AÇI YÖNTEMİ Slope-deflection Method

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "AÇI YÖNTEMİ Slope-deflection Method"

Transkript

1 SAKARYA ÜNİVERSİTESİ İNŞAAT ÜHENDİSLİĞİ BÖLÜÜ Department of Civil Engineering İN 303 YAPI STATIĞI II AÇI YÖNTEİ Slope-deflection ethod Y.DOÇ.DR. USTAA KUTANİS Sakarya Üniversitesi, İnşaat ühendisliği Bölümü Yapı Anabilim Dalı DR.USTAA KUTANİS SLIDE Prof. G.A aney Açı yöntemi, Prof. G.A aney (UNIV. Of INNESOTA da, 95 de BİLİSEL TOPLANTIDA SUNULDU) tarafından rit düğüm noktalı sistemlerin hesabında kullanılan genel bir yöntem olarak ortaya konulmuştur. Deplasman yöntemi Sürekli kiriş ve çerçevelerin çözümünde 93 yılında Hardy Cross bu yöntemi daha genel olarak kendi adı ile anılan moment dağıtım yöntemine uyarlamıştır. DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE

2 Bu eşitliklerde eğilme momentinden meydana gelen şekil değiştirmeler göz önüne alınmış, kesme kuvveti ve normal kuvvetten meydana gelen şekil değiştirmeler ise göz ardı edilmiştir. Birçok hiperstatik kirişin ve çerçevenin hesabında normal kuvvet ve kesme kuvvetinin etkisi çok küçük olduğundan sadece eğilme momenti etkisi göz önüne alınarak yazılan açı eşitlikleri ile yapılan hesaplar sonucunda ortaya çıkacak hatalar da oldukça küçük olacaktır. DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 3 Açı-deplasman bağıntıları Açı-deplasman bağıntıları, bir çubuktaki 3 genel değişken grubu ile ifade edilir:. Çubuk uçlarına uygulanan uç kuvvetler (Uç momentler, çubuk eksenine dik uç kuvvet ve çubuk eksenine paralel uç kuvvet).. Çubuk uçlarında meydana gelen uç yer değiştirmeler (çubuğun elastik eğrisinin her bir ucundaki teğetinin eğimi, elastik eğri kirişinin uç noktalarının dönme açısı veya iki çubuğun ucunun bir birine göre rölatif yer değiştirmesi). 3. Çubuğa uygulanan dış kuvvetler. DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 4

3 Derivasyon X-ekseni tarafsız eksenden geçiyor i- kirişinde y : yerdeğiştirme, deplasman dy y = = θ: eğim, slope dx d y y = = κ : eğrilik, curvature = dx EI DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 5 örnek L, EI P y y = P 6 EI 3 ( x 3 L x ) θ P y' = θ = 6 6 EI ( 3x L x) Eğrilik birim dönme açısı (birim boya gelen dönme miktarı) P y ''= κ = ( x L) = EI EI DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 6

4 Derivasyon (devam) DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 7 Derivasyon (devam) y i x i i i i x y(x) x i i i L, EI Deplasmanlar i ucunda y, θ; ucunda y, θ; İç kuvvetler i ucunda T, ; ucunda T, ; DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 8

5 Derivasyon (devam) T i ucundan x mesafesinde eğilme momenti: + -T x=0 =- +T x=0 Eğrilik x Soru: Derivasyonda eleman üzerindeki yükler (yayılı veya tekil) neden dikkate alınmadı? d y y = = κ : eğrilik, curvature= dx EIy = + T x (denklem no ) EI DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 9 Eğrilik denkleminin integrali eğimi, y, verir Derivasyon (devam) x EI y = x + T + c (denklem no ) Eğim denkleminin integrali yerdeğiştirmeyi, y, verir: 3 x x EIy = + T + c x + c 6 (denklem no 3) DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 0

6 Derivasyon (devam) Sınır şartları no denklem de x=0 için y =θ c =EI θ 3 no denklem de x=0 için y=y c =EI y y = x EI + T x EI +θ (denklem no ) 3 x x y = + T + θ x + EI 6EI y (denklem no 3) DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE Derivasyon (devam) Sınır şartları x=l için y=y y =θ Sınır şartları için ve 3 nolu denklemler çözülür ve düzenlenirse: Elde edilir. Burada ( θ +θ Φ) ( θ + Φ) = K 3 T 3 θ = K K = EI L Φ = y y L DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE

7 Genel Prensipler Bir yapı elemanında, eleman uçlarında oluşan toplam momentler:. Eleman üzerindeki dış etkilerden (yük) dolayı, eleman uşlarında oluşan Ankastrelik momentleri, E. Eleman uçlarının birbirine göre relatif hareketi ile oluşan momentler, [Φ] 3. Eleman uçlarının dönmesi ile oluşan momentler [ θ i, θ ] den oluşmaktadır. DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 3 ANKASTRELİK UÇ OENTLERİ İki ucu mesnetli tek açıklıklı bir yapının çeşitli dış etkilerden dolayı mesnetlerinde oluşan mesnet tepkilerine ANKASTRELİK UÇ OENTLERİ diyoruz. w wl wl E AB = E BA = A wl E AB = 8 L B DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 4

8 Genel Prensipler [devam] Statik çözümlemede işaret yönü: -Pozitif Uç omentleri: Elemanlarda TERS SAAT YÖNÜ (CCW) Düğüm noktalarında SAAT YÖNÜ (CW) - Kesme Kuvveti: Çubuğu saat yönü çeviren kuvvetler pozitif Elemanın TSY (CCW) dönme açısısi pozitif T T DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 5 Daha somut olarak; oturma EI Δ = θi +θ 3 ± L L ( θ i +θ 3Φ ) = K ± Notasyon: Text içinde Φ yerine bazen Ψ kullanılabilir DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 6

9 atris formunda ( θ +θ Φ ) = + K 3 Bağıntısı açık yazılırsa Φ =0 için: i DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 7 atris formunda Stifnes atrisi Ankastrelik oment atrisi Deplasman atrisi Yük Vektörü DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 8

10 P ve P açıklık ortasında; kesitler sabit ÖRNEK PROBLE DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 9 DENGE ŞARTI: θ B İÇİN ÇÖZÜLÜR DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 0

11 Bulunan θ B AB, BA, BC ve CB denklemlerinde yerine yazılırsa: DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE

12 özetle DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 3 Açı denklemi öğeleri Oturma=Δ DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 4

13 4EI EI = θi + θ + + L L i- elemanı açı denklemi ( ) ( ) Δ Dış Yükler EI 4EI i = θi + θ + + L L ( i ) ( i ) Δ Dış Yükler DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 5 Not: Tablo daki değerler kullanılacaksa EI Δ = θi +θ 3 ± L L bağıntısı yerine Tablodan alınacak değer 4EI EI = θi + θ + + L L ( ) ( ) Δ Dış Yükler DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 6

