Teknolojik bir değişiklik veya üretim arttırıcı bir yatırımın sonucunda ihracatta, üretim miktarında vs. önemli artışlar olabilir.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Teknolojik bir değişiklik veya üretim arttırıcı bir yatırımın sonucunda ihracatta, üretim miktarında vs. önemli artışlar olabilir."

Transkript

1 YAPISAL DEĞİŞİKLİK Zaman serileri bazı nedenler veya bazı fakörler arafından ekilenerek zaman içinde değişikliklere uğrayabilirler. Bu değişim ikisadi kriz, ikisa poliikalarında yapılan değişiklik, eknolojik değişim, deprem, sel gibi farklı nedenlerden kaynaklanabilir. Seride gözlenen eki, rendin belirli bir dönemden sonra değişikliğe uğraması şeklinde karşımıza çıkabilir. Bu eki, rendin eğilimini değişirerek arma veya azalma eğilimi gösermesine neden olabilir. Bazı durumlarda ise eki geçicidir. Trendde bir değişim gözlenir ve belirli bir zaman aralığında değişim ekisini kaybederek rend eski haline döner. 1

2 Teknolojik bir değişiklik veya üreim arırıcı bir yaırımın sonucunda ihracaa, üreim mikarında vs. önemli arışlar olabilir. Aynı şekilde bu nedenlerle oplam ihalaa veya belirli malların ihalaında azalma olabilir. Benzer şekilde zaman zaman yapılan poliika değişiklikleri de yapısal değişikliklere neden olabilir. Örneğin, vergi gelirlerini arırıcı, enflasyonu düşürücü, ihracaı arırıcı vs. edbirler hem söz konusu değişkenlerde hem de bunlarla ilgili bazı farklı değişkenlerde yapısal değişikliğe neden olabilirler. Makro açıdan söz konusu olan yapısal değişiklik, mikro açıdan da söz konusudur. Bu ür yapısal değişikliklerin ekisi geçici olabilirse de daha çok kalıcıdır.

3 Yapısal değişiklik savaş, kuraklık, deprem, büyük grevler gibi olayların sonucunda da oraya çıkabilirler. Bu ür olaylar daha çok geçici eki yaraığından, olaylar biiken sonra ekileri de devam emeyerek ekiledikleri değişkenler eski hallerine dönecekir. Bu ür ekiler kukla değişkenlerle açıklanırlar. Bu ür nedenlerin kalıcı ekiler yaraması da mümkündür. Yapısal değişiklik olması durumunda bunun nedenlerinin, ikisadi sonuçlarının belirlenmesi önemlidir. Faka bundan önce yapısal değişiklik olup olmadığının belirlenmesi gerekecekir. Herhangi bir olay nedeni ile bazı değişkenlerde yapısal değişiklik olduğu yönünde görüşler, bilgiler, önseziler olması yapısal değişiklik olduğunu söylemek için yeerli değildir. 3

4 İkisadi değişkenlerde yapısal değişiklik olduğunu söyleyebilmek için olayın ekonomerik olarak incelenmesi gerekmekedir. Ancak yapılacak inceleme sonucunda yapısal değişiklik olup olmadığına karar verilecekir. 4

5 YAPISAL DEĞİŞİKLİK KAVRAMI Yapısal değişiklik rendde meydana gelen kalıcı değişikliklere verilen addır. Yukarıda sayılan ve benzeri nedenlerle rendde bir kırılma oluşur. Bu kırılma oluşur ve kısa sürede eskiye dönüş olursa yapısal değişikliken söz edilmeyebilir. Daha uzun süre sonra eski haline dönen değişikliklerin de incelenmesi gerekecekir. İncelenen dönemin uzunluğuna ve seriye bağlı olarak aynı seride birden fazla kırılma, yani yapısal değişiklik de gözlenebilir. 5

6 Yapısal değişiklik modelde bir kırılmaya neden olacağından modelin ahmininin de dikkae alınması gerekmekedir. Şekilde ek kırılmalı bir model görülmekedir. Y X 0 X 1 X X Şekil 1: Tek Kırılmalı Model 6

7 X 1 nokasında kırılma olduğundan, X 1 nokasında kırılan model doğru modeldir. Modelde yer alan kırılma dikkae alınmadan modelin paramereleri ahmin edilirse, modelin fonksiyonel şekli yanlış belirleneceğinden anımlama haası yapılmış olacakır. Modelin fonksiyonel şekli grafiğe bakılarak veya bakılmadan eğrisel bir fonksiyon olarak belirlenebilir. Bu durumda da modelin fonksiyonel şekli yanlış belirlendiğinden anımlama hası söz konusudur. Şekilde görülen model için doğru olan kırılma öncesi ve sonrası için iki ayrı doğrusal modelin ahmin edilmesi olacakır. 7

8 Modelleri, X 0 X 1 dönemi için Y 1 = β 10 + β 11 X 1 + ε 1 X 1 X dönemi için Y = β 0 + β 1 X 1 + ε (1) () şeklinde ifade ederek, modellerin paramerelerini ayrı ayrı ahmin edebiliriz. Bu modellerin kukla değişkenler ile birleşirilerek ek model olarak ahmin edilmesi de mümkündür. 8

9 İki parça için iki kukla değişken kullanılırsa kukla değişken uzağına düşüleceğinden ek kukla D değişkeni anımlanarak, D=0 1. parça D=1. parça olursa model, Y = β 10 + β 11 X 1 + β 0 D 1 + β 1 D 1 X 1 + ε (3) şeklinde ahmin edilebilir. Burada, Y = Y 1 + Y X = X 1 + X (3.1) (3.) olduğundan ek haa erimi kullanılmışır. 9

10 SPLINE FONKSİYONU VE PARÇALI DOĞRUSAL REGRESYON MODELLERİ İki parçalı bir model ve bunun kukla değişken ile birleşirilerek nasıl ek model haline geirilebileceğinden söz ederken geçerli olan açıklamalar, birden fazla kırılma için de yapılabilir. Oluşan parçalı fonksiyona spline fonksiyonu adı verilir ve bu fonksiyon sürekli bir fonksiyondur. Modeller iser her dönem için ayrı ayrı ahmin edilsin iserse kukla değişkenlerle birleşirilerek ahmin edilsin kırılma nokalarında bir sıçrama meydana gelecekir. 10

11 Şekil : İki Nokada Kırılan Regresyon Doğrusu Yukarıdaki şekilde iki parçalı model için bu durum görülmekedir. Oluşan bu sıçramanın oradan kaldırılması, yani iki parçanın X 1 nokasında birleşmesinin sağlanması şar değildir. İsenirse bu birleşme sağlanabilir. Parçaların birleşirilmesini sağlamak için oluşurulan modellere parçalı (piece-wise) regresyon modelleri adı verilmekedir. 11

12 Parçaların birleşirilmesini sağlamak için izlenebilecek yollardan biri parça sayısı kadar kukla değişken anımlamakır. İki parçalı model için iki kukla değişken anımlayalım. D 1 = 1 1. parça için D 1 = 0 diğer D = 1.parça için D = 0 diğer. Tanımlanan modeller, X 0 X 1 dönemi için Y 1 = β 10 + β 11 X 1 + ε 1 X 1 X dönemi için Y = β 0 + β 1 X 1 + ε olduğundan model, Y = [β 10 + β 11 ( X -X 0 )]D 1 + [β 0 + β 1 ( X -X 1 )]D + ε olarak yazılabilir. (4) (5) (6) 1

13 Bu durumda, D 1 = 1, D = 0 ise E(Y ) = β 10 + β 11 (X -X 0 ) D 1 = 0, D = 1 ise E(Y ) = β 0 + β 1 (X -X 1 ) (7) (8) olacakır. Burada X 1 nokasında başlayan ikinci modelin sabi kasayısı, β 0 = β 10 + β 11 ( X -X 0 ) (9) olacağından, bu eşilik modelde yerine konursa, Y = β 10 ( D 1 +D ) + β 11 [( X -X 0 )D 1 + ( X 1 -X 0 )D ] + β 1 [( X -X 1 )D ] + ε olacakır. D 1 ve D den her zaman sadece biri 1 olacağından D 1 + D = 1 dir. Bu durumda, Y = β 10 + β 11 [ X D 1 + X 1 D X 0 ] + β 1 [( X -X 1 )D ]+ ε olur. (10) (11) 13

14 X 1 * = X D 1 + X 1 D X 0 X * = ( X -X 1 )D (1) (13) Dönüşümü ile model, Y = β 10 + β 11 X 1 * + β 1 X * + ε olarak ahmin edilebilir. (14) Modelde β 11 = β 1 ise, Y = β 10 + β 11 [ X D 1 + X 1 D X 0 ] + β 11 [( X -X 1 )D ]+ ε Y = β 10 + β 11 ( X -X 0 )+ ε (15) (16) olacakır. 14

15 X 0 ilk grubun ilk gözlemi ise, X * = X -X 0 olarak anımlanırsa model, Y = β 10 + β 11 X * + ε olarak ahmin edilecekir. (17) (18) Görüldüğü gibi model basi doğrusal regresyon modeline dönüşmekedir. Her iki durumda da doğrusal regresyonda olduğu gibi ve F esleri ile R aynı şekilde hesaplanır. Bu durumda yapısal değişiklik olup olmadığını belirlemek için β 11 = β 1 olup olmadığı es edilebilir. β 11 = β 1 ise yapısal değişiklik olmadığına, β 11 β 1 ise yapısal değişiklik olduğuna karar verilir. Birden fazla kırılma içinde aynı açıklamalar geçerlidir. 15

16 SWITCHING REGRESYON Swiching regresyon yönemi kırılma nokasının bilinmemesi durumunda kullanılabilir. Bu yönemde doğru parçalarının birleşirilmesi ek kukla değişken kullanılarak gerçekleşirilir. 16

