MAT223 AYRIK MATEMATİK

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "MAT223 AYRIK MATEMATİK"

Transkript

1 MAT223 AYRIK MATEMATİK Geometride Kombinatorik 11. Bölüm Doç. Dr. Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR Güz Dönemi

2 Köşegenlerin Arakesiti Geometride Kombinatorik Köşegenlerin Arakesiti Geometri ve Kombinatoriğin birbiri ile bağlantısı nedir? Kombinatoryal yöntemler yardımıyla çözülen birçok geometri sorusu olduğu gibi, kombinatoryal problemler de geometri yardımıyla çözülebilir. 2/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

3 Köşegenlerin Arakesiti Geometride Kombinatorik Köşegenlerin Arakesiti Geometri ve Kombinatoriğin birbiri ile bağlantısı nedir? Kombinatoryal yöntemler yardımıyla çözülen birçok geometri sorusu olduğu gibi, kombinatoryal problemler de geometri yardımıyla çözülebilir. Konveks (Tüm iç açıları 180 küçük) 2/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

4 Köşegenlerin Arakesiti Geometride Kombinatorik Köşegenlerin Arakesiti Geometri ve Kombinatoriğin birbiri ile bağlantısı nedir? Kombinatoryal yöntemler yardımıyla çözülen birçok geometri sorusu olduğu gibi, kombinatoryal problemler de geometri yardımıyla çözülebilir. Konveks (Tüm iç açıları 180 küçük) Konveks değil 2/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

5 Köşegenlerin Arakesiti Geometride Kombinatorik Köşegenlerin Arakesiti Geometri ve Kombinatoriğin birbiri ile bağlantısı nedir? Kombinatoryal yöntemler yardımıyla çözülen birçok geometri sorusu olduğu gibi, kombinatoryal problemler de geometri yardımıyla çözülebilir. Konveks (Tüm iç açıları 180 küçük) n köşesi olan konveks bir çokgeni ele alalım: Konveks değil 2/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

6 Köşegenlerin Arakesiti Geometride Kombinatorik Köşegenlerin Arakesiti Geometri ve Kombinatoriğin birbiri ile bağlantısı nedir? Kombinatoryal yöntemler yardımıyla çözülen birçok geometri sorusu olduğu gibi, kombinatoryal problemler de geometri yardımıyla çözülebilir. Konveks (Tüm iç açıları 180 küçük) n köşesi olan konveks bir çokgeni ele alalım: Konveks değil 2/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

7 Köşegenlerin Arakesiti Geometride Kombinatorik Köşegenlerin Arakesiti Geometri ve Kombinatoriğin birbiri ile bağlantısı nedir? Kombinatoryal yöntemler yardımıyla çözülen birçok geometri sorusu olduğu gibi, kombinatoryal problemler de geometri yardımıyla çözülebilir. Konveks (Tüm iç açıları 180 küçük) n köşesi olan konveks bir çokgeni ele alalım: Soru Konveks değil Bu çokgenin köşegenleri kaç farklı noktada kesişir? 2/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

8 Köşegenlerin Arakesiti Geometride Kombinatorik Köşegenlerin Arakesiti Geometri ve Kombinatoriğin birbiri ile bağlantısı nedir? Kombinatoryal yöntemler yardımıyla çözülen birçok geometri sorusu olduğu gibi, kombinatoryal problemler de geometri yardımıyla çözülebilir. Konveks (Tüm iç açıları 180 küçük) n köşesi olan konveks bir çokgeni ele alalım: Soru Konveks değil Bu çokgenin köşegenleri kaç farklı noktada kesişir? Köşeleri kesişim noktası olarak almıyoruz ve çokgenin dışında kesişen köşegenleri saymıyoruz. 2/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

9 Köşegenlerin Arakesiti İlk akla gelen yöntem her bir köşegenin üzerindeki kesişim noktalarını sayıp, toplamak olacaktır. 3/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

10 Köşegenlerin Arakesiti İlk akla gelen yöntem her bir köşegenin üzerindeki kesişim noktalarını sayıp, toplamak olacaktır. Örneğin, altıgen için inceleyecek olursak, C D B E İki tip köşegen var: A F 3/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

11 Köşegenlerin Arakesiti İlk akla gelen yöntem her bir köşegenin üzerindeki kesişim noktalarını sayıp, toplamak olacaktır. Örneğin, altıgen için inceleyecek olursak, C D B E İki tip köşegen var: A AC köşegeni gibi Bu köşegenden 6 tane olduğundan ve her biri 3 kesişim noktası bulundurduğundan 6 3 = 18 kesişim noktası F 3/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

12 Köşegenlerin Arakesiti İlk akla gelen yöntem her bir köşegenin üzerindeki kesişim noktalarını sayıp, toplamak olacaktır. Örneğin, altıgen için inceleyecek olursak, C D B E İki tip köşegen var: A AC köşegeni gibi Bu köşegenden 6 tane olduğundan ve her biri 3 kesişim noktası bulundurduğundan 6 3 = 18 kesişim noktası AD köşegeni gibi Bu köşegenden 3 tane olduğundan ve her birinin üzerinde 4 kesişim noktası olduğundan 3 4 = 12 kesişim noktası F 3/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

13 Köşegenlerin Arakesiti İlk akla gelen yöntem her bir köşegenin üzerindeki kesişim noktalarını sayıp, toplamak olacaktır. Örneğin, altıgen için inceleyecek olursak, C D B E İki tip köşegen var: A AC köşegeni gibi Bu köşegenden 6 tane olduğundan ve her biri 3 kesişim noktası bulundurduğundan 6 3 = 18 kesişim noktası AD köşegeni gibi Bu köşegenden 3 tane olduğundan ve her birinin üzerinde 4 kesişim noktası olduğundan 3 4 = 12 kesişim noktası Bu iki sayıyı toplarsak, = 30 olur. F 3/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

14 Köşegenlerin Arakesiti İlk akla gelen yöntem her bir köşegenin üzerindeki kesişim noktalarını sayıp, toplamak olacaktır. Örneğin, altıgen için inceleyecek olursak, C D B E İki tip köşegen var: A AC köşegeni gibi Bu köşegenden 6 tane olduğundan ve her biri 3 kesişim noktası bulundurduğundan 6 3 = 18 kesişim noktası AD köşegeni gibi Bu köşegenden 3 tane olduğundan ve her birinin üzerinde 4 kesişim noktası olduğundan 3 4 = 12 kesişim noktası Bu iki sayıyı toplarsak, = 30 olur. Ancak, her noktayı iki kez saydık. O halde cevap 30/2 = 15 olur. F 3/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

15 Köşegenlerin Arakesiti İlk akla gelen yöntem her bir köşegenin üzerindeki kesişim noktalarını sayıp, toplamak olacaktır. Örneğin, altıgen için inceleyecek olursak, C D B E İki tip köşegen var: A AC köşegeni gibi Bu köşegenden 6 tane olduğundan ve her biri 3 kesişim noktası bulundurduğundan 6 3 = 18 kesişim noktası AD köşegeni gibi Bu köşegenden 3 tane olduğundan ve her birinin üzerinde 4 kesişim noktası olduğundan 3 4 = 12 kesişim noktası Bu iki sayıyı toplarsak, = 30 olur. Ancak, her noktayı iki kez saydık. O halde cevap 30/2 = 15 olur. Bu yöntem herhangi bir n sayısı için genelleştirilmeye uygun değil! F 3/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

16 Köşegenlerin Arakesiti Bir başka yöntem: 4/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

17 Geometride Kombinatorik Köşegenlerin Arakesiti Bir başka yöntem: B C A D F E Köşegenlerin kesişim noktalarını köşegenlerin uç noktaları ile adlandıralım. 4/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

18 Geometride Kombinatorik Köşegenlerin Arakesiti Bir başka yöntem: B C A D F E Köşegenlerin kesişim noktalarını köşegenlerin uç noktaları ile adlandıralım. Örneğin, AC ve BD köşegenlerinin kesişim noktasını ABCD ile AD ve CE köşegenlerinin kesişim noktasını ise ACDE ile adlandıralım. 4/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

19 Geometride Kombinatorik Köşegenlerin Arakesiti Bir başka yöntem: B C A D F E Köşegenlerin kesişim noktalarını köşegenlerin uç noktaları ile adlandıralım. Örneğin, AC ve BD köşegenlerinin kesişim noktasını ABCD ile AD ve CE köşegenlerinin kesişim noktasını ise ACDE ile adlandıralım. Bu adlandırma ile farklı kesişim noktaları farklı adlandırmalara sahip olur. Ayrıca, farklı 4 harf ile yapılan her adlandırma da bize bir kesişim noktası verir. 4/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

20 Geometride Kombinatorik Köşegenlerin Arakesiti Bir başka yöntem: B C A D F E Köşegenlerin kesişim noktalarını köşegenlerin uç noktaları ile adlandıralım. Örneğin, AC ve BD köşegenlerinin kesişim noktasını ABCD ile AD ve CE köşegenlerinin kesişim noktasını ise ACDE ile adlandıralım. Bu adlandırma ile farklı kesişim noktaları farklı adlandırmalara sahip olur. Ayrıca, farklı 4 harf ile yapılan her adlandırma da bize bir kesişim noktası verir. Yani kesişim noktaları ile 4 harf kullanılarak yapılan adlandırmalar arasında birebir bir eşleme vardır. 4/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

21 Geometride Kombinatorik Köşegenlerin Arakesiti Bir başka yöntem: B C A D F E Köşegenlerin kesişim noktalarını köşegenlerin uç noktaları ile adlandıralım. Örneğin, AC ve BD köşegenlerinin kesişim noktasını ABCD ile AD ve CE köşegenlerinin kesişim noktasını ise ACDE ile adlandıralım. Bu adlandırma ile farklı kesişim noktaları farklı adlandırmalara sahip olur. Ayrıca, farklı 4 harf ile yapılan her adlandırma da bize bir kesişim noktası verir. Yani kesişim noktaları ile 4 harf kullanılarak yapılan adlandırmalar arasında birebir bir eşleme vardır. n farklı harften 4 harf ( n 4) farklı şekilde seçilebileceğinden kesişim noktalarının sayısı ( n 4) bulunur. 4/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