14 ANKASTRELİK OENTLERİ Ezbere bilinmesine gerek yok tablo kullanılabilir DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 7 Ankastrelik omentleri (/) DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 8

15 Ankastrelik omentleri (/) DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 9 Kenar mesnet: Sabit-hareketli (/) DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 30

16 Kenar mesnet: Sabit-hareketli (/) () nolu denklemi ile çarpıp nolu denklemden çıkarılırsa: BA EI = θ L 3EI = θi + + L E AB 3 B + E BA ( ) ( ) Δ Dış Yükler Bu terim; bir ucu ankastre, bir ucu sabit mesnetli sistemin ankastrelik momentidir. BA =0 3EIΔ E AB = L DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 3 HESAPTA İZLENEN YOL. Açı denklemlerinde, eğilme momentinden meydana gelen şekil değiştirmeler göz önüne alındığından, incelenen yapı sisteminin kinematik serbestliği, dönme açısı (θ) ve yanal deplasmanlar (Δ) olarak b belirlenir. Ankastrelik momentleri hesaplanır. 3. esnet hareketlerinden kaynaklanan etkiler hesaplanır. 4EI EI = θi + θ + + L L ( ) ( ) Δ Dış Yükler 4. Her elemanın iki ucu için açı denklemi yazılır. 5. Düğüm noktalarında denge denklemleri yazılır; bu denklemlerden yararlanarak, düğüm noktalarının bilinmeyen (θ) dönme açıları hesaplanır. 6. Hesaplanan (θ) dönme açıları, açı denklemlerinde yerine yazılarak, eleman uç momentleri hesaplanır ve moment diyagramı çizilir. DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 3

17 , T, N diyagramını çiziniz. SORU DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 33 DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 34

18 DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 35 DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 36

19 DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 37 DR. USTAA KUTANİS SAÜ İNŞ.ÜH. BÖLÜÜ SLIDE 38

MOMENT DAĞITMA HARDY CROSS YÖNTEMİ

MOMENT DAĞITMA HARDY CROSS YÖNTEMİ SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSİĞİ BÖÜMÜ Department of Civil Engineering İNM 208 YAPI STATIĞI II MOMENT DAĞITMA HARDY CROSS YÖNTEMİ Y.DOÇ.DR. MUSTAFA KUTANİS kutanis@sakarya.edu.tr Sakarya Üniversitesi,

Detaylı

SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering

SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering İNM 212 YAPI STATİĞİ I STABİLİTE STATİKÇE BELİRSİZLİK KİNEMATİK BELİRSİZLİK Y.DOÇ.DR. MUSTAFA KUTANİS kutanis@sakarya.edu.tr

Detaylı

İNM 208 DERS TANITIM

İNM 208 DERS TANITIM SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering İNM 208 YAPI STATIĞI II İNM 208 DERS TANITIM Y.Doç.Dr. Mustafa KUTANİS DR.MUSTAFA KUTANİS SLIDE 1 ADRES INM 208 YAPI STATİĞİ

Detaylı

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVELER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

Yapı Sistemlerinde Elverişsiz Yüklemeler:

Yapı Sistemlerinde Elverişsiz Yüklemeler: Yapı Sistemlerinde Elverişsiz Yüklemeler: Yapılara etkiyen yükler ile ilgili çeşitli sınıflama tipleri vardır. Bu sınıflamalarda biri de yapı yükleri ve ilave yükler olarak yapılan sınıflamadır. Bu sınıflama;

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta) TAŞIYICI SİSTEMLER VE MESNET TEPKİLERİ STATİK (3. Hafta) Taşıyıcı Sistemler Bir yapıya etki eden çeşitli kuvvetleri güvenlik sınırları içinde taşıyan ve bu kuvvetleri zemine aktaran sistemlere taşıyıcı

Detaylı

SAKARYA ÜNİVERSİTESİ. MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering İNM 208 YAPI STATİĞİ 2 TESİR ÇİZGİLERİ

SAKARYA ÜNİVERSİTESİ. MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering İNM 208 YAPI STATİĞİ 2 TESİR ÇİZGİLERİ SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering İNM 208 YAPI STATİĞİ 2 TESİR ÇİZGİLERİ Y.DOÇ.DR. MUSTAFA KUTANİS kutanis@sakarya.edu.tr Sakarya Üniversitesi, İnşaat Mühendisliği

Detaylı

CS MÜHENDİSLİK PROJE YAZILIM HİZMETLERİ www.csproje.com. EUROCODE-2'ye GÖRE MOMENT YENİDEN DAĞILIM

CS MÜHENDİSLİK PROJE YAZILIM HİZMETLERİ www.csproje.com. EUROCODE-2'ye GÖRE MOMENT YENİDEN DAĞILIM Moment CS MÜHENİSLİK PROJE YAZILIM HİZMETLERİ EUROCOE-2'ye GÖRE MOMENT YENİEN AĞILIM Bir yapıdaki kuvvetleri hesaplamak için elastik kuvvetler kullanılır. Yapının taşıma gücüne yakın elastik davranmadığı

Detaylı

SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering İNM 303 YAPI STATIĞI II. Genel Kavramlar

SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering İNM 303 YAPI STATIĞI II. Genel Kavramlar SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering İNM 303 YAPI STATIĞI II Genel Kavramlar Yapı mühendisliğinin amacı Yapı Tasarım Süreci Yapı statiğinde yapılan kabuller

Detaylı

8. Hafta. Kirişlerin Kesme Kuvveti ve Eğilme E. Kiri. görece. beam) Nedir?; MUKAVEMET I : I : MUKAVEMET I MUKAVEMET I : 09/10 5.H. (kalınlıkxgenişlik)

8. Hafta. Kirişlerin Kesme Kuvveti ve Eğilme E. Kiri. görece. beam) Nedir?; MUKAVEMET I : I : MUKAVEMET I MUKAVEMET I : 09/10 5.H. (kalınlıkxgenişlik) : 09/10 5.H 11 8. Hafta Kirişlerin Kesme Kuvveti ve Eğilme E oment Diyagramlarının Çizimi : 09/10 5.H Kiriş (beam Kiri beam) Nedir?; uzunluk boyutunun diğer en kesit boyutlarından (kalınlıkxgenişlik) görece

Detaylı

Yararlanılabilecek Bazı Kaynaklar

Yararlanılabilecek Bazı Kaynaklar 2 Yararlanılabilecek Bazı Kaynaklar 1. Yapı Statiği I-II Adnan ÇAKIROĞLU ve Enver ÇETMELİ 2. Çözümlü Örneklerle Yapı Statiği Hüsnü CAN 3. Taşıyıcı Sistemler ve Yapı Statiği İsmail İlhan SUNGUR 4. Yapı

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta) KAFES SİSTEMLER STATİK (4. Hafta) Düz eksenden oluşan çubukların birbiriyle birleştirilmesiyle elde edilen sistemlere kafes sistemler denir. Çubukların birleştiği noktalara düğüm noktaları adı verilir.