17 Şekil için; X 0 X 1 dönemi için Y 1 = β 10 + β 11 X 1 + ε 1 X 1 X dönemi için Y = β 0 + β 1 X + ε (19) (0) olarak anımladığımız modeller D 1 = 1 (. parça) D 1 = 0 diğer (1. parça) olarak anımlanarak, Y = β 10 + β 11 X 1 + β 0 D 1 + β 1 D 1 X + ε (3) nolu model olarak ifade edilmişi. Bu durumda D 1 = 0 için E(Y ) = β 10 + β 11 X D 1 = 1 için E(Y ) = (β 10 + β 0 ) + (β 11 + β 1 )X olarak elde edildiğinden, X 1 değeri için iki parçanın aldığı değerler birbirine eşi olacakır. (1) () 17

18 β 10 + β 11 X 1 = (β 10 + β 0 ) + (β 11 + β 1 )X 1 (3) olacakır. Buradan, β 10 + β 11 X 1 - β 10 - β 0 - β 11 X 1 - β 1 X 1 = 0 (4) Β 0 = - β 1 X 1 (5) elde edilir. Bu eşilik modelde yerine konursa, Y = β 10 + β 11 X - β 1 (X X 1 )D 1 + ε (6) olarak elde edilir. Aynı şekilde, Y = β 10 + β 11 X 1 + β 0 D 1 + β 30 D + β 1 D X + β 31 D X + ε (7) olarak ifade edilir ve model bu şekilde ahmin edilir. 18

19 Saış Komisyonları Y Örnek: Parçalı Doğrusal Regresyon I II X * X Bir sigora şirkei saış emsilcilerinin belli bir saış hacmini geçmesi durumunda çalışanlarına komisyon ödemekedir. Şirke içerisinde gerçekleşirilen saış komisyon ücreleri belli bir saış hacmi(x * ) eşik düzeyine kadar doğrusal armaka ve bu eşik düzeyinden sonra ise daha dik bir oranla saışlarla doğrusal olarak arığı varsayılmakadır. Bu durumda I ve II olarak numaralandırılmış iki parçadan oluşan parçalı doğrusal regresyona ve eşik düzeyinde eğimin değişiği komisyon fonksiyonuna sahip olmuş oluruz. 19

20 Saış Komisyonları Parçalı Doğrusal Regresyon Y Y i = a 1 + b 1 X i + b (X i -X * )D i +u i Y i = Saış Komisyonları X i = Saış Mikarı X * = Saışlarda Prim Eşik Değeri D i = 1 Eğer X i > X * X * Saışlar X = 0 Eğer X i < X * E(Y i D i =0,X i, X * ) = a 1 +b 1 X i 0 E(Y i D i =1,X i, X * ) = a 1 - b X * +(b 1 + b )X i

21 Saış Komisyonları Parçalı Doğrusal Regresyon Y 1 b 1 +b 1 b 1 a 1 a 1 -b X * X * Saışlar X 1

22 Örnek Bir şirke saış emsilcilerinin belli bir saış hacmini geçmesi durumunda çalışanlarına prim ödemekedir. Toal Cos($) TC Oupu (unis) Q D i Dependen Variable: TC Included observaions: 10 Variable Coefficien Sd. Error -Saisic Prob. C Q (Q-5500)*DI R = F-saisic= [ ] İsaisiki olarak anlamsız Saışlardaki arışlar prim değerini arırmamakadır.

23 YAPISAL DEĞİŞİKLİK TESTLERİ Çeşili sebeplerle zaman serilerinde değişikliklerin olup olmadığının es edilmesi gerekecekir. Tes sonucunda var olduğu düşünülen değişikliğin isaisiksel olarak anlamlı olup olmadığına karar verilecekir. CHOW TESTİ İncelenen seride yapısal değişiklik, yani kırılma yoksa kırılma nokası olarak kabul edilen nokadan öncesi ve sonrası için ahmin edilen modellerin haa erimlerinin kareleri oplamı ile kırılmanın olmadığı varsayımı ile ahmin edilen ek modelin haa kareleri oplamı birbirine eşi olacakır. Kırılma olduğunda ise ayrı ayrı parçalar için ahmin edilen modellerin haa kareleri oplamı, kırılma olmadığı durum için ahmin edilen ek modelin kareleri oplamından küçük olacakır. 3

24 Kısaca Chow esinin uygulanabilmesi için aşağıdaki varsayımların sağlanması gereklidir: - Her iki al döneme ai haa erimi de sabi varyanslı olmalı. - Kısısız modellerin haa erimleri birbirinden bağımsız olmalı. - Kırılmanın oluşuğu dönem bilinmeli. - Oluşurulan her iki dönemin gözlem sayısı paramere sayısından büyük olmalı. 4

25 Chow esi yapılırken kırılma öncesi ve sonrası olarak iki al gruba ayrılan serinin parçalarının daha homojen gruplar olduğu düşünülmekedir. Tesin uygulanabilmesi için parçaların varyanslarının eşiliği es edilir. Varyansların eşiliği F esi ile es edilir. 1 İle birinci parçanın eşiliğini ifade eden emel hipoez, İle ikinci parçanın varyansını göserirsek varyansların H : 0 1 şeklinde kurulacakır. Temel hipoezin geçerli olmadığını yani varyansların eşi olmadığını ifade eden alernaif hipoez ise H : 1 1 olacakır. Bu durumda es isaisiği, F 1 olarak hesaplanır. (8) 5

26 Burada varsayılmışır. 1 ise paya, 1 1 paydaya yazılacakır. Haa erimi varyansları bilinmediğinden ahminleri olan es için kullanılır. Bu durumda es isaisiği, S e ler F S S e1 /( n1 k) 1 e /( n k) e e (9) Olacakır. F es isaisiği (n 1 k) ve (n k) serbeslik derecesi ile F ablosundan bulunan değer ile karşılaşırılarak hesaplanan F es isaisiği ablo değerinden büyük ise H 1, küçük ise H 0 hipoezi kabul edilir. Varyansların eşi olduğu kabul edilirse Chow esi yapılabilir. 6

27 Chow esi serinin parçalarının haa erimlerinin sıfır oralama erafında normal dağıldığını, birbirlerinden bağımsız olduğu varsayımı ile ve varyansları eşi ise uygulanabilir. Temel hipoez yapısal değişiklik olmadığını alernaif hipoez ise yapısal değişiklik olduğunu ifade eder. İki ayrı al modelin ahmin edilmesi durumunda es isaisiği, F n n 1 e ( e R 1 İ 1 i1 i1 n1 n ( e 1 e ) /( n i1 i1 n e ) / k k) (30) olarak hesaplanır. Burada e R oplamını, e 1 ve e bölünmeden ahmin edilen modelin haa kareleri ise parçaların haa kareleri oplamını ifade emekedir. Paydanın serbeslik derecesi [(n 1 -k) + (n -k) = n-k] olacakır. Payın serbeslik derecesi ise k dır. Hesaplanan es isaisiği a haa payı ile k ve (n-k) serbeslik derecesi ile F ablosundan bulunan ablo değeri ile karşılaşırılır. F es isaisiği değeri ablo değerinden büyük ise H 1 yani yapısal değişiklik olduğu hipoezi, F esi isaisiği F ablo değerinden küçük ise yani yapısal değişiklik olmadığı H 0 hipoezi kabul edilecekir. 7

28 Kırılma nokası öncesi ve sonrası için bağımsız modeller ahmin edilmiyor, al modeller kukla değişken ile birleşirilerek ek model ahmin ediliyor ise es isaisiği, F ( n n er İ 1 i1 n ( e /( n i1 e ) / k k) olarak hesaplanır. Burada e (31) kukla değişkenli modelin haa kareleri oplamını İfade emekedir. Kukla değişkenli modeller için yapısal değişikliğin hangi paramereyi ekilediği düşünülüyorsa, o düşünceye göre modeller oluşurulabileceği gibi sabi veya bağımsız değişken paramerelerini ekileyecek şekilde de model kurulabilir. 8

29 CHOW PREDICTIVE TESTİ Bu es al grupların modellerinin ayrı ayrı ahmin edilmesi durumunda kullanılan bir esir. Chow esi yapılırken oluşurulan iki al grupan modelleri ahmin edebilmek için al grupların birim sayıları n 1 ve n nin ahmin edilecek paramere sayısı k dan büyük olması gerekmekedir. n 1 veya n den herhangi biri k dan küçükse o grup için model ahmin edilemez. Bu durumda Chow esi yerine Chow Predicive esi kullanılır. Bu ese al örneken elde edilen sonuçların üm örnek için geçerli olup olmadığı es edilir. Diğer bir ifade ile bu es regresyon modellerinin kararlılığının belirlenmesi için yapılan bir esir. Bir al grupan elde edilen haa kareleri oplamı, üm örneken elde edilen haa kareleri oplamı ile karşılaşırılır. n < k ise birinci al grup ile, n 1 < k ise ikinci al grup ile, Tüm örneken elde edilen haa kareleri oplamı karşılaşırılır. 9

30 Hipoezler chow esi ile aynıdır. n < k ise es isaisiği, F ( n n1 er İ1 İ 1 n1 e1 /( n1 i1 e 1 ) / k) olarak hesaplanır. Hesaplanan es isaisiği serbeslik dereceleri sd 1 = n ve sd = n 1 k serbeslik derecesi ile F dağılımı ablosundan bulunan ablo değeri ile karşılaşırılarak daha önce açıklandığı gibi karar verilir. n 1 < k olması durumunda da es isaisiğinin indislerinde değişiklik yapılarak hesaplama yapılır. Al modeller kukla değişkenler ile birleşirilerek ahmin edildiğinde Chow esi uygulanabileceğinden Chow Predicive esinin kullanılmasına gerek olmaz. n (3) 30

31 BENZERLİK ORANI, WALD VE LAGRANGE ÇARPANI TESTLERİ Chow esi ile es edien al gruplara ai modeller ile üm veri için ahmin edilen modeller Benzerlik oranı, Wald ve Lagrange Çarpanı esleri ile de karşılaşırılabilirler ve bu karşılaşırma sonucunda yapısal değişiklik olup olmadığına karar verilebilir. Bu eslerde de emel hipoez yapısal değişiklik olup olmadığını, alernaif hipoez ise yapısal değişiklik olduğunu ifade eder. Yapısal değişiklik yoksa, modellerin paramereleri arasında fark olmayacakır. Aradaki farkı kukla değişkenli modellerde kukla değişken paramereleri belirleyecekir. Bu açıdan bakıldığında kukla değişken ile birleşirilen modelde emel hipoez kukla değişken kasayılarının anlamsız olduğunu, alernaif hipoez ise kukla değişken kasayılarının anlamlı olduğunu ifade eder. 31

