Genetik Algoritma ile Elde Edilen Uyumlu Renklerin Web Şablonları Üzerinde Gerçeklenmesi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Genetik Algoritma ile Elde Edilen Uyumlu Renklerin Web Şablonları Üzerinde Gerçeklenmesi"

Transkript

1 Genetik Algoritma ile Elde Edilen Uyumlu Renklerin Web Şablonları Üzerinde Gerçeklenmesi Şerif Okumuş Melih Orhan Bilgisayar Mühendisliği Bölümü, Süleyman Demirel Üniversitesi, Isparta Abstract - Bu tez çalışmasında, yapay zekânın güçlü tekniklerinden olan genetik algoritma yardımıyla, web sayfalarındaki renk uyumluluk probleminin çözümü üzerinde durulmuştur. W3C standartlarında elde edilen uyumlu renkler, web tabanlı yazılımlar yardımıyla web şablonları (template) üzerinde test edilmiştir. Problemin farklı boyutları için, çözüm başarısı değişik parametre değerleri kullanılarak ölçülmüştür. Problemin çıkan sonuçlarının daha iyi görülebilmesini sağlayacak şekilde web yardımıyla görselleştirme aracı geliştirilmiştir. Geliştirilen bu araç yardımıyla web sayfalarında değişik genetik algoritma parametreleri kullanılarak uyumlu renkler elde edilebilmekte ve sitilleri önceden belirlenebilen web şablonları üzerinde uyumlu renkler test edilebilmektedir. Anahtar Kelimeler: - Renk; renk uyumluluk; genetik algoritma; web; web şablonları I. GİRİŞ Web sayfa tasarımı, firmanın kurumsal kimliğinin en güzel bir biçimde ulusal ve uluslararası ağ ortamında tanıtımı ve dışa açılan en önemli pencerelerinden bir tanesidir. Web tasarım, işitsel ve görsel öğeler içeren web sayfalarıdır. Web sayfasının tasarımında en önemli unsurlarından biri renk kullanımıdır. Renk, nerdeyse bir sitenin başarısını tanımlamada içerik ve gezinti kadar önemlidir ve tasarımın etkili bir bileşenidir. Renk, siteye sadece görsel bir çekicilik katmaz, aynı zamanda hedef kitleye gönderdiği mesajdan ötürü de önemlidir. Yapay zekâ günümüzde çoğu yazılımda önemli bir işlevi yerine getirmektedir. En küçük yazılımda bile çok basitte olsa bir yapay zekâ tekniği kullanılmaktadır. Bu tekniklerin bazıları yıllardır var olan teknikler olmasına rağmen bazıları da yeni sayılabilir. Bu tezin kapsamında web sayfalarında önemli bir problem olan renk uyumsuzluğu genetik algoritma yardımıyla çözülmektedir. Farklı parametre ve teknikler yardımıyla çözümlerin nasıl farklılaştığı incelenmektedir. Üretilen çözümler web 2.0 yardımıyla HTML şablon üzerinde W3C standartları ile test edilmektedir. Problem olarak web sayfaları için arka plan ve yazı rengi arasında uyumsuzluk ele alınmaktadır. Bu problemin çözümünde interaktif optimizasyon teknikleri kullanılması amaçlandı. Bu nedenle çalışmada yazı rengi ile arka plan renginin seçilmesi genetik algoritma kullanılanılarak aşıldı. Genetik algoritmalar (GA), karmaşık düzenli problemlerin çözümünü gerçekleştirmek amacıyla, kromozomların yeni diziler üretme esasını temel alan, sezgisel bir araştırma yöntemidir [1]. Genetik algoritmalar John Holland [2] tarafından 1975 yılında icat edilmiş ve öğrencileri ve iş arkadaşları tarafından geliştirilmiştir. Algoritma popülasyon (toplum) adı verilen ve kromozomlarla temsil edilen bir çözüm kümesi ile başlamaktadır. Bir toplumdaki çözümler yeni toplumların üretilmesinde kullanılmaktadır. Bu işlem, yeni toplumun eskisinden daha iyi olacağı umuduyla yapılmaktadır. Yeni çözümler (yavru) üretmek için alınan çözümler uygunluklarına (fitness) göre seçilmektedir. Daha uygun olan tekrar üretim için daha fazla şansa sahiptir. Tablo 1 de genetik algoritmanın çalışma adımları gösterilmiştir. Adım Yapılan İşlem 1 Gösterim (kodlama) yönetiminin belirlenmesi 2 Başlangıç toplumun (ilk nesil) oluşturulması 3 Başlangıç toplumundaki her bireyin performansının amaç fonksiyonuna göre hesaplanması 4 Yeni neslin oluşturulmasında kullanılacak bireylerin seçilmesi 5 Seçilmiş bireylere genetik işlemlerin uygulanarak yeni neslin elde edilmesi 6 Yeni neslin bireylerinin performanslarının uygunluk fonksiyonuna göre hesaplanması 7 Bitiş koşulu sağlanmamışsa yeni nesli tekrar 3. aşamaya gönderilmesi 8 Bitiş koşulu sağlanmışsa en iyi bireyin sonuç olarak dönülmesi Tablo 1: Genetik algoritmanın çalışma prensibi II. A. Sistem tanımı MATERYAL Bu sistemde genetik algoritmaların gerçekleştirildiği bir genetik hesaplama birimi, veri tabanı birimi ve grafik kullanıcı ara yüzünün gerçekleştirildiği ara yüz biriminden oluşmaktadır. Her birimler sadece ilgili görevlerini gerçekleştirmektedir. Sistemin ana mimari yapısı Resim 1 de incelenebilir. Mimariden de anlaşılacağı gibi sistem birbiriyle haberleşen, sorumlulukları dağıtılmış birimlerden oluşmaktadır.

