Tahmin Edici Elde Etme Yöntemleri

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Tahmin Edici Elde Etme Yöntemleri"

Transkript

1 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme akla gele adaylar aras da yer alm şt. Hatta öreklem stadart sapmas p ile çarp m da tahmi edici olarak düşüülmüştü. T = X () T = X _ T 3 = Öreklem Ortacas T 4 = + X () T 5 = X () + X () T 6 = p S istatistikleri içi tahmi edici olarak öerilebilir. Başkalar da öerilebilir. Bular aras da T 4 yas z tahmi edicisi düzgu e küçük varyasl yas z tahmi edicidir, çükü, yeterli ve tam ola X () istatisti¼gii bir foksiyoudur (Lehma-Sche e Teoremi). Baz durumlarda tahmi edici öermek o kadar kolay olmamaktad r. Öre¼gi, kitle da¼g l m Gamma ( (; )) oldu¼guda, parametreleri kedileri içi tahmi edici öermek sezgisel olarak kolay olmamaktad r. Kitle ortlamas içi tahmi edici olarak X () öreklem ortalamas öerilebilir. Kitle varyas içi tahmi edici olarak S öreklem varyas öerilebilir. Acak ; parametrelerii kedileri içi tahmi ediciler öermek kolay de¼gildir.

2 Mometler Yötemi Mometler yötemi, 800 lü y llar solar da Karl Pearso a dayaa e eski yötemlerde birisidir. = ( ; ; :::; r ) 0 R r olmak üzere, r (r ) bileşeli parametre vektörüü tahmi etmek isteyelim. X ; X ; :::; X olas l k yo¼guluk foksiyou f(; ); ola da¼g l mda bir öreklem olmak üzere, var olmas halide, kitle da¼g l m mometleri, ve öreklem mometleri, k = E (X k ) ; k = ; ; 3; ::: k = X Xi k ; k = ; ; 3; ::: olsu. Kitle mometleri ile öreklem mometleride ilk r taesii eşitlemesiyle elde edile ve ; ; :::; r bilimeyelerie göre r tae deklemde oluşa deklem sistemii çözümü ola, (X ; X ; :::; X ) ; (X ; X ; :::; X ) ; :::; istatistiklerie mometler yötemi tahmi edicileri deir. Örek: X ; X ; :::; X olas l k yo¼guluk foksiyou, r (X ; X ; :::; X ) f(x; ; ) = ( ) x e x ; x > 0; ; (0; ) ola da¼g l mda bir öreklem olsu. Kitle ve öreklem mometleride ilk iki taesii eşitlemesiyle, X : = : + : = X X i X i

3 deklem sistemi elde edilir. Burada, ve i mometler yötemi tahmi edicileri, 3 olarak buluur. = X P _ (X i X) ; = P _ (X i X) X Örek: X ; X ; :::; X ler U( ; ) ; ; R; < da¼g l m da bir öreklem olsu. U( ; ) düzgü da¼g l m olas l k yo¼guluk foksiyou, f(x; ; ) = ; x 0 ; d:y: olup, birici mometi, ikici mometi, = + = + + olmak üzere, kitle ile öreklem mometlerii eşitlemesiyle, = = deklem sistemi elde edilir. Burada ve i mometler yötemi tahmi edicileri, v u P _ t (X i X) e = X 3 olarak buluur. X X X i X i v u P _ t (X i X) ; e = X + 3

4 4 E Çok Olabilirlik Yötemi Ta m: X = (X ; X ; :::; X ) öreklemii olas l k (yo¼guluk) foksiyou, f(x;) = f( ; ) olmak Q üzere, L(; x) = f(x; ) ; foksiyoua, gözlee x =(x ; x ; :::; x ) içi olabilirlik foksiyou veya k saca olabilirlik foksiyou deir. Geelde, L(; x) olabilirlik foksiyou bir olas l k yo¼guluk foksiyou de¼gildir, çükü bir foksiyou ola L(; x) foksiyou içi R L(; x)d de¼geri bire eşit olmayabilir. Olabilirlik Ilkesi: Bir deeyde (gözlemde) hakk da elde edilebilecek tüm bilgi, verile x = (x ; x ; :::; x ) gözlem vektörü içi olabilirlik foksiyouda içerilmektedir. x; y X olmak üzere her içi, L(; x) = c(x; y)l(; y) oldu¼guda, hakk da x; y gözlemleride ç kar lacak souçlar ay olmal d r. c(x; y) = durumuda Olabilirlik Ilkesi, ay olabilirlik de¼gerlerie sahip gözlemleri hakk da ay bilgiyi içerdiklerii söylemektedir. Acak Olabilirlik Ilkesi daha ileriye gitmektedir. Farkl iki gözlemi olabilirlikleri orat l ise hakk da ay bilgiyi içerdiklerii de ifade etmektedir. Öre¼gi, X gözlem vektörü içi L( ; x) = L( ; x) ise ; e göre iki kat daha caziptir deir. L(; x) = c(x; y)l(; y) de sa¼gla yorsa L( ; y) = L( ; y) olur. Böylece le y de hagisi gözleirse gözlesi, e göre iki kat daha caziptir soucua var l r. E çok olabilirlik yötemi, tahmi edicileri elde etme yötemleri aras da e popüler ola d r. Ta m: X = (X ; X ; :::; X ) öreklemii olas l k (yo¼guluk) foksiyou, f(x;) = f( ; ) olmak üzere X = x olarak gözledi¼gide Q bir foksiyou ola, L(; x) = f(x; ) ;