22 Bölgelerin Sayısı Geometride Kombinatorik Bölgelerin Sayısı Soru Düzleme çizilen n farklı doğru düzlemi kaç bölgeye ayırır? 5/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

23 Bölgelerin Sayısı Geometride Kombinatorik Bölgelerin Sayısı Soru Düzleme çizilen n farklı doğru düzlemi kaç bölgeye ayırır? 1 2 n = 1 ise 2 bölge 5/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

24 Bölgelerin Sayısı Geometride Kombinatorik Bölgelerin Sayısı Soru Düzleme çizilen n farklı doğru düzlemi kaç bölgeye ayırır? 1 2 n = 1 ise 2 bölge /20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

25 Bölgelerin Sayısı Geometride Kombinatorik Bölgelerin Sayısı Soru Düzleme çizilen n farklı doğru düzlemi kaç bölgeye ayırır? 1 2 n = 1 ise 2 bölge n = 2 ise 4 ya da 3 bölge 5/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

26 n = 3 ise Geometride Kombinatorik Doğrular aynı noktada kesişmiyorsa, Bölgelerin Sayısı /20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

27 n = 3 ise Geometride Kombinatorik Doğrular aynı noktada kesişmiyorsa, Bölgelerin Sayısı Üçü aynı noktada kesişiyorsa, /20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

28 n = 3 ise Geometride Kombinatorik Doğrular aynı noktada kesişmiyorsa, Bölgelerin Sayısı Üçü aynı noktada kesişiyorsa, Üçü paralel ise, /20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

29 Bölgelerin Sayısı Uyarı Bundan sonra herhangi ikisi paralel olmayan ve herhangi üçü aynı noktada kesişmeyen doğrularla ilgileneceğiz. 7/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

30 Bölgelerin Sayısı Uyarı Bundan sonra herhangi ikisi paralel olmayan ve herhangi üçü aynı noktada kesişmeyen doğrularla ilgileneceğiz. Buna göre n = 4 ise, bölge elde edilir. 7/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

31 Bölgelerin Sayısı Tüm bu değerleri bir tabloda toplayacak olursak, 8/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

32 Bölgelerin Sayısı Tüm bu değerleri bir tabloda toplayacak olursak, n Bölge Sayısı ? 8/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

33 Bölgelerin Sayısı Tüm bu değerleri bir tabloda toplayacak olursak, n Bölge Sayısı ? İddia Düzlemde herhangi ikisi paralel olmayan ve herhangi üçü aynı noktada kesişmeyen n 1 doğru bulunsun. Yeni bir doğru daha çizersek (yine herhangi iki doğru paralel olmayacak ve herhangi üçü aynı noktada kesişmeyecek şekilde) doğruların belirlediği bölgelerin sayısı n kadar artar. 8/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

34 Bölgelerin Sayısı n. doğru n 1 doğru 9/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

35 Bölgelerin Sayısı n. doğru n 1 doğru n 1 doğru varken yeni bir doğru daha çizelim. 9/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

36 Bölgelerin Sayısı n. doğru n 1 doğru n 1 doğru varken yeni bir doğru daha çizelim. Bu yeni çizilen doğru geçtiği her bölgeyi iki parçaya ayıracaktır. 9/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

37 Bölgelerin Sayısı n. doğru n 1 doğru n 1 doğru varken yeni bir doğru daha çizelim. Bu yeni çizilen doğru geçtiği her bölgeyi iki parçaya ayıracaktır. O halde yeni eklenen bölge sayısı bu yeni çizilen doğrunun kestiği bölge sayısı kadar olacaktır. 9/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

38 Bölgelerin Sayısı n. doğru n 1 doğru n 1 doğru varken yeni bir doğru daha çizelim. Bu yeni çizilen doğru geçtiği her bölgeyi iki parçaya ayıracaktır. O halde yeni eklenen bölge sayısı bu yeni çizilen doğrunun kestiği bölge sayısı kadar olacaktır. Yeni çizilen doğru kaç bölgeyi keser? 9/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

39 Bölgelerin Sayısı n. doğru n 1 doğru Yeni çizilen doğrunun kaç bölge ile kesiştiğini bulalım: 10/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

40 Bölgelerin Sayısı n. doğru A n 1 doğru Yeni çizilen doğrunun kaç bölge ile kesiştiğini bulalım: Doğrunun üzerinde çok uzaklardan başlayarak yürüdüğümüzü düşünelim. 10/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

41 Bölgelerin Sayısı n. doğru A n 1 doğru Yeni çizilen doğrunun kaç bölge ile kesiştiğini bulalım: Doğrunun üzerinde çok uzaklardan başlayarak yürüdüğümüzü düşünelim. Karşılaştığımız bir doğrunun üzerinden atlayınca yeni bir bölgeye ulaşmış oluruz. 10/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

42 Bölgelerin Sayısı n. doğru A n 1 doğru Yeni çizilen doğrunun kaç bölge ile kesiştiğini bulalım: Doğrunun üzerinde çok uzaklardan başlayarak yürüdüğümüzü düşünelim. Karşılaştığımız bir doğrunun üzerinden atlayınca yeni bir bölgeye ulaşmış oluruz. Bu doğrulardan n 1 tane olduğuna göre n 1 tane bölgeden geçeceğiz demektir. 10/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

43 Bölgelerin Sayısı n. doğru A n 1 doğru Yeni çizilen doğrunun kaç bölge ile kesiştiğini bulalım: Doğrunun üzerinde çok uzaklardan başlayarak yürüdüğümüzü düşünelim. Karşılaştığımız bir doğrunun üzerinden atlayınca yeni bir bölgeye ulaşmış oluruz. Bu doğrulardan n 1 tane olduğuna göre n 1 tane bölgeden geçeceğiz demektir. İlk başladığımız bölgeyi de hesaba katarsak, toplam n bölge görmüş oluruz. 10/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

44 Bölgelerin Sayısı Böylece artık başlangıçta sorduğumuz sorunun cevabını, yani bölge sayısını verebiliriz: 11/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

45 Bölgelerin Sayısı Böylece artık başlangıçta sorduğumuz sorunun cevabını, yani bölge sayısını verebiliriz: 0 doğru için 1 bölgemizin olduğunu düşünürsek, bölge sayısına her seferinde 1, 2, 3,..., n bölge ekleneceğine göre cevap 11/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

46 Bölgelerin Sayısı Böylece artık başlangıçta sorduğumuz sorunun cevabını, yani bölge sayısını verebiliriz: 0 doğru için 1 bölgemizin olduğunu düşünürsek, bölge sayısına her seferinde 1, 2, 3,..., n bölge ekleneceğine göre cevap olur. 1+( n) = 1+ n(n+1) 2 11/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

47 Bölgelerin Sayısı Böylece artık başlangıçta sorduğumuz sorunun cevabını, yani bölge sayısını verebiliriz: 0 doğru için 1 bölgemizin olduğunu düşünürsek, bölge sayısına her seferinde 1, 2, 3,..., n bölge ekleneceğine göre cevap 1+( n) = 1+ n(n+1) 2 olur. Bu sonucu bir teorem şeklinde ifade edelim. 11/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

48 Bölgelerin Sayısı Böylece artık başlangıçta sorduğumuz sorunun cevabını, yani bölge sayısını verebiliriz: 0 doğru için 1 bölgemizin olduğunu düşünürsek, bölge sayısına her seferinde 1, 2, 3,..., n bölge ekleneceğine göre cevap 1+( n) = 1+ n(n+1) 2 olur. Bu sonucu bir teorem şeklinde ifade edelim. Teorem Herhangi ikisi paralel olmayan ve herhangi üçü aynı noktada kesişmeyen n farklı doğru düzlemi 1+ n(n+1) 2 bölgeye ayırır. 11/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

49 Bölgelerin Sayısı Kanıt. Tümevarım yöntemi ve yukarıda anlatılanlar yardımıyla kanıtı kolayca yapabiliriz. 12/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

50 Bölgelerin Sayısı Kanıt. Tümevarım yöntemi ve yukarıda anlatılanlar yardımıyla kanıtı kolayca yapabiliriz. n = 1 için doğru olduğu açık. 12/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

51 Bölgelerin Sayısı Kanıt. Tümevarım yöntemi ve yukarıda anlatılanlar yardımıyla kanıtı kolayca yapabiliriz. n = 1 için doğru olduğu açık. n 1 için doğru olduğunu kabul edelim. 12/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

52 Bölgelerin Sayısı Kanıt. Tümevarım yöntemi ve yukarıda anlatılanlar yardımıyla kanıtı kolayca yapabiliriz. n = 1 için doğru olduğu açık. n 1 için doğru olduğunu kabul edelim. n > 1 için de doğru olduğunu kanıtlayalım. 12/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

53 Bölgelerin Sayısı Kanıt. Tümevarım yöntemi ve yukarıda anlatılanlar yardımıyla kanıtı kolayca yapabiliriz. n = 1 için doğru olduğu açık. n 1 için doğru olduğunu kabul edelim. n > 1 için de doğru olduğunu kanıtlayalım. Doğrulardan bir tanesini çıkaralım. 12/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

54 Bölgelerin Sayısı Kanıt. Tümevarım yöntemi ve yukarıda anlatılanlar yardımıyla kanıtı kolayca yapabiliriz. n = 1 için doğru olduğu açık. n 1 için doğru olduğunu kabul edelim. n > 1 için de doğru olduğunu kanıtlayalım. Doğrulardan bir tanesini çıkaralım. Bu durumda tümevarım hipotezinden 1+(n 1)n/2 tane bölge vardır. 12/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

