Bilgisayarla Görüye Giriş

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Bilgisayarla Görüye Giriş"

Transkript

1 Bilgisayarla Görüye Giriş Ders 9 Stereo Görüntüleme Alp Ertürk

2 Tek Kamera Geometrisi??? x

3 Tek Kamera Geometrisi

4 Tek Kamera Geometrisi

5 İğne Deliği Kamera Modeli ) /, / ( ),, ( Z Y f Z f Z Y Z Y f f Z Y f f Z Y P x

6 İğne Deliği Kamera Modeli Principal point (P) (temel nokta): Principal axis (temel eksen) ile görüntü düzleminin kesiştiği noktadır Normalize koordinat sisteminde orijin temel noktadır. Görüntü koordinat sisteminde ise orijin köşededir. Aradaki dönüşüm?

7 İğne Deliği Kamera Modeli ) /, / ( ),, ( y x p Z Y f p Z f Z Y Z Y p f p f Z Z p Y f Z p f Z Y y x y x principal point: ), ( y p x p

8 İğne Deliği Kamera Modeli 1 y x p f p f K Kalibrasyon matrisi Z Y p f p f Z Z p Y f Z p f Z Y y x y x

9 Piksel Koordinatları y y x x y x y x p f p f m m K Yatay yönde metre başına piksel sayısı: m x, dikey yönde metre başına piksel sayısı: m y Piksel boyutu: m x m y 1 1 Piksel / metre metre Pikseller

10 Kamera dönmesi ve ötelemesi ~ cam R ~ - C ~ Kamera çerçevesinde nokta koordinatları Bir noktanın dünya çerçevesinde koordinatları Kamera merkezinin dünya çerçevesinde koordinatları

11 Kamera dönmesi ve ötelemesi cam R RC ~ ~ KR R RC ~ 0 1 x K I RC ~ cam P KR t, t RC ~ Not: C kamera izdüşüm matrisinin boş uzayıdır (null space) (PC=0)

12 Kamera kalibrasyonu 3B koordinatları i koordinatları and görüntü izdüşümleri x i bilinen n adet noktadan kamera parametrelerinin kestirilmesi i x i P?

13 Kamera kalibrasyonu 3B koordinatları i koordinatları and görüntü izdüşümleri x i bilinen n adet noktadan kamera parametrelerinin kestirilmesi i P i x 0 P x i i 0 P P P i T i T i T i i y x 0 P P P T i i T i i T i i T i T i i T i x y x y

14 Kamera kalibrasyonu 0 p A 0 P P P T n n T T n T n n T n T T T T T T T x y x y P, 11 derece serbestliğe sahiptir Bir 2B/3B bağlantısı bize 2 doğrusal olarak bağımsız denklem verir Minimal çözüm için 6 ilişkili nokta gereklidir

15 Kamera kalibrasyonu P, 11 derece serbestliğe sahiptir Bir 2B/3B bağlantısı bize 2 doğrusal olarak bağımsız denklem verir Minimal çözüm için 6 ilişkili nokta gereklidir Kamera matrisinin numerik formu tespit edildikten sonra içkin ve dışkın parametreleri tespit edilmelidir. Bu parametrelerin tespiti bir kestirim değil, matris ayrıştırması problemidir.

16 Stereo Görüntüleme

17 Stereo Görüntüleme İki kameradan oluşan sistemle aynı anda elde edilebilir Tek kameranın hareket ettirilmesi ile sıralı olarak elde edilebilir

18 Stereo Görüntüleme Bir sahnenin iki görüntüsü kullanılarak sahnenin 3B konumlarını hesaplamak Temel prensip, bağlantılı görüntü noktalarından üçgenleme (triangulation) yapmaktır İki sahneden aynı (ilişkili) nokta seçilir, üçgenleme ve geri izdüşüm ile 3B sahne konumu bulunur

19 Stereo Görüntüleme C C /

20 Stereo Görüntüleme 1) İlk görüntüdeki her nokta (veya öznitelik) için, ikinci görüntüdeki ilgili noktayı tespit et => Arama problemi 2) Eşleşen her nokta çifti için, üçgenleme ile 3B konumu tespit et => Kestirim problemi İlgili noktaları tespit etme problemi, epipolar geometri sayesinde 2B aramadan 1B aramaya sadeleşir

21 Epipolar Geometri Bir görüntüdeki bir nokta için diğer görüntüdeki ilgili noktayı bulmak Nokta, diğer görüntüde bir epipolar çizgi yaratır. Diğer görüntüdeki ilgili nokta bu çizgi üzerinde yer almaktadır? epipolar çizgi C epipol C / Temel çizgi

22 Epipolar Geometri Nokta, diğer görüntüde bir epipolar çizgi yaratır. Diğer görüntüdeki ilgili nokta bu çizgi üzerinde yer almaktadır

23 Epipolar Geometri Kamera merkezleri, görüntülerdeki eşleşen noktalar ve sahne noktası aynı düzlem (epipolar düzlem) üzerindedir x x / C C /

24 Epipolar Geometri Sol epipolar çizgi Sağ epipolar çizgi e e / baseline

25 Epipolar Geometri e e / baseline

26 Epipolar Geometri: Paralel Kameralar Epipolar geometri kameraların duruşuna (pozisyonuna ve yönelimine) ve iç parametrelerine (merkez konumları ve düzlemleri) bağlıdır, sahneye bağlı değildir

27 Epipolar Geometri: Yakınsayan Kameralar e e /

28 Epipolar Geometri Epipolar geometri bir eşleme tanımlamaktadır Sahneden bağımsız olan bu eşleme, doğrusaldır ve I = Fx şeklinde ifade edilebilir. F, 3 x 3 boyutunda, fundamental matrix adı verilen bir matristir.