2 Genetik Hesaplama Birimi Ara yüz birimi Veri tabanı birimi 2)) + (maksimum (Mavi renk 1, Mavi renk 2) -minimum (Mavi renk 1, Mavi renk 2)) (2) Kullandığımız diğer bir kriterde renklerin karşıtlık oranı denilen contrast ratiodur. The W3C s [4] WCAG [5] contrast rationun formülü aşağıdaki gibidir. B. Teknoloji seçimi Resim 1: MVC sistem modeli Yazılım, Java tabanlı web uygulamalarını kolaylaştırmak için MVC yapısına uygun olarak geliştirilmiş JSF 2.0 web teknolojisiyle gerçekleştirilmiştir. Kullanıcılar sadece Java 1.6 veya daha üzeri bir jdk kullanarak web server üzerinde çalıştırabilirler. Grafik ara yüzü Ajax üzerinde inşa edilmiş Primefaces 2.1 ile oluşturulmuştur. Veri tabanı olarak MySQL kullanılmıştır. A. Renk teorisi III. METHOT Renk teorisi renklerin karışımında uygulanılan prensipleri içerir. Bu teoriye göre ikili birbiriyle uyumlumu renkler renk çemberinde karşılıklı, üçlü uyumlu renkler üçgen, dörtlü renkler ise dikdörtgen şeklinde karşılıklı bulunur. İngiliz fizikçi Isaac Newton güneş ışığını elmas bir prizmadan geçirerek, renkleri ayırmayı başarmıştır (Newton, 1670). Bir odayı kararttıktan sonra güneş ışığının ince bir delikten odaya girmesini sağlamış, bu ışığın önüne bir prizma koyarak parçalanış halini, tıpkı gökkuşağında olduğu gibi yedi rengi yukarıdan aşağıya doğru bir perdeye aksettirmeyi sağlamıştır. Güneş ışığını meydana getiren yedi rengin (renk tayfının) görkemi, gizemi bugün üzerinde birçok incelemeler yapılan son derece olumlu sonuçlar alınan çalışmaları ve araştırmaları beraberinde getirmiş, Renk Bilim ini bir bilim dalı olarak ortaya koymuştur. Günümüzde tanımlanan birçok renk modeli mevcuttur. Bunlardan en çok bilinenler RGB ve CMYK tır. RGB bilgisayar için CMYK ise baskı renkleri için uygun bir modeldir. RGB kırmızı, yeşil ve mavi renklerin uygun oranlarda karışımı esasına dayalıdır. Color brightness (Renk Parlaklığı,) aşağıdaki formülle değeri hesaplanmaktadır: ((R X 299) + (G X 587) + (B X 114)) / 1000 (1) Color difference (Renk Farkı) aşağıdaki formülle değeri hesaplanmaktadır: (maksimum (Kırmızı renk 1, Kırmızı renk 2) - minimum (Kırmızı renk 1, Kırmızı renk 2)) + (maksimum (Yeşil renk 1, Yeşil renk 2) - minimum (Yeşil renk 1, Yeşil renk Burada L nispi lüminans değeridir. [3]. Maks değer Min değer Brightness Differences Color Differences Contrast Ratio 21 1 Tablo 2: Renk niteliklerinin maks ve min değerleri İki renk uyumlu diyebilmemiz için ; 1. Brightness Differences> Color Differences> Contrast Ratio>4.5 Bu şartları sağladığı takdirde bu renkler kendi arasında uyumludur. B. Genetik algoritmanın uygulanması Bireyler, Kullanıcının girebildiği n sayıda bireyden oluşan bir toplum kullanılmaktadır. Her birey aslında bir web şablonu temsil etmektedir. Web şablonları için oluşturulmuş rasgele renkler ise genleri temsil etmektedir. Kromozomları kodlamak için değer kodlaması kullanılmaktadır.(resim 2)Kromozomun genleri olarak her rengin RGB kodları tutulmaktadır. Başlangıç popülasyonu, Bu sistemde başlangıç popülasyonu rastgele üretildi. Başlangıç popülasyonu problemin kısıtlarını ihlal etmeyecek bir biçimde rastgele olarak üretilebilir veya sezgisel bir şekilde belirlenebilir Her ne kadar sezgisel belirlenen ilk bireyler, genetik algoritmaların biraz daha hızlı yakınsamasını sağlayabilmişse de, çok çeşitli problemlerde erken yakınsamaya yol açabileceği görülmüştür. Birey seçimi, Bir çok birey seçimi teknikleri vardır. Bu projede rulet tekerleği seçimi kullanılmıştır. Holland [2] tarafından kullanılan rulet tekerleği (rulet-wheel) yöntemi olarak adlandırılan ilk seçim yöntemi adayların olasılık dağılımına göre seçilmesine dayanıyordu. Buna göre herhangi bir adayın seçilme şansı, onun bütün popülasyon içindeki performansına göre rasgele belirlenmektedir. Böylelikle performansı yüksek olan adayların şansı daha yüksek olmaktadır. Ayrıca elitisimde elde edilen iyi bireylerin gelecek nesilde bozulmaması için uygulandı. (3)

3 Resim 2: Kromozom yapısı(değer kodlama) C. Fitness fonksiyonu Bireylerin ne kadar başarılı olduğunu bulmamız uygunluklarını bulmamızla mümkündür. Uygunluk formülü de bireylerin toplum içerisindeki uzaklık sıralamasındaki yeridir. Bu nedenle her bireyin uzaklığının hesaplanması gerekmektedir. Bu hesaplama aşağıdaki formüle göre gerçekleştirilmektedir: Birey sayısı En iyi maliyet En kötü maliyet ,24 157, ,01 155, ,96 147, ,6 143,67 Tablo 3: Birey sayısının etkisi (4) n: Renk sayısı. Her şablon üzerinde arka plan ve yazı rengi ile 8 renk bulunmaktadır. k(j): İki renk arasındaki parlaklık değeridir. l(j): İki renk arasındaki renk fark değeridir. m: m eşik değeridir. Bu değer %60 olarak verilmiştir. IV. DENEYSEL SONUÇLAR Genetik algoritmanın başarısını ölçmek ve en uygun genetik algoritma parametreleri ve kriterleri için yazılımı farklı seçimler için ürettiği maliyet miktarı denendi. Bu denemeler istatiksel doğruluğu bir nebze de olsa elde edebilmek için 10 kere aynı değerlerle çalıştırmak ve bu değerlerin aritmetik ortalamasını almak şeklinde gerçekleştirildi. Bu denemeler tarafımızdan üç başlığa ayrıldı. A. Birey ve nesil sayısının etkisi Bu bölümdeki amaç birey sayısının ve nesil sayısının değişiminin genetik algoritma üzerinde oluşturduğu farklılığı bulmak ve en uygun birey ve nesil sayılarına ulaşabilmektir. Birey sayısının etkisini hesaplamak için aşağıdaki kriterler sabit tutularak birey sayısı değiştirildi: Resim 3: Birey sayısının etkisi Nesil sayısının etkisinin hesaplamak için de yukarıdaki kriterlerden farklı olarak birey sayısı 20 ye sabitlendi. Tablo 3 incelendiği zaman nesil ilerledikçe maliyet değeri değişmektedir. Nesil sayısındaki artış, maliyet değerini oldukça fazla etkilemiştir. En iyi sonuç, nesil sayısı 500 olduğunda alınmıştır. Nesil En iyi maliyet En kötü maliyet 5 174,34 75, ,5 88, ,04 112, ,06 143, ,7 158, ,41 159, ,88 155,55 Tablo 4: Nesil sayısının etkisi Tablo 2 yardımıyla birey sayısı artışının web şablonlardaki renk uyumluluk kalitesini arttırdığını ancak belli bir sayıdan sonra süredeki artışın göz önüne alınması gerektiği ortaya çıkmaktadır. Bu nedenle birey sayısının nesil sayısına da bağlı olmak şartıyla uygun bir değer seçilmesi genetik algoritmanın verimini arttıracaktır. Yukarıda belirtilen kriterler için birey sayısının uygun değeri 100 dür. Resim 4: Nesil sayısının etkisi