55 Bölgelerin Sayısı Kanıt. Tümevarım yöntemi ve yukarıda anlatılanlar yardımıyla kanıtı kolayca yapabiliriz. n = 1 için doğru olduğu açık. n 1 için doğru olduğunu kabul edelim. n > 1 için de doğru olduğunu kanıtlayalım. Doğrulardan bir tanesini çıkaralım. Bu durumda tümevarım hipotezinden 1+(n 1)n/2 tane bölge vardır. Şimdi çıkardığımız doğruyu tekrar eklersek, eklenen doğru bu bölgelerden n tanesi ikişer bölgeye ayıracaktır. 12/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

56 Bölgelerin Sayısı Kanıt. Tümevarım yöntemi ve yukarıda anlatılanlar yardımıyla kanıtı kolayca yapabiliriz. n = 1 için doğru olduğu açık. n 1 için doğru olduğunu kabul edelim. n > 1 için de doğru olduğunu kanıtlayalım. Doğrulardan bir tanesini çıkaralım. Bu durumda tümevarım hipotezinden 1+(n 1)n/2 tane bölge vardır. Şimdi çıkardığımız doğruyu tekrar eklersek, eklenen doğru bu bölgelerden n tanesi ikişer bölgeye ayıracaktır. Yani n bölge daha gelecektir (yukarıda yazılanları tekrar okuyunuz). Böylece toplam bölge sayısı 12/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

57 Bölgelerin Sayısı Kanıt. Tümevarım yöntemi ve yukarıda anlatılanlar yardımıyla kanıtı kolayca yapabiliriz. n = 1 için doğru olduğu açık. n 1 için doğru olduğunu kabul edelim. n > 1 için de doğru olduğunu kanıtlayalım. Doğrulardan bir tanesini çıkaralım. Bu durumda tümevarım hipotezinden 1+(n 1)n/2 tane bölge vardır. Şimdi çıkardığımız doğruyu tekrar eklersek, eklenen doğru bu bölgelerden n tanesi ikişer bölgeye ayıracaktır. Yani n bölge daha gelecektir (yukarıda yazılanları tekrar okuyunuz). Böylece toplam bölge sayısı olur. 1+ (n 1)n 2 + n = 1+ n(n+1) 2 12/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

58 Bölgelerin Sayısı Bir başka kanıt daha verelim: n tane doğrunun doğruların tüm kesişim noktalarını içine alacak genişlikte bir yazı tahtasına çizildiğini düşünelim ve doğrulardan hiç birisinin yatay olmadığını kabul edelim (aksi halde tahtayı biraz döndürebiliriz). 13/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

59 Bölgelerin Sayısı Bir başka kanıt daha verelim: n tane doğrunun doğruların tüm kesişim noktalarını içine alacak genişlikte bir yazı tahtasına çizildiğini düşünelim ve doğrulardan hiç birisinin yatay olmadığını kabul edelim (aksi halde tahtayı biraz döndürebiliriz). Ayrıca, yazı tahtasının, tüm doğruların tahtanın alt kenarı ile kesişecek kadar geniş olduğunu kabul edelim. 13/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

60 Bölgelerin Sayısı Bir başka kanıt daha verelim: n tane doğrunun doğruların tüm kesişim noktalarını içine alacak genişlikte bir yazı tahtasına çizildiğini düşünelim ve doğrulardan hiç birisinin yatay olmadığını kabul edelim (aksi halde tahtayı biraz döndürebiliriz). Ayrıca, yazı tahtasının, tüm doğruların tahtanın alt kenarı ile kesişecek kadar geniş olduğunu kabul edelim. Son olarak, yazı tahtasının sol alt köşesinin biraz daha aşağıda olduğunu varsayalım (tahtayı sağdan biraz yukarı kaldırıyoruz). 13/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

61 Geometride Kombinatorik Bölgelerin Sayısı Tahtanın üzerindeki her bir bölgenin yere en yakın olduğu noktayı ele alalım. Tüm bölgeler sınırlı ve doğrular yere paralel olmadığından her bölgenin bu şekilde bir tek noktası vardır. 14/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

62 Geometride Kombinatorik Bölgelerin Sayısı Tahtanın üzerindeki her bir bölgenin yere en yakın olduğu noktayı ele alalım. Tüm bölgeler sınırlı ve doğrular yere paralel olmadığından her bölgenin bu şekilde bir tek noktası vardır. Yere en yakın nokta ya iki doğrunun kesişim noktası, ya bir doğru ile tahtanın alt kısmının kesişim noktası, ya da tahtanın sol alt köşesi olabilir. 14/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

63 Geometride Kombinatorik Bölgelerin Sayısı Tahtanın üzerindeki her bir bölgenin yere en yakın olduğu noktayı ele alalım. Tüm bölgeler sınırlı ve doğrular yere paralel olmadığından her bölgenin bu şekilde bir tek noktası vardır. Yere en yakın nokta ya iki doğrunun kesişim noktası, ya bir doğru ile tahtanın alt kısmının kesişim noktası, ya da tahtanın sol alt köşesi olabilir. Ayrıca, her nokta sadece bir tek bölge için yere en yakın nokta olabilir. 14/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

64 Geometride Kombinatorik Bölgelerin Sayısı Tahtanın üzerindeki her bir bölgenin yere en yakın olduğu noktayı ele alalım. Tüm bölgeler sınırlı ve doğrular yere paralel olmadığından her bölgenin bu şekilde bir tek noktası vardır. Yere en yakın nokta ya iki doğrunun kesişim noktası, ya bir doğru ile tahtanın alt kısmının kesişim noktası, ya da tahtanın sol alt köşesi olabilir. Ayrıca, her nokta sadece bir tek bölge için yere en yakın nokta olabilir. O halde bu tür noktaları sayarsak tüm bölgelerin sayısını da bulmuş oluruz. 14/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

65 Geometride Kombinatorik Bölgelerin Sayısı Tahtanın üzerindeki her bir bölgenin yere en yakın olduğu noktayı ele alalım. Tüm bölgeler sınırlı ve doğrular yere paralel olmadığından her bölgenin bu şekilde bir tek noktası vardır. Yere en yakın nokta ya iki doğrunun kesişim noktası, ya bir doğru ile tahtanın alt kısmının kesişim noktası, ya da tahtanın sol alt köşesi olabilir. Ayrıca, her nokta sadece bir tek bölge için yere en yakın nokta olabilir. O halde bu tür noktaları sayarsak tüm bölgelerin sayısını da bulmuş oluruz. 1 }{{} sol alt köşe 14/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

66 Geometride Kombinatorik Bölgelerin Sayısı Tahtanın üzerindeki her bir bölgenin yere en yakın olduğu noktayı ele alalım. Tüm bölgeler sınırlı ve doğrular yere paralel olmadığından her bölgenin bu şekilde bir tek noktası vardır. Yere en yakın nokta ya iki doğrunun kesişim noktası, ya bir doğru ile tahtanın alt kısmının kesişim noktası, ya da tahtanın sol alt köşesi olabilir. Ayrıca, her nokta sadece bir tek bölge için yere en yakın nokta olabilir. O halde bu tür noktaları sayarsak tüm bölgelerin sayısını da bulmuş oluruz. 1 }{{} sol alt köşe + }{{} n alttaki noktalar 14/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

67 Geometride Kombinatorik Bölgelerin Sayısı Tahtanın üzerindeki her bir bölgenin yere en yakın olduğu noktayı ele alalım. Tüm bölgeler sınırlı ve doğrular yere paralel olmadığından her bölgenin bu şekilde bir tek noktası vardır. Yere en yakın nokta ya iki doğrunun kesişim noktası, ya bir doğru ile tahtanın alt kısmının kesişim noktası, ya da tahtanın sol alt köşesi olabilir. Ayrıca, her nokta sadece bir tek bölge için yere en yakın nokta olabilir. O halde bu tür noktaları sayarsak tüm bölgelerin sayısını da bulmuş oluruz. 1 }{{} sol alt köşe ( ) n n! + }{{} n + = 1+n+ 2 (n 2)!2! alttaki noktalar iki doğrunun }{{} arakesiti = 1+ n(n+1) 2 14/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

68 Mutlu Son Problemi Geometride Kombinatorik Konveks Çokgenler Mutlu Son Problemi (Happy End Problem): Bu problem György Szekeres ile Ester Klein in evliliğine yol açtığı için Paul Erdös tarafından bu şekilde adlandırılmıştır. 15/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

69 Mutlu Son Problemi Geometride Kombinatorik Konveks Çokgenler Mutlu Son Problemi (Happy End Problem): Bu problem György Szekeres ile Ester Klein in evliliğine yol açtığı için Paul Erdös tarafından bu şekilde adlandırılmıştır. İddia Düzlemde herhangi üçü aynı doğru üzerinde olmayan keyfi beş nokta verildiğinde bu noktalardan konveks dörtgen elde edilecek şekilde dört nokta seçilebilir. 15/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

70 Mutlu Son Problemi Geometride Kombinatorik Konveks Çokgenler Mutlu Son Problemi (Happy End Problem): Bu problem György Szekeres ile Ester Klein in evliliğine yol açtığı için Paul Erdös tarafından bu şekilde adlandırılmıştır. İddia Düzlemde herhangi üçü aynı doğru üzerinde olmayan keyfi beş nokta verildiğinde bu noktalardan konveks dörtgen elde edilecek şekilde dört nokta seçilebilir. Eğer bir dörtgenin köşegenleri dörtgenin içinde kesişiyorsa bu dörtgene konveks dörtgen diyeceğiz. Konveks 15/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