29 Epipolar Geometri Epipolar geometri bir eşleme tanımlamaktadır Sahneden bağımsız olan bu eşleme, doğrusaldır ve I = Fx şeklinde ifade edilebilir. F, 3 x 3 boyutunda, fundamental matrix adı verilen bir matristir.

30 Epipolar Geometri Akış şeması: P İlk görüntüdeki bir x noktası için P kamera denklemi ile bir ışını geriye izdüşür P / Işından iki nokta seç ve P kamerası denklemi ile ikinci görüntüye izdüşür İki görüntü noktası arasındaki doğruyu çapraz çarpım ile tespit et l / = p x q

31 Epipolar Geometri Kamera matrislerinin formu: kalibrasyon dönme öteleme Birinci kamera: İkinci kamera:

32 Epipolar Geometri Adım 1: İlk görüntüdeki bir x noktası için P kamerası ile bir ışını geriye izdüşür Z, x noktasının derinliği olmak üzere: P

33 Epipolar Geometri Adım 2: Işından iki nokta seç ve P kamerası ile ikinci görüntüye izdüşür, üzerinde iki nokta: P / Z = 0 (kamera merkezinde) : Z = (sonsuzda) : İkinci kamera düzlemine izdüşümleri:

34 Epipolar Geometri Adım 3: İki görüntü noktası arasındaki doğruyu tespit et x ve x ilişkili olduğundan dolayı:

35 Epipolar Geometri: Paralel Kameralar Y Z f f y = y ifadesine sadeleşir (yatay tarama çizgileri)

36 Epipolar Geometri: Ötelenen Kamera f Y f Z

37 Epipolar Geometri: Ötelenen Kamera F = f x Fx = x y x y 1 Y f Z x y + y x = 0

38 Paralel Kameralar

39 Paralel Kameralar

40 Paralel Kameralar

41 Paralel Kameralar epipolar doğru

42 Paralel Kameralar epipolar doğru Çapraz korelasyon benzeri benzerlik veya uzaklık yöntemleri ile en iyi eşleşen konum bulunur

43 Eşleme Algoritması Sol görüntüdeki her piksel (veya öznitelik) için, Sağ görüntüde epipolar doğru üzerinde komşuluk tabanlı çapraz korelasyon hesapla En yüksek korelasyon değerini doğru eş olarak ata Parameterler Komşuluk pencere boyutu Arama ayrılığı (uzaklığı)

44 Sol görüntüden Sağ görüntüden Çapraz korelasyon değerleri x

45 Sol görüntüden Sağ görüntüden Çapraz korelasyon değerleri

46 Eşleme Algoritması Yeterince betimleyici bir alan / nokta değilse çapraz korelasyon benzeri benzerlik veya uzaklık metriklerinin başarımı azalır Kameradan uzaklaşan zeminlerde ayrıca perspektif etki sonucu tespit zorlaşır

47 Olması gerekenler derinlikler Görüntü Pencere tabanlı eşleme ile bulunan derinlikler

48 Enerji En Küçükleme ile Stereo Eşleme Ayrıklık görüntüsü D için MAD: ) ( ), ( ), ( D P D I I P I I D P I 1 I 2 D W 1 (i) W 2 (i+d(i)) D(i) ) ( ),, ( smooth 2 1 data D E D I I E E ) ( log ), ( log ), ( log D P D I I P I I D P j i j D D i E, neighbors smooth ) ( ) ( data )) ( ( ) ( i D i i W i W E

49 Olması gerekenler derinlikler Görüntü Enerji fonksiyonları graph cut ile en küçüklenince elde edilen derinlikler

50 Yakınsayan Kameralar e e /

51 Yakınsayan Kameralar: Doğrultma Yakınsayan kameralar görüntü eşleme ile paralel kameralara dönüştürülebilir

52 Yakınsayan Kameralar: Doğrultma Yakınsayan kameralar görüntü eşleme ile paralel kameralara dönüştürülebilir

53 Yakınsayan Kameralar: Doğrultma

54 Yakınsayan Kameralar: Doğrultma

55 Stereo Görüntüleme: Örnek Sol görüntü Sağ görüntü Derinlik haritası

56 Stereo Görüntüleme: Örnek

57 Üç Boyutlu Yapıyı Elde Etmek için Farklı Yaklaşımlar

58 Yapısal Işık ile Derinlik Çıkarımı Kamera Projektör

59 Kinect

60 Lazer Tarama

61 Lazer Tarama

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 10 Nesne / Yüz Tespiti ve Tanıma Alp Ertürk alp.erturk@kocaeli.edu.tr Nesne Tespiti Belirli bir nesnenin sahne içindeki konumunun tespitidir Tespit edilecek nesne önceden

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 5 Görüntü Süzgeçleme ve Gürültü Giderimi Alp Ertürk alp.erturk@kocaeli.edu.tr Motivasyon: Gürültü Giderimi Bir kamera ve sabit bir sahne için gürültüyü nasıl azaltabiliriz?

