Genetik Algoritma ile Elde Edilen Uyumlu Renklerin Web Şablonları Üzerinde Gerçeklenmesi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Genetik Algoritma ile Elde Edilen Uyumlu Renklerin Web Şablonları Üzerinde Gerçeklenmesi"

Transkript

1 Genetik Algoritma ile Elde Edilen Uyumlu Renklerin Web Şablonları Üzerinde Gerçeklenmesi Şerif Okumuş Melih Orhan Bilgisayar Mühendisliği Bölümü, Süleyman Demirel Üniversitesi, Isparta Abstract - Bu tez çalışmasında, yapay zekânın güçlü tekniklerinden olan genetik algoritma yardımıyla, web sayfalarındaki renk uyumluluk probleminin çözümü üzerinde durulmuştur. W3C standartlarında elde edilen uyumlu renkler, web tabanlı yazılımlar yardımıyla web şablonları (template) üzerinde test edilmiştir. Problemin farklı boyutları için, çözüm başarısı değişik parametre değerleri kullanılarak ölçülmüştür. Problemin çıkan sonuçlarının daha iyi görülebilmesini sağlayacak şekilde web yardımıyla görselleştirme aracı geliştirilmiştir. Geliştirilen bu araç yardımıyla web sayfalarında değişik genetik algoritma parametreleri kullanılarak uyumlu renkler elde edilebilmekte ve sitilleri önceden belirlenebilen web şablonları üzerinde uyumlu renkler test edilebilmektedir. Anahtar Kelimeler: - Renk; renk uyumluluk; genetik algoritma; web; web şablonları I. GİRİŞ Web sayfa tasarımı, firmanın kurumsal kimliğinin en güzel bir biçimde ulusal ve uluslararası ağ ortamında tanıtımı ve dışa açılan en önemli pencerelerinden bir tanesidir. Web tasarım, işitsel ve görsel öğeler içeren web sayfalarıdır. Web sayfasının tasarımında en önemli unsurlarından biri renk kullanımıdır. Renk, nerdeyse bir sitenin başarısını tanımlamada içerik ve gezinti kadar önemlidir ve tasarımın etkili bir bileşenidir. Renk, siteye sadece görsel bir çekicilik katmaz, aynı zamanda hedef kitleye gönderdiği mesajdan ötürü de önemlidir. Yapay zekâ günümüzde çoğu yazılımda önemli bir işlevi yerine getirmektedir. En küçük yazılımda bile çok basitte olsa bir yapay zekâ tekniği kullanılmaktadır. Bu tekniklerin bazıları yıllardır var olan teknikler olmasına rağmen bazıları da yeni sayılabilir. Bu tezin kapsamında web sayfalarında önemli bir problem olan renk uyumsuzluğu genetik algoritma yardımıyla çözülmektedir. Farklı parametre ve teknikler yardımıyla çözümlerin nasıl farklılaştığı incelenmektedir. Üretilen çözümler web 2.0 yardımıyla HTML şablon üzerinde W3C standartları ile test edilmektedir. Problem olarak web sayfaları için arka plan ve yazı rengi arasında uyumsuzluk ele alınmaktadır. Bu problemin çözümünde interaktif optimizasyon teknikleri kullanılması amaçlandı. Bu nedenle çalışmada yazı rengi ile arka plan renginin seçilmesi genetik algoritma kullanılanılarak aşıldı. Genetik algoritmalar (GA), karmaşık düzenli problemlerin çözümünü gerçekleştirmek amacıyla, kromozomların yeni diziler üretme esasını temel alan, sezgisel bir araştırma yöntemidir [1]. Genetik algoritmalar John Holland [2] tarafından 1975 yılında icat edilmiş ve öğrencileri ve iş arkadaşları tarafından geliştirilmiştir. Algoritma popülasyon (toplum) adı verilen ve kromozomlarla temsil edilen bir çözüm kümesi ile başlamaktadır. Bir toplumdaki çözümler yeni toplumların üretilmesinde kullanılmaktadır. Bu işlem, yeni toplumun eskisinden daha iyi olacağı umuduyla yapılmaktadır. Yeni çözümler (yavru) üretmek için alınan çözümler uygunluklarına (fitness) göre seçilmektedir. Daha uygun olan tekrar üretim için daha fazla şansa sahiptir. Tablo 1 de genetik algoritmanın çalışma adımları gösterilmiştir. Adım Yapılan İşlem 1 Gösterim (kodlama) yönetiminin belirlenmesi 2 Başlangıç toplumun (ilk nesil) oluşturulması 3 Başlangıç toplumundaki her bireyin performansının amaç fonksiyonuna göre hesaplanması 4 Yeni neslin oluşturulmasında kullanılacak bireylerin seçilmesi 5 Seçilmiş bireylere genetik işlemlerin uygulanarak yeni neslin elde edilmesi 6 Yeni neslin bireylerinin performanslarının uygunluk fonksiyonuna göre hesaplanması 7 Bitiş koşulu sağlanmamışsa yeni nesli tekrar 3. aşamaya gönderilmesi 8 Bitiş koşulu sağlanmışsa en iyi bireyin sonuç olarak dönülmesi Tablo 1: Genetik algoritmanın çalışma prensibi II. A. Sistem tanımı MATERYAL Bu sistemde genetik algoritmaların gerçekleştirildiği bir genetik hesaplama birimi, veri tabanı birimi ve grafik kullanıcı ara yüzünün gerçekleştirildiği ara yüz biriminden oluşmaktadır. Her birimler sadece ilgili görevlerini gerçekleştirmektedir. Sistemin ana mimari yapısı Resim 1 de incelenebilir. Mimariden de anlaşılacağı gibi sistem birbiriyle haberleşen, sorumlulukları dağıtılmış birimlerden oluşmaktadır.