71 Mutlu Son Problemi Geometride Kombinatorik Konveks Çokgenler Mutlu Son Problemi (Happy End Problem): Bu problem György Szekeres ile Ester Klein in evliliğine yol açtığı için Paul Erdös tarafından bu şekilde adlandırılmıştır. İddia Düzlemde herhangi üçü aynı doğru üzerinde olmayan keyfi beş nokta verildiğinde bu noktalardan konveks dörtgen elde edilecek şekilde dört nokta seçilebilir. Eğer bir dörtgenin köşegenleri dörtgenin içinde kesişiyorsa bu dörtgene konveks dörtgen diyeceğiz. Konveks Konveks değil 15/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

72 Konveks Zarf Geometride Kombinatorik Konveks Çokgenler Düzlemde n tane nokta verilmiş olsun. 16/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

73 Konveks Zarf Geometride Kombinatorik Konveks Çokgenler Düzlemde n tane nokta verilmiş olsun. Bu noktaları düzleme çakılmış birer çivi gibi düşünelim ve bu çivilerin etrafını bir lastik bant ile çevirelim. 16/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

74 Konveks Zarf Geometride Kombinatorik Konveks Çokgenler Düzlemde n tane nokta verilmiş olsun. Bu noktaları düzleme çakılmış birer çivi gibi düşünelim ve bu çivilerin etrafını bir lastik bant ile çevirelim. Bu durumda aşağıdaki şekildeki gibi konveks bir çokgen elde ederiz. Bu konveks çokgene verilen noktaların konveks zarfı denir. 16/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

75 Konveks Zarf Geometride Kombinatorik Konveks Çokgenler Düzlemde n tane nokta verilmiş olsun. Bu noktaları düzleme çakılmış birer çivi gibi düşünelim ve bu çivilerin etrafını bir lastik bant ile çevirelim. Bu durumda aşağıdaki şekildeki gibi konveks bir çokgen elde ederiz. Bu konveks çokgene verilen noktaların konveks zarfı denir. Verilen 8 noktanın konveks zarfı 16/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

76 Konveks Çokgenler Şimdi verilen iddianın doğruluğunu araştıralım. 17/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

77 Geometride Kombinatorik Konveks Çokgenler Şimdi verilen iddianın doğruluğunu araştıralım. Beş nokta verildiğinde bu beş noktanın konveks zarfı Beşgen olabilir. Bu durumda hangi dört nokta seçilirse seçilsin bir dörtgen elde edilir ve iddia doğru olur. 17/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

78 Geometride Kombinatorik Konveks Çokgenler Şimdi verilen iddianın doğruluğunu araştıralım. Beş nokta verildiğinde bu beş noktanın konveks zarfı Beşgen olabilir. Bu durumda hangi dört nokta seçilirse seçilsin bir dörtgen elde edilir ve iddia doğru olur. Dörtgen olabilir. O zaman bu dörtgen istenen dörtgen olarak seçilebilir yine iddia doğru olur. 17/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

79 Geometride Kombinatorik Konveks Çokgenler Şimdi verilen iddianın doğruluğunu araştıralım. Beş nokta verildiğinde bu beş noktanın konveks zarfı Beşgen olabilir. Bu durumda hangi dört nokta seçilirse seçilsin bir dörtgen elde edilir ve iddia doğru olur. Dörtgen olabilir. O zaman bu dörtgen istenen dörtgen olarak seçilebilir yine iddia doğru olur. Üçgen olabilir. Bu üçgenin köşelerini yanda olduğu gibi A, B ve C harfleri ile gösterelim. Diğer iki nokta ise üçgenin içinde yer almak zorundadır bu noktaları da D ve E ile gösterelim. D ve E noktalarından geçen doğru üçgeni iki noktada kesecektir (genelliği bozmaksızın üçgenin AB ve AC kenarlarını kestiğini kabul edelim) dolayısıyla B, C, D ve E noktaları bir konveks dörtgen oluşturur. İddia yine doğrudur. B A D E 17/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi C

80 Konveks Çokgenler Konveks dörtgen oluşturmak için beş noktanın yeterli olduğunu gördük. Peki konveks beşgen için durum nedir? 18/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

81 Konveks Çokgenler Konveks dörtgen oluşturmak için beş noktanın yeterli olduğunu gördük. Peki konveks beşgen için durum nedir? İddia Düzlemde herhangi üçü aynı doğru üzerinde olmayan dokuz nokta verildiğinde bu noktalardan konveks beşgen oluşturacak şekilde beş nokta seçilebilir. 18/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

82 Konveks Çokgenler Konveks dörtgen oluşturmak için beş noktanın yeterli olduğunu gördük. Peki konveks beşgen için durum nedir? İddia Düzlemde herhangi üçü aynı doğru üzerinde olmayan dokuz nokta verildiğinde bu noktalardan konveks beşgen oluşturacak şekilde beş nokta seçilebilir. Kanıt: Ödev! 18/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

83 Konveks Çokgenler Konveks dörtgen oluşturmak için beş noktanın yeterli olduğunu gördük. Peki konveks beşgen için durum nedir? İddia Düzlemde herhangi üçü aynı doğru üzerinde olmayan dokuz nokta verildiğinde bu noktalardan konveks beşgen oluşturacak şekilde beş nokta seçilebilir. Kanıt: Ödev! Alıştırma (11.3.1) Yukarıdaki iddianın 8 nokta için doğru olamayabileceğine bir örnek veriniz. 18/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

84 Konveks Çokgenler Konveks dörtgen oluşturmak için beş noktanın yeterli olduğunu gördük. Peki konveks beşgen için durum nedir? İddia Düzlemde herhangi üçü aynı doğru üzerinde olmayan dokuz nokta verildiğinde bu noktalardan konveks beşgen oluşturacak şekilde beş nokta seçilebilir. Kanıt: Ödev! Alıştırma (11.3.1) Yukarıdaki iddianın 8 nokta için doğru olamayabileceğine bir örnek veriniz. 18/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

85 Konveks Çokgenler Acaba konveks altıgen için en az kaç noktaya ihtiyaç vardır? 19/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

86 Konveks Çokgenler Acaba konveks altıgen için en az kaç noktaya ihtiyaç vardır? Herhangi üçü aynı doğru üzerinde olmayan 16 noktanın konveks altıgen oluşturmayabileceği gösterilmiştir. Ancak, 17 nokta ile buna bir ters örnek verilememiştir (aslında 17 noktadan her zaman konveks altıgen oluşturacak şekilde 6 nokta seçilebilir). 19/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

87 Konveks Çokgenler Acaba konveks altıgen için en az kaç noktaya ihtiyaç vardır? Herhangi üçü aynı doğru üzerinde olmayan 16 noktanın konveks altıgen oluşturmayabileceği gösterilmiştir. Ancak, 17 nokta ile buna bir ters örnek verilememiştir (aslında 17 noktadan her zaman konveks altıgen oluşturacak şekilde 6 nokta seçilebilir). Bu durumda akla şu soru gelebilir: 19/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

88 Konveks Çokgenler Acaba konveks altıgen için en az kaç noktaya ihtiyaç vardır? Herhangi üçü aynı doğru üzerinde olmayan 16 noktanın konveks altıgen oluşturmayabileceği gösterilmiştir. Ancak, 17 nokta ile buna bir ters örnek verilememiştir (aslında 17 noktadan her zaman konveks altıgen oluşturacak şekilde 6 nokta seçilebilir). Bu durumda akla şu soru gelebilir: Soru Düzlemde herhangi üçü aynı doğru üzerinde olmayan en az kaç nokta konveks n gen oluşturmayı garanti eder? 19/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

89 Konveks Çokgenler Acaba konveks altıgen için en az kaç noktaya ihtiyaç vardır? Herhangi üçü aynı doğru üzerinde olmayan 16 noktanın konveks altıgen oluşturmayabileceği gösterilmiştir. Ancak, 17 nokta ile buna bir ters örnek verilememiştir (aslında 17 noktadan her zaman konveks altıgen oluşturacak şekilde 6 nokta seçilebilir). Bu durumda akla şu soru gelebilir: Soru Düzlemde herhangi üçü aynı doğru üzerinde olmayan en az kaç nokta konveks n gen oluşturmayı garanti eder? Şimdiye kadar ki bilgilerimizi bir tabloda toplarsak, n gen Gereken nokta sayısı ? nın bir eksiği /20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

90 Konveks Çokgenler Sanı Düzlemde herhangi üçü aynı doğru üzerinde olmayan 2 n 2 nokta konveks n gen oluşturmayı garantilemez. 20/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

91 Konveks Çokgenler Sanı Düzlemde herhangi üçü aynı doğru üzerinde olmayan 2 n 2 nokta konveks n gen oluşturmayı garantilemez. Soru Peki 2 n 2 noktanın bir fazlası garantiler mi? 20/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

92 Konveks Çokgenler Sanı Düzlemde herhangi üçü aynı doğru üzerinde olmayan 2 n 2 nokta konveks n gen oluşturmayı garantilemez. Soru Peki 2 n 2 noktanın bir fazlası garantiler mi? Bu sorunun cevabı halen bilinmiyor. 20/20 AYRIK MATEMATİK Güz Dönemi Anadolu Üniversitesi

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Geometride Kombinatorik 11. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Köşegenlerin Arakesiti Geometride Kombinatorik

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Euler Formülü 12. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Saldıraya Uğrayan Gezegen Euler Formülü Saldıraya Uğrayan

Detaylı

( ) (, ) Kombinasyon. Tanım: r n olmak üzere n elemanlı bir kümenin r elemanlı her alt kümesine bu n elemanın r li kombinasyonu denir.

( ) (, ) Kombinasyon. Tanım: r n olmak üzere n elemanlı bir kümenin r elemanlı her alt kümesine bu n elemanın r li kombinasyonu denir. Kombinasyon Tanım: r n olmak üzere n elemanlı bir kümenin r elemanlı her alt kümesine bu n elemanın r li kombinasyonu denir. n elemanın tüm r li kombinasyonlarının sayısı; (, ) C n r ( ) r n P n, r n!