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 6 Kenar, Köşe, Yuvarlak Tespiti Alp Ertürk alp.erturk@kocaeli.edu.tr KENAR TESPİTİ Kenar Tespiti Amaç: Görüntüdeki ani değişimleri / kesintileri algılamak Şekil bilgisi elde

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 2 Görüntü Oluşumu Alp Ertürk alp.erturk@kocaeli.edu.tr Sadece bir nesnenin önüne fotoğraf filmi koyarak mantıklı bir görüntü elde edebilir miyiz? Slide by Steve Seitz İğne

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 7 SIFT ve Öznitelik Eşleme Alp Ertürk alp.erturk@kocaeli.edu.tr Panorama Oluşturma Görüntü mozaikleme, panorama oluşturma gibi tüm uygulamalar için öncelikle ilgili görüntülerin

Detaylı

3D INFORMATION EXTRACTION FROM DIGITAL AERIAL IMAGES WITH COMPUTER VISION AND PHOTOGRAMMETRIC SPACE INTERSECTION

3D INFORMATION EXTRACTION FROM DIGITAL AERIAL IMAGES WITH COMPUTER VISION AND PHOTOGRAMMETRIC SPACE INTERSECTION DİJİTAL HAVA FOTOĞRAFLARINDAN BİLGİSAYARLA GÖRME VE UZAY ÖNDEN KESTİRME İLE 3B BİLGİ ÇIKARIMI S. ÖZDEMİR 1, F. KARSLI 2, H. ACAR 2, M. DİHKAN 2 1 Gümüşhane Üniversitesi, Mühendislik Mimarlık Fakültesi,

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 12 Video, Optik Akış ve Takip Alp Ertürk alp.erturk@kocaeli.edu.tr Video Video, farklı zamanlarda alınan çerçeveler dizisidir Videolar, iki boyut uzamsal, üçüncü boyut zaman

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İzdüşüm merkezi(o):

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI FOTOGRAMETRİ I GEOMETRİK ve MATEMATİK TEMELLER Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI FOTOGRAMETRİ I GEOMETRİK ve MATEMATİK TEMELLER Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur.

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Üç Boyutlu Geometri Nokta (Point,Vertex) Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Kartezyen Koordinat Sistemi Uzayda bir noktayı tanımlamak

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

NOKTA, ÇİZGİ VE DÜZLEMİN İZDÜŞÜMÜ

NOKTA, ÇİZGİ VE DÜZLEMİN İZDÜŞÜMÜ NOKTA, ÇİZGİ VE DÜZLEMİN İZDÜŞÜMÜ Geometrik elemanlar Geometrik elemanlar noktalar, çizgiler, yüzeyler veya katılar biçiminde kategorize edilir. Nokta Teknik resimde nokta iki çizginin kesişme noktası

Detaylı

İZDÜŞÜM PRENSİPLERİ 8X M A 0.14 M A C M 0.06 A X 45. M42 X 1.5-6g 0.1 M B M

İZDÜŞÜM PRENSİPLERİ 8X M A 0.14 M A C M 0.06 A X 45. M42 X 1.5-6g 0.1 M B M 0.08 M A 8X 7.9-8.1 0.1 M B M M42 X 1.5-6g 0.06 A 6.6 6.1 9.6 9.4 C 8X 45 0.14 M A C M 86 20.00-20.13 İZDÜŞÜM C A 0.14 B PRENSİPLERİ 44.60 44.45 B 31.8 31.6 0.1 9.6 9.4 25.5 25.4 36 Prof. Dr. 34 Selim

Detaylı

Doç. Dr. Bahadır ERGÜN MİM 466

Doç. Dr. Bahadır ERGÜN MİM 466 MİMARİ FOTOGRAMETRİ Fotogrametri, fiziksel cisimler ve oluşturdukları çevreden yansıyan ışınların şekillendirdiği fotogrametrik görüntülerin ve yaydıkları elektromanyetik enerjilerin kayıt,ölçme ve yorumlama

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

5 İki Boyutlu Algılayıcılar

5 İki Boyutlu Algılayıcılar 65 5 İki Boyutlu Algılayıcılar 5.1 CCD Satır Kameralar Ölçülecek büyüklük, örneğin bir telin çapı, objeye uygun bir projeksiyon ile CCD satırının ışığa duyarlı elemanı üzerine düşürülerek ölçüm yapılır.