5 olabilirlik foksiyouu parametre kümesi üzeride maksimum yapa (x) de¼gerie, var olmas halide e çok olabilirlik tahmii ve ( X) istatisti¼gie de e çok olabilirlik tahmi edicisi deir. Kar ş kl ¼ga yol açmad ¼g takdirde e çok olabilirlik tahmii ile e çok olabilirlik tahmi edicisii ay sembolü ile gösterece¼giz. Bua göre, L( ; x) = max Y f( ; ) d r. Logaritma foksiyouu mootolu¼gu gözöüe al d ¼g da, l L( ; x) = max X l f( ; ) P yaz labilir. Baz durumlarda max l f( ; ) optimizasyo problemii çözmek daha kolay olmaktad r. Bu sebepte dolay geellikle, olabilirlik foksiyou yerie ou do¼gal logaritmas ola ve log-olabilirlik foksiyou da dee foksiyo maksimize edilmektedir. Baz durumlarda (x ; x ; :::; x ) çözümüü x ; x ; :::; x ler ciside ifade etmek, başka bir deyişle aalitik çözüm elde etmek mümkü olmakta, baz durumlarda da mümkü olmamaktad r. Aalitik çözüm elde edilemedi¼gide e çok olabilirlik tahmi edicisi biçimsel olarak bilimemekte, yai öreklemi bir foksiyou olarak aç k bir biçimde yaz lamamaktad r. Böyle durumlarda, optimizasyo problemi belli bir say sal algoritma ile çözülüp parametrei tahmii elde edilmektedir. Örek: X ; X ; :::; X ler N(; ) ; R ormal da¼g l m da bir öreklem olsu. 5 L(; x) = ( ) e l L(; x) = P ( ) l() X ( ) olmak üzere, max l L(; x) optimizasyo problemii çözümü, R

6 6 (x ; x ; :::; x ) = ve e çok olabilirlik tahmi edicisi, ( X ; X ; :::; X ) = d r. K saca = X olarak gösterebiliriz. P P X i Örek: X ; X ; :::; X ler N( ; ) ; R; (0; ) ormal da¼g l m da bir öreklem olsu. olmak üzere L( ; ; x) = ( ) e l L( ; ; x) = l( ) P ( ) X ( ) max l L( ; ; x) optimizasyo problemii çözümü, R; (0;) (x ; x ; :::; x ) = x P (x i x) (x ; x ; :::; x ) = ve ile parametrelerii e çok olabilirlik tahmi edicileri, d r. ( X ; X ; :::; X ) = X P (X i X) ( X ; X ; :::; X ) =

7 Örek: X ; X ; :::; X ler U( ; ) ; ; R; < düzgü da¼g l m da bir öreklem olsu. 8 < ( ) ; ; i = ; ; :::; L( ; ; x) = : 0 ; d.y. olmak üzere max l L( ; ; x) optimizasyo problemi aşa¼g daki ; R; < miimizasyo problemie eşde¼gerdir. 7 problemii çözümü, Amaç : mi ; ( ) K s t : x () < x () < ::: < x () = x () = x () olmak üzere ile parametrelerii e çok olabilirlik tahmi edicileri, d r. ( X ; X ; :::; X ) = X () ( X ; X ; :::; X ) = X () X ; X ; :::; X ler olas l k yo¼guluk foksiyou f(x; ) ; ola da¼g l mda bir öreklem ve T istatisti¼gi içi yeterli bir istatistik olmak üzere, e çok olabilirlik tahmi edicisi mevcut ve tek oldu¼guda T i bir foksiyoudur. Bu durumda L(; x ; x ; :::; x ) = k(t (x ; x ; :::; x ); ):h(x ; x ; :::; x ) biçimide olup, max l L(; x ; x ; :::; x ) problemi max k(t (x ; x ; :::; x ); ) problemie döüşüp e çok olabilirlik tahmi edicisi T i bir foksiyou olmaktad r.

8 8 E çok olabilirlik tahmi edicileri geellikle yal tahmi edicilerdir. Olabilirlik fosiyou ile ilgili baz düzgülük şartlar alt da e çok olabilirlik tahmi edicileri tutarl d rlar. Bir parametresii e çok olabilirlik tahmi edicisi ola ( X ; X ; :::; X ) asimptotik ormal da¼g l ma sahiptir. ( X ; X ; :::; X ) AN(; I() ) d r. E çok olabilirlik tahmi edicileri, parametre üzeride yap la döüşümlere göre de¼gişmez kalmaktad rlar, yai e çok olabilirlik tahmi edicisi ola parametresii g() gibi bir döüşümüü e çok olabilirlik tahmi edicisi g( ) d r. Örek: Belli bir tür elektroik parça içi dayama süresii üstel da¼g l ma sahip oldu¼gu bilisi. Dayama süresii varyas tahmi edilmek istesi. Kitle da¼g l m olas l k yo¼guluk foksiyou, f X (x; ) = e x ; x > 0 beklee de¼geri ve varyas d r. X ; X ; :::; X ler bir öreklem olsu. olmak üzere, max (0;) L(; x) = ( ) e P P l L(; x) = l l L(; x) optimizasyo problemii l L(; P + = = 0 P (x ; x ; :::; x ) = + P

9 9 ve e çok olabilirlik tahmi edicisi, ( X ; X ; :::; X ) = P X i d r. = X olmak üzere, i e çok olabilirlik tahmi edicisi, b = b = X d r. X ( =, = ) olmak üzere, E(X ) = V ar(x ) + = + = + d r. X ; e çok olabilirlik tahmi edicisi yas z de¼gildir. T = + X tahmi edicisi, i yas zl ¼g düzeltilmiş e çok olabilirlik tahmi edicisidir.

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer.

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer. SORU : AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI X raslat deikeii olas l k youluk foksiyou 8x, x f(x) = 0, ö.d olarak verilmitir. Bua göre 0< y içi Y = raslat deikeii X olaslk youluk

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

BEKLENEN DEĞER. 6. Ders. Tanım: X, bir rasgele değişken ve g : R R, B B R için x : g x B B R özelliğine sahip bir fonksiyon olmak üzere:

BEKLENEN DEĞER. 6. Ders. Tanım: X, bir rasgele değişken ve g : R R, B B R için x : g x B B R özelliğine sahip bir fonksiyon olmak üzere: 6. Ders BEKLENEN DEĞER Taım: X, bir rasgele değişke ve g : R R, B BR içi x : gx B BR özelliğie sahip bir foksiyo olmak üzere: i) X kesikli ve ii) X sürekli ve gx fx olduğuda, x EgX gxfx gx fxdx olduğuda,

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir?

