavramsal tanımlardır. Her program en azından bir veri modeline dayanır. Uygun

Detaylı

6. Ali her gün cebinde kalan parasının (2009) a, b ve c farklı pozitif tamsayılar, 9. x, y, z pozitif gerçek sayılar,

6. Ali her gün cebinde kalan parasının (2009) a, b ve c farklı pozitif tamsayılar, 9. x, y, z pozitif gerçek sayılar, 1. 9 2 x 2 ifadesinin açılımında sabit x terim kaç olur? A) 672 B) 84 C) 1 D) -84.E) -672 6. Ali her gün cebinde kalan parasının %20 sini harcamaktadır. Pazartesi sabahı haftalığını alan Ali ni Salı günü

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY A. AÇI Başlangıç noktaları aynı olan iki ışının birleşim kümesine açı denir. Bu ışınlara açının kenarları, başlangıç noktasına ise açının köşesi denir. B. YÖNLÜ AÇI

Detaylı

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c 0. Küme Cebri Bu bölümde verilen keyfikümeler üzerinde birleşim, kesişim, fark, tümleyen,...gibi özellikleri sağlayan eşitliklerle ilgilenceğiz. İlk olarak De Morgan kurallarıdiye bilinen bir Teoremi ifade

Detaylı

Örnek...1 : Örnek...2 : Örnek...3 : A={0,1,2} kümesinden reel sayılara tanımlı f(x)=x² x fonksiyonu bire bir midir? Örnek...4 :

Örnek...1 : Örnek...2 : Örnek...3 : A={0,1,2} kümesinden reel sayılara tanımlı f(x)=x² x fonksiyonu bire bir midir? Örnek...4 : FONKSİYONLAR BÖLÜM 4 FONKSİYON TÜRLERİ: BİRE BİR FONKSİYON Bir fonksionun grafiğinden bire bir olup olmadığını anlamak için verilen tanım aralığında çizilen ata doğruların sadece bir defa grafiği kesmesini

Detaylı

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır.

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır. KÜMELER Kümelerin birleşimi (A B ): Kümelerin bütün elemanlarından oluşur. Kümelerin kesişimi (A B): Kümelerin ortak elemanlarından oluşur. Kümelerin Farkı (A \ B ) veya (A - B ): Birinci kümede olup ikinci

Detaylı

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n, DİZİLER Tamamen belirli bir kurala göre sıralanmış sayılar topluluğuna veya kümeye Dizi denir. Belirli bir kurala göre birbiri ardınca gelen bu sayıların her birine dizinin terimi ve hepsine birden dizinin

Detaylı

Demek ki ölçmeye çalıştığımız açı dar açıdır. üçgen. gönye. dar açı

Demek ki ölçmeye çalıştığımız açı dar açıdır. üçgen. gönye. dar açı Dar Açı Gönyemizin dik kısmını herhangi bir şeklin köşesine yerleştirdiğimizde, şeklin köşesindeki açı gönyeden küçük olursa o köşedeki açıya dar açı denir. gönye Demek ki ölçmeye çalıştığımız açı dar

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.ibrahimcayiroglu.com MASAÜSTÜ YAYINCILIK

Karabük Üniversitesi, Mühendislik Fakültesi...www.ibrahimcayiroglu.com MASAÜSTÜ YAYINCILIK KROKİ ÇİZİMLERİ MASAÜSTÜ YAYINCILIK Kroki Herhangi bir cimi veya düşündüğümüz bir şekli karşımızdakine anlatabilmek için resim aletleri kullanmadan serbest elle çizilen resimlerdir. Mühendis ve teknisyenler

Detaylı

TEST. Çemberde Açılar. 1. Yandaki. 4. Yandaki saat şekildeki. 2. Yandaki O merkezli. 5. Yandaki O merkezli. 6. Yandaki. O merkezli çemberde %

TEST. Çemberde Açılar. 1. Yandaki. 4. Yandaki saat şekildeki. 2. Yandaki O merkezli. 5. Yandaki O merkezli. 6. Yandaki. O merkezli çemberde % Çemberde çılar 7. Sınıf Matematik Soru ankası 58. Yandaki merkezli s ( ) = 50c 4. Yandaki saat şekildeki gibi 04.00 ı gösterdiğinde akrep ile yelkovan arasında oluşan x açısı kaç derecedir? ' olduğuna