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 16 Sayı: 48 sh. 9-20 Eylül 2014

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 16 Sayı: 48 sh. 9-20 Eylül 2014 DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 16 Sayı: 48 sh. 9-20 Eylül 2014 NESNE MODELLEME: VİDEO İMGELERİ KULLANILARAK F-MATRİSİNİN HESAPLANMASI (OBJECT MODELLING: CALCULATION OF F-MATRIX

Detaylı

MHN 113 Teknik Resim ve Tasarı Geometri 2

MHN 113 Teknik Resim ve Tasarı Geometri 2 6. ÖLÜM İZDÜŞÜM MHN 113 Teknik Resim ve Tasarı Geometri 2 6. İZDÜŞÜM 6.1. GENEL İLGİLER Uzaydaki bir cisim, bir düzlem önünde tutulup bu cisme karşıdan bakılacak olursa, cismin düzlem üzerine bir görüntüsü

Detaylı

Analitik Geometri (MATH172) Ders Detayları

Analitik Geometri (MATH172) Ders Detayları Analitik Geometri (MATH172) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Uygulama Saati Saati Laboratuar Kredi AKTS Saati Analitik Geometri MATH172 Bahar 2 2 0 3 4 Ön Koşul Ders(ler)i Dersin Dili Dersin

Detaylı

2015/2016 Bahar Yarıyılı Bitirme Çalışması Konuları. (Doç.Dr. M. Kemal GÜLLÜ)

2015/2016 Bahar Yarıyılı Bitirme Çalışması Konuları. (Doç.Dr. M. Kemal GÜLLÜ) 2015/2016 Bahar Yarıyılı Bitirme Çalışması Konuları (Doç.Dr. M. Kemal GÜLLÜ) 1. Ses temelli malzeme tanıma Malzemelerin çarpma etkisi ile çıkarttıkları seslerin mikrofon ile bir PC ye alınması ve işaretten

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 16 Rijit Cismin Düzlemsel Kinematiği Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 16 Rijit

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 8 Multispektral Görüntüleme ve Uygulamaları Alp Ertürk alp.erturk@kocaeli.edu.tr Multispektral Görüntüleme Her piksel için birkaç adet spektral kanalda ölçüm değeri

Detaylı

TASARI GEOMETRİ SINAV SORULARI

TASARI GEOMETRİ SINAV SORULARI TASARI GEOMETRİ SINAV SORULARI 1. Alın iz düşümüne parelel veya çakışık olan doğrular profilde hangi ı verir? 9. Doğrunun düzlemi deldiği noktayı düzlem geçirme metodu ile bulunuz. A) Profil ve alınla

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 4 İkili Görüntüler, Topoloji ve Morfoloji Alp Ertürk alp.erturk@kocaeli.edu.tr İkili (binary) görüntüler Gri skala veya renkli bir görüntünün eşiklenmesi ile elde edilirler.

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ Bu bölümde, düzlemsel kinematik, veya bir rijit cismin düzlemsel hareketinin geometrisi incelenecektir. Bu inceleme, dişli, kam ve makinelerin yaptığı birçok işlemde

Detaylı

TEKNİK RESİM. Ders Notları: Doç. Dr. Mehmet Çevik Celal Bayar Üniversitesi. İzdüşümler

TEKNİK RESİM. Ders Notları: Doç. Dr. Mehmet Çevik Celal Bayar Üniversitesi. İzdüşümler TEKNİK RESİM 5 2014 Ders Notları: Doç. Dr. Mehmet Çevik Celal Bayar Üniversitesi İzdüşümler 2/40 İzdüşümler İzdüşüm Nedir? İzdüşüm Çeşitleri Merkezi (Konik) İzdüşüm Paralel İzdüşüm Eğik İzdüşüm Dik İzdüşüm

Detaylı

Uzaktan Alg ılamaya Giriş Ünite 6 - Görüntü O t r orektifikasyonu

Uzaktan Alg ılamaya Giriş Ünite 6 - Görüntü O t r orektifikasyonu Uzaktan Algılamaya Giriş Ünite 6 - Görüntü Ortorektifikasyonu Ortorektifikasyon Uydu veya uçak platformları ile elde edilen görüntü verisi günümüzde haritacılık ve CBS için temel girdi kaynağını oluşturmaktadır.

Detaylı

5. ÜNİTE İZDÜŞÜMÜ VE GÖRÜNÜŞ ÇIKARMA

5. ÜNİTE İZDÜŞÜMÜ VE GÖRÜNÜŞ ÇIKARMA 5. ÜNİTE İZDÜŞÜMÜ VE GÖRÜNÜŞ ÇIKARMA KONULAR 1. İzdüşüm Metodları 2. Temel İzdüşüm Düzlemleri 3. Cisimlerin İzdüşümleri 4. Görünüş Çıkarma BU ÜNİTEYE NEDEN ÇALIŞMALIYIZ? İz düşümü yöntemlerini, Görünüş

Detaylı

ÖRNEK ÖRNEK ÖRNEK ÖRNEK

ÖRNEK ÖRNEK ÖRNEK ÖRNEK Öteleme ve yansımanın birlikte kullanıldığı dönüşümlere ötelemeli yansıma denir. Düzlemde yansıma ve ötelemeli yansıma dönüşümlerinde uzaklıklar korunurken açıların yönleri değişir. Ötelemeli yansıma dönüşümünde

Detaylı

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. İzdüşümler

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. İzdüşümler TEKNİK RESİM 2010 Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi 2/40 İzdüşüm Nedir? İzdüşüm Çeşitleri Merkezi (Konik) İzdüşüm Paralel İzdüşüm Eğik İzdüşüm Dik İzdüşüm Temel İzdüşüm Düzlemleri Noktanın