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir? ÖRNEK 1 : A= {1,,}, B={1,,5,7}kümeleri veriliyor. A da B ye taımlaa aşağıdaki bağıtılarda hagisi foksiyo değildir? A) {(1,), (,5), (,7)} B) {(1,), (1,5), (,1)} C) {(1,1), (,1), (,1)} D) {(1,5), (,1), (,7)}

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LISANS TEZİ MARKOV ZİNCİRLERİNDE BOOTSTRAP. Serhat DUMAN İSTATİSTİK ANABİLİM DALI ANKARA 2006

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LISANS TEZİ MARKOV ZİNCİRLERİNDE BOOTSTRAP. Serhat DUMAN İSTATİSTİK ANABİLİM DALI ANKARA 2006 ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LISANS TEZİ MARKOV ZİNCİRLERİNDE BOOTSTRAP Serhat DUMAN İSTATİSTİK ANABİLİM DALI ANKARA 26 Her hakkı saklıdır Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda,

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R İ H S A N T İ M U Ç İ N D O L A P C İ, Y İ Ğ İ T A K S O Y M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R P U B L I S H E R O F T H I S B O O K Copyright 13 İHSAN TİMUÇİN DOLAPCİ, YİĞİT AKSOY

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması . Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

altında ilerde ele alınacaktır.

altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

Ölçme Hataları, Hata Hesapları. Ölçme Hataları, Hata Hesapları 2/22/2010. Ölçme... Ölçme... Yrd. Doç. Dr. Elif SERTEL sertele@itu.edu.

Ölçme Hataları, Hata Hesapları. Ölçme Hataları, Hata Hesapları 2/22/2010. Ölçme... Ölçme... Yrd. Doç. Dr. Elif SERTEL sertele@itu.edu. //00 Ölçme Hataları, Hata Hesapları Ölçme Hataları, Hata Hesapları Yrd. Doç. Dr. Elif SERTEL sertele@itu.edu.tr Suu, Doç. Dr. Hade Demirel i ders otlarıda ve Ölçme Bilgisi kitabıda düzelemiştir. Ölçme...

Detaylı

MEKANİK TESİSATTA EKONOMİK ANALİZ

MEKANİK TESİSATTA EKONOMİK ANALİZ MEKANİK TESİSATTA EKONOMİK ANALİZ Mustafa ÖZDEMİR İ. Cem PARMAKSIZOĞLU ÖZET Düya çapıda rekabeti ö plaa çıktığı bu gükü şartlarda, e gelişmiş ürüü, e kısa sürede, e ucuza üretmek veya ilk yatırım ve işletme

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK AKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY ÖYÜ DENEY I VİDALARDA OTOBLOKAJ DENEY II SÜRTÜNME KATSAYISININ BELİRLENMESİ DERSİN

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

Bölüm 5: Hareket Kanunları

Bölüm 5: Hareket Kanunları Bölüm 5: Hareket Kauları Kavrama Soruları 1- Bir cismi kütlesi ile ağırlığı ayımıdır? 2- Ne zama bir cismi kütlesi sayısal değerce ağırlığıa eşit olur? 3- Eşit kollu terazi kütleyi mi yoksa ağırlığı mı

Detaylı

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkaı : Yrd.Doç.Dr. İsmail YILDIZ ARAŞTIRMADA PLANLAMA VE ÇÖZÜMLEME (03-09 Ocak 014 Y.ÇELİK) Araştırma Süreci (The research

Detaylı

Görüntü Stabilizasyonu İçin Paralel İşlev Gören İki Kalman Filtresiyle İşlem Gürültü Varyansının Adaptifleştirilmesi

Görüntü Stabilizasyonu İçin Paralel İşlev Gören İki Kalman Filtresiyle İşlem Gürültü Varyansının Adaptifleştirilmesi Görütü Stabilizasyou İçi Paralel İşlev Göre İki Kalma Filtresiyle İşlem Gürültü Varyasıı Adaptifleştirilmesi Eylem Yama, Sarp Ertürk Kocaeli Üiversitesi Elektroik ve Haberleşme Müh. Bölümü eylem@kou.edu.tr,

Detaylı

Üstel Dağılım Babam: - Şu ampullerin hangisinin ömrünün daha kısa olduğu hiç belli olmuyor. Bazen yeni alınanlar eskilerden daha önce yanıyor.

Üstel Dağılım Babam: - Şu ampullerin hangisinin ömrünün daha kısa olduğu hiç belli olmuyor. Bazen yeni alınanlar eskilerden daha önce yanıyor. Üsel Dağılım Babam: - Şu ampulleri hagisii ömrüü daha kısa olduğu hiç belli olmuyor. Baze yei alıalar eskilerde daha öce yaıyor. Hele şuradaki bildim bileli var. Evde yedek ampul yokke, gerekirse ou söküp

Detaylı

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi 5. Drs Dağılımlarda Rasgl Sayı Ürtilmsi Trs Döüşüm Yötmi sürkli bir rasgl dğişk v bu rasgl dğişki dağılım foksiyou olsu. Dağılımı dstk kümsi üzrid dağılım foksiyou arta v bir-bir bir foksiyo olmaktadır.

Detaylı

WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI

WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI VII. Ulusal Temiz Eerji Sempozyumu, UTES 008 7-9 Aralı 008, İstabul WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI Seyit Ahmet AKDAĞ, Öder GÜLER İstabul Tei Üiversitesi, Eerji

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

{ 1 3 5} UYGULAMA-2 OLASILIK HESABI { } i, i = 1, 2,, n elemanına aşağıdaki özelliklere sahip bir p. her bir ω. sayısı karşılık getirilsin.