2 Genetik Hesaplama Birimi Ara yüz birimi Veri tabanı birimi 2)) + (maksimum (Mavi renk 1, Mavi renk 2) -minimum (Mavi renk 1, Mavi renk 2)) (2) Kullandığımız diğer bir kriterde renklerin karşıtlık oranı denilen contrast ratiodur. The W3C s [4] WCAG [5] contrast rationun formülü aşağıdaki gibidir. B. Teknoloji seçimi Resim 1: MVC sistem modeli Yazılım, Java tabanlı web uygulamalarını kolaylaştırmak için MVC yapısına uygun olarak geliştirilmiş JSF 2.0 web teknolojisiyle gerçekleştirilmiştir. Kullanıcılar sadece Java 1.6 veya daha üzeri bir jdk kullanarak web server üzerinde çalıştırabilirler. Grafik ara yüzü Ajax üzerinde inşa edilmiş Primefaces 2.1 ile oluşturulmuştur. Veri tabanı olarak MySQL kullanılmıştır. A. Renk teorisi III. METHOT Renk teorisi renklerin karışımında uygulanılan prensipleri içerir. Bu teoriye göre ikili birbiriyle uyumlumu renkler renk çemberinde karşılıklı, üçlü uyumlu renkler üçgen, dörtlü renkler ise dikdörtgen şeklinde karşılıklı bulunur. İngiliz fizikçi Isaac Newton güneş ışığını elmas bir prizmadan geçirerek, renkleri ayırmayı başarmıştır (Newton, 1670). Bir odayı kararttıktan sonra güneş ışığının ince bir delikten odaya girmesini sağlamış, bu ışığın önüne bir prizma koyarak parçalanış halini, tıpkı gökkuşağında olduğu gibi yedi rengi yukarıdan aşağıya doğru bir perdeye aksettirmeyi sağlamıştır. Güneş ışığını meydana getiren yedi rengin (renk tayfının) görkemi, gizemi bugün üzerinde birçok incelemeler yapılan son derece olumlu sonuçlar alınan çalışmaları ve araştırmaları beraberinde getirmiş, Renk Bilim ini bir bilim dalı olarak ortaya koymuştur. Günümüzde tanımlanan birçok renk modeli mevcuttur. Bunlardan en çok bilinenler RGB ve CMYK tır. RGB bilgisayar için CMYK ise baskı renkleri için uygun bir modeldir. RGB kırmızı, yeşil ve mavi renklerin uygun oranlarda karışımı esasına dayalıdır. Color brightness (Renk Parlaklığı,) aşağıdaki formülle değeri hesaplanmaktadır: ((R X 299) + (G X 587) + (B X 114)) / 1000 (1) Color difference (Renk Farkı) aşağıdaki formülle değeri hesaplanmaktadır: (maksimum (Kırmızı renk 1, Kırmızı renk 2) - minimum (Kırmızı renk 1, Kırmızı renk 2)) + (maksimum (Yeşil renk 1, Yeşil renk 2) - minimum (Yeşil renk 1, Yeşil renk Burada L nispi lüminans değeridir. [3]. Maks değer Min değer Brightness Differences Color Differences Contrast Ratio 21 1 Tablo 2: Renk niteliklerinin maks ve min değerleri İki renk uyumlu diyebilmemiz için ; 1. Brightness Differences> Color Differences> Contrast Ratio>4.5 Bu şartları sağladığı takdirde bu renkler kendi arasında uyumludur. B. Genetik algoritmanın uygulanması Bireyler, Kullanıcının girebildiği n sayıda bireyden oluşan bir toplum kullanılmaktadır. Her birey aslında bir web şablonu temsil etmektedir. Web şablonları için oluşturulmuş rasgele renkler ise genleri temsil etmektedir. Kromozomları kodlamak için değer kodlaması kullanılmaktadır.(resim 2)Kromozomun genleri olarak her rengin RGB kodları tutulmaktadır. Başlangıç popülasyonu, Bu sistemde başlangıç popülasyonu rastgele üretildi. Başlangıç popülasyonu problemin kısıtlarını ihlal etmeyecek bir biçimde rastgele olarak üretilebilir veya sezgisel bir şekilde belirlenebilir Her ne kadar sezgisel belirlenen ilk bireyler, genetik algoritmaların biraz daha hızlı yakınsamasını sağlayabilmişse de, çok çeşitli problemlerde erken yakınsamaya yol açabileceği görülmüştür. Birey seçimi, Bir çok birey seçimi teknikleri vardır. Bu projede rulet tekerleği seçimi kullanılmıştır. Holland [2] tarafından kullanılan rulet tekerleği (rulet-wheel) yöntemi olarak adlandırılan ilk seçim yöntemi adayların olasılık dağılımına göre seçilmesine dayanıyordu. Buna göre herhangi bir adayın seçilme şansı, onun bütün popülasyon içindeki performansına göre rasgele belirlenmektedir. Böylelikle performansı yüksek olan adayların şansı daha yüksek olmaktadır. Ayrıca elitisimde elde edilen iyi bireylerin gelecek nesilde bozulmaması için uygulandı. (3)

3 Resim 2: Kromozom yapısı(değer kodlama) C. Fitness fonksiyonu Bireylerin ne kadar başarılı olduğunu bulmamız uygunluklarını bulmamızla mümkündür. Uygunluk formülü de bireylerin toplum içerisindeki uzaklık sıralamasındaki yeridir. Bu nedenle her bireyin uzaklığının hesaplanması gerekmektedir. Bu hesaplama aşağıdaki formüle göre gerçekleştirilmektedir: Birey sayısı En iyi maliyet En kötü maliyet ,24 157, ,01 155, ,96 147, ,6 143,67 Tablo 3: Birey sayısının etkisi (4) n: Renk sayısı. Her şablon üzerinde arka plan ve yazı rengi ile 8 renk bulunmaktadır. k(j): İki renk arasındaki parlaklık değeridir. l(j): İki renk arasındaki renk fark değeridir. m: m eşik değeridir. Bu değer %60 olarak verilmiştir. IV. DENEYSEL SONUÇLAR Genetik algoritmanın başarısını ölçmek ve en uygun genetik algoritma parametreleri ve kriterleri için yazılımı farklı seçimler için ürettiği maliyet miktarı denendi. Bu denemeler istatiksel doğruluğu bir nebze de olsa elde edebilmek için 10 kere aynı değerlerle çalıştırmak ve bu değerlerin aritmetik ortalamasını almak şeklinde gerçekleştirildi. Bu denemeler tarafımızdan üç başlığa ayrıldı. A. Birey ve nesil sayısının etkisi Bu bölümdeki amaç birey sayısının ve nesil sayısının değişiminin genetik algoritma üzerinde oluşturduğu farklılığı bulmak ve en uygun birey ve nesil sayılarına ulaşabilmektir. Birey sayısının etkisini hesaplamak için aşağıdaki kriterler sabit tutularak birey sayısı değiştirildi: Resim 3: Birey sayısının etkisi Nesil sayısının etkisinin hesaplamak için de yukarıdaki kriterlerden farklı olarak birey sayısı 20 ye sabitlendi. Tablo 3 incelendiği zaman nesil ilerledikçe maliyet değeri değişmektedir. Nesil sayısındaki artış, maliyet değerini oldukça fazla etkilemiştir. En iyi sonuç, nesil sayısı 500 olduğunda alınmıştır. Nesil En iyi maliyet En kötü maliyet 5 174,34 75, ,5 88, ,04 112, ,06 143, ,7 158, ,41 159, ,88 155,55 Tablo 4: Nesil sayısının etkisi Tablo 2 yardımıyla birey sayısı artışının web şablonlardaki renk uyumluluk kalitesini arttırdığını ancak belli bir sayıdan sonra süredeki artışın göz önüne alınması gerektiği ortaya çıkmaktadır. Bu nedenle birey sayısının nesil sayısına da bağlı olmak şartıyla uygun bir değer seçilmesi genetik algoritmanın verimini arttıracaktır. Yukarıda belirtilen kriterler için birey sayısının uygun değeri 100 dür. Resim 4: Nesil sayısının etkisi