4 B. Çaprazlama olasılığının etkisi Olasılıkları hesaplamak için hesaplanan olasılık değiştirilerek diğer olasılık sabit tutulmuştur. Diğer kriterler için aşağıdaki sabit değerler kullanılmıştır: Tablo 4 yardımıyla çaprazlama olasılığının artışı ile iyi sonuçlar döndürdüğü gözlenmiştir. Bu gözlem sonucunda süredeki değişimi de göz önüne alarak en iyi olasılık değerinin 0,5 ten büyük değerler olduğu ortaya çıkmıştır. Resim 6: Mutasyon olasılığının etkisi Çaprazlama olasılığı En iyi maliyet En kötü maliyet 0,1 174,34 75,51 0,3 195,5 88,09 0,5 270,62 158,86 0,7 275,41 159,32 0,9 286,08 159,38 Tablo 5: Çaprazlama olasılığının etkisi Resim 7: Swing ilk populasyon test ekranı Resim 5: Çaprazlama olasılığının etkisi C. Mutasyon olasılığının etkisi Tablo 5 yardımıyla mutasyon olasılığının artışının olumlu etkilemediği gözlenmiştir. Bu gözlem sonucunda en iyi olasılık değerinin 0,01 olduğu ortaya çıkmıştır. Mutasyon olasılığı En iyi maliyet En kötü maliyet 0,01 275,41 159,32 0,03 269,34 152,34 0,1 262,42 134,6 0,3 243,53 139,54 Tablo 6: Mutasyon olasılığının etkisi Resim 8: Genetik algoritma giriş ve çıkış ekranı GA sonucu oluşan en yüksek maliyet 400 en düşük 0 fakat 400 çıkması matematiksel doğru olmasına rağmen bizim istemediğimiz bir durumdur.renkler hep siyah ve beyaz renklerden oluşmaktadır bu durumda.bizim için en maliyetleri kabul ettiğimiz 225 ile 325 arasıdır arasını kötü arasını istenmeyen durum olarak belirledik.ayrıca tüm test sonuçlarında istenmeyen durum örneği görülmedi.resim 9(a) üretilen iyi renklere ait şablonlar resim 9(b) de ise kötü diye nitelendirdiğimiz sonuçlar mevcuttur.ayrıca tüm populasyonları Resim 11 görüldüğü şekilde incelenebilir ve önizileyip kaydedilelir.

5 (a) Resim 11: Wizard başlangıcı;style seçimi (b) Resim 10: Tüm populasyonun maliyet ve renk çiftleri V. SONUÇ Bu çalışmada, web sayfalarındaki renk uyumsuzluk probleminin GA kullanılarak giderebileceği gösterilmiştir. Bunun için Java mimarisi üzerine inşa edilmiş web uygulamaları geliştirmek için kullanılan JSF teknolojisi ile etkileşimli bir program geliştirilmiştir. Ayrıca yeni bir fitness metodu üzerinde genetik algoritma uygulandı. Kullanıcılar gerekli verileri web üzerinden interaktif olarak girebilmektedir. Uygun web şablon elde edildiğinde şablon bilgilerini veri tabanına kaydedip saklayabilmektedir. VI. REFERANSLAR Resim 9: En iyi templateler (a) ve en kötü templeteler(b) [1] Lee, C.Y., Kim, S.J.. Parallel genetic algorithms for the earliness-tardiness job scheduling problem with general penalty weights. Computer & Industrial Enginnering, 28(2), , 1995 [2] J. H. Holland, Adaptation in natural and artificial systems, Ann Arbor, MI: University of Michigan Press, [3] L. Troiano, C. Birtolo, and G. Cirillo, Interactive Genetic Algorithm for choosing suitable colors in User Interface [4] Web content accessibility guidelines 2.0. Technical Report 11, W3C, December [5] Web Content Accessibility guidelines (WCAG) 2.0 W3C Recommendation 11 December 2008

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Genetik algoritmalar, Darwin in doğal seçim ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Genetik Algoritma (Genetic Algorithm) Doç.Dr. M. Ali Akcayol Genetik Algoritma 1970 li yıllarda John Holland tarafından geliştirilmiştir. 1989 yılında David E. Goldberg Genetik

Detaylı

Fonksiyon Optimizasyonunda Genetik Algoritmalar

Fonksiyon Optimizasyonunda Genetik Algoritmalar 01-12-06 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu

Detaylı

Genetik Algoritmalar (GA) Genetik Algoritmalar Đçerik Nesin Matematik Köyü E rim Ç lı l ş ı ta t yı Nisan, 2012 Mustafa Suphi Erden