{ 1 3 5} UYGULAMA-2 OLASILIK HESABI { } i, i = 1, 2,, n elemanına aşağıdaki özelliklere sahip bir p. her bir ω. sayısı karşılık getirilsin. UYGULAMA- OLASILIK HESABI Ω. Ω solu sayıda elemaa sahip olsu. Ω { ω, ω,, ω }, U olmak üzere, Ω ı her bir ω i, i,,, elemaıa aşağıdaki özelliklere sahip bir p i sayısı karşılık getirilsi. ) p 0, i,,...,

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

Süzgeç. Şekil 4.1 Süzgeçlemedeki temel fikir

Süzgeç. Şekil 4.1 Süzgeçlemedeki temel fikir Deey 4: ayısal üzgeçler Amaç Bu deeyi amacı solu dürtü yaıtlı (FIR) ve sosuz dürtü yaıtlı (IIR) sayısal süzgeçleri taıtılması ve frekas yaıtlarıı icelemesidir. Giriş iyal işlemede süzgeçleme bir siyali

Detaylı

JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER

JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER Prof. Dr. Hüseyi Çelebi Ders Notları İstabul 014 Jeolojide matematik ve statistiksel yötemler 1 Ösöz Jeolojide matematik ve istatistiksel yötemler ders otları

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı Damızlık Değeri, geotipik değer, allel frekasları Aki Pala, aki@comu.edu.tr ttp://members.comu.edu.tr/aki/ Damızlık değeri esabı µ Ökkeş =800 gr gülük calı ağırlık Sürü A Sürü µ Döller µ 500gr 700 DD esabı

Detaylı

Galois cisimleri ve en yüksek çözümlü 2 k-1 tasarmlarnn oluturulmas

Galois cisimleri ve en yüksek çözümlü 2 k-1 tasarmlarnn oluturulmas www.istatistikciler.org statistikçiler Dergisi 3 (00) 45-53 statistikçiler Dergisi Galois cisimleri ve e yüksek çözümlü k- tasarmlar oluturulmas Naza Daacolu Siop Üiversitesi Fe-Ed. Fak. statistik Bölümü

Detaylı

YENĐ BĐR ADAPTĐF FĐLTRELEME YÖNTEMĐ: HĐBRĐD GS-NLMS ALGORĐTMASI

YENĐ BĐR ADAPTĐF FĐLTRELEME YÖNTEMĐ: HĐBRĐD GS-NLMS ALGORĐTMASI Uludağ Üiversitesi ühedislik-imarlık Fakültesi Dergisi, Cilt 3, Sayı, 008 YENĐ BĐR ADAPĐF FĐLRELEE YÖNEĐ: HĐBRĐD GS-NLS ALGORĐASI Sedat ĐRYAKĐ * eti HAUN ** Osma Hilmi KOÇAL ** Özet: Bu makalede, adaptif

Detaylı

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar 0 0 0 Gerçek Say lar Kümesii Geiflletme Gere i Kümesi Aalitik Düzlemde Gösterilmesi Efllei i Modülü da fllemler ki Karmafl k Say Aras daki Uzakl k Karmafl k Say Geometrik Yeri Kutupsal Gösterimi Karmafl

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ZAMAN SERİLERİNDE BİRİM KÖKLERİN İNCELENMESİ. Yeliz YALÇIN İSTATİSTİK ANABİLİM DALI

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ZAMAN SERİLERİNDE BİRİM KÖKLERİN İNCELENMESİ. Yeliz YALÇIN İSTATİSTİK ANABİLİM DALI ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÜKSEK LİSANS TEZİ ZAMAN SERİLERİNDE BİRİM KÖKLERİN İNCELENMESİ eliz ALÇIN İSTATİSTİK ANABİLİM DALI ANKARA Her akkı saklıdır rd. Doç. Dr. ılmaz AKDİ daışmalığıda,

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ÖABT SINIF ÖĞRETMENLİĞİ TEMEL MATEMATİK

ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ÖABT SINIF ÖĞRETMENLİĞİ TEMEL MATEMATİK ÖT 2015 Sorular yakalaya komisyo tarafda hazrlamştr. ÖĞRETMENLİK LN İLGİSİ TESTİ ÖT SINIF ÖĞRETMENLİĞİ TEMEL MTEMTİK Kou latm Özgü Sorular yrtl ler Test Stratejileri Çkmş Sorular Komisyo ÖT Sf Öğretmeliği

Detaylı

ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY Cilt/Vol.:-Sayı/No: : 355-366 (9) ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE TEK DEĞİŞKENLİ KARARLI DAĞILIMLAR,

Detaylı

TAMSAYILI PROGRAMLAMADA DAL KESME YÖNTEMİ VE BİR EKMEK FABRİKASINDA OLUŞTURULAN ARAÇ ROTALAMA PROBLEMİNE UYGULANMASI

TAMSAYILI PROGRAMLAMADA DAL KESME YÖNTEMİ VE BİR EKMEK FABRİKASINDA OLUŞTURULAN ARAÇ ROTALAMA PROBLEMİNE UYGULANMASI Uludağ Üiversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi Cilt XXIV, Sayı 1, 2005, s. 101-114 TAMSAYILI PROGRAMLAMADA DAL KESME YÖNTEMİ VE BİR EKMEK FABRİKASINDA OLUŞTURULAN ARAÇ ROTALAMA PROBLEMİNE

Detaylı

Deomed Yay nc l k. Türkçe birinci bask Deomed, 2011.