4 B. Çaprazlama olasılığının etkisi Olasılıkları hesaplamak için hesaplanan olasılık değiştirilerek diğer olasılık sabit tutulmuştur. Diğer kriterler için aşağıdaki sabit değerler kullanılmıştır: Tablo 4 yardımıyla çaprazlama olasılığının artışı ile iyi sonuçlar döndürdüğü gözlenmiştir. Bu gözlem sonucunda süredeki değişimi de göz önüne alarak en iyi olasılık değerinin 0,5 ten büyük değerler olduğu ortaya çıkmıştır. Resim 6: Mutasyon olasılığının etkisi Çaprazlama olasılığı En iyi maliyet En kötü maliyet 0,1 174,34 75,51 0,3 195,5 88,09 0,5 270,62 158,86 0,7 275,41 159,32 0,9 286,08 159,38 Tablo 5: Çaprazlama olasılığının etkisi Resim 7: Swing ilk populasyon test ekranı Resim 5: Çaprazlama olasılığının etkisi C. Mutasyon olasılığının etkisi Tablo 5 yardımıyla mutasyon olasılığının artışının olumlu etkilemediği gözlenmiştir. Bu gözlem sonucunda en iyi olasılık değerinin 0,01 olduğu ortaya çıkmıştır. Mutasyon olasılığı En iyi maliyet En kötü maliyet 0,01 275,41 159,32 0,03 269,34 152,34 0,1 262,42 134,6 0,3 243,53 139,54 Tablo 6: Mutasyon olasılığının etkisi Resim 8: Genetik algoritma giriş ve çıkış ekranı GA sonucu oluşan en yüksek maliyet 400 en düşük 0 fakat 400 çıkması matematiksel doğru olmasına rağmen bizim istemediğimiz bir durumdur.renkler hep siyah ve beyaz renklerden oluşmaktadır bu durumda.bizim için en maliyetleri kabul ettiğimiz 225 ile 325 arasıdır arasını kötü arasını istenmeyen durum olarak belirledik.ayrıca tüm test sonuçlarında istenmeyen durum örneği görülmedi.resim 9(a) üretilen iyi renklere ait şablonlar resim 9(b) de ise kötü diye nitelendirdiğimiz sonuçlar mevcuttur.ayrıca tüm populasyonları Resim 11 görüldüğü şekilde incelenebilir ve önizileyip kaydedilelir.

5 (a) Resim 11: Wizard başlangıcı;style seçimi (b) Resim 10: Tüm populasyonun maliyet ve renk çiftleri V. SONUÇ Bu çalışmada, web sayfalarındaki renk uyumsuzluk probleminin GA kullanılarak giderebileceği gösterilmiştir. Bunun için Java mimarisi üzerine inşa edilmiş web uygulamaları geliştirmek için kullanılan JSF teknolojisi ile etkileşimli bir program geliştirilmiştir. Ayrıca yeni bir fitness metodu üzerinde genetik algoritma uygulandı. Kullanıcılar gerekli verileri web üzerinden interaktif olarak girebilmektedir. Uygun web şablon elde edildiğinde şablon bilgilerini veri tabanına kaydedip saklayabilmektedir. VI. REFERANSLAR Resim 9: En iyi templateler (a) ve en kötü templeteler(b) [1] Lee, C.Y., Kim, S.J.. Parallel genetic algorithms for the earliness-tardiness job scheduling problem with general penalty weights. Computer & Industrial Enginnering, 28(2), , 1995 [2] J. H. Holland, Adaptation in natural and artificial systems, Ann Arbor, MI: University of Michigan Press, [3] L. Troiano, C. Birtolo, and G. Cirillo, Interactive Genetic Algorithm for choosing suitable colors in User Interface [4] Web content accessibility guidelines 2.0. Technical Report 11, W3C, December [5] Web Content Accessibility guidelines (WCAG) 2.0 W3C Recommendation 11 December 2008

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Genetik algoritmalar, Darwin in doğal seçim ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ

GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ VI. Ulusal Temiz Enerji Sempozyumu UTES 2006 25 27 Mayıs 2006, Isparta Sf.756 764 GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ Nida Nurbay ve Ali Çınar Kocaeli Üniversitesi Tek. Eğt. Fak. Makine

Detaylı

ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI

ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI İlaç Tasarımında Yeni Yazılımların Geliştirilmesi: Elektron Konformasyonel-Genetik Algoritma Metodu ile Triaminotriazin Bileşiklerinde Farmakofor Belirlenmesi ve Nicel Biyoaktivite Hesabı; ERCİYES ÜNİVERSİTESİ

Detaylı

LED IŞIK KAYNAKLARININ RENK SICAKLIĞININ GÖRÜNTÜ İŞLEME TEKNİKLERİ KULLANILARAK BELİRLENMESİ. İsmail Serkan Üncü, İsmail Taşcı

LED IŞIK KAYNAKLARININ RENK SICAKLIĞININ GÖRÜNTÜ İŞLEME TEKNİKLERİ KULLANILARAK BELİRLENMESİ. İsmail Serkan Üncü, İsmail Taşcı LED IŞIK KAYNAKLARININ RENK SICAKLIĞININ GÖRÜNTÜ İŞLEME TEKNİKLERİ KULLANILARAK BELİRLENMESİ İsmail Serkan Üncü, İsmail Taşcı To The Sources Of Light s Color Tempature With Image Processing Techniques

Detaylı

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics 2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics Özet: Bulanık bir denetleyici tasarlanırken karşılaşılan en önemli sıkıntı, bulanık giriş çıkış üyelik fonksiyonlarının

Detaylı

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008 Kablosuz Sensör Ağlar ve Eniyileme Tahir Emre KALAYCI 21 Mart 2008 Gündem Genel Bilgi Alınan Dersler Üretilen Yayınlar Yapılması Planlanan Doktora Çalışması Kablosuz Sensör Ağlar Yapay Zeka Teknikleri

Detaylı

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Doç.Dr.Mehmet Hakan Satman mhsatman@istanbul.edu.tr İstanbul Üniversitesi 2014.10.22 Doç.Dr.Mehmet Hakan Satmanmhsatman@istanbul.edu.tr Tedarik Zinciri

Detaylı

Bilgisayar Mühendisliği. Bilgisayar Mühendisliğine Giriş 1

Bilgisayar Mühendisliği. Bilgisayar Mühendisliğine Giriş 1 Bilgisayar Mühendisliği Bilgisayar Mühendisliğine Giriş 1 Mühendislik Nedir? Mühendislik, bilim ve matematiğin yararlı cihaz ve sistemlerin üretimine uygulanmasıdır. Örn: Elektrik mühendisleri, elektronik

Detaylı

GENETĠK ALGORĠTMALAR ĠLE HAFTALIK DERS PROGRAMININ HAZIRLANMASI

GENETĠK ALGORĠTMALAR ĠLE HAFTALIK DERS PROGRAMININ HAZIRLANMASI ÖZEL EGE LĠSESĠ GENETĠK ALGORĠTMALAR ĠLE HAFTALIK DERS PROGRAMININ HAZIRLANMASI HAZIRLAYAN ÖĞRENCĠLER: Berkin ĠNAN Doğa YÜKSEL DANIġMAN ÖĞRETMEN: Aslı ÇAKIR ĠZMĠR 2014 ĠÇĠNDEKĠLER 1. PROJENĠN AMACI. 3

Detaylı

2 e-posta: aeyilmaz@eng.ankara.edu.tr

2 e-posta: aeyilmaz@eng.ankara.edu.tr BULUT AĞLARINA YÖNELİK DAĞINIK ÖNBELLEK YÖNETİM SİSTEMİ NDE FARKLI OPTİMİZASYON VE ATAMA TEKNİKLERİNİN PERFORMANS KARŞILAŞTIRMASI Hüseyin Seçkin Dikbayır 1 Asım Egemen Yılmaz 2 Ali Arda Diri 3 1,3 Dirisoft