Detaylı

2. K 6 tam çizgesinde kaç farklı mükemmel eşleme vardır? 4. Düzlemsel kodu (planar code) olan ağacın kaç köşe noktası vardır?

2. K 6 tam çizgesinde kaç farklı mükemmel eşleme vardır? 4. Düzlemsel kodu (planar code) olan ağacın kaç köşe noktası vardır? Ayrık Hesaplama Yapıları A GRUBU 0.06.01 Numarası :. K 6 tam çizgesinde kaç farklı mükemmel eşleme vardır? Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Gezgin Satıcı Problemi 9. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Gezgin Satıcı Problemi Soru n tane şehri olan bir

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Gezgin Satıcı Problemi 9. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Gezgin Satıcı Problemi Soru n tane şehri olan bir

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Çizgeler 7. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Çift ve Tek Dereceler Çizgeler Çift ve Tek Dereceler Soru 51 kişinin

Detaylı

OLİMPİK GEOMETRİ ALTIN NOKTA YAYINEVİ MATEMATİK OLİMPİYATLARINA HAZIRLIK ÖMER GÜRLÜ KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ

OLİMPİK GEOMETRİ ALTIN NOKTA YAYINEVİ MATEMATİK OLİMPİYATLARINA HAZIRLIK ÖMER GÜRLÜ KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ OLİMPİK GEOMETRİ MATEMATİK OLİMPİYATLARINA HAZIRLIK KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ ÖMER GÜRLÜ ALTIN NOKTA YAYINEVİ İZMİR - 2014 İÇİNDEKİLER 1. TEMEL ÇİZİMLER... 7 2. ÜÇGENLER... 21 (Üçgende Açılar, Üçgende

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Ağaçlar 8. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Ağacın Tanımı Ağaçlar Ağacın Tanımı Tanım Döngüsü olmayan tekparça

Detaylı

A GRUBU Her bir yüzü düzgün beşgen olan düzgün 12-yüzlünün kaç ayrıtı vardır? A) 30 B) 24 C) 12 D) 36 E) 48

A GRUBU Her bir yüzü düzgün beşgen olan düzgün 12-yüzlünün kaç ayrıtı vardır? A) 30 B) 24 C) 12 D) 36 E) 48 Numarası : Adı Soyadı : SINAV YÖNERGESİ 2. K 5 tam çizgesinin bir kenarı çıkarılarak elde edilen çizgenin köşe noktaları en az kaç renk ile boyanabilir? A) 3 B) 4 C) 2 D) 5 E) 6 İşaretlemelerinizde kurşun

Detaylı

SINAV YÖNERGESİ. Numarası : CEVAP. Adı Soyadı : ANAHTARI A) 512 B) 513 C) 256 D) 1024 E) 1025 A) 252 B) 256 C) 3024 D) 126 E) =?

SINAV YÖNERGESİ. Numarası : CEVAP. Adı Soyadı : ANAHTARI A) 512 B) 513 C) 256 D) 1024 E) 1025 A) 252 B) 256 C) 3024 D) 126 E) =? Ayrık Hesaplama Yapıları A GRUBU 0.0.01 Numarası Adı Soyadı : CEVAP : ANAHTARI SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem

Detaylı

Geometrik Örüntüler. Geometrik Cisimlerin Yüzeyleri Geometrik Cisimler Prizmaların Benzer ve Farklı Yönleri Geometrik Şekiller. Geometrik Örüntüler

Geometrik Örüntüler. Geometrik Cisimlerin Yüzeyleri Geometrik Cisimler Prizmaların Benzer ve Farklı Yönleri Geometrik Şekiller. Geometrik Örüntüler Geometrik Cisimler ve Şekiller Geometrik Örüntüler Geometride Temel Kavramlar Uzamsal İlişkiler Geometrik Cisimlerin Yüzeyleri Geometrik Cisimler Prizmaların Benzer ve Farklı Yönleri Geometrik Şekiller

Detaylı

TEST. Düzgün Çokgenler. 4. Bir iç açısı 140 olan düzgün çokgenin iç açılar 5. A B. 2. Bir dış açısı Çevresi. toplamı kaç derecedir?

TEST. Düzgün Çokgenler. 4. Bir iç açısı 140 olan düzgün çokgenin iç açılar 5. A B. 2. Bir dış açısı Çevresi. toplamı kaç derecedir? üzgün Çokgenler 7. Sınıf Matematik Soru ankası S 49 1. 4. ir iç açısı 140 olan düzgün çokgenin iç açılar toplamı kaç derecedir? ) 70 ) 900 ) 1080 ) 160 Şekilde verilen düzgün çokgenine göre, I., köşesine

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar

Detaylı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı A 1. Köşeleri, yarıçapı 1 olan çemberin üstünde yer alan düzgün bir n-genin çevre uzunluğunun alanına oranı 4 3 ise, n kaçtır? 3 a) 3 b) 4 c) 5 d)

Detaylı

Geometrik Örüntüler. Geometride Temel Kavramlar Uzamsal İlişkiler

Geometrik Örüntüler. Geometride Temel Kavramlar Uzamsal İlişkiler Geometrik Cisimler ve Şekiller Geometrik Örüntüler Geometride Temel Kavramlar Uzamsal İlişkiler Geometrik Cisimlerin Yüzeyleri Geometrik Cisimler Prizmaların Benzer ve Farklı Yönleri Geometrik Şekiller

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Fibonacci Sayıları 4. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Fibonacci nin Tavşanları Fibonacci Sayıları Fibonacci

Detaylı

ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR

ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR 1. Bir üçgende ölçüsü büyük olan açının karşısındaki kenar uzunluğu, ölçüsü küçük olan açının karşısındaki kenar uzunluğundan daha büyüktür. ABC üçgeninde m(a) >

Detaylı

6. ABCD dikdörtgeninde

6. ABCD dikdörtgeninde Çokgenler ve örtgenler Test uharrem Şahin. enar sayısı ile köşegen sayısı toplamı olan düzgün çokgenin bir dış açısı kaç derecedir? ) ) 0 ) ) 0 ). Şekilde dikdörtgeninin içindeki P noktasının üç köşeye

Detaylı

A) 1 B) 10 C) 100 D) 1000 E) Sonsuz. öğrencinin sinemaya tam bir kez birlikte gidecek şekilde ayarlanabilmesi aşağıdaki n

A) 1 B) 10 C) 100 D) 1000 E) Sonsuz. öğrencinin sinemaya tam bir kez birlikte gidecek şekilde ayarlanabilmesi aşağıdaki n İLMO 008. Aşama Sınavı Soru Kitapçığı - A. 009 009 009 + +... + n toplamı hiçbir n doğal sayısı için aşağıdakilerden hangisiyle bölünemez? A) B) n C) n+ D) n+ E). ( x!)( y!) = z! eşitliğini sağlayan (x,

Detaylı

GEOMETRİ. Tüm geometrik şekiller, elemanları noktalar olan kümeler olduğundan, biz de noktadan başlayarak gezimize çıkalım.

GEOMETRİ. Tüm geometrik şekiller, elemanları noktalar olan kümeler olduğundan, biz de noktadan başlayarak gezimize çıkalım. GEOMETRİ Geometriyi seven veya sevmeyenler için farklı bir bakış açısı. Gerçeğin kilidini açacak anahtarın Aritmetik ve Geometri olduğunu söyleyen ve Tanrının da bir Matematikçi olduğuna inanan ünlü düşünür

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Çizgeler 7. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Çift ve Tek Dereceler Çizgeler Çift ve Tek Dereceler Soru 51 kişinin

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI

9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI 9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI KONULAR DİK ÜÇGENLERDE METRİK BAĞINTILAR 1. Pythagoras (Pisagor) Bağıntısı. Euclides (öklit) Bağıntısı 3. Pisagor ve öklit Bağıntıları ile İlgili Problemler

Detaylı

1. BÖLÜM DÜZLEM GEOMETRİNİN TEMEL KAVRAMLARI İÇİNDEKİLER

1. BÖLÜM DÜZLEM GEOMETRİNİN TEMEL KAVRAMLARI İÇİNDEKİLER 1. BÖLÜM DÜZLEM GEOMETRİNİN TEMEL KAVRAMLARI İÇİNDEKİLER 1. TANIMSIZ KAVRAM, AKSİYOM, TEOREM VE İSPAT NE DEMEKTİR? 2. NOKTA, DOĞRU, DÜZLEM VE UZAY KAVRAMLARI * Nokta, Doğru ve Düzlem * Doğru Parçası *

Detaylı

Ders 8: Konikler - Doğrularla kesişim

Ders 8: Konikler - Doğrularla kesişim Ders 8: Konikler - Doğrularla kesişim Geçen ders RP 2 de tekil olmayan her koniğin bir dönüşümün ardından tek bir koniğe dönüştüğü sonucuna vardık; o da {[x : y : z x 2 + y 2 z 2 = 0]} idi. Bu derste bu

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Fibonacci Sayıları 4. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Fibonacci nin Tavşanları Fibonacci Sayıları Fibonacci

Detaylı

2. Aşağıdaki pseudocode ile verilen satırlar işletilirse, cnt isimli değişkenin son değeri ne olur?

2. Aşağıdaki pseudocode ile verilen satırlar işletilirse, cnt isimli değişkenin son değeri ne olur? Numarası : Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem ile yazınız. Sınavın ilk 30 dakikasında sınıftan çıkılmayacaktır.