32 Bu durumda Benzerlik Oranı es isaisiği, LR e R nlog e e U (33) e R e U =sınırlandırılmış modelin HKT =sınırlandırılmamış modelin HKT olur. LR es isaisiğinin dağılımı k serbeslik dereceli ki-kare dağılımıdır. 3

33 Yapısal değişiklik analizinde Wald es isaisiği, W e e R e / n U U (34) olacakır. W es isaisiğinin dağılımı da k serbeslik dereceli ki-kare dağılımıdır. Yapısal değişiklik analizinde Lagrange Çarpanı es isaisiği, LM e e R e / n R U (35) olarak hesaplanır. Bu es isaisiğinin dağılımı da k serbeslik dereceli ki-kare dağılımıdır. Her üç es isaisiği için es isaisikleri ki-kare dağılımı ablosundan a haa payı ve k serbeslik derecesi ile bulunan ablo değeri ile karşılaşırılır. Tes isaisiği ablo değerinden büyük ise H 1 hipoezi kabul edilir; yapısal değişiklik vardır, küçükse H 0 hipoezi kabul edilir; yapısal değişiklik yokur. 33

34 CUSUM TESTİ Chow Predicive esi gibi kasayıların kararlılığını es eden bir esir. Yapısal değişiklik olması durumunda, yapısal değişikliğin başladığı devreye kadar kararlı olan regresyon modelinin kasayıları yapısal değişikliken sonra ekileneceklerdir. Bu eki kasayıların kararlığının bozulmasına neden olur. Bu nedenle yapılacak es sonucu kasayıların kararlı olduğuna karar verilirse yapısal değişiklik olmadığı; kararlı olmadıklarına karar verilirse yapısal değişiklik olduğu oraya konacakır. Bu es ardışık haalara dayanmakadır. 34

35 Temel hipoez, H 0 : β 1 = β = = β k = β 1... n şeklinde oluşurulur. Alernaif hipoez ise emel hipoezin doğru olmadığını ifade eder. Y vekörünün; X, X vekörünün. elemanını ifade ediyorsa, ˆ ( ) 1 b Böylece ˆ ˆ b ˆ 1 ( ) (35) (36) ˆ b 1 Burada, ilk (-1) gözlemden ahmin edilen en küçük kareler ahmincileridir. Dikka edilecek konu gözlemlerin 1 den n e kadar giiğidir. Faka am zamanında bir kırılma meydana geldiğinden (-1) gözlem için paramerelerin bulunması, ˆ nin elde edilmesi ve ardından (37) nolu ifade ile göserilen haaların elde edilmesidir. 35

36 Böylece haalar, eˆ ˆ b 1 şeklinde olacakır. Bu durumda ardışık haalar w, w ˆ b 1 x ( ) 1 x ' (37) (38) e 1 ' 1 x ( 1 1) x (39) olacakır. Buradaki x, (-1) den önceki bağımsız değişkenin(değişkenlerin) döneminde aldığı değeri(değerleri) ifade emekedir. Bu durumda CUSUM esi için, W w sk1 ˆ = k+1, k+,, n (40) olarak hesaplanarak zamana göre grafiği çizilir. Burada, 36

37 ˆ 1 n n k 1 sk1 ( w w) (41) ve w n s1 n w s k olacakır. (4) Daha sonra al ve üs güven sınırları oluşurulur. Şekil 3 de görüldüğü gibi yaay eksende, düşey eksende w göserilirse k nokasında aralık a n k ve n nokasında n k olarak belirlenecekir. 3a CUSUM esinde H 0 hipoezinin geçerliliği alında w nindağılımı sıfır oralama ve varyanslı normal dağılım olduğu ve w ile w s nin ( s) bağımsız olduğu varsayılmakadır. 37

38 w k n zaman Şekil 3: CUSUM Tesi Yapısal Değişimin Göserimi 38

39 Burada a, a haa payı ile a 0,01 için a a 0,05 için a 0,948 a 0,10 için a 0,850 olacakır. w çizilen sınırlar dışına çıkarsa H 0 yapısal değişiklik vardır hipoezi, sınırlar içinde kalırsa H 1 yapısal değişiklik yokur hipoezi kabul edilir. CUSUM-SQ TESTİ CUSUM esinden farklı olarak ardışık haaların kareleri ile hesaplanmakadır. S n sk 1 n sk 1 w w s = k+1, k+,, n (43) değerleri hesaplanır ve S nin grafiği çizilir. 39

40 Burada, - k E(S ) (44)dır. Güven sınırları E(S ) C0 dır. C 0 değeri a n - k haa payı, n gözlem sayısı ve k paramere sayısı ile ablodan bulunacak değerlerdir. C 0 ablodan esin ek veya çif araflı olmasına göre m ve a değerleri ile belirlenir. Tes için n-k ek sayı ise, 1 m (n - k) -1 olarak bulunur. Çif araflı es için m, a ; ek araflı es için m, değerleri ile C 0 bulunur. n-k çif sayı ise; a m m 1 3 (n - k) (n - k) - (45) (46) alınarak enerpolasyon yapılması gereklidir. 40

41 Tablodan belirlenen değerler ile al ve üs güven sınırlarını çizilerek CUSUM-SQ grafiği çizilir. S zaman Şekil 4: CUSUM-SQ Tesi Yapısal Değişimin Göserimi Grafik çizilerek güven sınırları dışına çıkıldığında yapısal değişiklik olduğuna, güven sınırları içinde kalındığında yapısal değişiklik olmadığına karar verilir. 41

ÇOKLU DOĞRUSAL BAĞLANTI

ÇOKLU DOĞRUSAL BAĞLANTI ÇOKLU DOĞRUSAL BAĞLANTI ÇOKLU DOĞRUSALLIĞIN ANLAMI Çoklu doğrusal bağlanı; Bağımsız değişkenler arasında doğrusal (yada doğrusala yakın) ilişki olmasıdır... r xx i j paramereler belirlenemez hale gelir.

Detaylı

SORU SETİ 02 (REVİZE EDİLDİ) FİNAL KONULARI

SORU SETİ 02 (REVİZE EDİLDİ) FİNAL KONULARI Ekonomeri 8 Ocak, 0 Gazi Üniversiesi İkisa Bölümü SORU SETİ 0 (REVİZE EDİLDİ) FİNAL KONULARI PROBLEM Aşağıda verilen avuk ei alebi fonksiyonunu düşününüz (960-98): lny = β + β ln X + β ln X + β ln X +

Detaylı

Zaman Serisi Modelleri: Birim Kök Testleri, Eşbütünleşme, Hata Düzeltme Modelleri

Zaman Serisi Modelleri: Birim Kök Testleri, Eşbütünleşme, Hata Düzeltme Modelleri Yıldız Teknik Üniversiesi İkisa Bölümü Ekonomeri II Ders Noları Ders Kiabı: J.M. Wooldridge, InroducoryEconomericsA Modern Approach, 2nd. ed., 2002, Thomson Learning. Zaman Serisi Modelleri: Birim Kök

Detaylı

DEĞİŞKENLER ARASINDAKİ GECİKMELİ İLİŞKİLER: Dağıtılmış Gecikme ve Otoregresiv Modeller

DEĞİŞKENLER ARASINDAKİ GECİKMELİ İLİŞKİLER: Dağıtılmış Gecikme ve Otoregresiv Modeller DEĞİŞKENLER ARASINDAKİ GECİKMELİ İLİŞKİLER: Dağıılmış Gecikme ve Ooregresiv Modeller 1 Zaman serisi modellerinde, bağımlı değişken Y nin zamanındaki değerleri, bağımsız X değişkenlerinin zamanındaki cari

Detaylı

Çift Üstel Düzeltme (Holt Metodu ile)

Çift Üstel Düzeltme (Holt Metodu ile) Tahmin Yönemleri Çif Üsel Düzelme (Hol Meodu ile) Hol meodu, zaman serilerinin, doğrusal rend ile izlenmesi için asarlanmış bir yönemdir. Yönem (seri için) ve (rend için) olmak üzere iki düzelme kasayısının

Detaylı

KONYA İLİ SICAKLIK VERİLERİNİN ÇİFTDOĞRUSAL ZAMAN SERİSİ MODELİ İLE MODELLENMESİ

KONYA İLİ SICAKLIK VERİLERİNİN ÇİFTDOĞRUSAL ZAMAN SERİSİ MODELİ İLE MODELLENMESİ KONYA İLİ SICAKLIK VERİLERİNİN ÇİFTDOĞRUSAL ZAMAN SERİSİ MODELİ İLE MODELLENMESİ İsmail KINACI 1, Aşır GENÇ 1, Galip OTURANÇ, Aydın KURNAZ, Şefik BİLİR 3 1 Selçuk Üniversiesi, Fen-Edebiya Fakülesi İsaisik

Detaylı

24.05.2010. Birim Kök Testleri. Zaman Serisi Modelleri: Birim Kök Testleri, Eşbütünleşme, Hata Düzeltme Modelleri

24.05.2010. Birim Kök Testleri. Zaman Serisi Modelleri: Birim Kök Testleri, Eşbütünleşme, Hata Düzeltme Modelleri Yıldız Teknik Üniversiesi İkisa Bölümü Ekonomeri II Ders Noları Ders Kiabı: J.M. Wooldridge, Inroducory Economerics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Zaman Serisi Modelleri: Birim Kök

Detaylı

Birim Kök Testleri. Random Walk. Bir stokastiksürecin birim kök içerip içermediğini nasıl anlarız? Hatırlarsak aşağıdaki AR(1) sürecinde