Detaylı

Ders Kodu Dersin Adı Dersin Ġntibak Durumu

Ders Kodu Dersin Adı Dersin Ġntibak Durumu ENDÜSTRĠ SĠSTEMLERĠ MÜHENDĠSLĠĞĠ BÖLÜMÜ ĠNTĠBAK ÇĠZELGESĠ 2010-2011 1.SINIF / GÜZ DÖNEMĠ IUE100 Akademik ve Sosyal Oryantasyon CS 115 Programlamaya Giriş I Bu ders 1. Sınıf güz döneminden 2. Sınıf güz

Detaylı

YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ

YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ Bu ders 1. Sınıf güz döneminden 2. Sınıf güz dönemine alınmıştır. gerektiği halde alamayan öğrenciler 2010-2011 öğretim yılı

Detaylı

KULLANILABİLİRLİK TESTLERİ VE UYGULAMALARI

KULLANILABİLİRLİK TESTLERİ VE UYGULAMALARI 6 İnternet sitelerinin kullanıcıların ihtiyaç ve beklentilerini karşılayıp karşılamadığının ve sitenin kullanılabilirliğinin ölçülmesi amacıyla kullanılabilirlik testleri uygulanmaktadır. Kullanılabilirlik

Detaylı

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ Ezgi Özkara a, Hatice Yanıkoğlu a, Mehmet Yüceer a, * a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü, Malatya, 44280 myuceer@inonu.edu.tr

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX

ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX XI İÇİNDEKİLER ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX 1. GİRİŞ... 1 2. PLANLAMANIN TARİHÇESİ... 7 2.1 Literatürdeki Planlayıcılar ve Kullandıkları Problem... Gösterimi

Detaylı

Rasgele Sayılar (Random Numbers) NUPAMC-2012 Bitlis

Rasgele Sayılar (Random Numbers) NUPAMC-2012 Bitlis Rasgele Sayılar (Random Numbers) NUPAMC-2012 Bitlis Gültekin YEĞİN Fizik Bölümü Celal Bayar Üniversitesi Manisa 10 Mayıs 2012 Doç.Dr.Gultekin Yeğin (C.B.Ü. Fizik) Rasgele Sayılar (Random Numbers) NUPAMC-2012

Detaylı

CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR

CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR Çalışmanın amacı. SUNUM PLANI Çalışmanın önemi. Deney numunelerinin üretimi ve özellikleri.

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS PROGRAMLAMA BG-213 2/1 2+0+2 2+1 5 Dersin Dili : TÜRKÇE Dersin Seviyesi : LİSANS

Detaylı

Veri Ambarından Veri Madenciliğine

Veri Ambarından Veri Madenciliğine Veri Ambarından Veri Madenciliğine Yrd. Doç. Dr. Ömer Utku Erzengin 1, Uzman Emine Çetin Teke 2, İstatistikçi Nurzen Üzümcü 3 1 Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi İstatistik Bölümü 2

Detaylı

TrizSOFT. S.P.A.C Altı Sigma Danışmanlık

TrizSOFT. S.P.A.C Altı Sigma Danışmanlık 2009 TrizSOFT S.P.A.C Altı Sigma Danışmanlık İçerik Tanıtım... 3 TRIZ nedir?... 3 Çelişkiler Matrisi... 4 Parametreler... 5 Prensipler... 6 İnovasyon Haritası... 7 Radar Şeması... 8 Ürün Karşılaştırma...

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ DOKTORA DERS PROGRAMI (Lisanstan gelenler için)

BİLGİSAYAR MÜHENDİSLİĞİ DOKTORA DERS PROGRAMI (Lisanstan gelenler için) BİLGİSAYAR MÜHENDİSLİĞİ DOKTORA DERS PROGRAMI (Lisanstan gelenler için) HAZIRLIK PROGRAMI COME 27 İleri Nesneye Yönelik Programlama 5 COME 21 Veri Yapıları ve Algoritmalar COME 22 COME 1 COME 1 COME 411

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS YAPAY ZEKA BG-421 4/2 2+1+0 2+.5 4 Dersin Dili : TÜRKÇE Dersin Seviyesi : LİSANS

Detaylı

SNP TEK NÜKLEOTİD POLİMORFİZMLERİ (SINGLE NUCLEOTIDE POLYMORPHISMS)

SNP TEK NÜKLEOTİD POLİMORFİZMLERİ (SINGLE NUCLEOTIDE POLYMORPHISMS) SNP TEK NÜKLEOTİD POLİMORFİZMLERİ (SINGLE NUCLEOTIDE POLYMORPHISMS) Herhangi iki bireyin DNA dizisi %99.9 aynıdır. %0.1 = ~3x10 6 nükleotid farklılığı sağlar. Genetik materyalde varyasyon : Polimorfizm

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü. Bilgisayar Mühendisliği

Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü. Bilgisayar Mühendisliği Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü Bilgisayar Mühendisliği Bilgisayar Mühendisliği Günümüzde, finans, tıp, sanat, güvenlik, enerji gibi bir çok sektör, bilgisayar mühendisliğindeki gelişimlerden

Detaylı

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21 İçindekiler Önsöz İkinci Basım için Önsöz Türkçe Çeviri için Önsöz Gösterim xiii xv xvii xix 1 Giriş 1 1.1 Yapay Öğrenme Nedir?......................... 1 1.2 Yapay Öğrenme Uygulamalarına Örnekler...............

Detaylı

AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI

AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI *Mehmet YÜCEER, **Erdal KARADURMUŞ, *Rıdvan BERBER *Ankara Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü Tandoğan - 06100

Detaylı

Öğr.Gör. Gökhan TURAN www.gokhanturan.com.tr. Gölhisar Meslek Yüksekokulu

Öğr.Gör. Gökhan TURAN www.gokhanturan.com.tr. Gölhisar Meslek Yüksekokulu Öğr.Gör. Gökhan TURAN www.gokhanturan.com.tr Gölhisar Meslek Yüksekokulu Bilgisayarın Yapısı Donanım (Hardware): Bir bilgisayara genel olarak bakıldığında; Kasa, Ekran, Klavye, Fare, Yazıcı, Hoparlör,

Detaylı

Veri Tabanı Yönetim Sistemleri Bölüm - 3

Veri Tabanı Yönetim Sistemleri Bölüm - 3 Veri Tabanı Yönetim Sistemleri Bölüm - 3 İçerik Web Tabanlı Veri Tabanı Sistemleri.! MySQL.! PhpMyAdmin.! Web tabanlı bir veritabanı tasarımı. R. Orçun Madran!2 Web Tabanlı Veritabanı Yönetim Sistemleri

Detaylı

Arş.Gör.Muhammet Çağrı Gencer Bilgisayar Mühendisliği KTO Karatay Üniversitesi 2015

Arş.Gör.Muhammet Çağrı Gencer Bilgisayar Mühendisliği KTO Karatay Üniversitesi 2015 Arş.Gör.Muhammet Çağrı Gencer Bilgisayar Mühendisliği KTO Karatay Üniversitesi 2015 KONU BAŞLIKLARI 1. Yazılım Mimarisi nedir? 2. Yazılımda Karmaşıklık 3. Üç Katmanlı Mimari nedir? 4. Üç Katmanlı Mimari