Detaylı

noktaları alınıyor. ABC üçgeninin alanı S ise, A1 B1C 1 5) Dışbükey ABCD dörtgeninde [DA], [AB], [BC], [CD] kenarlarının uzantıları üzerinden

noktaları alınıyor. ABC üçgeninin alanı S ise, A1 B1C 1 5) Dışbükey ABCD dörtgeninde [DA], [AB], [BC], [CD] kenarlarının uzantıları üzerinden ALAN PROBLEMLERĐ Viktor Prasolov un büyük eseri Plane Geometry kitabının alan bölümünün özgün bir tercümesini matematik severlerin hizmetine sunuyoruz. Geomania organizasyonu olarak çalışmalarınızda kolaylıklar

Detaylı

A GRUBU Noktaları adlandırılmış K 6 tam çizgesinin tam olarak 3 noktalı kaç tane alt çizgesi vardır? A) 9 B) 20 C) 24 D) 60 E) 160

A GRUBU Noktaları adlandırılmış K 6 tam çizgesinin tam olarak 3 noktalı kaç tane alt çizgesi vardır? A) 9 B) 20 C) 24 D) 60 E) 160 A GRUBU.. Numarası :............................................. Adı Soyadı :............................................. SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT3 AYRIK MATEMATİK 4 Ders Doç Dr Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 00 0 Güz Dönemi 3 yüzyılda İtalyan matematikçi Leonardo Fibonacci aşağıdaki soruyu ortaya atmıştır:

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. Problem 5. PURPLE COMET MATEMATİK BULUŞMASI Nisan c Copyright Titu Andreescu and Jonathan Kane

Problem 1. Problem 2. Problem 3. Problem 4. Problem 5. PURPLE COMET MATEMATİK BULUŞMASI Nisan c Copyright Titu Andreescu and Jonathan Kane PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 İLKÖĞRETİM - PROBLEMLERİ c Copyright Titu Andreescu and Jonathan Kane Çeviri Sibel Kılıçarslan CANSU ve Fatih Kürşat CANSU Problem 1 Eğer 125 + n + 135 + 2n

Detaylı

ÖSYM. 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz AYT/Matematik

ÖSYM. 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz AYT/Matematik MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz. 1. 2. a bir gerçel sayı olmak üzere, karmaşık sayılarda eşitliği veriliyor.

Detaylı

EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ.

EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ. DERS : GEOMETRİ KONU : ÜÇGEN EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ. AMAN SIKILMAYIN NOT BİRAZ UZUN DA :-) Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının

Detaylı

UZAY KAVRAMI VE UZAYDA DOĞRULAR

UZAY KAVRAMI VE UZAYDA DOĞRULAR UZAY KAVRAMI VE UZAYDA DOĞRULAR Cisimlerin kapladığı yer ve içinde bulundukları mekan uzaydır. Doğruda sadece uzunluk, düzlemde uzunluk ve genişlik söz konusudur. Uzayda ise uzunluk ve genişliğin yanında

Detaylı

Bir Doğrusal Programlama Modelinin Genel Yapısı

Bir Doğrusal Programlama Modelinin Genel Yapısı Bir Doğrusal Programlama Modelinin Genel Yapısı Amaç Fonksiyonu Kısıtlar M i 1 N Z j 1 N j 1 a C j x j ij x j B i Karar Değişkenleri x j Pozitiflik Koşulu x j >= 0 Bu formülde kullanılan matematik notasyonların

Detaylı

Ders 10: Düzlemde cebirsel eğriler

Ders 10: Düzlemde cebirsel eğriler Ders 10: Düzlemde cebirsel eğriler İzdüşümsel geometride bir doğruyu derecesi 1 olan homojen bir polinomun sıfırları kümesi olarak tarif ettik. Bir kuadrik, derecesi 2 olan homojen bir polinomla anlatılıyordu

Detaylı

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır.

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır. Sevgili Öğrenciler, Matematik ilköğretimden üniversiteye kadar çoğu öğrencinin korkulu rüyası olmuştur. Buna karşılık, istediğiniz üniversitede okuyabilmeniz büyük ölçüde YGS ve LYS sınavlarında matematik

Detaylı

1986 ÖYS. 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 A) 11 B) 10 C) 3 D) 8 E) 7 E) 2

1986 ÖYS. 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 A) 11 B) 10 C) 3 D) 8 E) 7 E) 2 8 ÖYS. Aşağıdaki ABC üçgeninde. BD kaç cm dir? 8 7. Aşağıdaki şekilde ABCD bir yamuk ve AECD bir paralel kenardır.. Aşağıdaki şekilde EAB ve FBC eşkenar üçgendir. AECD nin alanı 8 cm Buna göre CEB üçgeninin

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

= 646 ] (n+2) 2 1 = n 2 + 4n+4 1 = (n 2 1)+4(n+1) MAT223 AYRIK MATEMATİK DERSİ 2.ARA SINAVI ÇÖZÜMLER

= 646 ] (n+2) 2 1 = n 2 + 4n+4 1 = (n 2 1)+4(n+1) MAT223 AYRIK MATEMATİK DERSİ 2.ARA SINAVI ÇÖZÜMLER MAT3 AYRIK MATEMATİK DERSİ.ARA SINAVI 18.1.009 ÇÖZÜMLER 1. G çizgesinin silindiğinde kalan çizge tek parça olacak şekildeki kenarlarını birer birer silelim (G yoldan farklı olduğundan en az bir böyle bir

Detaylı

ÜÇGENDE AÇILAR. Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir.

ÜÇGENDE AÇILAR. Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir. ÜÇGENDE AÇILAR Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir. Burada; A, B, C noktaları üçgenin köşeleri, [AB], [AC], [BC] doğru parçaları

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

Teknik Resim TEKNİK BİLİMLER MESLEK YÜKSEKOKULU. 3. Geometrik Çizimler. Yrd. Doç. Dr. Garip GENÇ

Teknik Resim TEKNİK BİLİMLER MESLEK YÜKSEKOKULU. 3. Geometrik Çizimler. Yrd. Doç. Dr. Garip GENÇ TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim Genel Bilgi Teknik resimde bir şekli çizmek için çizim takımlarından faydalanılır. Çizilecek şekil üzerinde eşit bölüntüler, paralel doğrular, teğet birleşmeler,

Detaylı

SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız.

SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız. MAT3 AYRIK MATEMATİK DERSİ DÖNEM SONU SINAVI 4.0.0 Numarası :..................................... Adı Soyadı :..................................... SORULAR. Prüfer kodu ( 3 3 ) olan ağacı çiziniz.. Noktaları

Detaylı

X. Ulusal İlköğretim Matematik Olimpiyatı

X. Ulusal İlköğretim Matematik Olimpiyatı X. Ulusal İlköğretim Matematik Olimpiyatı B 1. Bir kentten diğerine giden bir otobüs, yolun ilk yarısını 40 km/saat, ikinci yarısını ise 60 km/saat hızla gittiyse, otobüsün ortalama hızı kaç km/saat olmuştur?

Detaylı

X. Ulusal İlköğretim Matematik Olimpiyatı

X. Ulusal İlköğretim Matematik Olimpiyatı X. Ulusal İlköğretim Matematik Olimpiyatı A 1. Hem % 15 i, hem de % 33 ü tam sayı olan en küçük pozitif sayı nedir? a) 15 33 b) 20 33 c) 100 33 d) 20 3 e) 100 3 2. Bir okulun kantininde, 1., 2., 3., 4.

Detaylı

Örnek: Eş doğru parçalarının uzunlukları eşittir. Örnek:

Örnek: Eş doğru parçalarının uzunlukları eşittir. Örnek: ĐFL GEOMETRĐK KAVRAMLAR VE ÇALIŞMA SORULARI (Eylül-011) Terim, Geometrik Terim, Tanımsız Terim, Önerme, Aksiyom (Postülat), Teorem (Hipotez ve Hüküm), Đspat: Bir bilim dalında özel anlamı olana kelimelere

Detaylı

İç bükey Dış bükey çokgen

İç bükey Dış bükey çokgen Çokgen Çokgensel bölge İç bükey Dış bükey çokgen Köşeleri: Kenarları: İç açıları: Dış açıları: Köşegenleri: Çokgenin temel elemanları Kenar Köşegen ilişkisi Bir köşe belirleyiniz ve belirlediğiniz köşeden

Detaylı

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL BİLİM OLİMPİYATLARI 2017 LİSE MATEMATİK SINAVI. 10 Mayıs 2017 Çarşamba,

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL BİLİM OLİMPİYATLARI 2017 LİSE MATEMATİK SINAVI. 10 Mayıs 2017 Çarşamba, İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL BİLİM OLİMPİYATLARI 07 LİSE MATEMATİK SINAVI 0 Mayıs 07 Çarşamba, 09.30 -.30 Öğrencinin, Adı Soyadı : T.C. Kimlik No : Okulu / Sınıfı : Sınav Merkezi : . Bir

Detaylı

1. TEMEL ÇİZİMLER. Pergel Yardımıyla Dik Doğru Çizmek. 1. Doğru üzerindeki P noktası merkez olmak üzere çizilen yaylarla D ve G noktaları işaretlenir.