Birim Kök Testleri. Random Walk. Bir stokastiksürecin birim kök içerip içermediğini nasıl anlarız? Hatırlarsak aşağıdaki AR(1) sürecinde Yıldız Teknik Üniversiesi İkisa Bölümü Ekonomeri II Ders Noları Ders Kiabı: J.M. Wooldridge, Inroducory Economerics A Modern Approach, 2nd. ed., 02, Thomson Learning. Zaman Serisi Modelleri: Birim Kök

Detaylı

Birim Kök Testleri 3/24/2016. Bir stokastik sürecin birim kök içerip içermediğini nasıl anlarız? Hatırlarsak aşağıdaki AR(1) sürecinde

Birim Kök Testleri 3/24/2016. Bir stokastik sürecin birim kök içerip içermediğini nasıl anlarız? Hatırlarsak aşağıdaki AR(1) sürecinde Yıldız Teknik Üniversiesi İkisa Bölümü Ekonomeri II Ders Noları Ders Kiabı: J.M. Wooldridge, Inroducory Economerics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Zaman Serisi Modelleri: Birim Kök

Detaylı

Box-Jenkıns Modelleri ile Aylık Döviz Kuru Tahmini Üzerine Bir Uygulama

Box-Jenkıns Modelleri ile Aylık Döviz Kuru Tahmini Üzerine Bir Uygulama Kocaeli Üniversiesi Sosyal Bilimler Ensiüsü Dergisi (6) 2003 / 2 : 49-62 Box-Jenkıns Modelleri ile Aylık Döviz Kuru Tahmini Üzerine Bir Uygulama Hüdaverdi Bircan * Yalçın Karagöz ** Öze: Bu çalışmada geleceği

Detaylı

White ın Heteroskedisite Tutarlı Kovaryans Matrisi Tahmini Yoluyla Heteroskedasite Altında Model Tahmini

White ın Heteroskedisite Tutarlı Kovaryans Matrisi Tahmini Yoluyla Heteroskedasite Altında Model Tahmini Ekonomeri ve İsaisik Sayı:4 006-1-8 İSTANBUL ÜNİVERSİTESİ İKTİSAT FAKÜLTESİ EKONOMETRİ VE İSTATİSTİK DERGİSİ Whie ın Heeroskedisie Tuarlı Kovaryans Marisi Tahmini Yoluyla Heeroskedasie Alında Model Tahmini

Detaylı

BİRİM KÖK TESTLERİNDE YAPISAL KIRILMA ZAMANININ İÇSEL OLARAK BELİRLENMESİ PROBLEMİ: ALTERNATİF YAKLAŞIMLARIN PERFORMANSLARI

BİRİM KÖK TESTLERİNDE YAPISAL KIRILMA ZAMANININ İÇSEL OLARAK BELİRLENMESİ PROBLEMİ: ALTERNATİF YAKLAŞIMLARIN PERFORMANSLARI BİRİM KÖK TESTLERİNDE YAPISAL KIRILMA ZAMANININ İÇSEL OLARAK BELİRLENMESİ PROBLEMİ: ALTERNATİF YAKLAŞIMLARIN PERFORMANSLARI Arş. Gör. Furkan EMİRMAHMUTOĞLU Yrd. Doç. Dr. Nezir KÖSE Arş. Gör. Yeliz YALÇIN

Detaylı

KUKLA DEĞİŞKENLİ MODELLERDE KANTİTATİF DEĞİŞKEN SAYISININ İKİ SINIF İÇİN FARKLI OLMASI DURUMU

KUKLA DEĞİŞKENLİ MODELLERDE KANTİTATİF DEĞİŞKEN SAYISININ İKİ SINIF İÇİN FARKLI OLMASI DURUMU KUKLA DEĞİŞKENLİ MODELLERDE KANTİTATİF DEĞİŞKEN SAYISININ İKİ SINIF İÇİN FARKLI OLMASI DURUMU.HAL: Sabit Terimlerin Farklı Eğimlerin Eşit olması Yi = b+ b2di + b3xi + ui E(Y Di =,X i) = b + b3xi E(Y Di

Detaylı

DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ

DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL SINIRLAMALARIN TESTİ t testi F testi Diğer testler: Chow testi MWD testi DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ Benzerlik Oranı Testi Lagrange Çarpanı

Detaylı

Bölüm 3 HAREKETLİ ORTALAMALAR VE DÜZLEŞTİRME YÖNTEMLERİ

Bölüm 3 HAREKETLİ ORTALAMALAR VE DÜZLEŞTİRME YÖNTEMLERİ Bölüm HAREKETLİ ORTALAMALAR VE DÜZLEŞTİRME ÖNTEMLERİ Bu bölümde üç basi öngörü yönemi incelenecekir. 1) Naive, 2)Oralama )Düzleşirme Geçmiş Dönemler Şu An Gelecek Dönemler * - -2-1 +1 +2 + Öngörü yönemi

Detaylı

Dolar Kurundaki Günlük Hareketler Üzerine Bazı Gözlemler

Dolar Kurundaki Günlük Hareketler Üzerine Bazı Gözlemler Dolar Kurundaki Günlük Harekeler Üzerine Bazı Gözlemler Türkiye Bankalar Birliği Ekonomi Çalışma Grubu Toplanısı 28 Nisan 2008, İsanbul Doç. Dr. Cevde Akçay Koç Finansal Hizmeler Baş ekonomis cevde.akcay@yapikredi.com.r

Detaylı

Türkiye de Kırmızı Et Üretiminin Box-Jenkins Yöntemiyle Modellenmesi ve Üretim Projeksiyonu

Türkiye de Kırmızı Et Üretiminin Box-Jenkins Yöntemiyle Modellenmesi ve Üretim Projeksiyonu Hayvansal Üreim 53(): 3-39, 01 Araşırma Türkiye de Kırmızı E Üreiminin Box-Jenkins Yönemiyle Modellenmesi ve Üreim Projeksiyonu Şenol Çelik Ankara Üniversiesi Fen Bilimleri Ensiüsü Zooekni Anabilim Dalı

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOK DEĞİŞKENLİ EŞİKSEL OTOREGRESİF MODELLER ÜZERİNE BİR ÇALIŞMA Ümran Münire KAHRAMAN DOKTORA TEZİ İsaisik Anabilim Dalı 2012 KONYA Her Hakkı Saklıdır TEZ

Detaylı

YAPISAL KIRILMALI BİRİM KÖK TESTLERİNİN KÜÇÜK ÖRNEKLEM ÖZELLİKLERİNİN KARŞILAŞTIRILMASI

YAPISAL KIRILMALI BİRİM KÖK TESTLERİNİN KÜÇÜK ÖRNEKLEM ÖZELLİKLERİNİN KARŞILAŞTIRILMASI YAPISAL KIRILMALI BİRİM KÖK TESTLERİNİN KÜÇÜK ÖRNEKLEM ÖZELLİKLERİNİN KARŞILAŞTIRILMASI TC. Pamukkale Üniversiesi Sosyal Bilimler Ensiüsü Yüksek Lisans Tezi Ekonomeri Anabilim Dalı Abdullah Emre ÇAĞLAR

Detaylı

AYÇİÇEK VE SOYA YAĞI İTHALAT TALEBİNİN ANALİZİ

AYÇİÇEK VE SOYA YAĞI İTHALAT TALEBİNİN ANALİZİ AKDENİZ ÜNİVERSİTESİ ZİRAAT FAKÜLTESİ DERGİSİ,, 15(),71-79 AYÇİÇEK VE SOYA YAĞI İTHALAT TALEBİNİN ANALİZİ Selim Adem HATIRLI Vecdi DEMİRCAN Ali Rıza AKTAŞ Süleyman Demirel Üniversiesi Ziraa Fakülesi Tarım

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Türkiye nin Kabuklu Fındık Üretiminde Üretim-Fiyat İlişkisinin Koyck Yaklaşımı İle Analizi

Türkiye nin Kabuklu Fındık Üretiminde Üretim-Fiyat İlişkisinin Koyck Yaklaşımı İle Analizi TÜRK TARIM ve DOĞA BİLİMLERİ DERGİSİ TURKISH JOURNAL of AGRICULTURAL and NATURAL SCIENCES www.urkjans.com Türkiye nin Kabuklu Fındık Üreiminde Üreim-Fiya İlişkisinin Koyck Yaklaşımı İle Analizi Şenol ÇELİK*

Detaylı

En Yüksek Olabilirlik Yöntemi. İstatistikte, tüm anakütleler kendilerine karşılık gelen bir olasılık dağılımı ile tanımlanırlar.

En Yüksek Olabilirlik Yöntemi. İstatistikte, tüm anakütleler kendilerine karşılık gelen bir olasılık dağılımı ile tanımlanırlar. En Yüksek Olabilirlik Yöntemi İstatistikte, tüm anakütleler kendilerine karşılık gelen bir olasılık dağılımı ile tanımlanırlar. Basit(sıradan) en küçük kareler yöntemi, özünde olasılık dağılımları ile

Detaylı

Su Yapıları II Aktif Hacim

Su Yapıları II Aktif Hacim 215-216 Bahar Su Yapıları II Akif Hacim Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversiesi Mühendislik Mimarlık Fakülesi İnşaa Mühendisliği Bölümü Yozga Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversiesi n aa Mühendisli

Detaylı

Borsa Getiri Oranı ve Faiz Oranı Arasındaki İlişkinin Doğrusal Olmayan Yöntemlerle Analizi: Türkiye Örneği

Borsa Getiri Oranı ve Faiz Oranı Arasındaki İlişkinin Doğrusal Olmayan Yöntemlerle Analizi: Türkiye Örneği Volume 4 Number 3 03 pp. -40 ISSN: 309-448 www.berjournal.com Borsa Geiri Oranı ve Faiz Oranı Arasındaki İlişkinin Doğrusal Olmayan Yönemlerle Analizi: Türkiye Örneği Yusuf Ekrem Akbaşa Öze: Bu çalışmada,