Detaylı

VERİ TABANI YÖNETİMİ. Yrd.Doç.Dr. Füsun BALIK ŞANLI 2013-2014 YTÜ

VERİ TABANI YÖNETİMİ. Yrd.Doç.Dr. Füsun BALIK ŞANLI 2013-2014 YTÜ VERİ TABANI YÖNETİMİ Yrd.Doç.Dr. Füsun BALIK ŞANLI 2013-2014 YTÜ Ders Düzeni Ders Uygulama Ödev Sınavlar 1. Ara Sınav 2. Ara Sınav Yıl Sonu Sınavı Sınavlar 2 Başarı Kriterleri Yıliçi başarı notu: (2 Yıliçi

Detaylı

Web Server Sunucu Loglarının K-Komşu Algoritması ile İ ncelenmesi

Web Server Sunucu Loglarının K-Komşu Algoritması ile İ ncelenmesi Web Server Sunucu Loglarının K-Komşu Algoritması ile İ ncelenmesi İçindekiler 1 Özet... 2 2 Giriş... 3 3 Uygulama... 4 4 Sonuçlar... 6 1 1 Özet Web sunucu logları üzerinde veri madenciliği yapmanın temel

Detaylı

Helikopter Dolaşım Sistemi

Helikopter Dolaşım Sistemi Helikopter Dolaşım Sistemi Tahir Emre KALAYCI Ege Üniversitesi Bilgisayar Mühendisliği Yüksek Lisans Öğrencisi Helikopter Dolaşım Sistemi Gündem X3D Xj3D Genetik Algoritmalar HeDoS Sonuçlar X3D X3D, tüm

Detaylı

Genetik Knapsack. Umut BENZER 05-06-7670 http://www.ubenzer.com Ege Üniversitesi Bilgisayar Mühendisliği Yapay Zekâ

Genetik Knapsack. Umut BENZER 05-06-7670 http://www.ubenzer.com Ege Üniversitesi Bilgisayar Mühendisliği Yapay Zekâ Genetik Knapsack Umut BENZER 05-06-7670 http://www.ubenzer.com Ege Üniversitesi Bilgisayar Mühendisliği Yapay Zekâ 31.10.2011 İçindekiler Programcı Kataloğu...3 Teknik Bilgiler...3 Makine Özellikleri...3

Detaylı

Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü. 13 Kasım 2010

Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü. 13 Kasım 2010 Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü 13 Kasım 2010 2010-2011 Eğitim Yılı (Haziran-Kasım 2010 tarihleri arasında) Bölümü Değerlendirme Anket Formu Raporu Öğrencilerimizin staj yaptıkları

Detaylı

Yukarıdaki fonksiyonun anlamı: Bulunulan hücreye, B2 hücresinden B17 hücresine kadar olan hücreleri toplam ve yaz.

Yukarıdaki fonksiyonun anlamı: Bulunulan hücreye, B2 hücresinden B17 hücresine kadar olan hücreleri toplam ve yaz. DERS 14: FONKSİYONLAR (İŞLEVLER) Amaçlar: -Fonksiyon Sınıflamasını Tanımak. -Fonksiyonları Kullanmak. -Fonksiyon Sihirbazını Kullanmak. I. FONKSİYONLAR NE İŞE YARAR? Daha önceki haftalarda da Microsoft

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

BMB204. Veri Yapıları Ders 12. Dizgi Eşleme (String Matching) Algoritmaları İleri Veri Yapıları

BMB204. Veri Yapıları Ders 12. Dizgi Eşleme (String Matching) Algoritmaları İleri Veri Yapıları BMB204. Veri Yapıları Ders 12. Dizgi Eşleme (String Matching) Algoritmaları İleri Veri Yapıları Erdinç Uzun NKÜ Çorlu Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Dersin Planı Dizgi Eşleme Algoritmaları

Detaylı

28 Aralık 2013. Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü

28 Aralık 2013. Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü 28 Aralık 13 Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü 12-13 Eğitim Yılında (Ocak-Kasım 13 tarihleri arasında) doldurulmuş olan Bölümü Değerlendirme Anket Formları Raporu Öğrencilerin staj

Detaylı

ODTÜ KÜTÜPHANESİ YENİ WEB SAYFASININ TASARIMI VE KULLANILABİLİRLİK ÇALIŞMASI

ODTÜ KÜTÜPHANESİ YENİ WEB SAYFASININ TASARIMI VE KULLANILABİLİRLİK ÇALIŞMASI ODTÜ KÜTÜPHANESİ YENİ WEB SAYFASININ TASARIMI VE KULLANILABİLİRLİK ÇALIŞMASI Mustafa DALCI *, Özge ALÇAM*, Yasemin Oran SAATÇİOĞLU*, Feride ERDAL* * Orta Doğu Teknik Üniversitesi, Bilgi İşlem Daire Başkanlığı,

Detaylı

İNTERNET TARAYICISI ÜZERİNDE ÇALIŞABİLEN ELEKTRİK TALEP TAHMİNİ ANALİZ PROGRAMI

İNTERNET TARAYICISI ÜZERİNDE ÇALIŞABİLEN ELEKTRİK TALEP TAHMİNİ ANALİZ PROGRAMI TMMOB TÜRKİYE VI. ENERJİ SEMPOZYUMU - KÜRESEL ENERJİ POLİTİKALARI VE TÜRKİYE GERÇEĞİ İNTERNET TARAYICISI ÜZERİNDE ÇALIŞABİLEN ELEKTRİK TALEP TAHMİNİ ANALİZ PROGRAMI Barış Sanlı Dünya Enerji Konseyi Türk

Detaylı

Apriori Algoritması ile Teknik Seçmeli Ders Seçim Analizi

Apriori Algoritması ile Teknik Seçmeli Ders Seçim Analizi Apriori Algoritması ile Teknik Seçmeli Ders Seçim Analizi Emre Güngör 1,2, Nesibe Yalçın 1,2, Nilüfer Yurtay 3 1 Bilecik Şeyh Edebali Üniversitesi, Bilgisayar Mühendisliği Bölümü, 11210, Merkez, Bilecik

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS PROGRAMLAMA DİLLERİ BG-324 3/2 3+0+0 3+0 4 Dersin Dili : TÜRKÇE Dersin Seviyesi

Detaylı

Alkın Küçükbayrak alkin@superonline.com. Çeşitli Alanlarda Yapay Zeka Ajanları I

Alkın Küçükbayrak alkin@superonline.com. Çeşitli Alanlarda Yapay Zeka Ajanları I Alkın Küçükbayrak alkin@superonline.com Çeşitli Alanlarda Yapay Zeka Ajanları I Bundan önceki yazılarımızda Yapay Zeka nın tanımını yaptık ve kullandığı yöntemleri temel ve ileri yöntemler olmak üzere