Genetik Algoritmalar (GA) Genetik Algoritmalar Đçerik Nesin Matematik Köyü E rim Ç lı l ş ı ta t yı Nisan, 2012 Mustafa Suphi Erden Genetik Algoritmalar Nesin Matematik Köyü Evrim Çalıştayı 20-23 Nisan, 202 Genetik Algoritmalar (GA Đçerik Biyolojiden esinlenme GA nın özellikleri GA nın unsurları uygulama Algoritma Şema teoremi Mustafa

Detaylı

GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı

GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı Erol Şahin Bilgisayar Mühendisliği Bölümü, Orta Doğu Teknik Üniversitesi Ankara, Türkiye 2. ULUSAL GRİD ÇALIŞTAYI, 1-2 Mart 2007, TÜBİTAK,

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA i GENETİK ALGORİTMA YAKLAŞIMIYLA ATÖLYE ÇİZELGELEME Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ OCAK 2005 ANKARA ii Serdar BİROĞUL tarafından hazırlanan

Detaylı

ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI

ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI İlaç Tasarımında Yeni Yazılımların Geliştirilmesi: Elektron Konformasyonel-Genetik Algoritma Metodu ile Triaminotriazin Bileşiklerinde Farmakofor Belirlenmesi ve Nicel Biyoaktivite Hesabı; ERCİYES ÜNİVERSİTESİ

Detaylı

GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ

GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ VI. Ulusal Temiz Enerji Sempozyumu UTES 2006 25 27 Mayıs 2006, Isparta Sf.756 764 GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ Nida Nurbay ve Ali Çınar Kocaeli Üniversitesi Tek. Eğt. Fak. Makine

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

LED IŞIK KAYNAKLARININ RENK SICAKLIĞININ GÖRÜNTÜ İŞLEME TEKNİKLERİ KULLANILARAK BELİRLENMESİ. İsmail Serkan Üncü, İsmail Taşcı

LED IŞIK KAYNAKLARININ RENK SICAKLIĞININ GÖRÜNTÜ İŞLEME TEKNİKLERİ KULLANILARAK BELİRLENMESİ. İsmail Serkan Üncü, İsmail Taşcı LED IŞIK KAYNAKLARININ RENK SICAKLIĞININ GÖRÜNTÜ İŞLEME TEKNİKLERİ KULLANILARAK BELİRLENMESİ İsmail Serkan Üncü, İsmail Taşcı To The Sources Of Light s Color Tempature With Image Processing Techniques

Detaylı

JEODEZİK AĞLARIN OPTİMİZASYONU

JEODEZİK AĞLARIN OPTİMİZASYONU JEODEZİK AĞLARIN OPTİMİZASYONU Jeodezik Ağların Tasarımı 10.HAFTA Dr.Emine Tanır Kayıkçı,2017 OPTİMİZASYON Herhangi bir yatırımın gerçekleştirilmesi sırasında elde bulunan, araç, hammadde, para, işgücü

Detaylı

Sosyal Ağlar ve Çevrimiçi Kütüphane Katalogları: OPAC 2.0

Sosyal Ağlar ve Çevrimiçi Kütüphane Katalogları: OPAC 2.0 Sosyal Ağlar ve Çevrimiçi Kütüphane Katalogları: OPAC 2.0 Tolga ÇAKMAK Bilgi ve Belge Yönetimi Bölümü tcakmak@hacettepe.edu.tr ~ Nevzat ÖZEL Bilgi ve Belge Yönetimi Bölümü nozel@humanity. ankara.edu.tr

Detaylı

RENK İLE İLGİLİ KAVRAMLAR

RENK İLE İLGİLİ KAVRAMLAR RENK İLE İLGİLİ KAVRAMLAR Tanımlar Renk Oluşumu Gökyüzünde yağmur sonrasında olağanüstü bir renk kuşağı ( gökkuşağı ) görülür. Bunun nedeni yağmur damlalarının, cam prizma etkisi ile ışığı yansıtarak altı

Detaylı

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics 2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics Özet: Bulanık bir denetleyici tasarlanırken karşılaşılan en önemli sıkıntı, bulanık giriş çıkış üyelik fonksiyonlarının

Detaylı

KULLANILABİLİRLİK TESTLERİ VE UYGULAMALARI

KULLANILABİLİRLİK TESTLERİ VE UYGULAMALARI 6 İnternet sitelerinin kullanıcıların ihtiyaç ve beklentilerini karşılayıp karşılamadığının ve sitenin kullanılabilirliğinin ölçülmesi amacıyla kullanılabilirlik testleri uygulanmaktadır. Kullanılabilirlik

Detaylı

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008 Kablosuz Sensör Ağlar ve Eniyileme Tahir Emre KALAYCI 21 Mart 2008 Gündem Genel Bilgi Alınan Dersler Üretilen Yayınlar Yapılması Planlanan Doktora Çalışması Kablosuz Sensör Ağlar Yapay Zeka Teknikleri

Detaylı

Ders Kodu Dersin Adı Dersin Ġntibak Durumu

Ders Kodu Dersin Adı Dersin Ġntibak Durumu ENDÜSTRĠ SĠSTEMLERĠ MÜHENDĠSLĠĞĠ BÖLÜMÜ ĠNTĠBAK ÇĠZELGESĠ 2010-2011 1.SINIF / GÜZ DÖNEMĠ IUE100 Akademik ve Sosyal Oryantasyon CS 115 Programlamaya Giriş I Bu ders 1. Sınıf güz döneminden 2. Sınıf güz

Detaylı

FAN SELECTOR FAN SELECTOR FAN SEÇİM YAZILIMI.

