BĠLGĠSAYARDA ĠSTATĠSTĠK ÇÖZÜMLEMELER

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BĠLGĠSAYARDA ĠSTATĠSTĠK ÇÖZÜMLEMELER"

Transkript

1 BĠLGĠSAYARDA ĠSTATĠSTĠK ÇÖZÜMLEMELER DÖNEM III Yrd.Doç.Dr. Ġsmail YILDIZ Biyoistatistik ve Tıbbi BiliĢim AD Öğretim üyesi 1

2 FRĠEDMAN ĠKĠ YÖNLÜ VARYANS ANALĠZĠ TESTĠ: Friedman testi, iki yönlü varyans analizinin non parametrik alternatifi olan bir testtir. n birimlik bir gruptan k iģlem için sıralı, skor ya da aralıklı ölçekle elde edilmiģ veriler elde edilmiģ ise k iģlem etkisinin farklılığını test etmek amacıyla Friedman testi uygulanır.

3 NonParametric Analyze Friedman (Bağımlı 2 den fazla grup ortalaması) Nonparametric Test K Related samples Wilcoxon ile ikili KarĢılaĢtırmalar yapılır P <0.05 Ġstenilen verinin tekrarlı ölçümleri Test Variable kutusuna atılır est Statistics tablosunda Asymp Sig Değeri alınır Okey

4 1- Analyze butonuna basılır, 2- Nonparametric Tests butonuna basılır, 3- K Related Samples butonuna basılır

5 1-KarĢılaĢtırılmak istenen bağımlı değiģken çiftleri iģaretlenerek Test variable kutusuna atılır, 2- OK butonuna basılır. ĠĢlemin sonunda Output sayfası açılır 1 2

6 1- Test Statistic tablosuna bakılır bu tablodaki Asymp Sig satırı bizim için anlamlı P değerini verir, 2- Hb1 - Hb2-Hb3 ün P:0.120 yani P>0.05 yani Hb1, Hb2 ve Hb3 değerleri arasında anlamlı fark yok, 3- Eger P <0.05 olsa idi ikiģerli olarak karģılaģtırılması gerekirdi (Wilcoxon testi ile) 1 2

7 ÖRNEK: 4 birim üzerinde 3 farklı yönteme göre elde edilen test sonuçları skor değerler olarak aģağıdaki Ģekildeki gibi bulunmuģtur. Bireylerin puanları iģlemlere göre farklı mıdır?. Yöntem/ birim A B C

8 ÇÖZÜM: 1- a,b,c,adlı üç değiģken oluģturulur ve altına değerleri girilir.

9 2-Analiz> Nonparametric Tests>K-Related Samples seçeneği tıklanır.

10 3-Gelen pencerede Test Variables alanına a,b,c değiģkenleri taģınır 4-Test Type seçeneklerinden Friedman iģaretlenir ve OK tıklanır.

11 Bu çıktıya göre test sonucunda P=0,247>0,05 elde edilir. Birimlerin puanları iģlemlere göre farklı değildir.

12 Lojistik Regresyon Analizi Lojistik regresyon analizi doğrusal regresyondan farklı olarak bağımlı değiģkeni ikil (dikotom) olması gerekir. Bağımsız değiģkenler sayısal veya kategorik olabilir

13 Analyze Lojistik Regresyon Analizi Regression Binary lojistik Dependent kutusuna bağımlı degiģken Independent kutusuna tüm bağımsız değiģkenler atılır OKEY Regresyon denklemi: (Coefficients tablosunda B sütunundaki değerler ) Constant + her bagımsız degiģkenin katsayısı Anova tablosunda regression satırının Sig değeri bağımsız değiģkenlerin total etkisini verir Coefficients tablosunda her bağımsız değiģken için Sig değerine bakılır

14 1.Analyze, Regression, Binary Logistic butonuna basılır 1 2 3

15 1-Dikotom (ikili) kodlanmıģ bagımlı değiģken dependent kutusuna atılır, 2-Bağımsız değiģkenler covariates kutusuna atılır, 3-Categorical butonu tıklanır 1 2 3

16 1-Katogorik değiģkenler categorical covariates kutusuna atılır, 2-Continue tıklanır, 3-OK butonu tıklanır 3 1 2

17 1- Variables in the Equation tablosuna dikkate alınır, 2-Significant sütununda her paremetre için p değerine bakılarak paremetrenin bağımlı değiģken için bağımsız prediktör olup olmadığına karar verilir. 1 2

18 1-Regresyon denklemi çıkarılırken variables in the Equation tablosundaki B sütunundaki degerler alınır, (GRUP: Constat+ fol2 + durum + yaģ + cinsiyet + hb1), GRUP: fol durum 0.007yaĢ 1.65cinsiyet hb1 1

19 ODDS RATĠO (OR)(Odds oranı): Vakaların etkene maruz kalma oddsu; Bir vakanın etkene maruz kalma ihtimalinin, bir vakanın etkene maruz kalmama ihtimaline bölünmesi ile elde edilir. Kontrol grubu arasında etkene maruz kalma oddsu; Bir kontrolün etkene maruz kalma ihtimalinin, bir kontrolün etkene maruz kalmama ihtimaline bölünmesi ile elde edilir. Odds Oranı: Etkene maruz kalan vakanın oddsu / Etkene maruz kalan kontrolün oddsu

20 SPSS de bir etkene maruz kalma OR hesaplamak için; Etken kodlanır Sütuna (Column) yazılır Etkene maruz kalma 1 Etkene maruz kalmama 2 olarak Gruplar Satıra (Row) yazılır Hasta grup 1 Kontrol grup 2 olarak kodlanır