Detaylı

1. Yandaki kuş karakterini domuz karakterine ulaştırmak için doğru kod bloğu hangisidir?

1. Yandaki kuş karakterini domuz karakterine ulaştırmak için doğru kod bloğu hangisidir? Code.org soruları: 1. Yandaki kuş karakterini domuz karakterine ulaştırmak için doğru kod bloğu hangisidir? 2. Yandaki kuş karakterini domuz karakterine ulaştırmak için doğru kod bloğu hangisidir? 3. Yandaki

Detaylı

Yazarlar hakkında Editör hakkında Teşekkür

Yazarlar hakkında Editör hakkında Teşekkür İÇİNDEKİLER Yazarlar hakkında Editör hakkında Teşekkür XIII XIV XV Giriş 1 Kitabın amaçları 1 Öğretmen katkısı 2 Araştırma katkısı 2 Yansıma için bir ara 3 Sınıf etkinlikleri 3 Terminoloji üzerine bir

Detaylı

Page 1. b) Görünüşlerdeki boşluklar prizma üzerinde sırasıyla oluşturulur. Fazla çizgiler silinir, koyulaştırma yapılarak perspektif tamamlanır.

Page 1. b) Görünüşlerdeki boşluklar prizma üzerinde sırasıyla oluşturulur. Fazla çizgiler silinir, koyulaştırma yapılarak perspektif tamamlanır. TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim İzometrik Perspektifler Küpün iz düşüm düzlemi üzerindeki döndürülme açısı eşit ise kenar uzunluklarındaki kısalma miktarı da aynı olur. Bu iz düşüme, izometrik

Detaylı

AÖĞRENCİLERİN DİKKATİNE!

AÖĞRENCİLERİN DİKKATİNE! A KİTAPÇIK TÜRÜ T.C. MİLLÎ EĞİTİM BAKANLIĞI 8. SINIF MATEMATİK 2015 8. SINIF 2. DÖNEM MATEMATİK DERSİ MERKEZİ ORTAK SINAVI (GÖRME ENGELLİ) 29 NİSAN 2015 Saat: 10.10 Adı ve Soyadı :... Sınıfı :... Öğrenci

Detaylı

Mantıksal Operatörlerin Semantiği (Anlambilimi)

Mantıksal Operatörlerin Semantiği (Anlambilimi) Mantıksal Operatörlerin Semantiği (Anlambilimi) Şimdi bu beş mantıksal operatörün nasıl yorumlanması gerektiğine (semantiğine) ilişkin kesin ve net kuralları belirleyeceğiz. Bir deyimin semantiği (anlambilimi),

Detaylı

3. TABAKA KAVRAMI ve V-KURALI

3. TABAKA KAVRAMI ve V-KURALI 1 3. T VRMI ve V-URLI Tabaka nedir? lt ve üst sınırlarıyla bir diğerinden ayrılan, kendine has özellikleri olan, sabit hidrodinamik koşullar altında çökelmiş, 1 cm den daha kalın, en küçük litostratigrafi

Detaylı

AÖĞRENCİLERİN DİKKATİNE!

AÖĞRENCİLERİN DİKKATİNE! A KİTAPÇIK TÜRÜ T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ 8. SINIF MATEMATİK 205 8. SINIF. DÖNEM MATEMATİK DERSİ MERKEZİ ORTAK SINAVI 25 KASIM 205 Saat: 0.0 Adı

Detaylı

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır?

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? TEMEL MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 1. 3. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? A)

Detaylı

Rakam : Sayıları yazmaya yarayan sembollere rakam denir.

Rakam : Sayıları yazmaya yarayan sembollere rakam denir. A. SAYILAR Rakam : Sayıları yazmaya yarayan sembollere rakam denir. Sayı : Rakamların çokluk belirten ifadesine sayı denir.abc sayısı a, b, c rakamlarından oluşmuştur.! Her rakam bir sayıdır. Fakat bazı

Detaylı

2. ÜNİTE KLASİK MANTIK

2. ÜNİTE KLASİK MANTIK A. ARİSTOTELES VE MANTIK Mantığın Tarihçesi B. KAVRAMVE TERİM 1. Nelik, Gerçeklik, Kimlik 2. İçlem ve Kaplam 3. Kavram Çeşitleri 4. Beş Tümel 5. Kavramların Birbirleriyle Olan İlişkisi C. TANIM D. ÖNERME

Detaylı

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik 1. Ünite: Geometriden Olasılığa 1. Bölüm: Yansıyan ve Dönen Şekiller, Fraktallar Yansıma, Öteleme, Dönme Fraktallar 2. Bölüm: Üslü Sayılar Tam