FAN SELECTOR FAN SELECTOR FAN SEÇİM YAZILIMI. FAN SELECTOR FAN SEÇİM YAZILIMI YAZILIM TANIMI Fan Selector yazılımı havalandırma ve iklimlendirme sistemlerinde kullanılan fanların performans hesaplamalarının yapılması ve çalışma şartlarına en uygun

Detaylı

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Doç.Dr.Mehmet Hakan Satman mhsatman@istanbul.edu.tr İstanbul Üniversitesi 2014.10.22 Doç.Dr.Mehmet Hakan Satmanmhsatman@istanbul.edu.tr Tedarik Zinciri

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Sınıflandırma yöntemleri Karar ağaçları ile sınıflandırma Entropi Kavramı ID3 Algoritması C4.5

Detaylı

YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ

YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ Bu ders 1. Sınıf güz döneminden 2. Sınıf güz dönemine alınmıştır. gerektiği halde alamayan öğrenciler 2010-2011 öğretim yılı

Detaylı

GENETĠK ALGORĠTMALAR ĠLE HAFTALIK DERS PROGRAMININ HAZIRLANMASI

GENETĠK ALGORĠTMALAR ĠLE HAFTALIK DERS PROGRAMININ HAZIRLANMASI ÖZEL EGE LĠSESĠ GENETĠK ALGORĠTMALAR ĠLE HAFTALIK DERS PROGRAMININ HAZIRLANMASI HAZIRLAYAN ÖĞRENCĠLER: Berkin ĠNAN Doğa YÜKSEL DANIġMAN ÖĞRETMEN: Aslı ÇAKIR ĠZMĠR 2014 ĠÇĠNDEKĠLER 1. PROJENĠN AMACI. 3

Detaylı

Gezgin Satıcı Probleminin Karınca Kolonisi ve Genetik Algoritmalarla Eniyilemesi ve Karşılaştırılması

Gezgin Satıcı Probleminin Karınca Kolonisi ve Genetik Algoritmalarla Eniyilemesi ve Karşılaştırılması Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi Suleyman Demirel University Journal of Natural andappliedscience 18(1), 8-13, 2014 Gezgin Satıcı Probleminin Karınca Kolonisi ve Genetik Algoritmalarla

Detaylı

İLERİ ALGORİTMA ANALİZİ GENETİK ALGORİTMA

İLERİ ALGORİTMA ANALİZİ GENETİK ALGORİTMA İLERİ ALGORİTMA ANALİZİ 1. Giriş GENETİK ALGORİTMA Geniş çözüm uzaylarının klasik yöntemlerle taranması hesaplama zamanını artırmaktadır. Genetik algoritma ile kabul edilebilir doğrulukta kısa sürede bir

Detaylı

Bilgisayar Mühendisliği. Bilgisayar Mühendisliğine Giriş 1

Bilgisayar Mühendisliği. Bilgisayar Mühendisliğine Giriş 1 Bilgisayar Mühendisliği Bilgisayar Mühendisliğine Giriş 1 Mühendislik Nedir? Mühendislik, bilim ve matematiğin yararlı cihaz ve sistemlerin üretimine uygulanmasıdır. Örn: Elektrik mühendisleri, elektronik

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ DOKTORA DERS PROGRAMI (Lisanstan gelenler için)

BİLGİSAYAR MÜHENDİSLİĞİ DOKTORA DERS PROGRAMI (Lisanstan gelenler için) BİLGİSAYAR MÜHENDİSLİĞİ DOKTORA DERS PROGRAMI (Lisanstan gelenler için) HAZIRLIK PROGRAMI COME 27 İleri Nesneye Yönelik Programlama 5 COME 21 Veri Yapıları ve Algoritmalar COME 22 COME 1 COME 1 COME 411

Detaylı

2 e-posta: aeyilmaz@eng.ankara.edu.tr

2 e-posta: aeyilmaz@eng.ankara.edu.tr BULUT AĞLARINA YÖNELİK DAĞINIK ÖNBELLEK YÖNETİM SİSTEMİ NDE FARKLI OPTİMİZASYON VE ATAMA TEKNİKLERİNİN PERFORMANS KARŞILAŞTIRMASI Hüseyin Seçkin Dikbayır 1 Asım Egemen Yılmaz 2 Ali Arda Diri 3 1,3 Dirisoft

Detaylı

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI Hatice YANIKOĞLU a, Ezgi ÖZKARA a, Mehmet YÜCEER a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği

Detaylı

ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX

ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX XI İÇİNDEKİLER ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX 1. GİRİŞ... 1 2. PLANLAMANIN TARİHÇESİ... 7 2.1 Literatürdeki Planlayıcılar ve Kullandıkları Problem... Gösterimi

Detaylı

Kurumsal bilgiye hızlı ve kolay erişim Bütünleşik Belge Yönetimi ve İş Akış Sistemi içinde belgeler, Türkçe ve İngilizce metin arama desteği ile içeri

Kurumsal bilgiye hızlı ve kolay erişim Bütünleşik Belge Yönetimi ve İş Akış Sistemi içinde belgeler, Türkçe ve İngilizce metin arama desteği ile içeri İş süreçleri ve belgelerin bilgisayar ortamında izlenmesi Bütünleşik Belge Yönetimi ve İş Akış Sistemi Kurumların belge ve içerik yönetim işlemleriyle iş süreçlerinin tanımlanması ve denetlenmesi ve bu

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ Ezgi Özkara a, Hatice Yanıkoğlu a, Mehmet Yüceer a, * a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü, Malatya, 44280 myuceer@inonu.edu.tr

Detaylı

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21 İçindekiler Önsöz İkinci Basım için Önsöz Türkçe Çeviri için Önsöz Gösterim xiii xv xvii xix 1 Giriş 1 1.1 Yapay Öğrenme Nedir?......................... 1 1.2 Yapay Öğrenme Uygulamalarına Örnekler...............

Detaylı

Üst Düzey Programlama

Üst Düzey Programlama Üst Düzey Programlama Struts Framework Üst Düzey Programlama-ders08/ 1 JSP MODEL 1 ve MODEL 2 Mimarileri Bu mimariler bir web uygulaması geliştirilirken kullanılan yöntemlerdir. Bu yöntemler arasındaki

Detaylı

BLG 1306 Temel Bilgisayar Programlama

BLG 1306 Temel Bilgisayar Programlama BLG 1306 Temel Bilgisayar Programlama Öğr. Grv. M. Mustafa BAHŞI WEB : mustafabahsi.cbu.edu.tr E-MAIL : mustafa.bahsi@cbu.edu.tr Bilgisayar ile Problem Çözüm Aşamaları Programlama Problem 1- Problemin

Detaylı

YAPAY BAĞIŞIKLIK SİSTEMİ. Arş. Gör. Burcu ÇARKLI YAVUZ

YAPAY BAĞIŞIKLIK SİSTEMİ. Arş. Gör. Burcu ÇARKLI YAVUZ YAPAY BAĞIŞIKLIK SİSTEMİ Arş. Gör. Burcu ÇARKLI YAVUZ İnsanoğlu doğadaki müthiş uyumu yıllar önce keşfetmiş ve doğal sistemlerin işleyişini günümüz karmaşık problemlerinin çözümünde uygulayarak, karmaşık

Detaylı

Helikopter Dolaşım Sistemi

Helikopter Dolaşım Sistemi Helikopter Dolaşım Sistemi Tahir Emre KALAYCI Ege Üniversitesi Bilgisayar Mühendisliği Yüksek Lisans Öğrencisi Helikopter Dolaşım Sistemi Gündem X3D Xj3D Genetik Algoritmalar HeDoS Sonuçlar X3D X3D, tüm

Detaylı

RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN

RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN RASTGELE SAYILARIN ÜRETİLMESİ Rastgele değişimler yapay tablolardan veya parametreleri verilen teorik dağılım fonksiyonlarından elde edilir.