21 1- Analyze butonuna basılır, 2- Descriptives Statstics butonuna basılır, 3- Crossabs butonuna basılır

22 Statistic butonuna basılır

23 1-Chi square kutusu iģaretlenir, 2-Risk iģaretlenir, 3-Continue butonuna basılır 1 2 2

24 Cells butonuna basılır

25 1- Row ve Column kutuları iģaretlenir,2- Continue butonuna basılır 2 1

26 1.ÇalıĢılan gruplar row a atılır, 2. AraĢtırılan etken column a atılır, 3. OK 1 3 2

27 hasta Total hasta kontrol hasta * sigara Crosstabulation sigara sigara iciy or sigara icmiy or Total Count % within hasta 41.8% 58.2% 100.0% % wit hin sigara 48.9% 29.6% 35.5% Count % within hasta 24.0% 76.0% 100.0% % wit hin sigara 51.1% 70.4% 64.5% Count % within hasta 30.3% 69.7% 100.0% % wit hin sigara 100.0% 100.0% 100.0% Hasta olan kiģinin sigara içme oddsu 23/32 : Kontrol grubundaki kiģinin sigara içme oddsu 24/ 76: Risk Esti mate Odds Ratio f or hasta (hasta / kontrol) For cohort sigara = sigara iciy or For cohort sigara = sigara icmiy or N of Valid Cases % Confidence Interv al Value Lower Upper Odds Oranı:0.718/ 0.315: 2.27

28 ODDS RATĠO (OR)(Odds oranı):

29 RELATĠVE RĠSK (RR) RĠSK ORANI Bir etkene maruz kalma ile bir olayın gerçekleģmesi arasındaki iliģkiyi ortaya koymada kullanılır. R (Etkene maruz kalan): Etkene maruz kalanlardan hasta olanlar Etkene Maruz kalanların tamamı R (Etkene maruz kalmayan): Etkene maruz kalmayanlardan hasta olanlar Etkene Maruz kalmayanların tamamı RR: R / R

30 hasta * sigara Crosstabulation hasta Total hasta kontrol Count % within hasta % wit hin sigara Count % within hasta % wit hin sigara Count % within hasta % wit hin sigara sigara sigara iciy or sigara icmiy or Total % 58.2% 100.0% 48.9% 29.6% 35.5% % 76.0% 100.0% 51.1% 70.4% 64.5% % 69.7% 100.0% 100.0% 100.0% 100.0% Sigara içenlerin hasta olma riski 23/47: Sigara içmeyenlerin hasta olma riski 32/108: Sigara içenlerin sigara içmeyenlere göre hasta olma relatif riski RR: 0.489/ 0.296: 1.65

31 RELATĠVE RĠSK (RR) RĠSK ORANI

32 Receiver Operating Characteric - ROC Her sınflandırma iģleminde yapıldığı gibi, metodlar kesinlik (yanlıģ pozitifleri eleme kabiliyeti, spesifite) ve hassasiyet (doğru pozitifleri tespit etme kabiliyeti, sensitivite) arasındaki dengeyi kurmakla uğraģmaktadır. Cut-off değeri belirlenmesini sağlar ROC adı verilen eğri, kesinlik ve hasiyet arasındaki dengeyi değerlendirmek için kullanılmıģtır. ROC eğrisi altında kalan alan (AUC) ROC puanı olarak tanımlanabilir. ROC puanı 1 (bir) olduğunda anlamı, pozitifler mükemmel bir Ģekilde negatiflerden ayrılmıģtır, olmaktadır. ROC puanı 0 (sıfır) olduğunda ise herhangi bir pozitif bulunamadı anlamına gelir.

33 1.Analysis veya Graphs (hangisinin altında yer alıyorsa) 2. ROC curve 1 2

34 1. Test eilecek değiģken Test variable kutusuna atılır 2. Gold standart olarak kabul edilen değiģken State Variable kutusuna atılır 3. Gol standartın test edilen durumunun kodu Value of state variable kutusuna yazılır, 4. Kutucuklar iģaretlenir

35 1. OK tuģuna basılır

36 ROC eğrisi AUC Area Under the Curve (AUC) Test Result Variable(s): mcv Area Std. Error Asy mptotic 95% Conf idence Sig. b Lower Bound Upper Bound a Asy mptotic Interv al The test result variable(s): mcv has at least one tie between the positiv e actual state group and the negativ e actual state group. Statistics may be biased. a. Under the nonparametric assumption b. Null hy pothesis: true area = 0.5

37 Elde edilen en uygun cut-off seçilir Bu cut-off a göre veriler kategorize edilir Daha önceki bilgiler kullanılarak; Sensitivite Spesifite PPD NPD Hesaplanır Birden fazla cut-off kullanılarak elde edilen verilerde makalede seçenek olarak sunulabilir Cut-off u aranan degiģkenin sensitivitesi değeri azaldıkça artıyorsa coordinates of the curve tablosundaki Sensitivite değeri Spesifiteyi 1-Spesifite değeri Sensitiviteyi gösterir

38 MCV değeri düģtükçe anemi tanısının sensitivitesi artıyor bu nedenle coordinates of the curve tablosundaki değerler yer degiģtiriyor MCV cut-off hb1.1 * mcv2 Crosstabul ation hb1.1 Total anemi var anemi yok Count % within hb1.1 % within mcv2 Count % within hb1.1 % within mcv2 Count % within hb1.1 % within mcv2 mcv2 mcv düþük mcv y üksek Total % 47.6% 100.0% 93.0% 71.4% 81.3% % 82.8% 100.0% 7.0% 28.6% 18.7% % 54.2% 100.0% 100.0% 100.0% 100.0% Spesifite: 24 / 24+5 : 82.8 Sensitivite: 66 / : 52.4

39 SÜRVĠ ANALĠZĠ SAĞKALIM EĞRĠLERĠ Sürvi analiz yapabilmek için izleme süresi ve hastanın durumunu belirten verilere ihtiyaç vardır. Amaç beklenen yaģam süresidir. Genel sağkalım ve hastalıksız sağkalım olarak bakılabilir Ġzlem süresi araģtırmacının belirteceği baģlangıç noktası (biopsi tarihi, ameliyat tarihi, baģvuru tarihi vb.) ve bitiģ noktası (ölüm, hastalığın nüksü, metastaz, çalıģmanın sonlandırılması vb.) arasında geçen süredir.