Detaylı

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI TERS PERSPEKTİF DÖNÜŞÜM İLE YÜZEY DOKUSU ÜRETİMİ

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI TERS PERSPEKTİF DÖNÜŞÜM İLE YÜZEY DOKUSU ÜRETİMİ İANBUL İCARE ÜNİERİEİ BİLGİAAR MÜHENDİLİĞİ BÖLÜMÜ BİLGİAAR İEMLERİ LABORAUARI ER PERPEKİF DÖNÜŞÜM İLE ÜZE DOKUU ÜREİMİ Bu deneyde, genel haları ile herhangi bir yüzeye bir dokunun kopyalanması üzerinde

Detaylı

İŞSİZLİK VE EKONOMİK BÜYÜME İLİŞKİSİNDE ASİMETRİ ASYMMETRY IN THE RELATIONSHIP BETWEEN UNEMPLOYMENT AND ECONOMIC GROWTH

İŞSİZLİK VE EKONOMİK BÜYÜME İLİŞKİSİNDE ASİMETRİ ASYMMETRY IN THE RELATIONSHIP BETWEEN UNEMPLOYMENT AND ECONOMIC GROWTH Doğuş Üniversiesi Dergisi, (), 57-65 İŞSİZLİK VE EKONOMİK BÜYÜME İLİŞKİSİNDE ASİMETRİ ASYMMETRY IN THE RELATIONSHIP BETWEEN UNEMPLOYMENT AND ECONOMIC GROWTH Serve CEYLAN Giresun Üniversiesi İİBF, İkisa

Detaylı

DOĞAL GAZ DEPOLAMA ġġrketlerġ ĠÇĠN TARĠFE HESAPLAMA USUL VE ESASLARI. BĠRĠNCĠ KISIM Amaç, Kapsam, Dayanak, Tanımlar ve Ġstenecek Veriler

DOĞAL GAZ DEPOLAMA ġġrketlerġ ĠÇĠN TARĠFE HESAPLAMA USUL VE ESASLARI. BĠRĠNCĠ KISIM Amaç, Kapsam, Dayanak, Tanımlar ve Ġstenecek Veriler DOĞAL GAZ DEPOLAMA ġġrketlerġ ĠÇĠN TARĠFE HESAPLAMA USUL VE ESASLARI BĠRĠNCĠ KISIM Amaç, Kapsam, Dayanak, Tanımlar ve Ġsenecek Veriler BĠRĠNCĠ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar Amaç ve kapsam Madde

Detaylı

TÜRKİYE NÜFUSU İÇİN STOKASTİK ÖLÜMLÜLÜK MODELLERİ

TÜRKİYE NÜFUSU İÇİN STOKASTİK ÖLÜMLÜLÜK MODELLERİ Nüfusbilim Dergisi\Turkish Journal of Populaion Sudies, 2012, 34, 31-50 31 TÜRKİYE NÜFUSU İÇİN STOKASTİK ÖLÜMLÜLÜK MODELLERİ Ölümlülük ahminleri, demografi ve aküerya bilimlerinde önemli bir rol oynamakadır.

Detaylı

FİNANSAL PİYASA VOLATİLİTESİ VE EKONOMİ

FİNANSAL PİYASA VOLATİLİTESİ VE EKONOMİ FİNANSAL PİYASA VOLATİLİTESİ VE EKONOMİ Yrd. Doç. Dr. Hülya Kanalıcı Akay Uludağ Üniversiesi İkisadi ve İdari Bilimler Fakülesi Mehme Nargeleçekenler Uludağ Üniversiesi İkisadi ve İdari Bilimler Fakülesi

Detaylı

RASYONEL BEKLENTLER DOAL ORAN HPOTEZ Türkiye çin Zaman Serisi Bulguları 1950-1995 1

RASYONEL BEKLENTLER DOAL ORAN HPOTEZ Türkiye çin Zaman Serisi Bulguları 1950-1995 1 RASYONEL BEKLENTLER DOAL ORAN HPOTEZ Türkiye çin Zaman Serisi Bulguları 950-995 Rahmi YAMAK * Yakup KÜÇÜKKALE ** ÖZET Bu çalımada, Rasyonel Bekleniler Doal Oran Hipoezinin, Çıkı (ya da isizliin) alep (ya

Detaylı

A Study on the Estimation of Supply Response of Cotton in Cukurova Region

A Study on the Estimation of Supply Response of Cotton in Cukurova Region MPRA Munich Personal RePEc Archive A Sudy on he Esimaion of Suly Resonse of Coon in Cukurova Region Erkan Akas Faculy of Economics & Admin.Sciences a BIGA 2006 Online a h://mra.ub.uni-muenchen.de/8648/

Detaylı

REGRESYON ANALİZİ BÖLÜM 3-4

REGRESYON ANALİZİ BÖLÜM 3-4 REGRESYON ANALİZİ BÖLÜM 3-4 Yayın arihi: 17-08-008 ÇOK DEĞİŞKENLİ DOĞRUSAL REGRESYON FONKSİYONU 3. ÇOK DEĞİŞKENLİ DOĞRUSAL REGRESYON Çok değişkenli regresyon modelinde bir y bağımlı değişkeni, k adet bağımsız

Detaylı

FİZİK-II DERSİ LABORATUVARI ( FL 2 4 )

FİZİK-II DERSİ LABORATUVARI ( FL 2 4 ) FİZİK-II DERSİ LABORATUVARI ( FL 2 4 ) KURAM: Kondansaörün Dolma ve Boşalması Klasik olarak bildiğiniz gibi, iki ileken paralel plaka arasına dielekrik (yalıkan) bir madde konulursa kondansaör oluşur.

Detaylı

GEFRAN PID KONTROL CİHAZLARI

GEFRAN PID KONTROL CİHAZLARI GEFRAN PID KONTROL CİHAZLARI GENEL KONTROL YÖNTEMLERİ: ON - OFF (AÇIK-KAPALI) KONTROL SİSTEMLERİ: Bu eknik en basi konrol ekniğidir. Ölçülen değer (), se değerinin () üzerinde olduğunda çıkış sinyali açılır,

Detaylı

KUKLA DEĞİŞKENLİ MODELLER

KUKLA DEĞİŞKENLİ MODELLER KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

TÜRKİYE EKONOMİSİNDE BÜTÇE AÇIĞININ SÜRDÜRÜLEBİLİRLİĞİNİN ANALİZİ

TÜRKİYE EKONOMİSİNDE BÜTÇE AÇIĞININ SÜRDÜRÜLEBİLİRLİĞİNİN ANALİZİ Ekonomeri ve İsaisik Sayı:8 2008 45-64 İSTANBUL ÜNİVERSİTESİ İKTİSAT FAKÜLTESİ EKONOMETRİ VE İSTATİSTİK DERGİSİ TÜRKİYE EKONOMİSİNDE BÜTÇE AÇIĞININ SÜRDÜRÜLEBİLİRLİĞİNİN ANALİZİ Yrd. Doç. Dr. Özlem GÖKTAŞ

Detaylı

REEL DÖVİZ KURU VE DIŞ TİCARET DENGESİ İLİŞKİSİ:

REEL DÖVİZ KURU VE DIŞ TİCARET DENGESİ İLİŞKİSİ: Ekonomeri ve İsaisik Sayı: 005 9 İSTANBUL ÜNİVERSİTESİ İKTİSAT FAKÜLTESİ EKONOMETRİ VE İSTATİSTİK DERGİSİ REEL DÖVİZ KURU VE DIŞ TİCARET DENGESİ İLİŞKİSİ: Prof.Dr. Rahmi YAMAK; Abdurrahman KORKMAZ * Absrac

Detaylı

Hidrograf Analizi. Hiyetograf. Havza Çıkışı. Havza. Debi (m³/s) Hidrograf. Zaman (saat)

Hidrograf Analizi. Hiyetograf. Havza Çıkışı. Havza. Debi (m³/s) Hidrograf. Zaman (saat) Hidrograf Analizi Hiyeograf Havza Debi (m³/s) Havza Çıkışı Hidrograf Zaman (saa) 1 Hidrograf Q Hiyeograf Hidrograf Hidrograf Q Gecikme zamanı Pik Debi B Alçalma Eğrisi (Çekilme Yükselme Eğrisi (kabarma)

Detaylı

1) Çelik Çatı Taşıyıcı Sisteminin Geometrik Özelliklerinin Belirlenmesi

1) Çelik Çatı Taşıyıcı Sisteminin Geometrik Özelliklerinin Belirlenmesi 1) Çelik Çaı Taşıyıcı Siseminin Geomerik Özelliklerinin Belirlenmesi 1.1) Aralıklarının Çaı Örüsüne Bağlı Olarak Belirlenmesi Çaı örüsünü aşıyan aşıyıcı eleman aşık olarak isimlendirilir. Çaı sisemi oplam

Detaylı

Türkiye nin İthalat ve İhracat Bağımlılığı: Seçilmiş Ülke Örnekleri Üzerine Ampirik Bir Uygulama

Türkiye nin İthalat ve İhracat Bağımlılığı: Seçilmiş Ülke Örnekleri Üzerine Ampirik Bir Uygulama EGE AKADEMİK BAKIŞ / EGE ACADEMIC REVIEW Cil: 3 Sayı: 2 Nisan 203 ss. 9-208 Türkiye nin İhala ve İhraca Bağımlılığı: Seçilmiş Ülke Örnekleri Üzerine Ampirik Bir Uygulama Dependency of Impor and Expor of

Detaylı

BÖLÜM-9 TAŞKIN ÖTELENMESİ (FLOOD ROUTING)

BÖLÜM-9 TAŞKIN ÖTELENMESİ (FLOOD ROUTING) BÖLÜM-9 TAŞKIN ÖTELENMEİ (FLD RUTING) 9. GİRİŞ Tarih göseriyor ki pek çok medeniye kurulurken, insanlar için suyun vazgeçilmez öneminden dolayı akarsu kenarları ercih edilmişir. Bunun içme ve sulama suyunu

Detaylı

Reel ve Nominal Şokların Reel ve Nominal Döviz Kurları Üzerindeki Etkileri: Türkiye Örneği

Reel ve Nominal Şokların Reel ve Nominal Döviz Kurları Üzerindeki Etkileri: Türkiye Örneği Reel ve Nominal Şokların Reel ve Nominal Döviz Kurları Üzerindeki Ekileri: Türkiye Örneği Öze Ahme Mura ALPER Bu çalışma Türkiye deki reel döviz kuru dalgalanmalarının kaynaklarını açıklamayı amaçlamakadır.