Detaylı

Deniz ERSOY Elektrik Yük. Müh.

Deniz ERSOY Elektrik Yük. Müh. Deniz ERSOY Elektrik Yük. Müh. AMACIMIZ Yenilenebilir enerji kaynaklarının tesis edilmesi ve enerji üretimi pek çok araştırmaya konu olmuştur. Fosil yakıtların giderek artan maliyeti ve giderek tükeniyor

Detaylı

Rasgele Sayılar (Random Numbers) NUPAMC-2012 Bitlis

Rasgele Sayılar (Random Numbers) NUPAMC-2012 Bitlis Rasgele Sayılar (Random Numbers) NUPAMC-2012 Bitlis Gültekin YEĞİN Fizik Bölümü Celal Bayar Üniversitesi Manisa 10 Mayıs 2012 Doç.Dr.Gultekin Yeğin (C.B.Ü. Fizik) Rasgele Sayılar (Random Numbers) NUPAMC-2012

Detaylı

Okut. Yüksel YURTAY. İletişim : (264) Sayısal Analiz. Giriş.

Okut. Yüksel YURTAY. İletişim :  (264) Sayısal Analiz. Giriş. Okut. Yüksel YURTAY İletişim : Sayısal Analiz yyurtay@sakarya.edu.tr www.cs.sakarya.edu.tr/yyurtay (264) 295 58 99 Giriş 1 Amaç : Mühendislik problemlerinin bilgisayar ortamında çözümünü mümkün kılacak

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Öğr.Gör. Gökhan TURAN www.gokhanturan.com.tr. Gölhisar Meslek Yüksekokulu

Öğr.Gör. Gökhan TURAN www.gokhanturan.com.tr. Gölhisar Meslek Yüksekokulu Öğr.Gör. Gökhan TURAN www.gokhanturan.com.tr Gölhisar Meslek Yüksekokulu Bilgisayarın Yapısı Donanım (Hardware): Bir bilgisayara genel olarak bakıldığında; Kasa, Ekran, Klavye, Fare, Yazıcı, Hoparlör,

Detaylı

Veri Yapıları. Öğr.Gör.Günay TEMÜR Düzce Üniversitesi Teknolojis Fakültesi

Veri Yapıları. Öğr.Gör.Günay TEMÜR Düzce Üniversitesi Teknolojis Fakültesi Veri Yapıları Öğr.Gör.Günay TEMÜR Düzce Üniversitesi Teknolojis Fakültesi Hash Tabloları ve Fonksiyonları Giriş Hash Tabloları Hash Fonksiyonu Çakışma (Collision) Ayrık Zincirleme Çözümü Linear Probing

Detaylı

Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü. 13 Kasım 2010

Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü. 13 Kasım 2010 Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü 13 Kasım 2010 2010-2011 Eğitim Yılı (Haziran-Kasım 2010 tarihleri arasında) Bölümü Değerlendirme Anket Formu Raporu Öğrencilerimizin staj yaptıkları

Detaylı

BİL-142 Bilgisayar Programlama II

BİL-142 Bilgisayar Programlama II BİL-142 Bilgisayar Programlama II (C/C++) Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Giriş math Kütüphane Fonksiyonları Çok Parametreyle Fonksiyon Tanımı Fonksiyon

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS PROGRAMLAMA BG-213 2/1 2+0+2 2+1 5 Dersin Dili : TÜRKÇE Dersin Seviyesi : LİSANS

Detaylı

Veri Ambarından Veri Madenciliğine

Veri Ambarından Veri Madenciliğine Veri Ambarından Veri Madenciliğine Yrd. Doç. Dr. Ömer Utku Erzengin 1, Uzman Emine Çetin Teke 2, İstatistikçi Nurzen Üzümcü 3 1 Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi İstatistik Bölümü 2

Detaylı

TrizSOFT. S.P.A.C Altı Sigma Danışmanlık

TrizSOFT. S.P.A.C Altı Sigma Danışmanlık 2009 TrizSOFT S.P.A.C Altı Sigma Danışmanlık İçerik Tanıtım... 3 TRIZ nedir?... 3 Çelişkiler Matrisi... 4 Parametreler... 5 Prensipler... 6 İnovasyon Haritası... 7 Radar Şeması... 8 Ürün Karşılaştırma...

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

mmcube Çokluortam Bilgi Sistemi

mmcube Çokluortam Bilgi Sistemi mmcube Çokluortam Bilgi Sistemi SeCUBE ARGE Bilişim Mühendislik Ltd.Şti. Çokluortam Bilgi Sistemi görsel, işitsel ve metinsel tarama yöntemiyle videoların taranmasına olanak sağlayan yüksek teknoloji bir

Detaylı

THE EFFECT OF PRODUCT NUMBER ON SOLVING THE JOP-SHOP SCHEDULING PROBLEM BY USING GENETIC ALGORITHM

THE EFFECT OF PRODUCT NUMBER ON SOLVING THE JOP-SHOP SCHEDULING PROBLEM BY USING GENETIC ALGORITHM GENETİK ALGORİTMA İLE ÇÖZÜMÜ GERÇEKLEŞTİRİLEN ATÖLYE ÇİZELGELEME PROBLEMİNDE ÜRÜN SAYISININ ETKİSİ Serdar BİROĞUL*, Uğur GÜVENÇ* (*) Gazi Üniversitesi Teknik Eğitim Fakültesi Elektrik Eğitimi Bölümü, Beşevler