Deomed Yay nc l k. Türkçe birinci bask Deomed, 2011. Deomed Yay c l k Holz / Spaide Medikal Retia / Patogeez, Ta ve Tedavi Gücellemeleri Türkçe Editörü / Gülipek Müftüo lu Çeviri / rem Hamamc o lu 27 Yazar Kat l m yla 16.5 x 24 cm, XII + 228 Sayfa 55 fiekil,

Detaylı

Yukarıdaki sonucu onaylarım. Prof. Dr. Ülkü MEHMETOĞLU. Enstitü Müdürü

Yukarıdaki sonucu onaylarım. Prof. Dr. Ülkü MEHMETOĞLU. Enstitü Müdürü ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ DURAĞAN OLMAYAN ZAMAN SERİLERİNDE KOİNTEGRASYON VEKTÖRÜNÜN TAHMİNİ ÜZERİNE BİR ÇALIŞMA Yudum BALKAYA İSTATİSTİK ANABİLİM DALI ANKARA 006 Her

Detaylı

11. SINIF MATEMATİK ÜÇRENK SORU BANKASI

11. SINIF MATEMATİK ÜÇRENK SORU BANKASI . INIF MATEMATİK ÜÇRENK ORU BANKAI Mil lî E i tim Ba ka l Ta lim ve Ter bi ye Ku ru lu Ba ka l.8. ta rih ve sa y l ka ra r ile ka bul edi le ve - Ö re tim Y l da iti ba re uy gu la a cak ola prog ra ma

Detaylı

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi DERS Determitlr eotief Girdi - Çıktı lizi.. ir Kre Mtrisi Determitı. Determit kvrmıı tümevrıml tımlycğız. mtrisleri determitıı tımlyrk şlylım. Tım. tımlır. mtrisiidetermitı olrk Örek. mtrisii determitı

Detaylı

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 4-2 Yıl: 2011 113-124

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 4-2 Yıl: 2011 113-124 EÜFBED - Fe Bilimleri Estitüsü Dergisi Cilt-Sa: 4- Yl: 3-4 STURM LİOUVİLLE FARK OERATÖRÜNÜN SEKTRAL ÖZELLİKLERİ SECTRAL ROERTIES OF THE STURM LIOUVILLE DIFFERENCE OERATOR Ateki ERYILMAZ * e Bileder AŞAOĞLU

Detaylı

5. Atomun yap s n aç klamak için çok de iflik modeller ortaya CEVAP A. 6. Bohr atom modeline göre, CEVAP E. ... n=4... n=3... n=2 ESEN YAYINLARI

5. Atomun yap s n aç klamak için çok de iflik modeller ortaya CEVAP A. 6. Bohr atom modeline göre, CEVAP E. ... n=4... n=3... n=2 ESEN YAYINLARI ATOM F TEST -. Tomso atom modelie göre, atom küre fleklidedir. Atomda (+) ve ( ) yükler rastgele da lm flt r. Ayr ca yörüge kavram yoktur.. Temel âldeki atomlar dört yolla uyar labilir. ) S cakl klar art

Detaylı

Hipotez Testleri. Parametrik Testler

Hipotez Testleri. Parametrik Testler Hipotez Testleri Parametrik Testler Hipotez Testide Adımlar Bir araştırma sorusuu belirlemesi Araştırma sorusua dayaa istatistiki hipotezleri oluşturulması (H 0 ve H A ) Hedef populasyoda öreklemi elde

Detaylı

SIRA-BAĞIMLI HAZIRLIK ZAMANLI İKİ ÖLÇÜTLÜ ÇİZELGELEME PROBLEMİ: TOPLAM TAMAMLANMA ZAMANI VE MAKSİMUM ERKEN BİTİRME. Tamer EREN a,*, Ertan GÜNER b ÖZET

SIRA-BAĞIMLI HAZIRLIK ZAMANLI İKİ ÖLÇÜTLÜ ÇİZELGELEME PROBLEMİ: TOPLAM TAMAMLANMA ZAMANI VE MAKSİMUM ERKEN BİTİRME. Tamer EREN a,*, Ertan GÜNER b ÖZET Erciyes Üiversitesi Fe Bilimleri Estitüsü Dergisi 23 (1-2) 95-105 (2007) http://fbe.erciyes.edu.tr/ ISSN 1012-2354 SIRA-BAĞIMLI HAZIRLIK ZAMANLI İKİ ÖLÇÜTLÜ ÇİZELGELEME PROBLEMİ: TOPLAM TAMAMLANMA ZAMANI

Detaylı

ISBN - 978-605-5631-60-4 Sertifika No: 11748

ISBN - 978-605-5631-60-4 Sertifika No: 11748 ISBN - 978-605-563-60-4 Sertifia No: 748 GENEL KOORDİNATÖR: REMZİ ŞAHİN AKSANKUR REDAKTE: REMZİ ŞAHİN AKSANKUR SERDAR DEMİRCİ SABRİ ŞENTÜRK Basm Yeri: EVOS BASIM - ANKARA Bu itab tüm basm ve yay halar

Detaylı

TEMEL KAVRAMLAR GİRİŞ

TEMEL KAVRAMLAR GİRİŞ TEMEL KAVRAMLAR GİRİŞ İstatistik kelimesii kökei Almaca olup devlet alamıa gelmektedir. İstatistik kelimesi gülük hayatta farklı alamlarda kullaılmaktadır. Televizyoda bir futbol müsabakasıı izleye bir

Detaylı

4.Bölüm Tahvil Değerlemesi. Doç. Dr. Mete Doğanay Prof. Dr. Ramazan Aktaş

4.Bölüm Tahvil Değerlemesi. Doç. Dr. Mete Doğanay Prof. Dr. Ramazan Aktaş 4.Bölüm Tahvil Değerlemesi Doç. Dr. Mee Doğaay Prof. Dr. Ramaza Akaş Amaçlarımız Bu bölümü amamladıka sora aşağıdaki bilgi ve becerilere sahip olabileceksiiz: Tahvillerle ilgili emel kavramları bilmek

Detaylı

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir?