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

GERÇEK ZAMANLI KAPANMASIZ GÖRÜNTÜ ÜRETİMİ İÇİN ÇOK KAMERALI SİSTEM

GERÇEK ZAMANLI KAPANMASIZ GÖRÜNTÜ ÜRETİMİ İÇİN ÇOK KAMERALI SİSTEM T.C. GEBZE YÜKSEK TEKNOLOJİ ENSTİTÜSÜ MÜHENDİSLİK VE FEN BİLİMLERİ ENSTİTÜSÜ GERÇEK ZAMANLI KAPANMASIZ GÖRÜNTÜ ÜRETİMİ İÇİN ÇOK KAMERALI SİSTEM Alparslan Ömer YILDIZ YÜKSEK LİSANS TEZİ BİLGİSAYAR MÜHENDİSLİĞİ

Detaylı

2015/2016 Bahar Yarıyılı Bitirme Çalışması Konuları. (Doç.Dr. M. Kemal GÜLLÜ)

2015/2016 Bahar Yarıyılı Bitirme Çalışması Konuları. (Doç.Dr. M. Kemal GÜLLÜ) 2015/2016 Bahar Yarıyılı Bitirme Çalışması Konuları (Doç.Dr. M. Kemal GÜLLÜ) 1. Ses temelli malzeme tanıma Malzemelerin çarpma etkisi ile çıkarttıkları seslerin mikrofon ile bir PC ye alınması ve işaretten

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH111) Dersi Final Sınavı 1.Ö

LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH111) Dersi Final Sınavı 1.Ö LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH) Dersi Final Sınavı.Ö. 02.0.207 Ad Soyad : (25p) 2(25p) 3(25p) 4(25p) Toplam Numara : İmza : Kitap ve notlar kapalıdır. Yalnızca kalem, silgi, sınav kağıdı

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İçerik Tanımlar

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder.

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder. LENDİRME ŞEMASI ÜNİTE Üslü 1. Bir tam sayının negatif kuvvetini belirler ve rasyonel sayı olarak ifade eder.. Ondalık kesirlerin veya rasyonel sayıların kendileriyle tekrarlı çarpımını üslü sayı olarak

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Bibliography 9 Index 13 CONTENTS 5 0.1 Doğru, Düzlem, Uzay Bu derste sık sık doğru, düzlem ve

Detaylı

Doç. Dr. Bilge DORAN

Doç. Dr. Bilge DORAN Doç. Dr. Bilge DORAN Bilgisayar teknolojisinin ilerlemesi doğal olarak Yapı Mühendisliğinin bir bölümü olarak tanımlanabilecek sistem analizi (hesabı) kısmına yansımıştır. Mühendislik biliminde bilindiği

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

Dinamik Geometri Yazılımlarından Cabri ile Yansıma ve Öteleme Hareketlerinin Öğretimi

Dinamik Geometri Yazılımlarından Cabri ile Yansıma ve Öteleme Hareketlerinin Öğretimi Dinamik Geometri Yazılımlarından Cabri ile Yansıma ve Öteleme Hareketlerinin Öğretimi Suphi Önder BÜTÜNER KTÜ, Fatih Eğitim Fakültesi Đlköğretim Bölümü Doktora Öğrencisi, Akçaabat Atatürk Đlköğretim Okulu

Detaylı

Çarpanlar ve Katlar

Çarpanlar ve Katlar 8.1.1. Çarpanlar ve Katlar 8.1.2. Üslü İfadeler 8.1.3. Kareköklü İfadeler 8.2.1. Cebirsel İfadeler ve Özdeşlikler 8.1.1.1 Verilen pozitif tam sayıların çarpanlarını bulur; pozitif tam sayıları üslü ifade

Detaylı

HACETTEPE ÜNİVERSİTESİ HACETTEPE ASO 1.OSB MESLEK YÜKSEKOKULU HMK 211 CNC TORNA TEKNOLOJİSİ

HACETTEPE ÜNİVERSİTESİ HACETTEPE ASO 1.OSB MESLEK YÜKSEKOKULU HMK 211 CNC TORNA TEKNOLOJİSİ HACETTEPE ÜNİVERSİTESİ HACETTEPE ASO 1.OSB MESLEK YÜKSEKOKULU HMK 211 CNC TORNA TEKNOLOJİSİ Öğr. Gör. RECEP KÖKÇAN Tel: +90 312 267 30 20 http://yunus.hacettepe.edu.tr/~rkokcan/ E-mail_1: rkokcan@hacettepe.edu.tr

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

FİNAL SORULARI GÜZ DÖNEMİ A A A A A A A

FİNAL SORULARI GÜZ DÖNEMİ A A A A A A A AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ BİTİRME ÖDEVİ FİNAL SORULARI 25-26 GÜZ DÖNEMİ ADI SOYADI :... NO :... SINAV TARİHİ VE SAATİ : A A A A A A A Bu sınav 4 sorudan oluşmaktadır ve sınav süresi 9 dakikadır.