Detaylı

Yapısal Analiz Programı SAP2000 Bilgi Aktarımı ve Kullanımı. Doç.Dr. Bilge Doran

Yapısal Analiz Programı SAP2000 Bilgi Aktarımı ve Kullanımı. Doç.Dr. Bilge Doran Yapısal Analiz Programı SAP2000 Bilgi Aktarımı ve Kullanımı Dersin Adı : Yapı Mühendisliğinde Bilgisayar Uygulamaları Koordinatörü : Doç.Dr.Bilge DORAN Öğretim Üyeleri/Elemanları: Dr. Sema NOYAN ALACALI,

Detaylı

R d N 1 N 2 N 3 N 4 /2 /2

R d N 1 N 2 N 3 N 4 /2 /2 . SÜREKLİ TEELLER. Giriş Kolon yüklerinin büyük ve iki kolonun birbirine yakın olmasından dolayı yapılacak tekil temellerin çakışması halinde veya arsa sınırındaki kolon için eksantrik yüklü tekil temel

Detaylı

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ 3 NOKTA EĞME DENEY FÖYÜ ÖĞRETİM ÜYESİ YRD.DOÇ.DR.ÖMER KADİR

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ GİRİŞ Mekanik tasarım yaparken öncelikli olarak tasarımda kullanılması düşünülen malzemelerin

Detaylı

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz.

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz. ÇALIŞMA SORULARI Üniform yoğunluğa sahip plaka 270 N ağırlığındadır ve A noktasından küresel mafsal ile duvara bağlanmıştır. Ayrıca duvara C ve D noktasından bağlanmış halatlarla desteklenmektedir. Serbest

Detaylı

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.1 7.2 Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.4 Örnekler Kendi Ağırlığını Taşıyan Kablolar (Zincir Eğrisi)

Detaylı

TC. SAKARYA ÜNİVERSİTESİ, MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering YAPI STATİĞİ 1 KAFES SİSTEMLER 1 KAFES KÖPRÜLER

TC. SAKARYA ÜNİVERSİTESİ, MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering YAPI STATİĞİ 1 KAFES SİSTEMLER 1 KAFES KÖPRÜLER TC. SAKARYA ÜNİVERSİTESİ, MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering YAPI STATİĞİ 1 KAFES SİSTEMLER 1 DR. MUSTAFA KUTANİS SLIDE 1 KAFES KÖPRÜLER DR. MUSTAFA KUTANİS SAÜ İNŞ.MÜH. BÖLÜMÜ

Detaylı

BÖLÜM V. KİRİŞLERİN ve KOLONLARIN BETONARME HESABI. a-) 1.Normal katta 2-2 aksı çerçevesinin betonarme hesabının yapılması ve çizimlerinin. M x.

BÖLÜM V. KİRİŞLERİN ve KOLONLARIN BETONARME HESABI. a-) 1.Normal katta 2-2 aksı çerçevesinin betonarme hesabının yapılması ve çizimlerinin. M x. BÖLÜ V KİRİŞLERİN ve KOLONLARIN BETONARE HESABI a-) 1.Normal katta - aksı çerçevesinin betonarme hesabının yapılması ve çizimlerinin yapılması. Hesap yapılmayan x-x do rultusu için kolon momentleri: gy

Detaylı

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki cisimlerle uğraşır. Statik, kuvvet etkisi altında cisimlerin

Detaylı

Bina Türü Yapı Sistemlerinin Analizi Üzerine Rijit Döşeme ve Sınır Şartları ile İlgili Varsayımların Etkisi

Bina Türü Yapı Sistemlerinin Analizi Üzerine Rijit Döşeme ve Sınır Şartları ile İlgili Varsayımların Etkisi Bina Türü Yapı Sistemlerinin Analizi Üzerine Rijit Döşeme ve Sınır Şartları ile İlgili Varsayımların Etkisi Rasim Temür İstanbul Üniversitesi İnşaat Mühendisliği Anabilim Dalı Sunum Planı Giriş Rijit Döşeme

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ GİRİŞ Yapılan herhangi bir mekanik tasarımda kullanılacak malzemelerin belirlenmesi

Detaylı

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI tasarım BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI Nihat GEMALMAYAN, Hüseyin ĐNCEÇAM Gazi Üniversitesi, Makina Mühendisliği Bölümü GĐRĐŞ Đlk bisikletlerde fren sistemi

Detaylı

Helisel İki Kol Ortasında Dairesel Sahanlığa Sahip Uzay Taşıyıcı Merdivenler *

Helisel İki Kol Ortasında Dairesel Sahanlığa Sahip Uzay Taşıyıcı Merdivenler * İMO Teknik Dergi, 2011 5425-5448, Yazı 350 Helisel İki Kol Ortasında Dairesel Sahanlığa Sahip Uzay Taşıyıcı Merdivenler * Sadık KÖSEOĞLU* ÖZ Bu çalışmada, helisel iki kol ortasında dairesel sahanlığa sahip

Detaylı

STATIK VE MUKAVEMET. 6.Düzlem ve Uzay kafes Sistemler. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET. 6.Düzlem ve Uzay kafes Sistemler. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 6.Düzlem ve Uzay kafes Sistemler Doç. Dr. NURHAYAT DEĞİRMENCİ Birbirlerine bağlı birden fazla parçadan yapılmış sistemlerin dengesi için dıs kuvvetlere ilaveten iç kuvvetler de düşünülmelidir.

Detaylı

Öngerilmeli Beton Sürekli Kirişlerin Bilgisayarla Hesabı

Öngerilmeli Beton Sürekli Kirişlerin Bilgisayarla Hesabı Öngerilmeli Beton Sürekli Kirişlerin Bilgisayarla Hesabı ÖZET Bu çalışmada öngerilmeli beton sürekli kirişlerin tasarımını Yük-Dengeleme yöntemiyle yapan bir bilgisayar programı geliştirilmiştir. Program

Detaylı

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS 009 he MGraw-Hill Companies, In. All rights reserved. - Burulma (orsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS ( τ ) df da Uygulanan

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

DÜSEY YÜKLERE GÖRE HESAP

DÜSEY YÜKLERE GÖRE HESAP DÜSEY YÜKLERE GÖRE HESAP 2-2 ile A-A aks çerçevelerinin zemin ve birinci kat tavanına ait sürekli kirişlerin düşey yüklere göre statik hesabı yapılacaktır. A A Aksı 2 2 Aksı Zemin kat dişli döşeme kalıp

Detaylı

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 5- Risk Tespit Uygulaması: Betonarme Bina

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 5- Risk Tespit Uygulaması: Betonarme Bina RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR 5- Risk Tespit Uygulaması: Betonarme Bina İncelenen Bina Binanın Yeri Bina Taşıyıcı Sistemi Bina 5 katlı Betonarme çerçeve ve perde sistemden oluşmaktadır.