1. TEMEL ÇİZİMLER. Pergel Yardımıyla Dik Doğru Çizmek. 1. Doğru üzerindeki P noktası merkez olmak üzere çizilen yaylarla D ve G noktaları işaretlenir. 1. TEMEL ÇİZİMLER Pergel Yardımıyla ik oğru Çizmek 1. oğru üzerindeki P noktası merkez olmak üzere çizilen yaylarla ve G noktaları işaretlenir. 2. ve G merkez olmak üzere doğru dışında kesişecek şekilde

Detaylı

Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A A) 55 B) 50 C) 45 D) 40 E) 35

Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A A) 55 B) 50 C) 45 D) 40 E) 35 Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A 1. ABC üçgeninde BF BD, EC CD olacak şekilde AC kenarı üzerinde E noktası, o BC m(ba C) 70 ise m(fd E) kaç derecedir? AB kenarı üzerinde F noktası,

Detaylı

TEOREMLER İSPATLAR SONUÇLAR

TEOREMLER İSPATLAR SONUÇLAR TEOREMLER İSPATLAR SONUÇLAR TANIM: Birer kenarları ortak ve iç bölgeleri ayrık iki açıya KOMŞU AÇILAR denir. TANIM: Komşu iki açının ortak olmayan kenarları zıt ışınlar ise bu iki açıya DOĞRUSAL AÇI ÇİFTİ

Detaylı

kişi biri 4 kişilik, üçü ikişer kişilik 4 takıma kaç farklı şekilde ayrılabilir? (3150)

kişi biri 4 kişilik, üçü ikişer kişilik 4 takıma kaç farklı şekilde ayrılabilir? (3150) PERMÜTASYON KOMBİNASYON. A = {,,,,5} kümesinin alt kümelerinin kaç tanesinde 5 elemanı bulunur? (). 7 elemanlı bir kümenin en az 5 elemanlı kaç tane alt kümesi vardır? (9). A { a, b, c, d, e, f, g, h}

Detaylı

Geometrik şekillerin çizimi

Geometrik şekillerin çizimi Geometrik şekillerin çizimi ir doğruya dışındaki P noktasından P geçen paralel doğru çizmek 1. P noktası merkez kabul edilir. yayı kadar açılan pergelle doğrusu kesiştirilerek noktası elde edilir. 3. Pergel

Detaylı

1986 ÖYS. 3 b. 2 b C) a= 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 D) 8 E)

1986 ÖYS. 3 b. 2 b C) a= 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 D) 8 E) ÖYS. Aşağıdaki ABC üçgeninde. BD kaç cm dir? 0. Aşağıdaki şekilde ABCD bir yamuk ve AECD bir paralel kenardır.. Aşağıdaki şekilde EAB ve FBC eşkenar üçgendir. AECD nin alanı cm Buna göre CEB üçgeninin

Detaylı

TEST. Eşlik ve Benzerlik. 1. I. Eşit açıların karşısındaki kenarların oranı birbirine 4. A 5. A. 2. Benzer çokgenlerin açıları...i...

TEST. Eşlik ve Benzerlik. 1. I. Eşit açıların karşısındaki kenarların oranı birbirine 4. A 5. A. 2. Benzer çokgenlerin açıları...i... şlik ve enzerlik 8. Sınıf atematik Soru ankası S 7 1. I. şit açıların karşısındaki kenarların oranı birbirine eşittir. II. arşılıklı açılarının ölçüleri arasındaki oran benzerlik oranına eşittir. III.

Detaylı

T.C. ANADOLU ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ ÇİZGELERİ BOYAMAK HAZIRLAYAN FERHAN ÇİFTCİ 27991225984. DANIŞMAN Doç. Dr.

T.C. ANADOLU ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ ÇİZGELERİ BOYAMAK HAZIRLAYAN FERHAN ÇİFTCİ 27991225984. DANIŞMAN Doç. Dr. T.C. ANADOLU ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ ÇİZGELERİ BOYAMAK HAZIRLAYAN FERHAN ÇİFTCİ 27991225984 DANIŞMAN Doç. Dr. EMRAH AKYAR MAT401 MATEMATİK UYGULAMALARI 2011 2012 GÜZ DÖNEMİ 1 Ön Bilgiler

Detaylı

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR 7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR KONULAR 1. DOĞRUDA AÇILAR 2. Açı 3. Açının Düzlemde Ayırdığı Bölgeler 4. Açı Ölçü Birimleri 5. Ölçülerine Göre Açılar 6. Açıortay 7. Tümler Açı 8. Bütünler Açı 9. Ters

Detaylı

İNS1101 MÜHENDİSLİK ÇİZİMİ. Bingöl Üniversitesi İnşaat Mühendisliği Bölümü 2018

İNS1101 MÜHENDİSLİK ÇİZİMİ. Bingöl Üniversitesi İnşaat Mühendisliği Bölümü 2018 İNS1101 MÜHENDİSLİK ÇİZİMİ Bingöl Üniversitesi İnşaat Mühendisliği Bölümü 2018 TEKNİK RESİM Teknik resim, teknik elemanların üretim yapabilmeleri için anlatmak istedikleri teknik özelliklerin biçim ve

Detaylı

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır?

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır? . f: R { 4} R, > ise ( ) 4 f =, ise 6 8. ( ) f = 6 + m + 4 eğrisinin dönüm noktasının ordinatı olduğuna göre, m kaçtır? ) 7 ) 8 ) 9 ) E) fonksiyonu aşağıdaki değerlerinin hangisinde süreksizdir? ) ) )

Detaylı

TEMEL GEOMETRİK KAVRAMLAR VE ÇİZİMLER

TEMEL GEOMETRİK KAVRAMLAR VE ÇİZİMLER T GOTRİ VRR V ÇİZİR 1. oğru, oğru Parçası ve Işın Her iki yönden sonsuza kadar uzadığı kabul edilen ve noktaların yan yana gelmesiyle oluşan düz çizgiye doğru denir. d d, veya şeklinde gösterilir. oğrunun

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve

Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve düzlem Geçen ders doğrusal cebir aracılığıyla izdüşümsel geometri için bir model kurduk. Şimdi bu modeli daha somut bir şekle sokalım, F = R durumunda kurduğumuz

Detaylı

Öğrenci Seçme Sınavı (Öss) / 15 Haziran Matematik I Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 15 Haziran Matematik I Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 15 Haziran 008 Matematik I Soruları ve Çözümleri 1. ( ).( 4 1 + ) 1 işleminin sonucu kaçtır? A) 7 B) 4 C) 1 D) 4 E) 7 Çözüm 1 ( ).( 4 1 + ) 1 = 7 ( 1).( ) = 1 7 1 = 7 ( ).

Detaylı

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme Türkiye Ulusal Matematik Olimpiyatları Birinci Aşama Zor Deneme Sınavı 11 Haziran 2016 DENEME SINAVI 4. Deneme Soru Sayısı: 32 Sınav Süresi: 210 dakika Başarılar Dileriz... Page 1 of 9 DENEME SINAVI (4.

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 19 HAZİRAN 2016 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

ÖRNEK: Öteleme ile oluşturulmuş bir süsleme. ÖRNEK: 2)GEOMETRİK HAREKETLER

ÖRNEK: Öteleme ile oluşturulmuş bir süsleme. ÖRNEK: 2)GEOMETRİK HAREKETLER ÖTELEME: Bir şeklin duruşunun, biçiminin, boyutlarının bozulmadan yer değiştirmesine o şekli öteleme denir. Ötelemede biçim, boyut, yön değişmez. Yer değişir. Bir şekil ötelendiği zaman şekil üzerindeki

Detaylı

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4 NİSAN 21 DENEMESİ 1) ABCD dikdörtgeninin AB kenarı üzerindeki M noktasından geçen ve CM doğrusuna dik olan doğru AD kenarını E noktasında kesiyor. M noktasından CE doğrusuna indirilen dikmenin ayağı P

Detaylı

BİRLİKTE ÇÖZELİM. ayırdığı parçalardan birinin uzunluğuna. Şekildeki ABC dik üçgeninde [AB] ^ [BC], G noktası ağırlık merkezi,

BİRLİKTE ÇÖZELİM. ayırdığı parçalardan birinin uzunluğuna. Şekildeki ABC dik üçgeninde [AB] ^ [BC], G noktası ağırlık merkezi, . SINI TTİ İRİT ÇÖZİ 1. P Yandaki, PRS ve üçgenlerinin sırasıyla [], [RS] ve [] ye ait kenarortaylarını çiziniz. R S 2. r O O merkezli, r yarıçaplı çemberde çapı gören açısının ölçüsü 90 dir. [O], hem

Detaylı

TEST: 1. Şekilde verilenlere göre x kaç derecedir? Şekilde verilenlere göre x kaç derecedir? A) 100 B) 110 C) 120 D) 130 E) 140

TEST: 1. Şekilde verilenlere göre x kaç derecedir? Şekilde verilenlere göre x kaç derecedir? A) 100 B) 110 C) 120 D) 130 E) 140 TEST: 1 1. 4. A) 20 B) 30 C) 40 D) 50 E) 60 A) 100 B) 110 C) 120 D) 130 E) 140 2. 5. A) 100 B) 110 C) 120 D) 130 E) 140 A) 96 B) 112 C) 121 D) 128 E) 134 3. 6. A) 40 B) 50 C) 60 D) 70 E) 80 A) 40 B) 50

Detaylı

ESKİŞEHİR FATİH FEN LİSESİ GEOMETRİ OLİMPİYAT NOTLARI. Çemberler 1

ESKİŞEHİR FATİH FEN LİSESİ GEOMETRİ OLİMPİYAT NOTLARI. Çemberler 1 SKİŞHİR FTİH FN LİSSİ GTRİ LİİYT NTLRI Çemberler 1 erleyen sman KİZ FFL atematik Öğretmeni Yazım hataları mevcut olup. Tashihi yapılmamıştır. ÇR GİRİŞ roblem. merkezli çemberin kirişi üzerinde bir noktası

Detaylı

Okul kantininde 6 değişik türde yemek vardır. İki değişik türlü yemek, yemek isteyen bir öğrenci kaç seçim yapabilir? A) 30 B) 15 C) 10 D) 6 E) 3

Okul kantininde 6 değişik türde yemek vardır. İki değişik türlü yemek, yemek isteyen bir öğrenci kaç seçim yapabilir? A) 30 B) 15 C) 10 D) 6 E) 3 KOMBİNASYON ÇIKMIŞ SORULAR 1.SORU Okul kantininde 6 değişik türde yemek vardır. İki değişik türlü yemek, yemek isteyen bir öğrenci kaç seçim yapabilir? 8 yemekten 3'ü seçilecek. 8 8.7. 6 3 3..1 Cevap:

Detaylı

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ EKİM 07-08 EĞİTİM - ÖĞRETİM YILI 0. SINIF MATEMATİK DERSİ 0... Olayların gerçekleşme sayısını toplama ve çarpma prensiplerini kullanarak hesaplar. 0... Sınırsız sayıda tekrarlayan nesnelerin dizilişlerini