40

41

42 Genel Sağkalım D.Ü.TIP FAKÜLTESĠ BĠYOĠSTATĠSTĠK VE TIBBĠ BĠLĠġĠM AD 1,0 0,8 0,6 0,4 0,2 0,0 0,00 12,00 24,00 36,00 48,00 60,00 72,00 84,00 Sağkalım eğrisi Süre (ay) 96,00 108,00 120,00

43 KAPLAN-MEĠER SAĞKALIM ANALĠZĠ Farklı denek gruplarının yaģam sürelerini karģılaģtırarak prognoza etki eden faktörlerin incelenmesini sağlar Bir ilacın veya tedavi metodunun uzun dönemdeki baģarısının değerlendirilmesini sağlar. Logrank testi iki sağkalım egrisinin karģılaģtırılmasını sağlar

44 1-Analyze, 2-Survival, 3-Kaplan-meier 1 2 3

45 1-Time kutucuğuna izlem süresi atılır,2-status kutusuna beklene durumun kodu girilir, 3-KarĢılaĢtırılacak gruplar ise factor kutusuna atılır, 4-Compare factor butonuna basılır

46 1.Log rank kutusu iģaretlenir, 2.Pairwise over strate kutusu iģaretlenir, 3.Continue butonuna basılır, 4.Options butonuna asılır

47 1. Kutucuklar iģaretlenir 2. Ok tuģuna basılır 1

48 1. YaĢam tablosunun hangi gruba ait olduğunu gösterir 2. Sütunun sonunda ölen hasta sayısının toplamı görülür 1 2

49 1.Olay gerçekleģmeyen (örn. Sağkalan) 2. GerçekleĢen olay sayısı 3.Grubun ortalama yaģam zamanı: 64±3 ay (CI: 58-70) 1 2 3

50 1-Toplu halde gruplara göre olayın gerçekleģmediği hasta yüzdeleri 2-Log Rank satırı Gruplar arasındaki farkın anlamlı olup olmadığını Gösterir, 3-Anlamlı farklılık varsa alttaki subgrup analizine bakılır 1 2

51 1. Subgrup analizleri Grup1-2 p: 0.042, Grup 1-3 p:0.000, Grup 2-3 p:0.015

52 1. Grupların yaģam egrileri

53 KAYNAKLAR: [1] ÖZDAMAR, K., Paket Programlar ile Ġstatistiksel Veri Analizi I- II, Kaan Kitabevi, ESKĠġEHĠR, [2] ÖZDAMAR, K., SPSS ile Biyoistatistik, Kaan Kitabevi, ESKĠġEHĠR, [3] HAYRAN, M., ÖZDEMĠR, O., Bilgisayar Ġstatistik ve Tıp, HYB, MEDAR, ANKARA, [4] SPSS Base 7.5 Applications Guide [5] CHARLES R.H., Deney Düzenlemede Ġstatistiksel Yöntemler. [6] SÜMBÜLOĞLU, K., SÜMBÜLOĞLU, V., Biyoistatistik [7] KAN, Ġ., Biyoistatistik [8] ÖZDAMAR, K., Biyoistatistik. [9] SPSS, SPSS Base 7.5 Applications Guide [10] SPSS, SPSS Interactive Graphics 10.0 [11] BÜYÜKÖZTÜRK, ġ., Veri Analizi El Kitabı, Pegema Yayıncılık, ANKARA, [12] Tonta, Y., Regresyon Analizi Ders Notları, H.Ü. BBY

54 BİYOİSTATİSTİK 54

Çalıştığı kurumun prestij kaynağı olup olmaması KIZ 2,85 ERKEK 4,18

Çalıştığı kurumun prestij kaynağı olup olmaması KIZ 2,85 ERKEK 4,18 1 * BAĞIMSIZ T TESTİ (Independent Samples t test) ÖRNEK: Yapılan bir anket çalışmasında katılımcılardan, çalıştıkları kurumun kendileri için bir prestij kaynağı olup olmadığını belirtmeleri istenmiş. 30

Detaylı

DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU. Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI

DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU. Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI 05.05.2014 Pazartesi, Saat:11.30-12.20;Korelasyon ve Regresyon Uygulaması

Detaylı

Tanı Testlerinin Değerlendirilmesi. ROC Analizi. Prof.Dr. Rian DİŞÇİ

Tanı Testlerinin Değerlendirilmesi. ROC Analizi. Prof.Dr. Rian DİŞÇİ Tanı Testlerinin Değerlendirilmesi ROC Analizi Prof.Dr. Rian DİŞÇİ İstanbul Üniversitesi, Onkoloji Enstitüsü Kanser Epidemiyolojisi Ve Biyoistatistik Bilim Dalı Tanı Testleri Klinik çalışmalarda, özellikle

Detaylı

D.Ü.TIP FAKÜLTESİ BİYOİSTATİSTİK AD. DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU)

D.Ü.TIP FAKÜLTESİ BİYOİSTATİSTİK AD. DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU) DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU) TOPLAM KALİTE YÖNETİMİ BİLİNÇLENDİRME EĞİTİMİ NONPARAMETRİK KÜKRER GIDA TESTLER (Mann Whitney U ve Wilcoxon Testleri) Yrd.Doç.Dr. İsmail

Detaylı

Pazarlama Araştırması Grup Projeleri

Pazarlama Araştırması Grup Projeleri Pazarlama Araştırması Grup Projeleri Projeler kapsamında öğrencilerden derlediğiniz 'Teknoloji Kullanım Anketi' verilerini kullanarak aşağıda istenilen testleri SPSS programını kullanarak gerçekleştiriniz.