Detaylı

MATRİS DEPLASMAN YÖNTEMİ

MATRİS DEPLASMAN YÖNTEMİ SAARYA ÜNİVERSİTESİ M İNŞAAT MÜHENİSİĞİ BÖÜMÜ epartment of Civil Engineering İNM YAI STATIĞI II MATRİS EASMAN YÖNTEMİ Y.OÇ.R. MUSTAA UTANİS tanis@saarya.ed.tr Saarya Üniversitesi, İnşaat Mühendisliği Bölümü

Detaylı

ÖRNEK 18 4 KATLI BETONARME PANSİYON BİNASININ GÜÇLENDİRİLMESİ ve DOĞRUSAL ELASTİK OLMAYAN YÖNTEM İLE DEĞERLENDİRİLMESİ

ÖRNEK 18 4 KATLI BETONARME PANSİYON BİNASININ GÜÇLENDİRİLMESİ ve DOĞRUSAL ELASTİK OLMAYAN YÖNTEM İLE DEĞERLENDİRİLMESİ 4 KATLI BETONARME PANSİYON BİNASININ GÜÇLENDİRİLMESİ ve DOĞRUSAL ELASTİK OLMAYAN YÖNTEM İLE DEĞERLENDİRİLMESİ 18.1. PERFORMANS DÜZEYİNİN BELİRLENMESİ... 18/1 18.2. GÜÇLENDİRİLEN BİNANIN ÖZELLİKLERİ VE

Detaylı

RİSKLİ BİNALARIN DEĞERLENDİRİLMESİ ÜZERİNE BİR İNCELEME

RİSKLİ BİNALARIN DEĞERLENDİRİLMESİ ÜZERİNE BİR İNCELEME RİSKLİ BİNALARIN DEĞERLENDİRİLMESİ ÜZERİNE BİR İNCELEME ÖZET: H. Tekeli 1, H. Dilmaç 2, K.T. Erkan 3, F. Demir 4, ve M. Şan 5 1 Yardımcı Doçent Doktor, İnşaat Müh. Bölümü, Süleyman Demirel Üniversitesi,

Detaylı

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir.

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir. Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri Düzlemin noktalarını, düzlemin noktalarına eşleyen bire bir ve örten bir fonksiyona düzlemin bir dönüşümü denir. Öteleme: a =(a 1,a ) ve u =(u 1,u ) olmak

Detaylı

ÖZHENDEKCİ BASINÇ ÇUBUKLARI

ÖZHENDEKCİ BASINÇ ÇUBUKLARI BASINÇ ÇUBUKLARI Kesit zoru olarak yalnızca eksenel doğrultuda basınca maruz kalan elemanlara basınç çubukları denir. Bu tip çubuklara örnek olarak pandül kolonları, kafes sistemlerin basınca çalışan dikme

Detaylı

Bileşik Eğilme-Eksenel Basınç ve Eğilme Altındaki Elemanların Taşıma Gücü

Bileşik Eğilme-Eksenel Basınç ve Eğilme Altındaki Elemanların Taşıma Gücü Bileşik Eğilme-Eksenel Basınç ve Eğilme Altındaki Elemanların Taşıma Gücü GİRİŞ: Betonarme yapılar veya elemanlar servis ömürleri boyunca gerek kendi ağırlıklarından gerek dış yüklerden dolayı moment,

Detaylı

Zemin-Yapı Etkileşimi

Zemin-Yapı Etkileşimi Bina Tasarım Sistemi Zemin-Yapı Etkileşimi [ Probina Orion Bina Tasarım Sistemi, betonarme bina sistemlerinin analizini ve tasarımını gerçekleştirerek tüm detay çizimlerini otomatik olarak hazırlayan bütünleşik

Detaylı

Mahya Aşığı. Kenar Aşık

Mahya Aşığı. Kenar Aşık . AŞIK HESABI.1 Yük Analizi lar makas üzerine basit mesnetli olarak teşkil edildikleri için, çatı örtüsü vasıtasıla her iki taraftan gelen alan ükünün arısına maruz kalacakları kabul edilebilir. Bu durumda;

Detaylı

BASINÇ ALTINDAKİ ÇELİK ELEMANLARIN TAŞIMA GÜCÜ HESABI

BASINÇ ALTINDAKİ ÇELİK ELEMANLARIN TAŞIMA GÜCÜ HESABI BASINÇ ALTINDAKİ ÇELİK ELEMANLARIN TAŞIMA GÜCÜ HESABI Dr. O. Özgür Eğilmez Yardımcı Doçent İzmir Yüksek Teknoloji Enstitüsü İnşaat Mühendisliği Bölümü Zamanda Yolculuk İÇERİK Taşıma Gücü Hesabı ve Amaç

Detaylı

Temeller. Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

Temeller. Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli Temeller Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli 1 Temel Nedir? Yapısal sistemlerin üzerindeki tüm yükleri, zemine güvenli bir şekilde aktaran yapısal elemanlara

Detaylı

DERS 1: Statik Çözümleme Genel Bilgiler Yapı Sistemlerinin İdealleştirilmesi, Matematik Modelleme Sap2000 Grafik Arayüzü

DERS 1: Statik Çözümleme Genel Bilgiler Yapı Sistemlerinin İdealleştirilmesi, Matematik Modelleme Sap2000 Grafik Arayüzü TMMOB İNŞAAT MÜHENDM HENDİSLERİ ODASI SAKARYA ŞUBESİ SAP2000 v11.08 BAŞLANGI LANGIÇ DÜZEYİ KURS PROGRAMI DERS 1: Statik Çözümleme Genel Bilgiler Yapı Sistemlerinin İdealleştirilmesi, Matematik Modelleme

Detaylı

Perdeli-Çerçeveli Taşıyıcı Sistemli Binalarda Taşıyıcı Sistem Seçiminin Yapı Davranışı Üzerindeki Etkisinin İncelenmesi

Perdeli-Çerçeveli Taşıyıcı Sistemli Binalarda Taşıyıcı Sistem Seçiminin Yapı Davranışı Üzerindeki Etkisinin İncelenmesi Perdeli-Çerçeveli Taşıyıcı Sistemli Binalarda Taşıyıcı Sistem Seçiminin Yapı Davranışı Üzerindeki Etkisinin İncelenmesi 1 Hüseyin KASAP, * 1 Necati MERT, 2 Ezgi SEVİM, 2 Begüm ŞEBER 1 Yardımcı Doçent,

Detaylı

PERDELERDEKİ BOŞLUKLARIN YATAY ÖTELENMEYE ETKİSİ. Ayşe Elif ÖZSOY 1, Kaya ÖZGEN 2 elifozsoy@hotmail.com

PERDELERDEKİ BOŞLUKLARIN YATAY ÖTELENMEYE ETKİSİ. Ayşe Elif ÖZSOY 1, Kaya ÖZGEN 2 elifozsoy@hotmail.com PERDELERDEKİ BOŞLUKLARIN YATAY ÖTELENMEYE ETKİSİ Ayşe Elif ÖZSOY 1, Kaya ÖZGEN 2 elifozsoy@hotmail.com Öz: Deprem yükleri altında yapının analizi ve tasarımında, sistemin yatay ötelenmelerinin sınırlandırılması

Detaylı

Mekanik Lab.Deney Föyü

Mekanik Lab.Deney Föyü T.C. ZONGULDAK KAAELMAS ÜNİVESİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ Mekanik Lab.Deney Föyü Hazırlayan: Arş.Gör.Hamza EDOĞAN Deney Hakkında; Deneylere Föyü olmadan gelenler alınmayacaktır!