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir? KONU:ATOM FİĞİ ebuyukfizikci@otmail.com HAIRLAYAN ve SORU ÇÖÜMLERİ:Amet Selami AKSU Fizik Öğretmei www.fizikvefe.com S.1. Uyarılmış bir idroje atomuda Balmer serisii H β çizgisi gözlemiştir. Bua göre,buu

Detaylı

TOPLAM KOLESTEROL, LDL, HDL VE TRİGLİSERİT SEVİYELERİNİN YAŞA GÖRE DEĞİŞİMİNİN DEĞİŞİK REGRESYON MODELLERİYLE İNCELENMESİ

TOPLAM KOLESTEROL, LDL, HDL VE TRİGLİSERİT SEVİYELERİNİN YAŞA GÖRE DEĞİŞİMİNİN DEĞİŞİK REGRESYON MODELLERİYLE İNCELENMESİ T.C. İNÖNÜ ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ TOPLAM KOLESTEROL, LDL, HDL VE TRİGLİSERİT SEVİYELERİNİN YAŞA GÖRE DEĞİŞİMİNİN DEĞİŞİK REGRESYON MODELLERİYLE İNCELENMESİ YÜKSEK LİSANS TEZİ EMRE DİRİCAN

Detaylı

ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ

ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ Öğreme Etkili Hazırlık ve Taşıma Zamalı Paralel Makieli Çizelgeleme Problemi HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ TEMMUZ 2006 CİLT 2 SAYI 4 (67-72) ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s. 1-21 Ekim 2005

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s. 1-21 Ekim 2005 DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s. -2 Ekim 2005 FRAKTAL GÖRÜNTÜ SIKIŞTIRMADA HASH FONKSİYONLARINA DAYANAN YENİ BİR SINIFLANDIRMA YÖNTEMİ (A NEW CLASSIFICATION METHOD

Detaylı

Üç Boyutlu Bilgisayar Grafikleri

Üç Boyutlu Bilgisayar Grafikleri 1. Üç Boyutlu Nese Taımlama Yötemleri Bilgisayar grafikleride üç boyutlu eseleri taımlamak içi birçok yötem geliştirilmiştir. Hagi taımlama yötemi avatajlı olduğu üç boyutlu uygulamaı amaç ve gereksiimleri,

Detaylı

3. Bölüm Paranın Zaman Değeri. Prof. Dr. Ramazan AktaĢ

3. Bölüm Paranın Zaman Değeri. Prof. Dr. Ramazan AktaĢ 3. Bölüm Paraı Zama Değeri Prof. Dr. Ramaza AktaĢ Amaçlarımız Bu bölümü tamamladıkta sora aşağıdaki bilgi ve becerilere sahip olabileceksiiz: Paraı zama değeri kavramıı alaşılması Faiz türlerii öğremek

Detaylı

biliniyordu: Eğer 2 a 1 bir asal sayıysa, o zaman S = 2 a 1 (2 a 1) yetkin bir sayıdır. Bunu toplayalım: O halde

biliniyordu: Eğer 2 a 1 bir asal sayıysa, o zaman S = 2 a 1 (2 a 1) yetkin bir sayıdır. Bunu toplayalım: O halde SAYILAR DÜNYASINDA GEZİNTİLER H. Turgay Kaptaoğlu Bu yazıda deri teorilere imede sayıları çoğulula da tamsayıları ilgiç özellileride bahsedeceğiz. Bu özellileri hiçbiri yei değil; yüzyıllar, hatta biyıllar

Detaylı

27 Ağustos 2011 CUMARTESİ Resmî Gazete Sayı : 28038 TEBLİĞ

27 Ağustos 2011 CUMARTESİ Resmî Gazete Sayı : 28038 TEBLİĞ 7 Ağustos 011 CUMARTESİ Resmî Gazete Sayı : 8038 TEBLİĞ Bilgi Tekolojileri ve ĠletiĢim Kurumuda: SABĠT TELEFON HĠZMETĠNE ĠLĠġKĠN HĠZMET KALĠTESĠ TEBLĠĞĠ BĠRĠNCĠ BÖLÜM Amaç, Kapsam, Dayaak ve Taımlar Amaç

Detaylı

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi Makie Tekolojileri Elektroik Dergisi Cilt: 8, No: 4, 011 (75-80) Electroic Joural of Machie Techologies Vol: 8, No: 4, 011 (75-80) TEKNOLOJİK ARAŞTIRMALAR www.tekolojikarastirmalar.com e-issn:1304-4141

Detaylı

ÜSTEL VE Kİ-KARE DAĞILIMLARI ARASINDAKİ İLİŞKİNİN SİMULASYON İLE ÜRETİLEN RANDOM SAYILARLA GÖSTERİLMESİ

ÜSTEL VE Kİ-KARE DAĞILIMLARI ARASINDAKİ İLİŞKİNİN SİMULASYON İLE ÜRETİLEN RANDOM SAYILARLA GÖSTERİLMESİ C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 4, Sayı, 3 97 ÜSTEL VE Kİ-KARE DAĞILIMLARI ARASINDAKİ İLİŞKİNİN SİMULASYON İLE ÜRETİLEN RANDOM SAYILARLA GÖSTERİLMESİ Yalçı KARAGÖZ Cumhuriyet Üiversitesi

Detaylı

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ AKIŞKA BORUSU ve ATİLATÖR DEEYİ. DEEYİ AMACI a) Lüle ile debi ölçmek, b) Dairesel kesitli bir borudaki türbülaslı akış şartlarıda hız profili ve eerji kayıplarıı deeysel olarak belirlemek ve literatürde

Detaylı

SEROLOJİK ÖRNEKLEME EL KİTABI. AVIAGEN ANADOLU AŞ KANATLI TEŞHİS ve ANALİZ LABORATUVARI SEROLOJİ ÖRNEKLEME EL KİTABI

SEROLOJİK ÖRNEKLEME EL KİTABI. AVIAGEN ANADOLU AŞ KANATLI TEŞHİS ve ANALİZ LABORATUVARI SEROLOJİ ÖRNEKLEME EL KİTABI AVIAGEN ANADOLU AŞ KANATLI TEŞHİS ve ANALİZ LABORATUVARI SEROLOJİ ÖRNEKLEME EL KİTABI 1/9 Hazırlaya Oaylaya Yürürlük Tarihi Revizyo Tarihi Mehmet ÜVEY Mehmet ÜVEY 06.04.2011 05.06.2014 Gözde Geçire Gözde

Detaylı

DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ

DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ C.Ü. İktisdi ve İdri Bilimler Dergisi, Cilt 5, Syı 5 DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ Öğr. Gör. Dr. Mehmet Ali ALAN Cumhuriyet Üiversitesi İktisdi ve İdri Bilimler Fkültesi Öğr. Gör.