Detaylı

01.02.2013. Statistical Package for the Social Sciences

01.02.2013. Statistical Package for the Social Sciences Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat...

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

UYGULAMA 2 TABLO YAPIMI

UYGULAMA 2 TABLO YAPIMI 1 UYGULAMA 2 TABLO YAPIMI Amaç: SPSS 10 istatistiksel paket programında veri girişi ve tablo yapımı. SPSS 10 istatistiksel paket programı ilk açıldığında ekrana gelen görüntü aşağıdaki gibidir. Bu pencere

Detaylı

BİYOİSTATİSTİK PARAMETRİK TESTLER

BİYOİSTATİSTİK PARAMETRİK TESTLER BİYOİSTATİSTİK PARAMETRİK TESTLER Doç. Dr. Mahmut AKBOLAT *Bir testin kullanılabilmesi için belirli şartların sağlanması gerekir. *Bir testin, uygulanabilmesi için gerekli şartlar; ne kadar çok veya güçlü

Detaylı

Bağımsız Örneklemler İçin Tek Faktörlü ANOVA

Bağımsız Örneklemler İçin Tek Faktörlü ANOVA Bağımsız Örneklemler İçin Tek Faktörlü ANOVA ANOVA (Varyans Analizi) birden çok t-testinin uygulanması gerektiği durumlarda hata varyansını azaltmak amacıyla öncelikle bir F istatistiği hesaplanır bu F

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) Parametrik Olmayan Testler Binom Testi SPSS Ders Notları III (3 Mayıs 2012) Soru 1: Öğrencilerin okul

Detaylı

Mann-Whitney U ve Wilcoxon T Testleri

Mann-Whitney U ve Wilcoxon T Testleri Mann-Whitney U ve Wilcoxon T Testleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Parametrik olmayan yöntem Mann-Whitney U testinin

Detaylı

UYGULAMA 1 SPSS E GİRİŞ. SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir.

UYGULAMA 1 SPSS E GİRİŞ. SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir. 1 UYGULAMA 1 SPSS E GİRİŞ SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir. Bu menülerin işlevleri ve alt menüleri ile komutları

Detaylı

ALIŞTIRMA 2 GSYİH. Toplamsal Ayrıştırma Yöntemi

ALIŞTIRMA 2 GSYİH. Toplamsal Ayrıştırma Yöntemi ALIŞTIRMA 2 GSYİH Bu çalışmamızda GSYİH serisinin toplamsal ve çarpımsal ayrıştırma yöntemine göre modellenip modellenemeyeceği incelenecektir. Seri ilk olarak toplamsal ayrıştırma yöntemine göre analiz

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

doğrudur? Veya test, sağlıklı dediği zaman hangi olasılıkla doğrudur? Bu soruların yanıtları

doğrudur? Veya test, sağlıklı dediği zaman hangi olasılıkla doğrudur? Bu soruların yanıtları DÖNEM III HALK SAĞLIĞI-ADLİ TIP-BİYOİSTATİSTİK-TIP TARİHİ VE ETİK Ders Kurulu Başkanı : Prof. Dr. Günay SAKA TANI TESTLERİ (30.04.2014 Çrş. Y. ÇELİK) Duyarlılık (Sensitivity) ve Belirleyicilik (Specificity)

Detaylı

Prof.Dr. Rian Dişçi İ.Ü.Onkoloji Enstitüsü Kanser Epidemiyolojisi ve Biyoistatistik Bilim Dalı

Prof.Dr. Rian Dişçi İ.Ü.Onkoloji Enstitüsü Kanser Epidemiyolojisi ve Biyoistatistik Bilim Dalı SAĞKALIM (SÜRVİ) ANALİZİ Prof.Dr. Rian Dişçi İ.Ü.Onkoloji Enstitüsü Kanser Epidemiyolojisi ve Biyoistatistik Bilim Dalı Amaç Tedaviden sonra hastaların beklenen yaşam sürelerinin tahmin edilmesi, genel

Detaylı

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1 SPSS UYGULAMALARI-II 27.12.2016 Dr. Seher Yalçın 1 Normal Dağılım Varsayımının İncelenmesi Çarpıklık ve Basıklık Katsayısının İncelenmesi Analyze Descriptive Statistics Descriptives tıklanır. Açılan pencerede,

Detaylı

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1 İÇİNDEKİLER ÖNSÖZ... v 1. BÖLÜM Örneklem Genişliğinin Elde edilmesi... 1 1.1. Kitle ve Parametre... 1 1.2. Örneklem ve Tahmin Edici... 2 1.3. Basit Rastgele Örnekleme... 3 1.4. Tabakalı Rastgele Örnekleme...

Detaylı

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI 1 UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI Örnek 1: Ders Kitabı 3. konuda verilen 100 tane yaş değeri için; a. Aritmetik ortalama, b. Ortanca değer, c. Tepe değeri, d. En küçük ve en

Detaylı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Varyans Analizi (ANOVA) Kruskal-Wallis H Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek Yönlü Varyans Analizi SPSS de Tek

Detaylı

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz.