Detaylı

YAPI MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI

YAPI MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI YÜZÜNCÜ YIL ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ YAPI MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI Yrd. Doç. Dr. Barış Erdil YAPI MÜHENDİSLİĞİ NEDİR? STRUCTURAL ENGINEERING IS

Detaylı

MAKİNE MÜHENDİSLİĞİNE GİRİŞ Doç.Dr.İrfan AY-Arş.Gör.T.Kerem DEMİRCİOĞLU MAKİNE PARÇALARINI ETKİLEYEN KUVVETLER VE GERİLMELER

MAKİNE MÜHENDİSLİĞİNE GİRİŞ Doç.Dr.İrfan AY-Arş.Gör.T.Kerem DEMİRCİOĞLU MAKİNE PARÇALARINI ETKİLEYEN KUVVETLER VE GERİLMELER MAKİNE PARÇALARINI ETKİLEYEN KUVVETLER VE GERİLMELER Dış Kuvvetler : Katı cisimlere uygulanan kuvvet cismi çekmeye, basmaya, burmaya, eğilmeye yada kesilmeye zorlar. Cisimde geçici ve kalıcı şekil değişikliği

Detaylı

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması.

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. 1 Deneyin Adı Çekme Deneyi Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. Teorik Bilgi Malzemelerin statik (darbesiz) yük altındaki mukavemet özelliklerini

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI DENEY ADI: EĞİLME (BÜKÜLME) DAYANIMI TANIM: Eğilme dayanımı (bükülme dayanımı veya parçalanma modülü olarak da bilinir), bir malzemenin dış fiberinin çekme dayanımının ölçüsüdür. Bu özellik, silindirik

Detaylı

MAK 305 MAKİNE ELEMANLARI-1

MAK 305 MAKİNE ELEMANLARI-1 MAK 305 MAKİNE ELEMANLARI-1 BURKULMA HESABI Doç.Dr. Ali Rıza YILDIZ MAK 305 Makine Elemanları-Doç. Dr. Ali Rıza YILDIZ 1 BU SLAYTTAN EDİNİLMESİ BEKLENEN BİLGİLER Burkulmanın tanımı Burkulmanın hangi durumlarda

Detaylı

TAŞIYICI SİSTEM TASARIMI 1 Prof. Dr. Görün Arun

TAŞIYICI SİSTEM TASARIMI 1 Prof. Dr. Görün Arun Dolu Gövdeli Kirişler TAŞIYICI SİSTEM TASARIMI 1 Prof Dr Görün Arun 072 ÇELİK YAPILAR Kirişler, Çerçeve Dolu gövdeli kirişler: Hadde mamulü profiller Levhalı yapma en-kesitler Profil ve levhalarla oluşturulmuş

Detaylı

TEMEL İNŞAATI ŞERİT TEMELLER

TEMEL İNŞAATI ŞERİT TEMELLER TEMEL İNŞAATI ŞERİT TEMELLER Kaynak; Temel Mühendisliğine Giriş, Prof. Dr. Bayram Ali Uzuner 1 2 Duvar Altı (veya Perde Altı) Şerit Temeller (Duvar Temelleri) 3 Taş Duvar Altı Şerit Temeller Basit tek

Detaylı

SONLU ELEMANLAR (FINITE ELEMENTS) YÖNTEMİ

SONLU ELEMANLAR (FINITE ELEMENTS) YÖNTEMİ SONLU ELEMANLAR (FINITE ELEMENTS) YÖNTEMİ Sonlu Elemanlar Yöntemi, çeşitli mühendislik problemlerine kabul edilebilir bir yaklaşımla çözüm arayan bir sayısal çözüm yöntemidir. Uniform yük ır Sabit sın

Detaylı

MEVCUT BETONARME BİNALARIN DOĞRUSAL ELASTİK VE DOĞRUSAL ELASTİK OLMAYAN HESAP YÖNTEMLERİ İLE İNCELENMESİ ÜZERİNE BİR DEĞERLENDİRME

MEVCUT BETONARME BİNALARIN DOĞRUSAL ELASTİK VE DOĞRUSAL ELASTİK OLMAYAN HESAP YÖNTEMLERİ İLE İNCELENMESİ ÜZERİNE BİR DEĞERLENDİRME MEVCUT BETONARME BİNALARIN DOĞRUSAL ELASTİK VE DOĞRUSAL ELASTİK OLMAYAN HESAP YÖNTEMLERİ İLE İNCELENMESİ ÜZERİNE BİR DEĞERLENDİRME ÖZET: F. Demir 1, K.T. Erkan 2, H. Dilmaç 3 ve H. Tekeli 4 1 Doçent Doktor,

Detaylı

BETONARME YAPI TASARIMI DERSİ Kolon betonarme hesabı Güçlü kolon-zayıf kiriş prensibi Kolon-kiriş birleşim bölgelerinin kesme güvenliği M.S.

BETONARME YAPI TASARIMI DERSİ Kolon betonarme hesabı Güçlü kolon-zayıf kiriş prensibi Kolon-kiriş birleşim bölgelerinin kesme güvenliği M.S. BETONARME YAPI TASARIMI DERSİ Kolon betonarme hesabı Güçlü kolon-zayıf kiriş prensibi Kolon-kiriş birleşim bölgelerinin kesme güvenliği M.S.KIRÇIL y N cp ex ey x ex= x doğrultusundaki dışmerkezlik ey=

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

AAS& ATAY AAS - ATAY PREFABRĐKE YAPI SĐSTEMLERĐ TĐCARET LTD. ŞTĐ. www.aas-atay.com 1

AAS& ATAY AAS - ATAY PREFABRĐKE YAPI SĐSTEMLERĐ TĐCARET LTD. ŞTĐ. www.aas-atay.com 1 Şubat 01 Eğimli Çatı Kirişleri (Makaslar) için Sehim Hesabı. ta KULKSIZOĞLU Đnşaat Yüksek Mühendisi S&TY R-GE Departmanı 1. Giriş Ülkemizde prefabrike beton endüstri yapılarının büyük çoğunluğunda, çatı

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

Fotoğraf Albümü. Zeliha Kuyumcu. Mesnetlerinden Farklı Yer Hareketlerine Maruz Kablolu Köprülerin Stokastik Analizi