Detaylı

TURİZM GELİŞMESİNİN TÜRKİYE EKONOMİSİ ÜZERİNDEKİ ETKİLERİNİN EKONOMETRİK ANALİZİ

TURİZM GELİŞMESİNİN TÜRKİYE EKONOMİSİ ÜZERİNDEKİ ETKİLERİNİN EKONOMETRİK ANALİZİ T.C. KÜLTÜR ve TURİZM BAKANLIĞI STRATEJİ GELİŞTİRME BAŞKANLIĞI TURİZM GELİŞMESİNİN TÜRKİYE EKONOMİSİ ÜZERİNDEKİ ETKİLERİNİN EKONOMETRİK ANALİZİ UZMANLIK TEZİ Selim DAĞLIOĞLU EKİM - 010 ANKARA T.C. KÜLTÜR

Detaylı

Türkiye Cumhuriyet Merkez Bankası Sayı: 2010-8 / 24 Mayıs 2010 EKONOMİ NOTLARI

Türkiye Cumhuriyet Merkez Bankası Sayı: 2010-8 / 24 Mayıs 2010 EKONOMİ NOTLARI Türkiye Cumhuriye Merkez Bankası Sayı: 2010-8 / 24 Mayıs 2010 EKONOMİ NOTLARI TCMB Faiz Kararlarının Piyasa Faizleri Ve Hisse Senedi Piyasaları Üzerine Ekisi Mura Duran Refe Gürkaynak Pınar Özlü Deren

Detaylı

NONLINEAR DYNAMICS IN FINANCIAL TIME SERIES AND UNIT ROOT TESTS: CASE OF BORSA ISTANBUL SECTORAL PRICE EARNING RATIOS

NONLINEAR DYNAMICS IN FINANCIAL TIME SERIES AND UNIT ROOT TESTS: CASE OF BORSA ISTANBUL SECTORAL PRICE EARNING RATIOS Journal of Economics, Finance and Accouning (JEFA), ISSN: 48 6697 Year: 05 Volume: Issue: 4 NONLINEAR DYNAMICS IN FINANCIAL TIME SERIES AND UNIT ROOT TESTS: CASE OF BORSA ISTANBUL SECTORAL PRICE EARNING

Detaylı

YER ALTI DOĞAL GAZ DEPOLAMA ŞİRKETLERİ İÇİN TARİFE HESAPLAMA USUL VE ESASLARI. BİRİNCİ KISIM Amaç, Kapsam, Dayanak, Tanımlar ve İstenecek Veriler

YER ALTI DOĞAL GAZ DEPOLAMA ŞİRKETLERİ İÇİN TARİFE HESAPLAMA USUL VE ESASLARI. BİRİNCİ KISIM Amaç, Kapsam, Dayanak, Tanımlar ve İstenecek Veriler YER ALTI DOĞAL GAZ DEPOLAMA ŞİRKETLERİ İÇİN TARİFE HESAPLAMA USUL VE ESASLARI BİRİNCİ KISIM Amaç, Kapsam, Dayanak, Tanımlar ve İsenecek Veriler BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar Amaç Madde

Detaylı

Çoklu Bağlanım Çıkarsama Sorunu

Çoklu Bağlanım Çıkarsama Sorunu Çoklu Bağlanım Çıkarsama Sorunu Diğer Sınama ve Konular Ekonometri 1 Konu 27 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported

Detaylı

TRANSİSTÖRLÜ YÜKSELTEÇLER

TRANSİSTÖRLÜ YÜKSELTEÇLER Karadeniz Teknik Üniversiesi Mühendislik Fakülesi * Elekrik-Elekronik Mühendisliği Bölümü Elekronik Anabilim Dalı * Elekronik Laborauarı I 1. Deneyin Amacı TRANSİSTÖRLÜ YÜKSELTEÇLER Transisörlerin yükseleç

Detaylı

Makine Öğrenmesi 8. hafta

Makine Öğrenmesi 8. hafta Makine Öğrenmesi 8. hafa Takviyeli Öğrenme (Reinforcemen Learning) Q Öğrenme (Q Learning) TD Öğrenme (TD Learning) Öğrenen Vekör Parçalama (LVQ) LVQ2 LVQ-X 1 Takviyeli Öğrenme Takviyeli öğrenme (Reinforcemen

Detaylı

YAPAY SİNİR AĞLARI İLE DOĞALGAZ TÜKETİM TAHMİNİ

YAPAY SİNİR AĞLARI İLE DOĞALGAZ TÜKETİM TAHMİNİ Aaürk Ü. İİBF Dergisi, 0. Ekonomeri ve İsaisik Sempozyumu Özel Sayısı, 20 463 YAPAY SİNİR AĞLARI İLE DOĞALGAZ TÜKETİM TAHMİNİ Oğuz KAYNAR Serkan TAŞTAN 2 Ferhan DEMİRKOPARAN 3 Öze: Doğalgaz emini nokasında

Detaylı

Kukla Değişken Nedir?

Kukla Değişken Nedir? Kukla Değişken Nedir? Cinsiyet, eğitim seviyesi, meslek, din, ırk, bölge, tabiiyet, savaşlar, grevler, siyasi karışıklıklar (=darbeler), iktisat politikasındaki değişiklikler, depremler, yangın ve benzeri

Detaylı

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın.

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın. KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

BOBĐNLER. Bobinler. Sayfa 1 / 18 MANYETĐK ALANIN TEMEL POSTULATLARI. Birim yüke elektrik alan içerisinde uygulanan kuvveti daha önce;

BOBĐNLER. Bobinler. Sayfa 1 / 18 MANYETĐK ALANIN TEMEL POSTULATLARI. Birim yüke elektrik alan içerisinde uygulanan kuvveti daha önce; BOBĐER MAYETĐK AAI TEME POSTUATARI Birim yüke elekrik alan içerisinde uygulanan kuvvei daha önce; F e = qe formülüyle vermişik. Manyeik alan içerisinde ise bununla bağlanılı olarak hareke halindeki bir

Detaylı

ZAMAN SERİLERİNDE REGRESYON ANALİZİ

ZAMAN SERİLERİNDE REGRESYON ANALİZİ ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip

Detaylı

Ekonometri. Eylül 2012. Sınavın toplam süresi 150 dakikadır.

Ekonometri. Eylül 2012. Sınavın toplam süresi 150 dakikadır. TCMB Araşırmacı Yazılı Meslek Sınavı Ekonomeri Eylül 202 Sınavın oplam süresi 50 dakikadır.. [Toplam 2 puan] Bir araşırmacı, günlük ABD doları/türk lirasının zaman içerisindeki değişimini modellemek amacıyla,

Detaylı

TCMB FAĐZ KARARLARININ HĐSSE SENEDĐ PĐYASALARI ÜZERĐNE ETKĐSĐ

TCMB FAĐZ KARARLARININ HĐSSE SENEDĐ PĐYASALARI ÜZERĐNE ETKĐSĐ Cenral Bank Review Vol. 10 (July 2010), pp.23-32 ISSN 1303-0701 prin / 1305-8800 online 2010 Cenral Bank of he Republic of Turkey hp://www.cmb.gov.r/research/review/ TCMB FAĐZ KARARLARININ HĐSSE SENEDĐ

Detaylı

Reel Döviz Kuru Endeksinin Otoregresif Koşullu Değişen Varyanslılığının Analizi: İki Eşikli Tarch Yöntemi İle Modellenmesi

Reel Döviz Kuru Endeksinin Otoregresif Koşullu Değişen Varyanslılığının Analizi: İki Eşikli Tarch Yöntemi İle Modellenmesi Reel Döviz Kuru Endeksinin Ooregresif Koşullu Değişen Varyanslılığının Analizi: İki Eşikli Tarch Yönemi İle Modellenmesi Reel Döviz Kuru Endeksinin Ooregresif Koşullu Değişen Varyanslılığının Analizi:

Detaylı

Ankara Üniversitesi Ziraat Fakültesi Tarım Ekonomisi Bölümü, Ankara e-posta: selma@kayalak.com. Geliş Tarihi/Received:30.05.2012

Ankara Üniversitesi Ziraat Fakültesi Tarım Ekonomisi Bölümü, Ankara e-posta: selma@kayalak.com. Geliş Tarihi/Received:30.05.2012 Türkiye de Fındık Üreim Alanlarının Armasında Deseklemelerin Ekisi Selma KAYALAK 1 Ahme ÖZÇELİK 2 1 Çanakkale Onsekiz Mar Üniversiesi Ziraa Fakülesi Tarım Ekonomisi Bölümü, Çanakkale 2 Ankara Üniversiesi

Detaylı

ENFLASYON-BÜYÜME SÜRECİNDE SABİT SERMAYE YATIRIMLARI

ENFLASYON-BÜYÜME SÜRECİNDE SABİT SERMAYE YATIRIMLARI LASYON-BÜYÜME SÜRECİNDE SABİT SERMAYE YATIRIMLARI Harun TERZİ (*) Sabiha OLTULULAR (**) Öze: Bu çalışmada enflasyon-büyüme-sabi sermaye yaırımları arasındaki ilişki korelasyon, zaman serileri analizleri

Detaylı

A. Regresyon Katsayılarında Yapısal Kırılma Testleri

A. Regresyon Katsayılarında Yapısal Kırılma Testleri A. Regresyon Katsayılarında Yapısal Kırılma Testleri Durum I: Kırılma Tarihinin Bilinmesi Durumu Kırılmanın bilinen bir tarihte örneğin tarihinde olduğunu önceden bilinmesi durumunda uygulanır. Örneğin,

Detaylı

İÇİNDEKİLER. 1. DÖNEL YÜZEYLER a Üreteç Eğrisi Parametrik Değilse b Üreteç Eğrisi Parametrik Olarak Verilmişse... 4