Detaylı

BİRİNCİ BASIMA ÖN SÖZ

BİRİNCİ BASIMA ÖN SÖZ BİRİNCİ BASIMA ÖN SÖZ Varlıkların kendilerinde cereyan eden olayları ve varlıklar arasındaki ilişkileri inceleyerek anlamak ve bunları bilgi formuna dökmek kimya, biyoloji, fizik ve astronomi gibi temel

Detaylı

28 Aralık 2013. Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü

28 Aralık 2013. Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü 28 Aralık 13 Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü 12-13 Eğitim Yılında (Ocak-Kasım 13 tarihleri arasında) doldurulmuş olan Bölümü Değerlendirme Anket Formları Raporu Öğrencilerin staj

Detaylı

Web Server Sunucu Loglarının K-Komşu Algoritması ile İ ncelenmesi

Web Server Sunucu Loglarının K-Komşu Algoritması ile İ ncelenmesi Web Server Sunucu Loglarının K-Komşu Algoritması ile İ ncelenmesi İçindekiler 1 Özet... 2 2 Giriş... 3 3 Uygulama... 4 4 Sonuçlar... 6 1 1 Özet Web sunucu logları üzerinde veri madenciliği yapmanın temel

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS YAPAY ZEKA BG-421 4/2 2+1+0 2+.5 4 Dersin Dili : TÜRKÇE Dersin Seviyesi : LİSANS

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

ODTÜ KÜTÜPHANESİ YENİ WEB SAYFASININ TASARIMI VE KULLANILABİLİRLİK ÇALIŞMASI

ODTÜ KÜTÜPHANESİ YENİ WEB SAYFASININ TASARIMI VE KULLANILABİLİRLİK ÇALIŞMASI ODTÜ KÜTÜPHANESİ YENİ WEB SAYFASININ TASARIMI VE KULLANILABİLİRLİK ÇALIŞMASI Mustafa DALCI *, Özge ALÇAM*, Yasemin Oran SAATÇİOĞLU*, Feride ERDAL* * Orta Doğu Teknik Üniversitesi, Bilgi İşlem Daire Başkanlığı,

Detaylı

Görme ve İşitme Engellilerin Üniversite İnternet Sayfalarına Erişebilirliği İshak Keskin İstanbul Üniversitesi Edebiyat Fakültesi Bilgi ve Belge Yönetimi Bölümü ishakkeskin@hotmail.com Esra G. Kaygısız

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme

Detaylı

Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü. Bilgisayar Mühendisliği

Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü. Bilgisayar Mühendisliği Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü Bilgisayar Mühendisliği Bilgisayar Mühendisliği Günümüzde, finans, tıp, sanat, güvenlik, enerji gibi bir çok sektör, bilgisayar mühendisliğindeki gelişimlerden

Detaylı

Genetik Knapsack. Umut BENZER 05-06-7670 http://www.ubenzer.com Ege Üniversitesi Bilgisayar Mühendisliği Yapay Zekâ

Genetik Knapsack. Umut BENZER 05-06-7670 http://www.ubenzer.com Ege Üniversitesi Bilgisayar Mühendisliği Yapay Zekâ Genetik Knapsack Umut BENZER 05-06-7670 http://www.ubenzer.com Ege Üniversitesi Bilgisayar Mühendisliği Yapay Zekâ 31.10.2011 İçindekiler Programcı Kataloğu...3 Teknik Bilgiler...3 Makine Özellikleri...3

Detaylı

GİRDİALIMI. Sistemin işleyişinde gereksinim duyulan verilerin sisteme girişinin yapılabilmesi için öncelikle toplanmaları gerekmektedir.

GİRDİALIMI. Sistemin işleyişinde gereksinim duyulan verilerin sisteme girişinin yapılabilmesi için öncelikle toplanmaları gerekmektedir. GİRDİ TASARIMI GİRDİ TASARIMI Geliştirilenyazılımın güvenilir ve geçerli bir yazılım olabilmesi iyi bir girdi tasarımı ile olanaklıdır. Diğer taraftan geliştirilen yazılımlar için kullanışlılık sahip olunması

Detaylı

SNP TEK NÜKLEOTİD POLİMORFİZMLERİ (SINGLE NUCLEOTIDE POLYMORPHISMS)

SNP TEK NÜKLEOTİD POLİMORFİZMLERİ (SINGLE NUCLEOTIDE POLYMORPHISMS) SNP TEK NÜKLEOTİD POLİMORFİZMLERİ (SINGLE NUCLEOTIDE POLYMORPHISMS) Herhangi iki bireyin DNA dizisi %99.9 aynıdır. %0.1 = ~3x10 6 nükleotid farklılığı sağlar. Genetik materyalde varyasyon : Polimorfizm

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

BİLGİSAYAR VE ENFORMASYON BİLİMLERİ YÜKSEK LİSANS DERS PROGRAMI (Tezli Program)

BİLGİSAYAR VE ENFORMASYON BİLİMLERİ YÜKSEK LİSANS DERS PROGRAMI (Tezli Program) BİLGİSAYAR VE ENFORMASYON BİLİMLERİ YÜKSEK LİSANS DERS PROGRAMI (Tezli Program) HAZIRLIK PROGRAMI COME 27 İleri Nesneye Yönelik Programlama 2+2 3 5 COME 218 Veri Yapıları ve Algoritmalar 2+2 3 6 COME 226

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI

AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI *Mehmet YÜCEER, **Erdal KARADURMUŞ, *Rıdvan BERBER *Ankara Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü Tandoğan - 06100

Detaylı

Veri Tabanı Yönetim Sistemleri Bölüm - 3

Veri Tabanı Yönetim Sistemleri Bölüm - 3 Veri Tabanı Yönetim Sistemleri Bölüm - 3 İçerik Web Tabanlı Veri Tabanı Sistemleri.! MySQL.! PhpMyAdmin.! Web tabanlı bir veritabanı tasarımı. R. Orçun Madran!2 Web Tabanlı Veritabanı Yönetim Sistemleri

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

Selective Framebusting

Selective Framebusting Selective Framebusting Seçiçi Çerçeveleme Engelleme Sema Arık, TurkcellTeknoloji, sema.arik@turkcellteknoloji.com.tr Bedirhan Urgun, Web Güvenlik Topluluğu, urgunb@hotmail.com Giriş PCI DSS Requirements