Fotoğraf Albümü. Zeliha Kuyumcu. Mesnetlerinden Farklı Yer Hareketlerine Maruz Kablolu Köprülerin Stokastik Analizi Mesnetlerinden Farklı Yer Hareketlerine Maruz Kablolu Köprülerin Stokastik Analizi Fotoğraf Albümü Araş. Gör. Zeliha TONYALI* Doç. Dr. Şevket ATEŞ Doç. Dr. Süleyman ADANUR Zeliha Kuyumcu Çalışmanın Amacı:

Detaylı

Tabakalı Kompozit Plakların Sonlu Farklar Yöntemi ile Statik Analizi Static Analysis of Laminated Composite Plates by Finite Difference Method

Tabakalı Kompozit Plakların Sonlu Farklar Yöntemi ile Statik Analizi Static Analysis of Laminated Composite Plates by Finite Difference Method Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Cilt 17, Sayı 1, 2011, Sayfa 51-62 Tabakalı Kompozit Plakların Sonlu Farklar Yöntemi ile Statik Analizi Static Analysis of Laminated Composite Plates

Detaylı

6.12 Örnekler PROBLEMLER

6.12 Örnekler PROBLEMLER 6.1 6. 6.3 6.4 6.5 6.6 6.7 Çok Parçalı Taşıyıcı Sistemler Kafes Sistemler Kafes Köprüler Kafes Çatılar Tam, Eksik ve Fazla Bağlı Kafes Sistemler Kafes Sistemler İçin Çözüm Yöntemleri Kafes Sistemlerde

Detaylı

Örnek 1 (Virtüel iş çözümü için; Bakınız : Ders Notu Sayfa 23 - Örnek 4)

Örnek 1 (Virtüel iş çözümü için; Bakınız : Ders Notu Sayfa 23 - Örnek 4) Örnek 1 (Virtüel iş çözümü için; Bakınız : Ders Notu Sayfa 23 - Örnek 4) Şekil 1.1. İzostatik sistem EA GA 0, EI = 2.10 4 knm 2, E = 2.10 8, t =10-5 1/, h =60cm (taşıyıcı eleman yüksekliği, her yerde)

Detaylı

Kitabın satışı yapılmamaktadır. Betonarme Çözümlü Örnekler adlı kitaba üniversite kütüphanesinden erişebilirsiniz.

Kitabın satışı yapılmamaktadır. Betonarme Çözümlü Örnekler adlı kitaba üniversite kütüphanesinden erişebilirsiniz. Kitap Adı : Betonarme Çözümlü Örnekler Yazarı : Murat BİKÇE (Öğretim Üyesi) Baskı Yılı : 2010 Sayfa Sayısı : 256 Kitabın satışı yapılmamaktadır. Betonarme Çözümlü Örnekler adlı kitaba üniversite kütüphanesinden

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ İnşaat Mühendisliği Bölümü. KESME Kirişlerde Etriye Hesabı (TS 500:2000)

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ İnşaat Mühendisliği Bölümü. KESME Kirişlerde Etriye Hesabı (TS 500:2000) ESKİŞEHİR OSMNGZİ ÜNİVERSİTESİ MÜHENDİSLİK MİMRLIK FKÜLTESİ İnşaat Mühenisliği Bölümü KESME Kirişlere Etriye Hesabı (TS 500:2000) 184 Kesme çatlaklarıdeney kirişi Vieo http://mm2.ogu.eu.tr/atopcu Kesme

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAK 2029

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAK 2029 Dersi Veren Birim: Makina Mühendisliği Dersin Türkçe Adı: MUKAVEMET Dersin Orjinal Adı: MUKAVEMET Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAK 09 Dersin Öğretim Dili:

Detaylı

1)Aşağıdaki konum-zaman grafiğine göre bu hareketlinin 0-30 saniyeleri arasındaki ortalama hızı nedir?

1)Aşağıdaki konum-zaman grafiğine göre bu hareketlinin 0-30 saniyeleri arasındaki ortalama hızı nedir? 1)Aşağıdaki konum-zaman grafiğine göre bu hareketlinin 0-30 saniyeleri arasındaki ortalama hızı nedir? A) -1/6 B) 1 C) 1/2 D) 1/5 E) 3 2) Durgun halden harekete geçen bir cismin konum-zaman grafiği şekildeki

Detaylı

DÖŞEME KALINLIĞI HESABI

DÖŞEME KALINLIĞI HESABI DÖŞEE KALINLIĞI HESABI h lsn α s 1 0 15 + 4 m l sn öşemenin kısa kenarının temiz açıklığı α s öşemenin uuğu tip α s Σ sürekli kenar uzunluğu / Σ kenar uzunluğu m ll l s < çit yöne çalışma şartı D101 DÖŞEESĐ

Detaylı

DÖŞEMELERDEN KİRİŞLERE GELEN YÜKLER

DÖŞEMELERDEN KİRİŞLERE GELEN YÜKLER DÖŞEMELERDEN KİRİŞLERE GELEN YÜKLER İki doğrultuda çalışan plak (dikdörtgen) Dört tarafından kirişli plaklar aşırı yüklendiklerinde şekilde görülen kesik çizgiler boyunca kırılırlar. Yeter bir yaklaşıklıkla,

Detaylı

RÜZGAR TÜRBİNİ PERVANE KANADININ TİTREŞİM ANALİZİ. Doç. Dr. Aydoğan ÖZDAMAR*

RÜZGAR TÜRBİNİ PERVANE KANADININ TİTREŞİM ANALİZİ. Doç. Dr. Aydoğan ÖZDAMAR* RÜZGAR TÜRBİNİ PERVANE KANADININ TİTREŞİM ANALİZİ Yrd. Doç. Dr. K. Turgut GÜRSEL* Mak. Müh. Tufan ÇOBAN* Doç. Dr. Aydoğan ÖZDAMAR* * Ege Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü,

Detaylı

DÜZLEM KAFES SİSTEMLER. Copyright 2010 Pearson Education South Asia Pte Ltd

DÜZLEM KAFES SİSTEMLER. Copyright 2010 Pearson Education South Asia Pte Ltd Copyright 2010 Pearson Education South Asia Pte Ltd Aynı düzlem içinde birbirlerine uç noktalarından bağlanarak bir rijid yapı oluşturan çubuklar topluluğuna düzlem kafes sistemi denir. Bir kafes sistemi,

Detaylı

2 MALZEME ÖZELLİKLERİ

2 MALZEME ÖZELLİKLERİ ÖNSÖZ İÇİNDEKİLER III Bölüm 1 TEMEL KAVRAMLAR 11 1.1. Fizik 12 1.2. Fiziksel Büyüklükler 12 1.3. Ölçme ve Birim Sistemleri 13 1.4. Çevirmeler 15 1.5. Üstel İfadeler ve İşlemler 18 1.6. Boyut Denklemleri