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. PARAMETRİK TESTLER Tek Örneklem t-testi 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. H0 (boş hipotez): 200 öğrencinin matematik dersinden aldıkları

Detaylı

19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I

19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I 19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I Bir dil dershanesinde öğrenciler talep ettikleri takdirde, öğretmenleriyle

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) Data Editör iki arayüzden oluşur. 1. Data View 2. Variable

Detaylı

KORELASYON VE REGRESYON UYGULAMASI

KORELASYON VE REGRESYON UYGULAMASI KORELASYON VE REGRESYON UYGULAMASI (BİLGİSAYARDA İSTATİSTİK ÇÖZÜMLEMELER) Yrd.Doç.Dr. İsmail YILDIZ Biyoistatistik AD Öğretim üyesi iyildiz@dicle.edu.tr 1 REGRESYON ve KORELASYON ANALİZİ Bağımlı değişkenin

Detaylı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Student t Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek örnek t testi SPSS de tek örnek t testi uygulaması Bağımsız iki örnek

Detaylı

Eğer Veri Çözümleme paketi Araçlar menüsünde görünmüyor ise yüklenmesi gerekir.

Eğer Veri Çözümleme paketi Araçlar menüsünde görünmüyor ise yüklenmesi gerekir. Bölüm BİLGİSAYAR DESTEKLİ İSTATİSTİK EXCEL DESTEKLİ İSTATİSTİK Excel de istatistik hesaplar; Genel Yöntem ve Excel Ġçerikli Çözümler olmak üzere iki esasa dayanabilir. Genel Yöntem; Excel in matematiksel

Detaylı

2x2 ve rxc Boyutlu Tablolarla Hipotez Testleri

2x2 ve rxc Boyutlu Tablolarla Hipotez Testleri x ve rxc Boyutlu Tablolarla Hipotez Testleri İki tür spesifik uygulamada kullanılır: 1. Bağımsızlık Testi (Test of Independency): Sayım verilerinden oluşan iki değişken arasında bağımsızlık (veya ilişki)

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

SAĞKALIM (YAġAM) ÇÖZÜMLEMESĠ

SAĞKALIM (YAġAM) ÇÖZÜMLEMESĠ SAĞKALIM (YAġAM) ÇÖZÜMLEMESĠ SAĞKALIM (YAġAM) ÇÖZÜMLEMESĠ Sağkalım çözümlemesi, araģtırıcı tarafından tanımlanan herhangi bir olgunun ortaya çıkmasına kadar geçen sürenin incelenmesinde kullanılan çözümleme

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

) -3n(k+1) (1) ile verilir.

) -3n(k+1) (1) ile verilir. FİEDMAN İKİ YÖNLÜ VAYANS ANALİZİ Tekrarlı ölçümlerde tek yönlü varyans analizinin varsayımları yerine gelmediğinde kullanılabilecek olan değiģik parametrik olmayan testler vardır. Freidman iki yönlü varyans

Detaylı

SPSS de Tanımlayıcı İstatistikler

SPSS de Tanımlayıcı İstatistikler SPSS de Tanımlayıcı İstatistikler Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı SPSS programında belirtici istatistikler 4 farklı menüden yararlanılarak

Detaylı

BİYOİSTATİSTİK TABLO VE FRAFİK YAPIMI

BİYOİSTATİSTİK TABLO VE FRAFİK YAPIMI BİYOİSTATİSTİK TABLO VE FRAFİK YAPIMI B Doç. Dr. Mahmut AKBOLAT *Tablo, araştırma sonucunda elde edilen bilgilerin sayısal olarak *anlaşılabilir bir nitelikte sunulmasını sağlayan bir araçtır. *Tabloda

Detaylı

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 1 BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 Bu bölümde bir veri seti üzerinde betimsel istatistiklerin kestiriminde SPSS paket programının kullanımı açıklanmaktadır. Açıklamalar bir örnek üzerinde hareketle

Detaylı

Bağımsız örneklem t-testi tablo okuması

Bağımsız örneklem t-testi tablo okuması Bağımsız örneklem t-testi tablo okuması İki bağımsız grubu karşılaştırmada kullanılır; Normal dağılım (her bir grup için n>30) [Uygulamada daha küçük sayılar da kullanılmaktadır] Sürekli bağımlı değişken

Detaylı

Nicel Veri Analizi ve İstatistik Testler

Nicel Veri Analizi ve İstatistik Testler Nicel Veri Analizi ve İstatistik Testler Yaşar Tonta H.Ü. BBY tonta@hacettepe.edu.tr yunus.hacettepe.edu.tr/~tonta/courses/spring2009/bby208/ SLIDE 1 Nicel Analiz Olguları tanımlamak ve açıklamak için

Detaylı

Hastalıklarda Risk Faktörleri ve Tarama Tanı ve Tedavi Etkinliği İstatistikleri. A.Ayça ÖZDEMİR

Hastalıklarda Risk Faktörleri ve Tarama Tanı ve Tedavi Etkinliği İstatistikleri. A.Ayça ÖZDEMİR Hastalıklarda Risk Faktörleri ve Tarama Tanı ve Tedavi Etkinliği İstatistikleri A.Ayça ÖZDEMİR İçerik Hastalıklarda Risk Faktörleri Geriye Dönük Case Control Odds Ratio İleriye Dönük Kohort Çalışmalarda