Detaylı

AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI BAŞKANLIĞI YÜKSEK LİSANS PROGRAMI

AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI BAŞKANLIĞI YÜKSEK LİSANS PROGRAMI YÜKSEK LİSANS PROGRAMI BİRİNCİ YIL BİRİNCİ YARIYIL MAT-5501 UZMANLIK ALAN DERSİ Z 8 0 8 0 9 MAT-5601 TEZ HAZIRLIK ÇALIŞMASI Z 0 1 1 0 1 20 1 21 12 30 İKİNCİ YARIYIL MAT-5502 UZMANLIK ALAN DERSİ Z 8 0 8

Detaylı

Bilgisayar Grafikleri

Bilgisayar Grafikleri Bilgisayar Grafikleri Konular: Cismin Tanımlanması Bilindiği gibi iki boyutta noktalar x ve y olmak üzere iki boyutun koordinatları şeklinde ifade edilirler. Üç boyutta da üçüncü boyut olan z ekseni üçücü

Detaylı

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN SİDRE 000 ORTAOKULU 06-07 EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN ÜNİTE ÖĞRENME ALANI ALT ÖĞRENME ALANI Ders Saati 9.09.06/.09.06 Tam Sayılarla Çarpma ve Bölme i 7...

Detaylı

Bilgisayarla Fotogrametrik Görme

Bilgisayarla Fotogrametrik Görme Bilgisayarla Fotogrametrik Görme Dijital Görüntü ve Özellikleri Yrd. Doç. Dr. Mustafa DİHKAN 1 Dijital görüntü ve özellikleri Siyah-beyaz resimler için değer elemanları 0-255 arasındadır. 256 farklı durum

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

Dijital Fotogrametri

Dijital Fotogrametri Dijital Fotogrametri 2016-2017, Bahar YY Fevzi Karslı (Prof. Dr.) Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 20 Mart 2017 Pazartesi Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, kavramlar,

Detaylı

Yer Sezimi ve Özet Bölüt Çizgeleri

Yer Sezimi ve Özet Bölüt Çizgeleri Akıllı Sistemler Laboratuarı Elektrik-Elektronik Mühendisliği, Boğaziçi Üniversitesi TORK 2015 Türkiye Robotbilim Konferansı Önceki Çalışmalar Bölge Bitişiklilik Çizgeleri Çizge Eşleme lar Önceki Çalışmalar

Detaylı

Hafta 2 Görüntünün Alınması ve Sayısallaştırılması

Hafta 2 Görüntünün Alınması ve Sayısallaştırılması BLM429 Görüntü İşlemeye Giriş Hafta 2 Görüntünün Alınması ve Sayısallaştırılması Yrd. Doç. Dr. Caner ÖZCAN When something can be read without effort, great effort has gone into its writing. ~E. J. Poncela

Detaylı

Dizi Antenler. Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır.

Dizi Antenler. Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır. Dizi Antenler Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır. 1. Dizi antenin geometrik şekli (lineer, dairesel, küresel..vs.) 2. Dizi elemanları arasındaki

Detaylı

KATILARIN ATOMIK DÜZENI Kristal Düzlemleri, Dogrulari ve Yönleri

KATILARIN ATOMIK DÜZENI Kristal Düzlemleri, Dogrulari ve Yönleri Kristal Düzlemleri, Dogrulari ve Yönleri Bölüm İçeriği Kristal malzemelerin Özeliklerinin Belirlenmesi. Kristal Geometri! Kristal Yapı Doğruları! Doğrusal atom Yoğunluğu! Kristal Düzlemler! Kristal Düzlemlerin

Detaylı

Öğrenme ve Öğretmenin Genişletilmiş Gerçeklik ile Zenginleştirilmesi: OptikAR. Yasin ÖZARSLAN Eskişehir Osmangazi Üniversitesi

Öğrenme ve Öğretmenin Genişletilmiş Gerçeklik ile Zenginleştirilmesi: OptikAR. Yasin ÖZARSLAN Eskişehir Osmangazi Üniversitesi Öğrenme ve Öğretmenin Genişletilmiş Gerçeklik ile Zenginleştirilmesi: OptikAR Yasin ÖZARSLAN ozarslan@gmail.com Eskişehir Osmangazi Üniversitesi Sunuş Planı Genişletilmiş Gerçeklik (Augmented Reality)

Detaylı

SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR

SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR 06-07 7.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR Adı Soyadı İmza Adı Soyadı 8 9 0 6 7 Ömer Askerden İmza 06-07 EĞİTİM VE ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Analitik Geometri II (MATH 122) Ders Detayları

Analitik Geometri II (MATH 122) Ders Detayları Analitik Geometri II (MATH 122) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Analitik Geometri II MATH 122 Bahar 2 0 0 2 4 Ön Koşul Ders(ler)i Yok Dersin

Detaylı

DİJİTAL FOTOGRAMETRİ. KTÜ Mühendislik Fakültesi Harita Mühendisliği Bölümü. Doç. Dr. Eminnur Ayhan

DİJİTAL FOTOGRAMETRİ. KTÜ Mühendislik Fakültesi Harita Mühendisliği Bölümü. Doç. Dr. Eminnur Ayhan DİJİTAL FOTOGRAMETRİ KTÜ Mühendislik Fakültesi Harita Mühendisliği Bölümü Doç. Dr. Eminnur Ayhan Dijital Fotogrametrideki (Raster) Koordinat Sistemleri 1. Piksel koordinat sistemi 2. Görüntü koordinat