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

SÜREKLİLİK VE SÜREKSİZLİK DURUMLARINDA PERDE-ÇERÇEVE ETKİLEŞİMİ. İnşaat Y. Müh., Gebze Teknik Üniversitesi, Kocaeli 2

SÜREKLİLİK VE SÜREKSİZLİK DURUMLARINDA PERDE-ÇERÇEVE ETKİLEŞİMİ. İnşaat Y. Müh., Gebze Teknik Üniversitesi, Kocaeli 2 ÖZET: SÜREKLİLİK VE SÜREKSİZLİK DURUMLARINDA PERDE-ÇERÇEVE ETKİLEŞİMİ B. DEMİR 1, F.İ. KARA 2 ve Y. M. FAHJAN 3 1 İnşaat Y. Müh., Gebze Teknik Üniversitesi, Kocaeli 2 Araştırma Görevlisi, Deprem ve Yapı

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 8 Sayı: 1 s. 101-108 Ocak 2006

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 8 Sayı: 1 s. 101-108 Ocak 2006 DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 8 Sayı: s. -8 Ocak 6 BETONARME BİNALARIN DEPREM DAVRANIŞINDA DOLGU DUVAR ETKİSİNİN İNCELENMESİ (EFFECT OF INFILL WALLS IN EARTHQUAKE BEHAVIOR

Detaylı

YAYLAR. Bu sunu farklı kaynaklardan derlenmiştir.

YAYLAR. Bu sunu farklı kaynaklardan derlenmiştir. YAYLAR Gerek yapıldıktan malzemelerin elastiktik özellikleri ve gerekse şekillerinden dolayı dış etkenler (kuvvet, moment) altında başka makina elemanlarına kıyasla daha büyük bir oranda şekil değişikliğine

Detaylı

Dişli (Nervürlü) ve Asmolen Döşemeler. Prof. Dr. Ahmet TOPÇU, Betonarme II, Eskişehir Osmangazi Üniversitesi, http://mmf.ogu.edu.

Dişli (Nervürlü) ve Asmolen Döşemeler. Prof. Dr. Ahmet TOPÇU, Betonarme II, Eskişehir Osmangazi Üniversitesi, http://mmf.ogu.edu. Dişli (Nervürlü) ve Asmolen Döşemeler Prof. Dr. Ahmet TOPÇU, Betonarme II, Eskişehir Osmangazi Üniversitesi, http://mmf.ogu.edu.tr/atopcu 192 3 A B Dişli döşeme Asmolen döşeme Birbirine paralel, aynı boyutlu,

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

Prefabrik Yapılar. Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul

Prefabrik Yapılar. Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul Prefabrik Yapılar Uygulama-1 Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul 2010 Sunuma Genel Bir Bakış 1. Taşıyıcı Sistem Hakkında Kısa Bilgi 1.1 Sistem Şeması 1.2 Sistem Detayları ve Taşıyıcı Sistem

Detaylı

MEVCUT BETONAME BİNALARIN DEPREM GÜVENLİĞİNİN DEĞERLENDİRİLMESİ. (2007 Deprem Yönetmeliği Bölüm 7) φ 1/ρ = 0 φ y φ u. 1.1. Plastik mafsal kabulü:

MEVCUT BETONAME BİNALARIN DEPREM GÜVENLİĞİNİN DEĞERLENDİRİLMESİ. (2007 Deprem Yönetmeliği Bölüm 7) φ 1/ρ = 0 φ y φ u. 1.1. Plastik mafsal kabulü: ECUT BETONAE BİNALARIN DEPRE GÜENLİĞİNİN DEĞERLENDİRİLESİ (007 Deprem Yönetmeliği Bölüm 7) Prof.Dr. Zekai Celep İstanbul Teknik Üniversitesi, İnşaat Fakültesi celep@itu.edu.tr http://www.ins.itu.edu.tr/zcelep/zc.htm

Detaylı

BÜYÜK BOŞLUKLU BETONARME KİRİŞLERİN STATİK-BETONARME ANALİZİ

BÜYÜK BOŞLUKLU BETONARME KİRİŞLERİN STATİK-BETONARME ANALİZİ BÜYÜK BOŞLUKLU BETONARME KİRİŞLERİN STATİK-BETONARME ANALİZİ Hasan ELÇİ(*) ÖZET Sıhhi tesisat, pis su tesisatı, elektrik ve telefon kabloları, kalorifer boruları ve havalandırma kanalları gibi tesisatın

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

Burulma (Torsion) Amaçlar

Burulma (Torsion) Amaçlar Bu bölümde şaftlara etkiyen burulma kuvvetlerinin etkisi incelenecek. Analiz dairesel kesitli şaftlar için yapılacak. Eleman en kesitinde oluşan gerilme dağılımı ve elemanda oluşan burulma açısı konuları

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ YAPI STATİĞİ-I. M. Akköse, Ş. Ateş, S. Adanur

KARADENİZ TEKNİK ÜNİVERSİTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ YAPI STATİĞİ-I. M. Akköse, Ş. Ateş, S. Adanur KARADENİZ TEKNİK ÜNİVERSİTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ YAPI STATİĞİ-I M. Akköse, Ş. Ateş, S. Adanur 1 KAYNAKLAR 1- Çakıroğlu A., Çetmeli E., Yapı Statiği, Cilt I, Onuncu Baskı, Beta Basım Yayım Dağıtım

Detaylı

Isı Farkı Analizi: Nasıl Yapılır? Neden Gereklidir? Joseph Kubin Mustafa Tümer TAN

Isı Farkı Analizi: Nasıl Yapılır? Neden Gereklidir? Joseph Kubin Mustafa Tümer TAN Isı Farkı Analizi: Nasıl Yapılır? Neden Gereklidir? Joseph Kubin Mustafa Tümer TAN Genleşme Isı alan cisimlerin moleküllerinin hareketi artar. Bu da moleküller arası uzaklığın artmasına neden olur. Bunun

Detaylı

Erdal İRTEM-Kaan TÜRKER- Umut HASGÜL BALIKESİR ÜNİVERSİTESİ MÜH. MİM. FAKÜLTESİ İNŞAAT MÜH. BL.