Detaylı

ORMAN ENVANTERİ VE MEŞCERE ÖLÇÜMÜ

ORMAN ENVANTERİ VE MEŞCERE ÖLÇÜMÜ ORMAN ENVANTERİ VE MEŞCERE ÖLÇÜMÜ Ormaı e öemli bölümüü, kapitali büyük kısmıı oluştura, ağaç serveti oluşturmaktadır. Ormada ağaç serveti deilice, var ola hacim ve buu faizi durumuda ola hacim artımı

Detaylı

DOĞRUSAL PROGRAMLAMA İLE PORTFÖY OPTİMİZASYONU VE İMKB VERİLERİNE UYGULANMASI ÜZERİNE BİR ÇALIŞMA

DOĞRUSAL PROGRAMLAMA İLE PORTFÖY OPTİMİZASYONU VE İMKB VERİLERİNE UYGULANMASI ÜZERİNE BİR ÇALIŞMA DOĞRUSAL PROGRAMLAMA İLE PORTFÖY OPTİMİZASYONU VE İMKB VERİLERİNE UYGULANMASI ÜZERİNE BİR ÇALIŞMA Filiz KARDİYEN (*) Özet: Portföy seçim problemi içi klasik bir yaklaşım ola karesel programlama yötemi,

Detaylı

KOPULALAR TEORSNN FNANSTA UYGULAMALARI

KOPULALAR TEORSNN FNANSTA UYGULAMALARI EGE ÜNVERSTES FEN BLMLER ENSTTÜSÜ YÜKSEK LSANS TEZ ) KOPULALAR TEORSNN FNANSTA UYGULAMALARI Gökur YAPAKÇI Teorik statistik Aabilim Dalı Bilim Dalı Kodu: 406.0.0 Suum Tarihi: 08.08.007 Tez Daımaı: Yrd.

Detaylı

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için ÖzelKredi İstekleriize daha kolay ulaşmaız içi Yei özgürlükler keşfedi. Sizi içi öemli olaları gerçekleştiri. Hayalleriizi süsleye yei bir arabaya yei mobilyalara kavuşmak mı istiyorsuuz? Veya özel güler

Detaylı

MATEMATıciN ESTETiCi ÜZERINE ON AESTHETICS OF MATHEMATICS

MATEMATıciN ESTETiCi ÜZERINE ON AESTHETICS OF MATHEMATICS Hacettepe Üiversitesi Eğitim Fakültesi ergisi 22: 130-134 {2002} J. of [ Ed 22 MATEMATıciN ESTETiCi ÜZERINE ON AESTHETICS OF MATHEMATICS Cahit PESEN* ÖZET: Matematik, diziliş ve iç uyum ile karakterize

Detaylı

DİNAMİK PORTFÖY SEÇİMİ ve BİR UYGULAMA

DİNAMİK PORTFÖY SEÇİMİ ve BİR UYGULAMA Yöeim, Yıl: 7, Sayı: 55, Ekim 6 DİNAMİK PORFÖY SEÇİMİ ve BİR UYGULAMA Dr. Mehme HORASANLI İsabul Üiversiesi İşleme Fakülesi Sayısal Yöemler Aabilim Dalı Bu çalışmada, Li ve Ng ( arafıda aaliik çözümü üreile

Detaylı

SHARPE TEK indeks MODELi ile PORTFÖY SEciMi

SHARPE TEK indeks MODELi ile PORTFÖY SEciMi Yöetim, Yil: 6 Sayi: 21 Hazira 1995, s. 55-60 SHARPE TEK indeks MODELi ile PORTFÖY SEciMi, Dr. Erha Özdemir I.Ü. Tekik Bilimler MY.O. Dr. I.Müfit GIRESUNLU i'ü. Tekik Bilimler M.Y.O. Bu çalismada her bir

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

İSTATİSTİKSEL FORMÜLLER VE TABLOLAR

İSTATİSTİKSEL FORMÜLLER VE TABLOLAR BAŞKENT ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İSTATİSTİKSEL FORMÜLLER VE TABLOLAR Yayıa Hazırlayalar: Kürşad Demirutku, MS N. Ca Okay, BA Ayşegül Yama F. Efe Kıvaç Bahar Muratoğlu Zuhal Yeiçeri,

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Pamukkale University Journal of Engineering Sciences Pamukkale Üiversitesi Mühedislik Bilimleri Dergisi, Cilt 19, Sayı 2, 2013, Sayfalar 76-80 Pamukkale Üiversitesi Mühedislik Bilimleri Dergisi Pamukkale Uiversity Joural of Egieerig Scieces TEK MAKİNELİ

Detaylı

FİZİKTE GİZEMLİ BİR SABİT α (İnce Yapı Sabiti)

FİZİKTE GİZEMLİ BİR SABİT α (İnce Yapı Sabiti) T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ORTAÖĞRETİM ALAN ÖĞRETMENLİĞİ TEZSİZ YÜKSEK LİSANS FİZİKTE GİZEMLİ BİR SABİT α (İce Yapı Sabiti ÖĞRETİM ELEMANI : Yrd. Doç. Dr. Rıza Demirbilek ÖĞRENCİ

Detaylı

H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Kısım Bir Reel Değişkeli Foksiyolar Teorisi Prof.Dr.Hüseyi Çakallı 3 H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Reel

Detaylı

TÜRKİYE DE KAYITDIŞI EKONOMİ VE BÜYÜME İLİŞKİSİ

TÜRKİYE DE KAYITDIŞI EKONOMİ VE BÜYÜME İLİŞKİSİ ZKÜ Sosyal Bilimler Dergisi, Cilt 3, Sayı 5, 2007, ss. 7-87. TÜRKİYE DE KAYITDIŞI EKONOMİ VE BÜYÜME İLİŞKİSİ Doç.Dr. Gülsüm AKALIN Marmara Üiversitesi İİBF İktisat Bölümü gulsum@marmara.edu.tr Öğr.Gör.