Detaylı

BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF 330/336 FOTOGRAMETRİ II

BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF 330/336 FOTOGRAMETRİ II FOTOGRAMETRİ II FOTOGRAMETRİK ÜRÜNLER Yrd. Doç. Dr. Saygın Abdikan BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF 330/336 FOTOGRAMETRİ II DERSi NOTLARI Stereo değerlendirme yapabilmek için,

Detaylı

İŞARETLİ GÖZLÜK SAYESİNDE 3B GÖZ BAKIŞ DOĞRULTUSUNUN KESTİRİMİ

İŞARETLİ GÖZLÜK SAYESİNDE 3B GÖZ BAKIŞ DOĞRULTUSUNUN KESTİRİMİ T.C. GEBZE YÜKSEK TEKNOLOJİ ENSTİTÜSÜ MÜHENDİSLİK VE FEN BİLİMLERİ ENSTİTÜSÜ İŞARETLİ GÖZLÜK SAYESİNDE 3B GÖZ BAKIŞ DOĞRULTUSUNUN KESTİRİMİ ŞAMİL KARAHAN YÜKSEK LİSANS TEZİ BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM

Detaylı

ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır.

ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır. ÖRNEKLER-VEKTÖR UZAYLARI. vektör uzayında yer alan w=(9 7) vektörünün, u=( -), v=(6 ) vektörlerinin doğrusal bir kombinasyonu olduğunu ve z=( - 8) vektörünün ise bu vektörlerin doğrusal bir kombinasyonu

Detaylı

COM337 Bilgisayar Grafiği. OpenGL ile Grafik Programlama. Dr. Erkan Bostancı

COM337 Bilgisayar Grafiği. OpenGL ile Grafik Programlama. Dr. Erkan Bostancı COM337 Bilgisayar Grafiği OpenGL ile Grafik Programlama Dr. Erkan Bostancı İçerik Giriş Dönüşüm matrisleri Matris yığınları (stack) Giriş İlk olarak gizli yüzeylerin kaldırılmasını (hidden surface removal)

Detaylı

GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Aycan M. MARANGOZ

GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Aycan M. MARANGOZ FOTOGRAMETRİ II GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

CAEeda TM OM6 KANADI MODELLEME. EDA Tasarım Analiz Mühendislik

CAEeda TM OM6 KANADI MODELLEME. EDA Tasarım Analiz Mühendislik CAEeda TM OM6 KANADI MODELLEME EDA Tasarım Analiz Mühendislik 1. Kapsam Kanat Sınırlarını Çizme Taban Kanat Profilinin Hücum ve Firar Kenarları Sınırlarını Çizme Kanat Profilini Dosyadan (.txt) Okuma Geometrik

Detaylı

Gebze Yüksek Teknoloji Enstitüsü Bilgisayar Mühendisliği Bölümü PK.141 41400 Gebze/Kocaeli

Gebze Yüksek Teknoloji Enstitüsü Bilgisayar Mühendisliği Bölümü PK.141 41400 Gebze/Kocaeli Gebze Yüksek Teknoloji Enstitüsü Bilgisayar Mühendisliği Bölümü PK.141 41400 Gebze/Kocaeli Teknik Rapor Seminer Raporu TM #: Başlık: Anahtar Kelimeler: Yazarlar: Demiryollarında hareket halinde olan objelerin

Detaylı

AMAÇ Araçlardaki Kamera Sistemleri

AMAÇ Araçlardaki Kamera Sistemleri SUNU PLANI AMAÇ OPEN CV GÖRÜNTÜ EŞİKLEME KENAR BULMA ŞEKİL BULMA GÖRÜNTÜ GENİŞLETME VE BOZMA GÖRÜNTÜ DOLDURMA AFFİNE DÖNÜŞÜMÜ PERSPEKTİF DÖNÜŞÜM KUŞ BAKIŞI GÖRÜNTÜ DÖNÜŞÜMÜ AMAÇ Araçlardaki Kamera Sistemleri

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

FOTOGRAMETRİ DAİRESİ BAŞKANLIĞI FAALIYETLERI

FOTOGRAMETRİ DAİRESİ BAŞKANLIĞI FAALIYETLERI FOTOGRAMETRİ DAİRESİ BAŞKANLIĞI FAALIYETLERI Fotg.D.Bşk.lığı, yurt içi ve yurt dışı harita üretimi için uydu görüntüsü ve hava fotoğraflarından fotogrametrik yöntemlerle topoğrafya ve insan yapısı detayları

Detaylı

3-1 Koordinat Sistemleri Bir cismin konumunu tanımlamak için bir yönteme gereksinim duyarız. Bu konum tanımlaması koordinat kullanımı ile sağlanır.