Detaylı

Ki-Kare Bağımsızlık Analizi

Ki-Kare Bağımsızlık Analizi Ki-Kare Bağımsızlık Analizi Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Ki-Kare Bağımsızlık Analizi Kikare bağımsızlık analizi, isimsel ya da sıralı ölçekli

Detaylı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı REGRESYON ANALİZİ VE UYGULAMA Yrd. Doç. Dr. Hidayet Takcı htakci@cumhuriyet.edu.tr Sunum içeriği Bu sunumda; Lojistik regresyon konu anlatımı Basit doğrusal regresyon problem çözümleme Excel yardımıyla

Detaylı

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı

ÇALIŞMA PLANLAMA VE MAKALE YAZMADA SIK YAPILAN HATALAR VE ÇÖZÜM ÖNERİLERİ

ÇALIŞMA PLANLAMA VE MAKALE YAZMADA SIK YAPILAN HATALAR VE ÇÖZÜM ÖNERİLERİ 1 ÇALIŞMA PLANLAMA VE MAKALE YAZMADA SIK YAPILAN HATALAR VE ÇÖZÜM ÖNERİLERİ Doç.Dr.Ayşegül Gözalan, Ankara Atatürk Eğitim ve Araştırma Hastanesi Tıbbi Mikrobiyoloji Prof. Dr. Yakut Akyön Yılmaz Hacettepe

Detaylı

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ DÖNEM I-I. DERS KURULU Konu: Bilimsel yöntem ve istatistik Amaç: Biyoistatistiğin tıptaki önemini kavrar ve sonraki dersler için gerekli terminolojiye hakim olur.

Detaylı

Temel İstatistik 2012 Y. Doç. Dr. İbrahim Turan SPSS. Analiz Menüsü

Temel İstatistik 2012 Y. Doç. Dr. İbrahim Turan SPSS. Analiz Menüsü SPSS Analiz Menüsü 1- Reports: a) OLAP Cubes: Seçilen değişkenlerin istatistiksel işlemlerini yapar. b) Case summaries: Verilerin frekans ve çapraz tablolarının oluşturulması, belirtici istatistiklerin

Detaylı

Varyans Analizi (ANOVA), Kovaryans Analizi (ANCOVA), Faktöriyel ANOVA, Çoklu Varyans Analizi (MANOVA)

Varyans Analizi (ANOVA), Kovaryans Analizi (ANCOVA), Faktöriyel ANOVA, Çoklu Varyans Analizi (MANOVA) Varyans Analizi (ANOVA), Kovaryans Analizi (ANCOVA), Faktöriyel ANOVA, Çoklu Varyans Analizi (MANOVA) Yaşar Tonta H.Ü. BBY tonta@hacettepe.edu.tr yunus.hacettepe.edu.tr/~tonta/courses/fall2008/sb5002/

Detaylı

REGRESYON VE KORELASYON DEĞĠġKENLERARASI BAĞINTI VE ĠLĠġKĠ

REGRESYON VE KORELASYON DEĞĠġKENLERARASI BAĞINTI VE ĠLĠġKĠ REGRESYON VE KORELASYON DEĞĠġKENLERARASI BAĞINTI VE ĠLĠġKĠ - SĠSTEM, ALT SĠSTEM ve SĠSTEM DĠNAMĠKLERĠ - TERĠM ve TANIMLAR - REGRESYON YÖNTEMLERĠ BASĠT DOĞRUSAL REGRESYON SPSS de REGRESYON ANALĠZĠ - KORELASYON

Detaylı

Temel İstatistik 2012 Y. Doç. Dr. İbrahim Turan SPSS. Analiz Menüsü

Temel İstatistik 2012 Y. Doç. Dr. İbrahim Turan SPSS. Analiz Menüsü SPSS Analiz Menüsü 1- Reports: a) OLAP Cubes: Seçilen değişkenlerin istatistiksel işlemlerini yapar. b) Case summaries: Verilerin frekans ve çapraz tablolarının oluşturulması, belirtici istatistiklerin

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 Aşağıdaki analizlerde http://yunus.hacettepe.edu.tr/~tonta/courses/spring2010/bby208/bby208

Detaylı

İstatistiksel İfadeyle... / Statistically Speaking...

İstatistiksel İfadeyle... / Statistically Speaking... İstatistiksel İfadeyle... / Statistically Speaking... DOI: 10.5455/jmood.20161230045344 Kovaryans Analizi Selim Kılıç 1 ÖZET: Kovaryans analizi Kovaryans analizi çalışmada incelenmek istenmeyen başka bir

Detaylı

3.SUNUM. Yrd. Doç. Dr. Sedat Şen

3.SUNUM. Yrd. Doç. Dr. Sedat Şen 3.SUNUM 1 Daha önce gösterdiğimiz gibi SPSS e manual olarak (elle) veri girişi yapabildiğimiz gibi daha önce başka bir dosyaya girilmiş olan bir veriyi de SPSS e file>open >data seçeneklerini kullanarak

Detaylı

PROBLEM:1. 11 yeni doğan rata günlük 1000 unts/kg epo uygulanmış, kontrol grubuna ise salin uygulanmıştır.