Detaylı

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi TEST: 6 5. 1. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12 2. 6. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi aşağıdakilerden hangisidir? A) 7x+5y=35 B) 7x-5y=35

Detaylı

YGS GEOMETRİ DENEME 1

YGS GEOMETRİ DENEME 1 YGS GTİ 1 G 1) G ) şağıdaki adımlar takip edilerek geometrik çizim yapıl- bir üçgen mak isteniyor = = m() = 7 o = 9 cm, = 1 cm, m() = 90 olacak şekilde dik üçgeni çiziliyor = eşitliğini sağlayan Î [] noktası

Detaylı

ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ ( ŞUBAT 2010 )

ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ ( ŞUBAT 2010 ) ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ ( ŞUBAT 010 ) 1) Dar açılı ABC üçgeninde BB 1 ve CC 1 yükseklikleri H noktasında kesişiyor. CH = C H, BH = B H ise BAC açısını bulunuz. 1 1 A)0 0 B)45 0 C) arccos

Detaylı

deneme onlineolimpiyat.wordpress.com

deneme onlineolimpiyat.wordpress.com 1.) toplamı kaça eşittir? A)hiçbiri B) C)3/217 D)9/217 E) 1/217 2.) 250 kişinin katıldığı bir tenis turnuvasında eleme usulü ile maçlar yapııyor. Yani ikişerli eşleşmelerde maçı kaybeden eleniyor.üst tura

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ MATEMATİK YARIŞMASI

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ MATEMATİK YARIŞMASI DARÜŞŞAFAKA LİSESİ SALİH ZEKİ MATEMATİK YARIŞMASI PROJENİN ADI: EULERİN PEDAL ÜÇGEN FORMÜLÜNÜ KULLANARAK PEDAL DÖRTGENLER İÇİN YENİ BİR FORMÜL GELİŞTİRME MEVKOLEJİ ÖZEL BASINKÖY ANADOLU LİSESİ DANIŞMAN:ELİF

Detaylı

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ ÜZGÜN ŞGN ( ÜZGÜN ŞGN TNII, ÖZİRİ ĞRNİRR ) ÜZGÜN ŞGN ÖZİ 3 TNI V ÖZİRİ enr syısı 5 oln düzgün çokgene öşe düzgün beşgen denir. üzgün beşgenin; köşeleri,,, ve dir, kenrlrı [], [], β θ [], [] ve [] dır,

Detaylı

Ö.S.S MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ

Ö.S.S MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ Ö.S.S. 008 MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ 1. ( ).( 4 1 + ) 1 işleminin sonucu kaçtır? A) 7 B) 4 C) 1 D) 4 E) 7 Çözüm 1 ( ).( 4 1 + ) 1 7 ( 1).( ) 1 7 1 7 ( ). -7 1. 4,9 0,49 0,1 + işleminin sonucu kaçtır?

Detaylı

1999 ULUSAL ANTALYA MATEMAT IK OL IMP IYATI B IR INC I AŞAMA SORULARI

1999 ULUSAL ANTALYA MATEMAT IK OL IMP IYATI B IR INC I AŞAMA SORULARI 1999 ULUSL NTLY MTMT IK L IMP IYTI IR IN I ŞM SRULRI Lise 1- S nav Sorular 1. f1; ; 3; :::; 1999g kümesinin, eleman say s tek say olan kaç tane alt kümesi vard r? ) 1999 ) 1998 ) 1998-1 ) 999 ) hiçbiri.

Detaylı

1. Analitik düzlemde P(-4,3) noktasının eksenlerden ve O başlangıç noktasından uzaklığı kaç birimdir?

1. Analitik düzlemde P(-4,3) noktasının eksenlerden ve O başlangıç noktasından uzaklığı kaç birimdir? HAZİNE- HAZİNE-2 O başlangıç noktasında dik kesişen iki sayı ekseninin oluşturduğu sisteme koordinat sistemi denir. Bir noktanın x-eksenindeki dik izdüşümüne karşılık gelen x sayısına noktanın apsis i

Detaylı

LYS 2016 GEOMETRİ ÇÖZÜMLERİ

LYS 2016 GEOMETRİ ÇÖZÜMLERİ LYS 016 GEOMETRİ ÇÖZÜMLERİ Dikdörtgenin içinde köşegeni çizerek alanı iki eşit parçaya ayırabiliriz. 7 / 36 BED üçgeni ile DEC üçgeninin alanlarının oranı, tabanları arasındaki orana eşittir. Buna göre;

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Bibliography 9 Index 13 CONTENTS 5 0.1 Doğru, Düzlem, Uzay Bu derste sık sık doğru, düzlem ve

Detaylı

EĞİTİM ÖĞRETİM YILI. FEN LİSESİ 10.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 10.SINIF KAZANIM VE SÜRE TABLOSU

EĞİTİM ÖĞRETİM YILI. FEN LİSESİ 10.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 10.SINIF KAZANIM VE SÜRE TABLOSU 08 09 EĞİTİM ÖĞRETİM YILI. FEN LİSESİ 0.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 0.SINIF KAZANIM VE SÜRE TABLOSU No Konular Kazanım sayısı Ders Saati Ağırlık (%) VERİ, SAYMA VE OLASILIK 0. SAYMA

Detaylı

1995 ÖSS. 6. Toplamları 621 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 16, kalan ise 9 dur. Buna göre, büyük sayı kaçtır?

1995 ÖSS. 6. Toplamları 621 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 16, kalan ise 9 dur. Buna göre, büyük sayı kaçtır? 99 ÖSS.. 0, 0, 0,44. işleminin sonucu A) 0, B) 0,4 C) D) 4 E) 0 6. Toplamları 6 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 6, kalan ise 9 dur. Buna göre, büyük sayı A) 70 B) 7 C) 80

Detaylı

SERİMYA 2003 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

SERİMYA 2003 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI SERİMYA 00 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI. + + 5 0 + + + 0 40 toplamının sonucu kaçtır? A) 5 B) C) D) E) + 4. a,b,c Z olmak üzere, a + b + c 7 = 6 ise, a.b.c kaçtır? A) 6 B) 8 C) D) 6 E) 8 y.

Detaylı

1. Hem % 15 i, hem de % 33 ü tam sayı olan en küçük pozitif sayı nedir? c)

1. Hem % 15 i, hem de % 33 ü tam sayı olan en küçük pozitif sayı nedir? c) TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 10. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2005 Soru kitapçığı türü A 1. Hem % 15 i, hem de % 33

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

A.4.a.1 Herhangi bir köşesinin koordinatıyla genişlik ve yüksekliği verilen bir dikdörtgenin yaratılması:

A.4.a.1 Herhangi bir köşesinin koordinatıyla genişlik ve yüksekliği verilen bir dikdörtgenin yaratılması: A4 Alanların Oluşturulması: A.4.a Dikdörtgen alan oluşturulması: A.4.a.1 Herhangi bir köşesinin koordinatıyla genişlik ve yüksekliği verilen bir dikdörtgenin yaratılması: Rectangle>By 2 Corners açılır.

Detaylı

2012 YGS MATEMATİK Soruları

2012 YGS MATEMATİK Soruları 01 YGS MATEMATİK Soruları 1. 10, 1, 0, 0, işleminin sonucu kaçtır? A) B), C) 6 D) 6, E) 7. + ABC 4 x 864 Yukarıda verilenlere göre, çarpma işleminin sonucu kaçtır? A) 8974 B) 907 C) 9164 D) 94 E) 98. 6

Detaylı

Doğada ki en belirgin özelliklerine; İnsan vücudunda Deniz kabuklarında Ağaç dallarında rastlanır.

Doğada ki en belirgin özelliklerine; İnsan vücudunda Deniz kabuklarında Ağaç dallarında rastlanır. Doğada ki en belirgin özelliklerine; İnsan vücudunda Deniz kabuklarında Ağaç dallarında rastlanır. Altın oran pi (π) gibi irrasyonel bir sayıdır ve ondalık sistemde yazılışı 1.618033988749894..(Noktadan

Detaylı

KATI CİSİMLER DİK PRİZMALARIN ALAN VE HACİMLERİ 1. DİKDÖRTGENLER PRİZMASI. Uyarı PRİZMA. Üst taban. Ana doğru. Yanal. Yanal Alan. yüz. Yanal.

KATI CİSİMLER DİK PRİZMALARIN ALAN VE HACİMLERİ 1. DİKDÖRTGENLER PRİZMASI. Uyarı PRİZMA. Üst taban. Ana doğru. Yanal. Yanal Alan. yüz. Yanal. TI İSİM İZM İZM irbirine paralel iki düzlem içinde yer alan iki eş çokgensel bölgenin tüm noktalarının karşılıklı olarak birleştirilmesiyle elde edilen cisme İZM denir. İ İZMIN N V HİMİ Tüm dik rizmalarda

Detaylı

İlkokulu - 3/ Sınıfı *** Matematik *** Geometrik şekiller - 3

İlkokulu - 3/ Sınıfı *** Matematik *** Geometrik şekiller - 3 İlkokulu - 3/ Sınıfı *** Matematik *** Geometrik şekiller - 3 Adım Soyadım : Okul Numaram:. S ü l e y m a n O C A K S ü l e y m a n O C A K S O ü l C e y A m a K n İlkokulu - 3/ Sınıfı *** Matematik ***

Detaylı

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir.

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir. 2. SİMETRİK GRUPLAR Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir. Tanım 2.2. boş olmayan bir küme olsun. ile den üzerine bire-bir fonksiyonlar kümesini

Detaylı

ÜNİTELENDİRME ŞEMASI

ÜNİTELENDİRME ŞEMASI LENDİRME ŞEMASI ÜNİTE DOĞRULAR VE AÇILAR. Aynı düzlemde olan üç doğrunun birbirine göre durumlarını belirler ve inşa eder.. Paralel iki doğrunun bir kesenle yaptığı açıların eş olanlarını ve bütünler olanlarını

Detaylı