Detaylı

AKILLI KAVŞAK YÖNETİM SİSTEMİ

AKILLI KAVŞAK YÖNETİM SİSTEMİ AKILLI KAVŞAK YÖNETİM SİSTEMİ 1 1. PROJE ÖZETİ Dünya nüfusu, gün geçtikçe artmaktadır. Mevcut alt yapılar, artan nüfusla ortaya çıkan ihtiyaçları karşılamakta zorlanmaktadır. Karşılanamayan bu ihtiyaçların

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI. Doç.Dr. Necaattin BARIŞÇI FİNAL PROJESİ

T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI. Doç.Dr. Necaattin BARIŞÇI FİNAL PROJESİ T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI Doç.Dr. Necaattin BARIŞÇI YAPAY SİNİR AĞLARI İLE KORONER ARTER HASTALIĞI RİSK Öğrenci : SİNEM ÖZDER Numarası : 118229001004

Detaylı

Gezgin Etmen Sistemlerinin Başarım Ölçümü: Benzetim Tekniği

Gezgin Etmen Sistemlerinin Başarım Ölçümü: Benzetim Tekniği Gezgin Etmen Sistemlerinin Başarım Ölçümü: Benzetim Tekniği Gürol Erdoğan 1, Mustafa Yıldız 1, Mehmet Erdem Türsem 2, Selahattin Kuru 1 1 Enformatik Uygulama ve Araştırma Merkezi, Işık Üniversitesi, İstanbul

Detaylı

Süreç Yönetimi. Logo

Süreç Yönetimi. Logo Süreç Yönetimi Logo Kasım 2013 SÜREÇ YÖNETİMİ Süreç belirlenen bir amaca ulaşmak için gerçekleştirilen faaliyetler bütünüdür. Örn; Sistemde kayıtlı personellerinize doğum günü kutlama maili gönderme, Deneme

Detaylı

Yazılım Mimari Tasarımından Yazılım Geliştirme Çatısının Üretilmesinde Model Güdümlü Bir Yaklaşım

Yazılım Mimari Tasarımından Yazılım Geliştirme Çatısının Üretilmesinde Model Güdümlü Bir Yaklaşım Yazılım Mimari Tasarımından Yazılım Geliştirme Çatısının Üretilmesinde Model Güdümlü Bir Yaklaşım İbrahim Onuralp Yiğit 1, Nafiye Kübra Turhan 2, Ahmet Erdinç Yılmaz 3, Bülent Durak 4 1,2,3,4 ASELSAN A.Ş.

Detaylı

DOĞAL GAZ & ENERJİ YÖNETİMİ BİLDİRİLER KİTABI

DOĞAL GAZ & ENERJİ YÖNETİMİ BİLDİRİLER KİTABI TMMOB MAKİNA MÜHENDİSLERİ ODASI İİ DOĞAL GAZ & ENERJİ YÖNETİMİ KONGRE ve SERGİSİ BİLDİRİLER KİTABI GAZİANTEP EYLÜL 2001 TMMOB MAKİNA MÜHENDİSLERİ ODASİ Sümer Sok. 36/1-A Uemirtepc /ANKARA Tel : 0(312)231

Detaylı

OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI

OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI A. Doğan 1 M. Alçı 2 Erciyes Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü 1 ahmetdogan@erciyes.edu.tr 2 malci@erciyes.edu.tr

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

Microsoft Excel. Çalışma Alanı. Hızlı Erişim Çubuğu Sekmeler Başlık Formül Çubuğu. Ad Kutusu. Sütunlar. Satırlar. Hücre. Kaydırma Çubukları

Microsoft Excel. Çalışma Alanı. Hızlı Erişim Çubuğu Sekmeler Başlık Formül Çubuğu. Ad Kutusu. Sütunlar. Satırlar. Hücre. Kaydırma Çubukları Microsoft Excel Microsoft Excel yazılımı bir hesap tablosu programıdır. Excel, her türlü veriyi (özellikle sayısal verileri) tablolar ya da listeler halinde tutma ve bu verilerle ilgili ihtiyaç duyacağınız

Detaylı

BİLGİSAYAR VE ENFORMASYON BİLİMLERİ YÜKSEK LİSANS DERS PROGRAMI (Tezli Program)

BİLGİSAYAR VE ENFORMASYON BİLİMLERİ YÜKSEK LİSANS DERS PROGRAMI (Tezli Program) BİLGİSAYAR VE ENFORMASYON BİLİMLERİ YÜKSEK LİSANS DERS PROGRAMI (Tezli Program) HAZIRLIK PROGRAMI COME 27 İleri Nesneye Yönelik Programlama 2+2 3 5 COME 218 Veri Yapıları ve Algoritmalar 2+2 3 6 COME 226

Detaylı

DEVLET KURUMLARINDA WEB ERİŞİLEBİLİRLİĞİ

DEVLET KURUMLARINDA WEB ERİŞİLEBİLİRLİĞİ DEVLET KURUMLARINDA WEB ERİŞİLEBİLİRLİĞİ Mustafa Dalcı ODTÜ BİDB Araştırma Görevlisi Erişilebilir Web Proje Sorumlusu Kurumlar Sunum Web Erişilebilirliği Türkiye deki Durum Türkiye deki Çalışmalar Dünyadaki

Detaylı

MEKÂN ENVANTERİ OLUŞTURMA, MEKÂN ANALİZİ VE DERS PROGRAMI OLUŞTURMA İŞLEMLERİ

MEKÂN ENVANTERİ OLUŞTURMA, MEKÂN ANALİZİ VE DERS PROGRAMI OLUŞTURMA İŞLEMLERİ T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ MEKÂN ENVANTERİ OLUŞTURMA, MEKÂN ANALİZİ VE DERS PROGRAMI OLUŞTURMA İŞLEMLERİ OCAK, 2016 ISPARTA İÇİNDEKİLER 1. GİRİŞ... 2 2. DERS PORGRAMLARININ OLUŞTURULMASI... 5 3.

Detaylı

THE EFFECT OF PRODUCT NUMBER ON SOLVING THE JOP-SHOP SCHEDULING PROBLEM BY USING GENETIC ALGORITHM

THE EFFECT OF PRODUCT NUMBER ON SOLVING THE JOP-SHOP SCHEDULING PROBLEM BY USING GENETIC ALGORITHM GENETİK ALGORİTMA İLE ÇÖZÜMÜ GERÇEKLEŞTİRİLEN ATÖLYE ÇİZELGELEME PROBLEMİNDE ÜRÜN SAYISININ ETKİSİ Serdar BİROĞUL*, Uğur GÜVENÇ* (*) Gazi Üniversitesi Teknik Eğitim Fakültesi Elektrik Eğitimi Bölümü, Beşevler

Detaylı

Üst Düzey Programlama

Üst Düzey Programlama Üst Düzey Programlama Struts Framework Üst Düzey Programlama-ders08/ 1 JSP MODEL 1 ve MODEL 2 Mimarileri Bu mimariler bir web uygulaması geliştirilirken kullanılan yöntemlerdir. Bu yöntemler arasındaki

Detaylı

mmcube Çokluortam Bilgi Sistemi

mmcube Çokluortam Bilgi Sistemi mmcube Çokluortam Bilgi Sistemi SeCUBE ARGE Bilişim Mühendislik Ltd.Şti. Çokluortam Bilgi Sistemi görsel, işitsel ve metinsel tarama yöntemiyle videoların taranmasına olanak sağlayan yüksek teknoloji bir