İÇİNDEKİLER. 1. DÖNEL YÜZEYLER a Üreteç Eğrisi Parametrik Değilse b Üreteç Eğrisi Parametrik Olarak Verilmişse... 4 İÇİNDEKİLER 1. DÖNEL YÜZEYLER... 1 1.a Üreeç Eğrisi Paramerik Değilse... 1 1.b Üreeç Eğrisi Paramerik Olarak Verilmişse.... DÖNEL YÜZEYLERLE İLGİLİ ÖRNEKLER... 5.a α f,,0 Eğrisinin Dönel Yüzeyleri... 5.b

Detaylı

Ters Perspektif Dönüşüm ile Doku Kaplama

Ters Perspektif Dönüşüm ile Doku Kaplama KRDENİZ EKNİK ÜNİERSİESİ BİLGİSR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSR GRFİKLERİ LBORURI ers Perspekif Dönüşüm ile Doku Kaplama 1. Giriş Bu deneyde, genel haları ile paralel ve perspekif izdüşüm eknikleri, ers perspekif

Detaylı

SIVILAŞTIRILMIŞ DOĞAL GAZ DEPOLAMA ŞİRKETLERİ İÇİN TARİFE HESAPLAMA USUL VE ESASLARI

SIVILAŞTIRILMIŞ DOĞAL GAZ DEPOLAMA ŞİRKETLERİ İÇİN TARİFE HESAPLAMA USUL VE ESASLARI SIVILAŞTIRILMIŞ DOĞAL GAZ DEPOLAMA ŞİRKETLERİ İÇİN TARİFE HESAPLAMA USUL VE ESASLARI BİRİNCİ KISIM Amaç, Kapsam, Dayanak, Tanımlar ve İsenecek Veriler BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar Amaç

Detaylı

A. ENFLASYON VE İŞSİZLİK A.1. Enflasyon ve Tanımı: Fiyatlar genel düzeyindeki sürekli artışlardır. Temel olarak ortaya çıkış nedenleri üçe ayrılır:

A. ENFLASYON VE İŞSİZLİK A.1. Enflasyon ve Tanımı: Fiyatlar genel düzeyindeki sürekli artışlardır. Temel olarak ortaya çıkış nedenleri üçe ayrılır: A. ENFLASYON VE İŞSİZLİK A.1. Enflasyon ve Tanımı: Fiyalar genel düzeyindeki sürekli arışlardır. Temel olarak oraya çıkış nedenleri üçe ayrılır: Birincisi, Maliye Enflasyonu üreim girdilerinin fiyaları

Detaylı

= t. v ort. x = dx dt

= t. v ort. x = dx dt BÖLÜM.4 DOĞRUSAL HAREKET 4. Mekanik Mekanik konusu, kinemaik ve dinamik olarak ikiye ayırmak mümkündür. Kinemaik cisimlerin yalnızca harekei ile ilgilenir. Burada cismin hareke ederken izlediği yol önemlidir.

Detaylı

Türkiye de Elektrik Tüketimi Büyüme İlişkisi: Dinamik Analiz

Türkiye de Elektrik Tüketimi Büyüme İlişkisi: Dinamik Analiz Enerji, Piyasa ve Düzenleme (Cil:2, 2011, Sayfa 49-73) Türkiye de Elekrik Tükeimi Büyüme İlişkisi: Dinamik Analiz H. Mura Eruğrul * Öze Çalışmada Türkiye de elekrik ükeimi büyüme ilişkisi 1998Ç1-2011Ç3

Detaylı

1. YAPISAL KIRILMA TESTLERİ

1. YAPISAL KIRILMA TESTLERİ 1. YAPISAL KIRILMA TESTLERİ Yapısal kırılmanın araştırılması için CUSUM, CUSUMSquare ve CHOW testleri bize gerekli bilgileri sağlayabilmektedir. 1.1. CUSUM Testi (Cumulative Sum of the recursive residuals

Detaylı

ELEKTRİK DAĞITIM BÖLGELERİNDE UYGULANACAK FİYAT EŞİTLEME MEKANİZMASI HAKKINDA TEBLİĞ

ELEKTRİK DAĞITIM BÖLGELERİNDE UYGULANACAK FİYAT EŞİTLEME MEKANİZMASI HAKKINDA TEBLİĞ ELEKTRİK DAĞITIM BÖLGELERİNDE UYGULANACAK FİYAT EŞİTLEME MEKANİZMASI HAKKINDA TEBLİĞ BİRİNCİ BÖLÜM Amaç, Kapsam, Hukuki Dayanak, Tanımlar ve Kısalmalar Amaç ve kapsam MADDE 1- (1Bu Tebliğ, 4628 sayılı

Detaylı

Effects of Agricultural Support and Technology Policies on Corn Farming in Çukurova Region

Effects of Agricultural Support and Technology Policies on Corn Farming in Çukurova Region MPRA Munich Personal RePEc Archive Effecs of Agriculural Suppor and Technology Policies on Corn Farming in Çukurova Region Erkan Akas and Oğuz Yurdakul Universiy of Cukurova Dep. Agriculural Economics,

Detaylı

BÖLÜM-8 HİDROGRAF ANALİZİ 8.1 GİRİŞ 8.2 HİDROGRAFIN ELEMANLARI

BÖLÜM-8 HİDROGRAF ANALİZİ 8.1 GİRİŞ 8.2 HİDROGRAFIN ELEMANLARI BÖLÜM-8 HİDROGRAF ANALİZİ 8.1 GİRİŞ Taşkınların ve kurak devrelerin incelenmesinde akımın zaman içinde değişimini göseren hidrografı bilmek gerekir. Bu bölümde oplam akış hacminin akarsuyun bir kesiinde

Detaylı

DAİRESEL HAREKET Katı Cisimlerin Dairesel Hareketi

DAİRESEL HAREKET Katı Cisimlerin Dairesel Hareketi BÖLÜM 1 DAİRESEL HAREKET 1. DAİRESEL HAREKET 1.1. Kaı Cisimlerin Dairesel Harekei Açısal Yer Değişim: Bir eksen erafında dönmeke olan bir cismin (eker ezgah mili, volan vb.) dönme ekisi ile bir iş yapılır.

Detaylı

İhracat ve İthalatın Ekonomik Büyüme Üzerindeki Etkisi: Türkiye Örneği

İhracat ve İthalatın Ekonomik Büyüme Üzerindeki Etkisi: Türkiye Örneği EGE AKADEMİK BAKIŞ / EGE ACADEMIC REVIEW Cil: 3 Sayı: 2 Nisan 203 ss. 8-94 İhraca ve İhalaın Ekonomik Büyüme Üzerindeki Ekisi: Türkiye Örneği The Effecs of Expors and Impors on Economic Growh: Turkey Case

Detaylı

C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 11, Sayı 1, 2010 141

C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 11, Sayı 1, 2010 141 C.Ü. İkisadi ve İdari Bilimler Dergisi, Cil 11, Sayı 1, 2010 141 BİR MALİYE POLİTİKASI ARACI OLARAK BORÇLANMA VE EKONOMİK BÜYÜME İLİŞKİSİ: TÜRKİYE ÖRNEĞİ (1990 2009) Hali ÇİÇEK *, Süleyman GÖZEGİR ** ve

Detaylı

TÜRKİYE EKONOMİ KURUMU. TARTIŞMA METNİ 2012/25 http ://www.tek.org.tr TÜRKİYE DE CARİ AÇIK TARTIŞMASI. Ercan Uygur

TÜRKİYE EKONOMİ KURUMU. TARTIŞMA METNİ 2012/25 http ://www.tek.org.tr TÜRKİYE DE CARİ AÇIK TARTIŞMASI. Ercan Uygur TÜRKİYE EKONOMİ KURUMU TARTIŞMA METNİ 202/25 hp ://www.ek.org.r TÜRKİYE DE CARİ AÇIK TARTIŞMASI Ercan Uygur Bu çalışma "GAP BÖLGESİNDE DIŞ TİCARET ve TARIM", başlığı ile Prof. Dr. Ercan UYGUR ve Prof.

Detaylı

Enerji Piyasası Reformlarının Elektrik Enerjisi Piyasasına Etkisi: EÜAŞ ve Ayrıcalıklı Şirketler Üzerine Bir Analiz 1

Enerji Piyasası Reformlarının Elektrik Enerjisi Piyasasına Etkisi: EÜAŞ ve Ayrıcalıklı Şirketler Üzerine Bir Analiz 1 YÖNETİM VE EKONOMİ Yıl:2010 Cil:17 Sayı:1 Celal Bayar Üniversiesi İ.İ.B.F. MANİSA Enerji Piyasası Reformlarının Elekrik Enerjisi Piyasasına Ekisi: EÜAŞ ve Ayrıcalıklı Şirkeler Üzerine Bir Analiz 1 Doç.