Erdal İRTEM-Kaan TÜRKER- Umut HASGÜL BALIKESİR ÜNİVERSİTESİ MÜH. MİM. FAKÜLTESİ İNŞAAT MÜH. BL. Erdal İRTEM-Kaan TÜRKER- Umut HASGÜL BALIKESİR ÜNİVERSİTESİ MÜH. MİM. FAKÜLTESİ İNŞAAT MÜH. BL. BALIKESİR ÜNİVERSİTESİ MÜH. MİM. FAKÜLTESİ İNŞAAT MÜH. BL. ÇAĞIŞ 10145, BALIKESİR 266 612 11 94 266 612 11

Detaylı

STATİK (1. Hafta) Giriş TEMEL KAVRAMLAR

STATİK (1. Hafta) Giriş TEMEL KAVRAMLAR Giriş STATİK (1. Hafta) Mühendislik öğrencilerine genellikle ilk yıllarda verilen temel derslerin başında gelir. Sabit sistemler üzerindeki kuvvet ve momentleri inceleyen bir bilim dalıdır. Kendisinden

Detaylı

Dişli (Nervürlü) ve Asmolen Döşemeler

Dişli (Nervürlü) ve Asmolen Döşemeler Dişli (Nervürlü) ve Asmolen Döşemeler 3 2 diş Ana taşıyıcı kiriş 1 A a a Đnce plak B Dişli döşeme a-a plak diş kiriş Asmolen döşeme plak diş Asmolen (dolgu) Birbirine paralel, aynı boyutlu, aynı donatılı,

Detaylı

ÜÇ BOYUTLU ÇUBUK TAŞIYICI SİSTEMLERİN STATİK VE DİNAMİK ANALİZİNİ YAPAN BİR PAKET PROGRAM

ÜÇ BOYUTLU ÇUBUK TAŞIYICI SİSTEMLERİN STATİK VE DİNAMİK ANALİZİNİ YAPAN BİR PAKET PROGRAM ÜÇ BOYUTLU ÇUBUK TAŞIYICI SİSTEMLERİN STATİK VE DİNAMİK ANALİZİNİ YAPAN BİR PAKET PROGRAM Levent ÖZBERK Kasım 2006 DENİZLİ ÜÇ BOYUTLU ÇUBUK TAŞIYICI SİSTEMLERİN STATİK VE DİNAMİK ANALİZİNİ YAPAN BİR PAKET

Detaylı

Hibrit ve Çelik Kablolu Köprülerin Dinamik Davranışlarının Karşılaştırılması

Hibrit ve Çelik Kablolu Köprülerin Dinamik Davranışlarının Karşılaştırılması 1 Hibrit ve Çelik Kablolu Köprülerin Dinamik Davranışlarının Karşılaştırılması Arş. Gör. Murat Günaydın 1 Doç. Dr. Süleyman Adanur 2 Doç. Dr. Ahmet Can Altunışık 2 Doç. Dr. Mehmet Akköse 2 1-Gümüşhane

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

STRAIN GAGE DENEY FÖYÜ

STRAIN GAGE DENEY FÖYÜ T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ STRAIN GAGE DENEY FÖYÜ HAZIRLAYAN Prof. Dr. Erdem KOÇ Yrd.Doç.Dr. İbrahim KELEŞ Yrd.Doç.Dr. Kemal YILDIZLI MAYIS 2011 SAMSUN

Detaylı

Betonarme Kesitlerin Eğilme Rijitliği *

Betonarme Kesitlerin Eğilme Rijitliği * İMO Teknik Dergi, 2015 7265-7278, Yazı 443 Betonarme Kesitlerin Eğilme Rijitliği * Nahit KUMBASAR 1 ÖZ Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik Bölüm 7 de tanımlanan çatlamış kesit eğilme

Detaylı

Basit Kafes Sistemler

Basit Kafes Sistemler YAPISAL ANALİZ 1 Basit Kafes Sistemler Kafes sistemler uç noktalarından birleştirilmiş narin elemanlardan oluşan yapılardır. Bu narin elemanlar, yapısal sistemlerde sıklıkla kullanılan ahşap gergi elemanları

Detaylı

1 MAKİNE ELEMANLARINDA TEMEL KAVRAMLAR VE BİRİM SİSTEMLERİ

1 MAKİNE ELEMANLARINDA TEMEL KAVRAMLAR VE BİRİM SİSTEMLERİ İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MAKİNE ELEMANLARINDA TEMEL KAVRAMLAR VE BİRİM SİSTEMLERİ 11 1.1. SI Birim Sistemi 12 1.2. Boyut Analizi 16 1.3. Temel Bilgiler 17 1.4.Makine Elemanlarına Giriş 17 1.4.1 Makine

Detaylı

GEZER KREN KÖPRÜSÜ KONSTRÜKSİYONU VE HESABI

GEZER KREN KÖPRÜSÜ KONSTRÜKSİYONU VE HESABI GEZER KRE KÖPRÜSÜ KOSTRÜKSİYOU VE HESABI 1. GEZER KÖPRÜLÜ KRE Gezer köprülü krenler, yüksekte bulunan raylar üzerinde hareket eden arabalı köprülerdir. Araba yükleri kaldırır veya indirir ve köprü üzerindeki

Detaylı

TRANSPORT SİSTEMLERİNDE BİLGİSAYAR UYGULAMALARI

TRANSPORT SİSTEMLERİNDE BİLGİSAYAR UYGULAMALARI BÖLÜM 14. TRANSPORT SİSTEMLERİNDE BİLGİSAYAR UYGULAMALARI 14. GİRİŞ Bilgisayar Destekli Tasarım (CAD), imalatın tasarım aşamasının ayrılmaz bir parçasıdır. Genel amaçlı bir CAD sisteminde oluşturulan bir

Detaylı

KİRİŞ YÜKLERİ HESABI GİRİŞ

KİRİŞ YÜKLERİ HESABI GİRİŞ KİRİŞ YÜKLERİ HESABI 1 GİRİŞ Betonarme elemanlar üzerlerine gelen yükleri emniyetli bir şekilde diğer elemanlara veya zemine aktarmak için tasarlanırlar. Tasarımda boyutlandırma ve donatılandırma hesapları

Detaylı

BETONARME ÇERÇEVE YAPILARIN GERÇEK DEPREMLERE AİT İVME KAYITLARI İLE DOĞRUSAL OLMAYAN DİNAMİK ANALİZİ

BETONARME ÇERÇEVE YAPILARIN GERÇEK DEPREMLERE AİT İVME KAYITLARI İLE DOĞRUSAL OLMAYAN DİNAMİK ANALİZİ BETONARME ÇERÇEVE YAPILARIN GERÇEK DEPREMLERE AİT İVME KAYITLARI İLE DOĞRUSAL OLMAYAN DİNAMİK ANALİZİ O. Merter 1, T. Uçar 2, Ö. Bozdağ 3, M. Düzgün 4 ve A. Korkmaz 5 1 Araştırma Görevlisi, İnşaat Müh.

Detaylı

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ Bu konular denge problemelerinden tamamen bağımsızdır. Alanların ağırlık merkezi ve atalet momenti ismi verilen geometrik

Detaylı

Binaların Deprem Dayanımları Tespiti için Yapısal Analiz

Binaların Deprem Dayanımları Tespiti için Yapısal Analiz Binaların Deprem Dayanımları Tespiti için Yapısal Analiz Sunan: Taner Aksel www.benkoltd.com Doğru Dinamik Yapısal Analiz için: Güvenilir, akredite edilmiş, gerçek 3 Boyutlu sonlu elemanlar analizi yapabilen

Detaylı