3-1 Koordinat Sistemleri Bir cismin konumunu tanımlamak için bir yönteme gereksinim duyarız. Bu konum tanımlaması koordinat kullanımı ile sağlanır. Bölüm 3 VEKTÖRLER Bölüm 3: Vektörler Konu İçeriği Sunuş 3-1 Koordinat Sistemleri 3-2 Vektör ve Skaler nicelikler 3-3 Vektörlerin Bazı Özellikleri 3-4 Bir Vektörün Bileşenleri ve Birim Vektörler Sunuş Fizikte

Detaylı

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 10 Hiperspektral Görüntülerde Öznitelik Çıkarımı ve Boyut Azaltımı Alp Ertürk alp.erturk@kocaeli.edu.tr Öznitelik Çıkarımı Veriden ayırt edici yapıda nitelikler çıkarma

Detaylı

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Ay 2016 2017 EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Hafta ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIMLAR EYLÜL 3 4 Sayılar ve İşlemler Çarpanlar

Detaylı

POLİGONLAR İÇİN FARKLI KESİNTİSİZ DÖNÜŞÜM YÖNTEMLERİNİN KARŞILAŞTIRILMASI

POLİGONLAR İÇİN FARKLI KESİNTİSİZ DÖNÜŞÜM YÖNTEMLERİNİN KARŞILAŞTIRILMASI POLİGONLAR İÇİN FARKLI KESİNTİSİZ DÖNÜŞÜM YÖNTEMLERİNİN KARŞILAŞTIRILMASI Hacer İlhan (a), Zümra Kavafoğlu (b), Haşmet Gürçay (c) (a) Hacettepe Üniversitesi, Matematik Bölümü, Ankara, hacerilhan@hacettepe.edu.tr

Detaylı

BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF 330/336 FOTOGRAMETRİ II

BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF 330/336 FOTOGRAMETRİ II FOTOGRAMETRİ II FOTOGRAMETRİK ÜRÜNLER Yrd. Doç. Dr. Saygın Abdikan BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF 330/336 FOTOGRAMETRİ II DERSi NOTLARI Stereo değerlendirme yapabilmek için,

Detaylı

= e DIŞ MERKEZLİK HAZİNE-1 HAZİNE-2

= e DIŞ MERKEZLİK HAZİNE-1 HAZİNE-2 HAZİNE-1 HAZİNE-2 Bir eksen üzerinde verilen noktadan geçen ve eksen ile belirli açı yaparak dönen doğrunun oluşturduğu yüzeye konik yüzey denir. Konik yüzeyin değişik düzlemler ile arakesit kümeleri çember,

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 25 Ekim

Detaylı

COM337 Bilgisayar Grafiği. OpenGL ile Grafik Programlama. Dr. Erkan Bostancı

COM337 Bilgisayar Grafiği. OpenGL ile Grafik Programlama. Dr. Erkan Bostancı COM337 Bilgisayar Grafiği OpenGL ile Grafik Programlama Dr. Erkan Bostancı İçerik Işık Resim ve Metin Görüntüleme Texture-mapping Işık (1/3) OpenGL de bir sahne 8 farklı ışık kaynağı kullanabilir. İlk

Detaylı

ÖZET 3B ZERNİKE MOMENTLERİ KULLANILARAK İNSAN HAREKETLERİNİN TANINMASI

ÖZET 3B ZERNİKE MOMENTLERİ KULLANILARAK İNSAN HAREKETLERİNİN TANINMASI ÖZET 3B ZERNİKE MOMENTLERİ KULLANILARAK İNSAN HAREKETLERİNİN TANINMASI OKAY ARIK Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü Tez Danışmanı: Yrd. Doç. Dr. SEMİH BİNGÖL Ocak 2014, 40 Sayfa

Detaylı

TORK VE DENGE 01 Torkun Tanımı ve Yönü

TORK VE DENGE 01 Torkun Tanımı ve Yönü TORK VE DENGE 01 Torkun Tanımı ve Yönü Kuvvetin döndürme etkisine tork ya da moment denir. Bir kuvvetin bir noktaya göre torku; kuvvet ile dönme noktasının kuvvete dik uzaklığının çarpımına eşittir. Moment

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

Fotogrametriye Giriş

Fotogrametriye Giriş ye Giriş 2013-2014, BAHAR YY Fevzi Karslı (Doç. Dr.) Harita Mühendisliği Bölümü 23 Mart 2014 Pazar Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, kavramlar, kaynaklar. 2. Hafta nin tanımı ve uygulama

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı

GÖRÜNTÜ İŞLEME - (7.Hafta) KENAR BELİRLEME ALGORİTMALARI

GÖRÜNTÜ İŞLEME - (7.Hafta) KENAR BELİRLEME ALGORİTMALARI GÖRÜNTÜ İŞLEME - (7.Hafta) KENAR BELİRLEME ALGORİTMALARI Bu konuda bir çok algoritma olmasına rağmen en yaygın kullanılan ve etkili olan Sobel algoritması burada anlatılacaktır. SOBEL FİLTRESİ Görüntüyü

Detaylı

GEOMETRİ. Tüm geometrik şekiller, elemanları noktalar olan kümeler olduğundan, biz de noktadan başlayarak gezimize çıkalım.

GEOMETRİ. Tüm geometrik şekiller, elemanları noktalar olan kümeler olduğundan, biz de noktadan başlayarak gezimize çıkalım. GEOMETRİ Geometriyi seven veya sevmeyenler için farklı bir bakış açısı. Gerçeğin kilidini açacak anahtarın Aritmetik ve Geometri olduğunu söyleyen ve Tanrının da bir Matematikçi olduğuna inanan ünlü düşünür

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Bibliography 11 CONTENTS 5 0.1 Kartezyen Çarpım 0.2 Sıralı İkililer Şimdiye kadar sıra ya da

Detaylı