Detaylı

İSTATİSTİK ANABİLİM DALI

İSTATİSTİK ANABİLİM DALI ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Adnan KARAİBRAHİMOĞLU İNDEKS SAYILARIN KULLANIMI İSTATİSTİK ANABİLİM DALI ADANA, 27 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNDEKS

Detaylı

TÜRK EKONOMİSİNİN ENERJİ BAĞIMLILIĞI ÜZERİNE BİR EŞ-BÜTÜNLEŞME ANALİZİ A CO-INTEGRATION ANALYSIS ON THE ENERGY DEPENDENCY OF THE TURKISH ECONOMY

TÜRK EKONOMİSİNİN ENERJİ BAĞIMLILIĞI ÜZERİNE BİR EŞ-BÜTÜNLEŞME ANALİZİ A CO-INTEGRATION ANALYSIS ON THE ENERGY DEPENDENCY OF THE TURKISH ECONOMY Journal of Yasar Universiy 22 26(7) 4392-444 TÜRK EKONOMİSİNİN ENERJİ BAĞIMLILIĞI ÜZERİNE BİR EŞ-BÜTÜNLEŞME ANALİZİ A CO-INTEGRATION ANALYSIS ON THE ENERGY DEPENDENCY OF THE TURKISH ECONOMY M. Ali Bilginoğlu

Detaylı

Türkiye nin İthalat ve İhracat Bağımlılığı: Seçilmiş Ülke Örnekleri Üzerine Ampirik Bir Uygulama

Türkiye nin İthalat ve İhracat Bağımlılığı: Seçilmiş Ülke Örnekleri Üzerine Ampirik Bir Uygulama EGE AKADEMİK BAKIŞ / EGE ACADEMIC REVIEW Cil: 3 Sayı: 2 Nisan 203 ss. 9-208 Türkiye nin İhala ve İhraca Bağımlılığı: Seçilmiş Ülke Örnekleri Üzerine Ampirik Bir Uygulama Dependency of Impor and Expor of

Detaylı

Araştırma ve Para Politikası Genel Müdürlüğü Çalışma Tebliğ No:09/5

Araştırma ve Para Politikası Genel Müdürlüğü Çalışma Tebliğ No:09/5 Araşırma ve Para Poliikası Genel Müdürlüğü Çalışma Tebliğ No:09/5 Para Poliikası, Parasal Büyüklükler ve Küresel Mali Kriz Sonrası Gelişmeler K. Azim ÖZDEMİR Temmuz 2009 Türkiye Cumhuriye Merkez Bankası

Detaylı

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi * Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı * Elektronik Laboratuarı I

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi * Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı * Elektronik Laboratuarı I Karadeniz Teknik Üniversiesi Mühendislik Fakülesi * Elekrik-Elekronik Mühendisliği Bölümü Elekronik Anabilim alı * Elekronik Laborauarı I FET.Lİ KUETLENİİCİLE 1. eneyin Amacı FET Transisörlerle yapılan

Detaylı

DÖVİZ KURU POLİTİKALARI VE TÜRKİYE DE DÖVİZ KURU OYNAKLIĞININ ETKİLEŞİMLERİ

DÖVİZ KURU POLİTİKALARI VE TÜRKİYE DE DÖVİZ KURU OYNAKLIĞININ ETKİLEŞİMLERİ ARAŞTIRMA RAPORU (Kamuya Açık) DÖVİZ KURU POLİTİKALARI VE TÜRKİYE DE DÖVİZ KURU OYNAKLIĞININ ETKİLEŞİMLERİ DR. MUSTAFA ÖZÇAM BAŞUZMAN ARAŞTIRMA DAİRESİ 27.02.2004 İÇİNDEKİLER 1. GİRİŞ... 1 2. DÖVİZ KURU

Detaylı

TÜRKİYE DE REEL DÖVİZ KURU İLE KISA VE UZUN VADELİ SERMAYE HAREKETLERİ İLİŞKİSİ

TÜRKİYE DE REEL DÖVİZ KURU İLE KISA VE UZUN VADELİ SERMAYE HAREKETLERİ İLİŞKİSİ Marmara Üniversiesi İ.İ.B.F. Dergisi YIL 2007, CİLT XXII, SAYI 1 TÜRKİYE DE REEL DÖVİZ KURU İLE KISA VE UZUN VADELİ SERMAYE HAREKETLERİ İLİŞKİSİ Araş. Gör. Burcu KIRAN * Öze Bu çalışmada, reel döviz kuru

Detaylı

Türkiye de Dış Borçlanma-Ekonomik Büyüme İlişkisi: 1990-2013 Dönemi

Türkiye de Dış Borçlanma-Ekonomik Büyüme İlişkisi: 1990-2013 Dönemi Türkiye de Dış Borçlanma-Ekonomik Büyüme İlişkisi: 1990-2013 Dönemi Türkiye de Dış Borçlanma-Ekonomik Büyüme İlişkisi: 1990-2013 Dönemi Temel GÜRDAL Hakan YAVUZ Öz Bu çalışmada Türkiye de dış borçlanma

Detaylı

Türkiye de İktisadi Çıkarsama Üzerine Bir Açımlama: Sürprizler Gerçekten Kaçınılmaz mı?

Türkiye de İktisadi Çıkarsama Üzerine Bir Açımlama: Sürprizler Gerçekten Kaçınılmaz mı? Türkiye de İkisadi Çıkarsama Üzerine Bir Açımlama: Sürrizler Gerçeken Kaçınılmaz mı? Hazırlayan ve Sunan: Eren Ocakverdi* eren.ocakverdi@yaikredi.com.r Boğaziçi Üniversiesi Finans Mühendisliği 26 Ekim

Detaylı

Türkiye Ekonomisinde Enerji Tüketimi ve Ekonomik Büyüme

Türkiye Ekonomisinde Enerji Tüketimi ve Ekonomik Büyüme Türkiye Ekonomisinde Enerji Tükeimi ve Ekonomik Büyüme Mehme MUCUK * Doğan UYSAL ** Öze Genel olarak enerji, ekonomik ve endüsriyel kalkınma için önemli bir girdi kabul edilmekedir. Ancak enerjinin bazı

Detaylı

FAİZ ORANINDAKİ BİR ARTIŞ CARİ İŞLEMLER AÇIĞINI ARTIRIR MI?

FAİZ ORANINDAKİ BİR ARTIŞ CARİ İŞLEMLER AÇIĞINI ARTIRIR MI? FAİZ ORANINDAKİ BİR ARTIŞ CARİ İŞLEMLER AÇIĞINI ARTIRIR MI? Ehem ESEN, Zekeriya YILDIRIM, S. Faih KOSTAKOĞLU FAİZ ORANINDAKİ BİR ARTIŞ CARİ İŞLEMLER AÇIĞINI ARTIRIR MI? Ehem ESEN Yrd.Doç.Dr. Anadolu Üniversiesi,

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II DENEY 3 TEK BESLEMELİ İŞLEMSEL KUVVETLENDİRİCİLER

ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II DENEY 3 TEK BESLEMELİ İŞLEMSEL KUVVETLENDİRİCİLER T.. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN ELEKTRONİK DEVRELER LABORATUVARI II DENEY TEK BESLEMELİ İŞLEMSEL KUVVETLENDİRİİLER Deneyi Yapanlar Grubu Numara

Detaylı

Araşırma Makaleleri REEL DÖVİZ KURU BELİRSİZLİĞİ İ TİCARET PERFORMA SI A ETKİSİ: TÜRKİYE UYGULAMASI Erşan SEVER ÖZET Bu çalışmada reel döviz kuru belirsizliğinin Türkiye nin icare performansına ekisi araşırılmışır.

Detaylı

Cari İşlemler Açığının Sürdürülebilirliğinin Çoklu Yapısal Kırılmalı Eşbütünleşme Yöntemi ile Sınanması

Cari İşlemler Açığının Sürdürülebilirliğinin Çoklu Yapısal Kırılmalı Eşbütünleşme Yöntemi ile Sınanması Çukurova Üniversiesi İİBF Dergisi Cil:19. Sayı:2. Aralık 2015 ss.135-149 Cari İşlemler Açığının Sürdürülebilirliğinin Çoklu Yapısal Kırılmalı Eşbüünleşme Yönemi ile Tesing he Susainabiliy of Curren Accoun

Detaylı

Discussion Paper, Turkish Economic Association, No. 2008/10

Discussion Paper, Turkish Economic Association, No. 2008/10 econsor www.econsor.eu Der Open-Access-Publikaionsserver der ZBW Leibniz-Informaionszenrum Wirschaf he Open Access Publicaion Server of he ZBW Leibniz Informaion Cenre for Economics Alp, Elcin Aykac Working

Detaylı

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel

Detaylı

TÜRKİYE EKONOMİSİ İÇİN ALTERNATİF ÇEKİRDEK ENFLASYON ÖLÇÜTLERİ

TÜRKİYE EKONOMİSİ İÇİN ALTERNATİF ÇEKİRDEK ENFLASYON ÖLÇÜTLERİ TÜRKİYE EKONOMİSİ İÇİN ALTERNATİF ÇEKİRDEK ENFLASYON ÖLÇÜTLERİ Serve CEYLAN (*) Öze: Lieraürde bir çok alernaif çekirdek enflasyon ölçüm yönemi vardır. Bu durum poliika uygulamaları için kullanılacak çekirdek

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

12. Ders Sistem-Model-Simülasyon Güvenilirlik Analizi ve Sistem Güvenilirliği

12. Ders Sistem-Model-Simülasyon Güvenilirlik Analizi ve Sistem Güvenilirliği . Ders Sisem-Model-Simülasyon Güvenilirlik Analizi ve Sisem Güvenilirliği Sisem-Model-Simülasyon Kaynak:F.Özürk ve L. Özbek,, Maemaiksel Modelleme ve Simülasyon, sayfa -9. Aklımız ile gerçek dünyadaki

Detaylı

ÜSTEL DÜZLEŞTİRME YÖNTEMİ

ÜSTEL DÜZLEŞTİRME YÖNTEMİ ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik

Detaylı

BANKA KREDİ PORTFÖYLERİNİN YÖNETİMİNDE ÖDEMEME RİSKİ ANALİZİ: KALMAN FİLTRESİNE DAYANAN ALTERNATİF BİR YÖNTEM ÖNERİSİ

BANKA KREDİ PORTFÖYLERİNİN YÖNETİMİNDE ÖDEMEME RİSKİ ANALİZİ: KALMAN FİLTRESİNE DAYANAN ALTERNATİF BİR YÖNTEM ÖNERİSİ BANKA KREDİ PORTFÖLERİNİN ÖNETİMİNDE ÖDEMEME RİSKİ ANALİZİ: KALMAN FİLTRESİNE DAANAN ALTERNATİF BİR ÖNTEM ÖNERİSİ K. Bau TUNA * ÖZ Ödememe riski banka kredilerini ve bankaların kredi porföylerini ekiler.

Detaylı

TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI

TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI KOŞULLU VARYANS MODELLERİ: FİNANSAL ZAMAN SERİLERİ ÜZERİNE UYGULAMA Arzu KÖKCEN YÜKSEK LİSANS TEZİ ADANA-00

Detaylı