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

KİRİŞLERDE PLASTİK MAFSALIN PLASTİKLEŞME BÖLGESİNİ VEREN BİLGİSAYAR YAZILIMI

KİRİŞLERDE PLASTİK MAFSALIN PLASTİKLEŞME BÖLGESİNİ VEREN BİLGİSAYAR YAZILIMI IM 566 LİMİT ANALİZ DÖNEM PROJESİ KİRİŞLERDE PLASTİK MAFSALIN PLASTİKLEŞME BÖLGESİNİ VEREN BİLGİSAYAR YAZILIMI HAZIRLAYAN Bahadır Alyavuz DERS SORUMLUSU Prof. Dr. Sinan Altın GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

VERİ TABANI YÖNETİMİ. Yrd.Doç.Dr. Füsun BALIK ŞANLI 2013-2014 YTÜ

VERİ TABANI YÖNETİMİ. Yrd.Doç.Dr. Füsun BALIK ŞANLI 2013-2014 YTÜ VERİ TABANI YÖNETİMİ Yrd.Doç.Dr. Füsun BALIK ŞANLI 2013-2014 YTÜ Ders Düzeni Ders Uygulama Ödev Sınavlar 1. Ara Sınav 2. Ara Sınav Yıl Sonu Sınavı Sınavlar 2 Başarı Kriterleri Yıliçi başarı notu: (2 Yıliçi

Detaylı

SU KALITE SİSTEMİ. Türkiye Halk Sağlığı Kurumu

SU KALITE SİSTEMİ. Türkiye Halk Sağlığı Kurumu Türkiye Halk Sağlığı Kurumu Başarsoft Su Kalite Bilgi Dokumanı 10.10.2013 İçindekiler 1. SU KALITE SİSTEMİ... 2 1.1 Sistemin Genel Amaçları:... 3 1.2 Kullanılan Bileşen ve Teknolojiler:... 4 2. UYGULAMALARA

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

DEVLET KURUMLARINDA WEB ERİŞİLEBİLİRLİĞİ

DEVLET KURUMLARINDA WEB ERİŞİLEBİLİRLİĞİ DEVLET KURUMLARINDA WEB ERİŞİLEBİLİRLİĞİ Mustafa Dalcı ODTÜ BİDB Araştırma Görevlisi Erişilebilir Web Proje Sorumlusu Kurumlar Sunum Web Erişilebilirliği Türkiye deki Durum Türkiye deki Çalışmalar Dünyadaki

Detaylı

RASSAL SAYI ÜRETİLMESİ

RASSAL SAYI ÜRETİLMESİ Dr. Mehmet AKSARAYLI Ekonometri Böl. Simülasyon Ders Notları Rassal Sayı Üretilmesi RASSAL SAYI ÜRETİLMESİ Simülasyon analizinde kullanılacak az sayıda rassal sayı üretimi için ilkel yöntemler kullanılabilir.

Detaylı

Hipotez Testleri. Mühendislikte İstatistik Yöntemler

Hipotez Testleri. Mühendislikte İstatistik Yöntemler Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ

Detaylı

Yukarıdaki fonksiyonun anlamı: Bulunulan hücreye, B2 hücresinden B17 hücresine kadar olan hücreleri toplam ve yaz.

Yukarıdaki fonksiyonun anlamı: Bulunulan hücreye, B2 hücresinden B17 hücresine kadar olan hücreleri toplam ve yaz. DERS 14: FONKSİYONLAR (İŞLEVLER) Amaçlar: -Fonksiyon Sınıflamasını Tanımak. -Fonksiyonları Kullanmak. -Fonksiyon Sihirbazını Kullanmak. I. FONKSİYONLAR NE İŞE YARAR? Daha önceki haftalarda da Microsoft

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

Temelleri. Doç.Dr.Ali Argun Karacabey

Temelleri. Doç.Dr.Ali Argun Karacabey Doğrusal Programlamanın Temelleri Doç.Dr.Ali Argun Karacabey Doğrusal Programlama Nedir? Bir Doğrusal Programlama Modeli doğrusal kısıtlar altında bir doğrusal ğ fonksiyonun değerini ğ maksimize yada minimize

Detaylı

BMB204. Veri Yapıları Ders 12. Dizgi Eşleme (String Matching) Algoritmaları İleri Veri Yapıları

BMB204. Veri Yapıları Ders 12. Dizgi Eşleme (String Matching) Algoritmaları İleri Veri Yapıları BMB204. Veri Yapıları Ders 12. Dizgi Eşleme (String Matching) Algoritmaları İleri Veri Yapıları Erdinç Uzun NKÜ Çorlu Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Dersin Planı Dizgi Eşleme Algoritmaları

Detaylı

İNTERNET TARAYICISI ÜZERİNDE ÇALIŞABİLEN ELEKTRİK TALEP TAHMİNİ ANALİZ PROGRAMI

İNTERNET TARAYICISI ÜZERİNDE ÇALIŞABİLEN ELEKTRİK TALEP TAHMİNİ ANALİZ PROGRAMI TMMOB TÜRKİYE VI. ENERJİ SEMPOZYUMU - KÜRESEL ENERJİ POLİTİKALARI VE TÜRKİYE GERÇEĞİ İNTERNET TARAYICISI ÜZERİNDE ÇALIŞABİLEN ELEKTRİK TALEP TAHMİNİ ANALİZ PROGRAMI Barış Sanlı Dünya Enerji Konseyi Türk

Detaylı

Kan Damarı Genişliği Değişiminin Ölçülmesinde Medikal Görüntü İşlemenin Uygulanması

Kan Damarı Genişliği Değişiminin Ölçülmesinde Medikal Görüntü İşlemenin Uygulanması Kan Damarı Genişliği Değişiminin Ölçülmesinde Medikal Görüntü İşlemenin Uygulanması Öğr. Gör. İsmail KAHRAMAN, Uzm. Vildan BAYRAM, Prof.Dr. Ertuğrul Ercan, Doç.Dr. Bahadır Kırılmaz Çanakkale 18 Mart Üniversitesi

Detaylı

DIV KAVRAMI