Detaylı

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü 3.2. Raster Veriler Satırlar Piksel/hücre büyüklüğü Sütunlar 1 Görüntü formatlı veriler Her piksel için gri değerleri kaydedilmiştir iki veya üç bant (RGB) çok sayıda bant Fotoğraf, uydu görüntüsü, ortofoto,

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati Kredi AKTS (T+U+L) İSTATİSTİKSEL KALİTE KONTROL EN-412 4/I 3+0+0 3 5 Dersin Dili : Türkçe Dersin Seviyesi

Detaylı

DOĞRUSAL OLMAYAN REGRESYON ANALİZİNDE GERÇEK DEĞER KODLAMALI GENETİK ALGORİTMA

DOĞRUSAL OLMAYAN REGRESYON ANALİZİNDE GERÇEK DEĞER KODLAMALI GENETİK ALGORİTMA Istanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi Yıl:8 Sayı:15 Bahar 2009 s.167-178 DOĞRUSAL OLMAYAN REGRESYON ANALİZİNDE GERÇEK DEĞER KODLAMALI GENETİK ALGORİTMA Timur KESKİNTÜRK * Serap ŞAHİN ÖZET

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

SU KALITE SİSTEMİ. Türkiye Halk Sağlığı Kurumu

SU KALITE SİSTEMİ. Türkiye Halk Sağlığı Kurumu Türkiye Halk Sağlığı Kurumu Başarsoft Su Kalite Bilgi Dokumanı 10.10.2013 İçindekiler 1. SU KALITE SİSTEMİ... 2 1.1 Sistemin Genel Amaçları:... 3 1.2 Kullanılan Bileşen ve Teknolojiler:... 4 2. UYGULAMALARA

Detaylı

İş Zekası Sistemi Veriyi Stratejik Bilgiye Dönüştürür

İş Zekası Sistemi Veriyi Stratejik Bilgiye Dönüştürür İş Zekası Sistemi İş Zekası Sistemi İş Zekâsı Sistemi kolay kullanılır, zengin raporlama ve çözümleme yeteneklerine sahip, farklı veri kaynaklarını birleştirir, yöneticilere çok boyutlu, kurumsal bir görüş

Detaylı

MAKİNE ELEMANLARI DERS SLAYTLARI

MAKİNE ELEMANLARI DERS SLAYTLARI MAKİNE ELEMANLARI DERS SLAYTLARI TOLERANSLAR P r o f. D r. İ r f a n K A Y M A Z P r o f. D r. A k g ü n A L S A R A N A r ş. G ör. İ l y a s H A C I S A L I H O Ğ LU Tolerans Gereksinimi? Tasarım ve üretim

Detaylı

TARBİL Kapsamında Uydu ve Yersel Veri Tespit, Kayıtçı İşlem Yönetim Sistemi Geliştirilmesi

TARBİL Kapsamında Uydu ve Yersel Veri Tespit, Kayıtçı İşlem Yönetim Sistemi Geliştirilmesi TARBİL Kapsamında Uydu ve Yersel Veri Tespit, Kayıtçı İşlem Yönetim Sistemi Geliştirilmesi Kurum Adı : İstanbul Teknik Üniversitesi Bilimsel Araştırma Projeleri Birimi Proje Durumu : Tamamlandı. Projenin

Detaylı

Beklenti Anketi ne İlişkin Yöntemsel Açıklama

Beklenti Anketi ne İlişkin Yöntemsel Açıklama Beklenti Anketi ne İlişkin Yöntemsel Açıklama İstatistik Genel Müdürlüğü Reel Sektör Verileri Müdürlüğü İçindekiler I- Amaç... 3 II- Kapsam... 3 III- Yöntem... 3 IV- Tanımlar ve Hesaplamalar... 3 V- Yayımlama...

Detaylı

BIL684 Nöron Ağları Dönem Projesi

BIL684 Nöron Ağları Dönem Projesi BIL684 Nöron Ağları Dönem Projesi SNNS Uygulama Parametrelerinin bir Örnek Aracılığı ile İncelenmesi Kerem ERZURUMLU A0064552 Bu rapor ile Bil684 Nöron Ağları dersi kapsamında gerçekleştirilmiş olan SNNS

Detaylı

Sistem Geliştirme Yaşam Döngüsü (The Systems Development Life Cycle) (SDLC)

Sistem Geliştirme Yaşam Döngüsü (The Systems Development Life Cycle) (SDLC) Sistem Geliştirme Yaşam Döngüsü (The Systems Development Life Cycle) (SDLC) Sistem analistlerinin ve kullanıcı faaliyetlerinin spesifik döngüsünün kullanılmasıyla En iyi geliştirilmiş sistemin oluşmasını

Detaylı

25.10.2011. Arayüz Nedir? Arayüz Çeşitleri Arayüz Tasarım Yöntemleri Arayüz Tasarım Hataları. Ömer Faruk MIZIKACI 2008639402

25.10.2011. Arayüz Nedir? Arayüz Çeşitleri Arayüz Tasarım Yöntemleri Arayüz Tasarım Hataları. Ömer Faruk MIZIKACI 2008639402 Arayüz Tasarımı ve Programlama Neleri Konuşacağız Arayüz Nedir? Arayüz Çeşitleri Arayüz Tasarım Yöntemleri Arayüz Tasarım Hataları Ömer Faruk MIZIKACI 2008639402 Arayüz Nedir? Bilgisayar ve uygulamalarının

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

Görme Engelliler için Web Sayfalarında Erişilebilirliğin Sağlanması

Görme Engelliler için Web Sayfalarında Erişilebilirliğin Sağlanması Görme Engelliler için Web Sayfalarında Erişilebilirliğin Sağlanması Cihan Yıldırım Yücel - Cengiz Acartürk ODTÜ-BİDB Akademik Bilişim 2006 İçerik Erişilebilirlik nedir? Engellilik çeşitleri Görme engellilik

Detaylı

UFRS ANALİZ DOKÜMANI

UFRS ANALİZ DOKÜMANI UFRS ANALİZ DOKÜMANI Versiyon 7.0.7 MatriksMatriksMatriksMatriksMa 25.10.2013 triksmat Bilgi Dağıtım Hizmetleri A.Ş. riksmatriksmatriksmatriksmatriksiksmatr iksmatriksmatriksmatriksmatriksmatriks İÇİNDEKİLER

Detaylı

T.C. Başbakanlık Gümrük Müsteşarlığı Muhabere ve Elektronik Dairesi Başkanlığı

T.C. Başbakanlık Gümrük Müsteşarlığı Muhabere ve Elektronik Dairesi Başkanlığı Dış Ticaret İşlemlerine Bakış e-gümrük işlemleri başlatıldı. Beyannameler elektronik olarak üretiliyor Beyanname eki olarak gümrüğe sunulan imzalı evrak sayısı 200 Islak Mali kayıp : Kayıplar Islak imzalı

Detaylı

2. HTML Temel Etiketleri

2. HTML Temel Etiketleri 2. HTML Temel Etiketleri Bu bölümü bitirdiğinizde, HTML ve etiket kavramlarının ne olduğunu, HTML komut yapısını, Örnek bir HTML dosyasının nasıl oluşturulduğunu, Temel HTML etiketlerinin neler olduğunu,