Detaylı

TALEP TAHMİNLERİ. Y.Doç.Dr. Alpagut YAVUZ

TALEP TAHMİNLERİ. Y.Doç.Dr. Alpagut YAVUZ TALEP TAHMİNLERİ Y.Doç.Dr. Alpagut YAVUZ Yöetm e temel foksyolarıda br ola plalama, e kaba taımıyla, şletme geleceğe yöelk alıa kararları br bleşkesdr. Geleceğe yöelk alıa kararları başarısı yöetcler yaptıkları

Detaylı

PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK...111. Konu Özeti...111. Testler (1 11)...115. Yazılıya Hazırlık Soruları (1 2)...

PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK...111. Konu Özeti...111. Testler (1 11)...115. Yazılıya Hazırlık Soruları (1 2)... ÜNİTE PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK Bölüm PERMÜTASYON, KOMBİNASYON BİNOM VE OLASILIK! = (...... ) PERMÜTASYON, KOMBİNASYON BİNOM, OLASILIK VE İSTATİSTİK PERMÜTASYON, KOMBİNASYON,

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

Bölüm 4. Görüntü Bölütleme. 4.1. Giriş

Bölüm 4. Görüntü Bölütleme. 4.1. Giriş Bölüm 4 Görüü Bölüleme 4.. Giriş Görüü iyileşirme ve görüü oarmada arklı olarak görüü bölüleme görüü aalizi ile ilgili bir problem olup görüü işlemei göserim ve aılama aşamalarıa görüüyü hazırlama işlemidir.

Detaylı

Diferansiyel Gelişim Algoritmasının Termik Birimlerden Oluşan Çevresel Ekonomik Güç Dağıtım Problemlerine Uygulanması

Diferansiyel Gelişim Algoritmasının Termik Birimlerden Oluşan Çevresel Ekonomik Güç Dağıtım Problemlerine Uygulanması Diferasiyel Gelişim Algoritmasıı Termik Birimlerde Oluşa Çevresel Ekoomik Güç Dağıtım Problemlerie Uygulaması Differetial evolutio algorithm applied to evirometal ecoomic power dispatch problems cosistig

Detaylı

DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME

DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME Uğur SAYNAK ve Alp KUŞTEPELİ Elektrik-Elektroik Mühedisliği Bölümü İzmir Yüksek Tekoloji Estitüsü, 35430, Urla, İZMİR e-posta: ugursayak@iyte.edu.tr e-posta:

Detaylı

ARAZİ KOŞULLARINDA FARKLI ÇİMENTO ÇEŞİTLERİ İLE ÜRETİLEN BETONLARIN BASINÇ DAYANIMLARININ VE ELASTİSİTE MODÜLLERİNİN BELİRLENMESİ

ARAZİ KOŞULLARINDA FARKLI ÇİMENTO ÇEŞİTLERİ İLE ÜRETİLEN BETONLARIN BASINÇ DAYANIMLARININ VE ELASTİSİTE MODÜLLERİNİN BELİRLENMESİ AKDENİZ ÜNİVERSİTESİ ZİRAAT FAKÜLTESİ DERGİSİ, 25, 18(3), 365-376 ARAZİ KOŞULLARINDA FARKLI ÇİMENTO ÇEŞİTLERİ İLE ÜRETİLEN BETONLARIN BASINÇ DAYANIMLARININ VE ELASTİSİTE MODÜLLERİNİN BELİRLENMESİ Kea BÜYÜKTAŞ

Detaylı

Şekil 2. Sabit hızla dönen diskteki noktanın anlık yüksekliğini veren grafik.

Şekil 2. Sabit hızla dönen diskteki noktanın anlık yüksekliğini veren grafik. FREKANS ve AYF Düzeli olarak tekrar ede olayları sıklığıı belirtmek içi kullaıla periyod kelimesi yerie birim zamada gerçekleşe tekrar etme sayısı da kullaılır ve bua frekas deir. Ayı şekilde periyodik

Detaylı

evrende ilk defa karbon atomu çekirdekleri (6 proton ve 6 nötron) kayda değer miktarlarda oluşmaya başladı.

evrende ilk defa karbon atomu çekirdekleri (6 proton ve 6 nötron) kayda değer miktarlarda oluşmaya başladı. yaşamı elemetleri Çevremizdeki her şey, hayvalar, bitkiler, toprak, hava, cep telefoumuz, otomobilimiz, ezeeler, yıldızlar ve eliizde tuttuğuuz bu deri atom adı verile, maddei temel yapıtaşlarıda oluşmuştur.

Detaylı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı Trce ve Kellogg Yöemleri Kullılrk İegrl Operörlerii Özdeğerlerii Nümerik Hesı Erk Tşdemir () ; Yüksel Soyk () ; Melih Göce (3) (¹)Kırklreli Üiversiesi, Kırklreli, Türkiye, erksdemir@homil.com (²)Büle Ecevi

Detaylı

Ders 2: Aktüerya. Ankara Üniversitesi. İST424 Aktüeryal Risk Analizi Ders Notları. Doç.Dr. Fatih Tank. Sigortacılığın.

Ders 2: Aktüerya. Ankara Üniversitesi. İST424 Aktüeryal Risk Analizi Ders Notları. Doç.Dr. Fatih Tank. Sigortacılığın. yal ya yal Ders 2: ya Ankara Üniversitesi Giriş yal ya yal ya Tanım (5.1.1 Risk) Hasar oluşumundaki belirsizliğe risk denir. Objektif Risk Risk Subjektif Risk Tanım (5.1.2 Objektif Risk) Gerçekleşen hasarın

Detaylı

ENERJİ İLETİMİ DERSİ (DERS NOTLARI) Fırat Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü

ENERJİ İLETİMİ DERSİ (DERS NOTLARI) Fırat Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü Fırt Üiversitesi Mühedislik Fkültesi Elektrik - Elektroik Mühedisliği Bölümü ENERJİ İLETİMİ DERSİ (DERS NOTLARI) Hzırly: Arş. Gör. Göky BAYRAK ELAZIĞ-008 İletim Htlrıı Elektriksel Ypısı ) Sürekli Durum:Nomil

Detaylı