Detaylı

8. SINIF YARIYIL ÇALIŞMA TESTİ TEST 1 ( ) TEKRAR EDEN YANSIYAN ve DÖNEN ŞEKİLLER HİSTOGRAM STANDART SAPMA

8. SINIF YARIYIL ÇALIŞMA TESTİ TEST 1 ( ) TEKRAR EDEN YANSIYAN ve DÖNEN ŞEKİLLER HİSTOGRAM STANDART SAPMA 8. SINIF YARIYIL ÇALIŞMA TESTİ TEKRAR EDEN YANSIYAN ve DÖNEN ŞEKİLLER HİSTOGRAM STANDART SAPMA TEST 1 (11-1) 1. I. Geometrik fraktal kendini giderek küçülen veya büyüyen boyutta yineler. II. Fraktalın

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08 LİSNS YRLŞTİRM SINVI- MTMTİK-GMTRİ SINVI MTMTİK TSTİ SRU KİTPÇIĞI 08 U SRU KİTPÇIĞI LYS- MTMTİK TSTİ SRULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik Testi

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

;] u Y hb* p(a/ > V aaa!a!a!a!!!!!a! BASIN KİTAPÇIĞI

;] u Y hb* p(a/ > V aaa!a!a!a!!!!!a! BASIN KİTAPÇIĞI BASIN KİTAPÇIĞI 00000000 AÇIKLAMA 1. Bu kitapç kta Lisans Yerle tirme S nav -1 Matematik Testi bulunmaktad r. 2. Bu test için verilen toplam cevaplama süresi 75 dakikadır. 3. Bu kitapç ktaki testlerde

Detaylı

KÜMELER Test -1. 5. A a,b,c, 1,2, 5. 1. A a,b,c,d 2. A,1,2,3, 1. 7. s(a) = 10 ve s(b) = 7. 4. B x:0 x 40 ve x 5k, k. 8. s(a) = 9 ve s(b) = 4

KÜMELER Test -1. 5. A a,b,c, 1,2, 5. 1. A a,b,c,d 2. A,1,2,3, 1. 7. s(a) = 10 ve s(b) = 7. 4. B x:0 x 40 ve x 5k, k. 8. s(a) = 9 ve s(b) = 4 KÜMELER Test -1 1. A a,b,c,d kümesi için aşağıdakilerden hangisi yanlıştır? A) A B) a A C) d A D) {a, c} A E) {a} A 5. A a,b,c, 1,2, 5 kümesi için aşağıdakilerden hangisi doğrudur? A) s(a) = 6 B) b A C)

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

BASIN KİTAPÇIĞI ÖSYM

BASIN KİTAPÇIĞI ÖSYM BASIN KİTAPÇIĞI 00000000 AÇIKLAMA 1. Bu kitapç kta Lisans Yerle tirme S nav -1 Matematik Testi bulunmaktad r. 2. Bu test için verilen toplam cevaplama süresi 75 dakikadır. 3. Bu kitapç ktaki testlerde

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

dir. Bu avcı en çok 3 atışta bu hedefi vurabilme

dir. Bu avcı en çok 3 atışta bu hedefi vurabilme 1. 3 mavi, 3 kırmızı, 3 siyah kalemin bulunduğu bir torbada rasgele alınan iki kalemin farklı renkte olma olasılığı kaçtır? A) 1 3 B) 2 3 C) 3 4 D) 3 5 E) 4 5 2. 43 kişilik bir sınıfta Almanca İngilizce

Detaylı

Fonksiyonlar ve Grafikleri

Fonksiyonlar ve Grafikleri Fonksionlar ve Grafikleri Isınma Hareketleri Aşağıda verilenleri inceleiniz. A f f(a) 7 çocuk baan f: Çocukları annelerine götürüor. Fonksion olma şartı: Her çocuğun annesi olmalı ve bir tane olmalı. (

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINAV SORULARI 1. 1999 ÖSS a, b, c pozitif gerçel (reel) sayılar olmak üzere a+ b ifadesindeki her sayı 3 ile çarpılırsa aşağıdakilerden hangisi elde c edilir? 3 a+ b A) B) c a+ 3b C)

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS NOTLARI Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS-4 07.03.2016 Standart Formlar (CanonicalForms) Lojik ifadeler, çarpımlar toplamı ya da toplamlar çarpımı formunda ifade

Detaylı