Detaylı

ÜÇÜNCÜ YARIYIL ZORUNLU DERSLER

ÜÇÜNCÜ YARIYIL ZORUNLU DERSLER ÜÇÜNCÜ YARIYIL ZORUNLU DERSLER İNG 301/ALM 301/FRA 301 YABANCI DİL III İngilizce, Fransızca ve Almanca lisan bilgisi veren dersler. İNG 309/ALM 309/FRA 309 YABANCI DİL III İngilizce, Fransızca ve Almanca

Detaylı

OPNET PROJECT EDİTÖRDE. Doç. Dr. Cüneyt BAYILMIŞ

OPNET PROJECT EDİTÖRDE. Doç. Dr. Cüneyt BAYILMIŞ BSM 532 KABLOSUZ AĞLARIN MODELLEMESİ VE ANALİZİ OPNET PROJECT EDİTÖRDE UYGULAMA GELİŞTİRME - 2-1 OPNET MODELER PROJE EDİTÖRDE UYGULAMA GELİŞTİRME Applications Profiles Kullanımı 2 Aşağıdaki Ağı Project

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

Geniş Bantlı Log-Periyodik Anten Dizgelerinin Genetik Algoritmalar Kullanılarak Tasarlanması

Geniş Bantlı Log-Periyodik Anten Dizgelerinin Genetik Algoritmalar Kullanılarak Tasarlanması Geniş Bantlı Log-Periyodik Anten Dizgelerinin Genetik Algoritmalar Kullanılarak Tasarlanması Levent Gürel ve Özgür Ergül Elektrik ve Elektronik Mühendisliği Bölümü Bilkent Üniversitesi, Ankara lgurel@bilkent.edu.tr

Detaylı

görüntü işleme, pattern tanıma yapay zeka

görüntü işleme, pattern tanıma yapay zeka KARAKTER TANIMA Çeşitli kaynaklardan bilgisayar ortamına aktarılmış karakterleri tanıma işi görüntü işleme, pattern tanıma ve yapay zeka alanlarında oldukça ilgi çekmiştir. Ancak bu alanda uygulanan klasik

Detaylı

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ 2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ YGS sonrası adayları puan getirisinin daha çok olan LYS ler bekliyor. Kalan süre içinde adayların girecekleri testlere kaynaklık eden derslere sabırla çalışmaları

Detaylı

DC Motorlarda Maksimum Verimin Genetik Algoritma Kullanılarak Optimizasyonu. Optimization of DC Motors Maximum Efficiency Using Genetic Algorithm

DC Motorlarda Maksimum Verimin Genetik Algoritma Kullanılarak Optimizasyonu. Optimization of DC Motors Maximum Efficiency Using Genetic Algorithm DC Motorlarda Maksimum Verimin Genetik Algoritma Kullanılarak Optimizasyonu *1 Kürşat M. KARAOĞLAN and *2 Metin ZEYVELİ 1 Mekatronik Mühendisliği, Fen Bilimleri Enstitüsü, Karabük Üniversitesi, Karabük,

Detaylı

GALATASARAY ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ ÖĞRETİM ÜYELERİ TARAFINDAN YÜRÜTÜLEN PROJELER (2008-2011)

GALATASARAY ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ ÖĞRETİM ÜYELERİ TARAFINDAN YÜRÜTÜLEN PROJELER (2008-2011) 08.401.001 08.401.002 08.401.003 Dikkat Seviyesindeki Değişimlerin Elektrofizyolojik Ölçümler İle İzlenmesi PFO(Patent Foramen Ovale) Teşhisinin Bilgisayar Yardımı İle Otomatik Olarak Gerçeklenmesi ve

Detaylı

MATEMATİK MÜHENDİSLİĞİ BÖLÜMÜ

MATEMATİK MÜHENDİSLİĞİ BÖLÜMÜ İSTANBUL TEKNİK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK MÜHENDİSLİĞİ BÖLÜMÜ K-MEANS KÜMELEME ALGORİTMASININ GENETİK ALGORİTMA KULLANILARAK GELİŞTİRİLMESİ BİTİRME ÖDEVİ Yunus YÜNEL Tez Danışmanı:

Detaylı

İRİSTEN KİMLİK TANIMA SİSTEMİ

İRİSTEN KİMLİK TANIMA SİSTEMİ ÖZEL EGE LİSESİ İRİSTEN KİMLİK TANIMA SİSTEMİ HAZIRLAYAN ÖĞRENCİLER: Ceren KÖKTÜRK Ece AYTAN DANIŞMAN ÖĞRETMEN: A.Ruhşah ERDUYGUN 2006 İZMİR AMAÇ Bu çalışma ile, güvenlik amacıyla kullanılabilecek bir

Detaylı

Yrd.Doç. Dr. Tülin ÇETİN

Yrd.Doç. Dr. Tülin ÇETİN Yrd.Doç. Dr. Tülin ÇETİN ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Lisans Ege Üniversitesi Bilgisayar Mühendisliği 1987-1992 Lisans Celal Bayar Üniversitesi İnşaat Mühendisliği 2001-2004 Y. Lisans

Detaylı

Sistem Temel. Genel Fonksiyonlar. Sistemleri. Tam Adaptif Trafik Kontrol Sistemi ( j\iti'1)

Sistem Temel. Genel Fonksiyonlar. Sistemleri. Tam Adaptif Trafik Kontrol Sistemi ( j\iti'1) Tam Adaptif Trafik Kontrol Sistemi ( j\iti'1) Akıllı Trafik Ağı ve Adaptif Trafik Yönetim Sistemi, hızlı ve güvenli trafik akışını sağlar. /o95 doğruluk oranı ile ölçümler gerçekleştirerek uygun kavşak

Detaylı

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ 1 A. GİRİŞ Gözlemlerin belirli bir dönem için gün, hafta, ay, üç ay, altı ay, yıl gibi birbirini izleyen eşit aralıklarla yapılması ile elde edilen seriler zaman

Detaylı

KUANTUM KRĠPTOGRAFĠ ĠTÜ BĠDB AĞ GRUBU/TANER KOÇ

KUANTUM KRĠPTOGRAFĠ ĠTÜ BĠDB AĞ GRUBU/TANER KOÇ KUANTUM KRĠPTOGRAFĠ ĠTÜ BĠDB AĞ GRUBU/TANER KOÇ Kriptoloji, kriptosistem ya da şifre adı verilen bir algoritma kullanılarak bir mesajın sadece anahtar olarak bilinen ek bilgilerle birleştirilip okunmasının

Detaylı

Excel Formüller ve Fonksiyonlar. Yusuf MANSUROĞLU Mühendislik Hizmetleri Müdür Yardımcısı 11.02.2015

Excel Formüller ve Fonksiyonlar. Yusuf MANSUROĞLU Mühendislik Hizmetleri Müdür Yardımcısı 11.02.2015 Excel Formüller ve Fonksiyonlar Yusuf MANSUROĞLU Mühendislik Hizmetleri Müdür Yardımcısı 11.02.2015 Excel de Yapabileceklerimiz Temel aritmetik işlemler (4 işlem) Mantıksal karşılaştırma işlemleri (>,>=,

Detaylı