PROBLEM:1. 11 yeni doğan rata günlük 1000 unts/kg epo uygulanmış, kontrol grubuna ise salin uygulanmıştır. PROBLEM:1 Beyinde hipoksik iskemik hasar geliştirilmiş ratlarda recombinant insan eritropoteininin infarkt alanı üzerine ve nöron hücre apopitozisi üzerine etkisi araştırılmaktadır. 11 yeni doğan rata

Detaylı

Çalışma Soruları 1 - Cevaplar

Çalışma Soruları 1 - Cevaplar Çalışma Soruları 1 - Cevaplar BBY252 Araştırma Yöntemleri 2015-2016 Bahar Dönemi Soru 1: Öğrencilerin geçme notlarının hesaplanmasında ara sınav %40, final sınavı %60 etkilidir. Bu bilgiye göre geçme notlarını

Detaylı

ĠKĠ ÖRNEKLEM TESTLERĠ

ĠKĠ ÖRNEKLEM TESTLERĠ ĠKĠ ÖRNEKLEM TESTLERĠ BAĞIMSIZ GRUPLARDA İKİ ÖRNEKLEM TESTLERİ 1. ĠKĠ ORTALAMA ARASINDAKĠ FARKIN ÖNEMLĠLĠK TESTĠ. MANN-WHITNEY U TESTĠ 3. ĠKĠ YÜZDE ARASINDAKĠ FARKIN ÖNEMLĠLĠK TESTĠ 4. x KĠ-KARE TESTLERĠ

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

İSTATİSTİK PAKET PROGRAMLARI - SPSS

İSTATİSTİK PAKET PROGRAMLARI - SPSS BİLGİSAYAR DESTEKLİ İSTATİSTİK İstatistik, hayatın karışık olaylarını ve sorunlarını çözümlemeye çalışan bir bilim dalıdır. Son yıllara kadar oldukça karmaşık matematik işlemler bütünüymüş gibi görünen

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

Proceedings July 25-27, 2017; Paris, France

Proceedings July 25-27, 2017; Paris, France Determination of the Relationship between Students' Economic Status and Their Happiness by Ordinal Logistic Regression Method: The Case of Cumhuriyet University. Ziya Gökalp Göktolga 1, Engin Karakış 2

Detaylı

Regresyon Analizi. Yaşar Tonta H.Ü. BBY tonta@hacettepe.edu.tr yunus.hacettepe.edu.tr/~tonta/courses/fall2008/sb5002/ SLIDE 1

Regresyon Analizi. Yaşar Tonta H.Ü. BBY tonta@hacettepe.edu.tr yunus.hacettepe.edu.tr/~tonta/courses/fall2008/sb5002/ SLIDE 1 Regresyon Analizi Yaşar Tonta H.Ü. BBY tonta@hacettepe.edu.tr yunus.hacettepe.edu.tr/~tonta/courses/fall2008/sb5002/ SLIDE 1 Not: Sunuş slaytları G.A. Morgan, O.V. Griego ve G.W. Gloeckner in SPSS for

Detaylı

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8

Detaylı

Excel dosyasından verileri aktarmak için Proc/Import/Read Text-Lotus-Excel menüsüne tıklanır.

Excel dosyasından verileri aktarmak için Proc/Import/Read Text-Lotus-Excel menüsüne tıklanır. ZAMAN SERİSİ MODEL Aşağıdaki anlatım sadece lisans düzeyindeki temel ekonometri bilgisine göre hazırlanmıştır. Bir akademik çalışmanın gerektirdiği birçok ön ve son testi içermemektedir. Bu dosyalar ilk

Detaylı

Parametrik Olmayan Testler

Parametrik Olmayan Testler Araştırma Yöntemleri Parametrik Olmayan Testler Parametrik Olmayan Testler Verilerin normal dağılmış olması gerekmiyor Veriler sınıflama ya da sıralama ölçme düzeyinde toplanmış olacak Ya da eşit aralıklı

Detaylı

İSTATİSTİK SPSS UYGULAMA

İSTATİSTİK SPSS UYGULAMA İSTATİSTİK SPSS UYGULAMA Yrd. Doç. Dr. H. İbrahim CEBECİ SPSS UYGULAMA Bu bölümde SPSS veri girişi, Basit grafik hazırlama, örneklem çekimi ve tanımlayıcı istatistiksel analizler hakkında SPSS uygulamaları

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) SPSS Data Editör iki arayüzden oluşur. 1. Data View

Detaylı

Frekans. Hemoglobin Düzeyi

Frekans. Hemoglobin Düzeyi GRUPLARARASI VE GRUPİÇİ KARŞILAŞTIRMA YÖNTEMLERİ Uzm. Derya ÖZTUNA Yrd. Doç. Dr. Atilla Halil ELHAN 1. ÖNEMLİLİK (HİPOTEZ) TESTLERİ Önemlilik testleri, araştırma sonucunda elde edilen değerlerin ya da

Detaylı

SPSS-Tarihsel Gelişimi

SPSS-Tarihsel Gelişimi SPSS -Giriş SPSS-Tarihsel Gelişimi ilk sürümü Norman H. Nie, C. Hadlai Hull ve Dale H. Bent tarafından geliştirilmiş ve 1968 yılında piyasaya çıkmış istatistiksel analize yönelik bir bilgisayar programıdır.

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon Korelasyon- (lineer korelasyon) Açıklayıcı (Bağımsız) Değişken x çalışma zamanı ayakkabı numarası İki değişken arasındaki ilişkidir. Günlük sigara sayısı SAT puanı boy Yanıt (Bağımlı)

Detaylı

SANAYİ İŞÇİLERİNİN DİNİ YÖNELİMLERİ VE ÇALIŞMA TUTUMLARI ARASINDAKİ İLİŞKİ - ÇORUM ÖRNEĞİ

SANAYİ İŞÇİLERİNİN DİNİ YÖNELİMLERİ VE ÇALIŞMA TUTUMLARI ARASINDAKİ İLİŞKİ - ÇORUM ÖRNEĞİ , ss. 51-75. SANAYİ İŞÇİLERİNİN DİNİ YÖNELİMLERİ VE ÇALIŞMA TUTUMLARI ARASINDAKİ İLİŞKİ - ÇORUM ÖRNEĞİ Sefer YAVUZ * Özet Sanayi İşçilerinin Dini Yönelimleri ve Çalışma Tutumları Arasındaki İlişki - Çorum

Detaylı

Biyoistatistik (Ders 4: Bağımsız Gruplarda İki Örneklem Testleri)

Biyoistatistik (Ders 4: Bağımsız Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ BAĞIMSIZ GRUPLARDA İKİ ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr İKİ ÖRNEKLEM TESTLERİ

Detaylı

Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir.

Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir. Bağımlı Örneklerde Ki-Kare testi -- Mc Nemar Testi Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir. Örnek: Sigara içmeyle ilgili bir çalışmada, kişilere sigarayı

Detaylı

6. Ders. Genelleştirilmiş Lineer Modeller (Generalized Linear Models, GLM)

6. Ders. Genelleştirilmiş Lineer Modeller (Generalized Linear Models, GLM) 6. Ders Genelleştirilmiş Lineer Modeller (Generalized Linear Models, GLM) Y = X β + ε Lineer Modeli pek çok özel hallere sahiptir. Bunlar, ε nun dağılımına (bağımlı değişkenin dağılımına), Cov( ε ) kovaryans

Detaylı

Mühendislik Verilerinde Tek Örnek İçin Parametrik ve Parametrik Olmayan Testler

Mühendislik Verilerinde Tek Örnek İçin Parametrik ve Parametrik Olmayan Testler Doi: 10.17932/IAU.IAUD.m.13091352.2016.8/29.67-77 Mühendislik Verilerinde Tek Örnek İçin Parametrik ve Parametrik Olmayan Testler Murat ÇİMEN 1 Özet Veriler normal olarak dağıldığında Tek örnek T- Testi

Detaylı

The International New Issues In SOcial Sciences

The International New Issues In SOcial Sciences Number: 4 pp: 89-95 Winter 2017 SINIRSIZ İYİLEŞMENİN ÖRGÜT PERFORMANSINA ETKİSİ: BİR UYGULAMA Okan AY 1 Giyesiddin NUROV 2 ÖZET Sınırsız iyileşme örgütsel süreçlerin hiç durmaksızın örgüt içi ve örgüt

Detaylı

GÖRÜNTÜ SINIFLANDIRMA

GÖRÜNTÜ SINIFLANDIRMA GÖRÜNTÜ SINIFLANDIRMA 2- Açılan pencereden input Raster File yazan kısımdan sınıflandırma yapacağımız resmi seçeriz. 3-Output kısmından işlem sonunda verimizin kayıtedileceği alanı ve yeni adını gireriz

Detaylı

0502309-0506309 ÖLÇME YÖNTEMLERİ. Ders Öğretim Üyeleri Prof. Dr. Hüsamettin BULUT Yrd. Doç. Dr. M. Azmi AKTACĠR

0502309-0506309 ÖLÇME YÖNTEMLERİ. Ders Öğretim Üyeleri Prof. Dr. Hüsamettin BULUT Yrd. Doç. Dr. M. Azmi AKTACĠR 0502309-0506309 ÖLÇME YÖNTEMLERİ Ders Öğretim Üyeleri Prof. Dr. Hüsamettin BULUT Yrd. Doç. Dr. M. Azmi AKTACĠR Kaynak Ders Kitabı: ÖLÇME TEKNĠĞĠ (Boyut, Basınç, AkıĢ ve Sıcaklık Ölçmeleri), Prof. Dr. Osman

Detaylı

Yardımcı Doçent Doktor Mustafa Kemal Üniversitesi Ziraat Fakültesi Zootekni Bölümü Antakya/ Hatay 3

Yardımcı Doçent Doktor Mustafa Kemal Üniversitesi Ziraat Fakültesi Zootekni Bölümü Antakya/ Hatay 3 1 TEKRAR EDEN ÖLÇÜMLÜ DENEME DESENLERİNİN SPSS 9.05 PAKET PROGRAMI İLE ANALİZ EDİLMESİ Özkan GÖRGÜLÜ 1 Suat ŞAHİNLER 1 Derviş TOPUZ 2 ÖZET Farklı periyot veya farklı muameleler altında, aynı deneme ünitesinden

Detaylı

HESAP TABLOSU PROGRAMLARI

HESAP TABLOSU PROGRAMLARI HESAP TABLOSU PROGRAMLARI BĠLGĠSAYAR ORTAMINDA YARATILAN ELEKTRONĠK ÇALIġMA SAYFALARI 1 HESAP TABLOSU PPROGRAMLARI Lotus 1-2-3 Quattro Pro MS Excel Girilen veriler, tablolar halinde düzenlenerek iģlem

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 606 Araştırma Yöntemleri (Bahar 2014) 3 Nisan 2014

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 606 Araştırma Yöntemleri (Bahar 2014) 3 Nisan 2014 H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 606 Araştırma Yöntemleri (Bahar 2014) 3 Nisan 2014 t testleri: Tek örneklem t testi, Bağımsız iki örneklem t testi, Bağımlı iki örneklem t testi Aşağıdaki analizlerde

Detaylı

Araştırma Yöntemleri. Çıkarımsal İstatistikler: Parametrik Testler I. Giriş

Araştırma Yöntemleri. Çıkarımsal İstatistikler: Parametrik Testler I. Giriş Araştırma Yöntemleri Çıkarımsal İstatistikler: Parametrik Testler I Giriş Bir önceki derste örneklem seçme mantığını işledik Evren ve örneklemden elde edilen değerleri tanımlamayı öğrendik Standart normal

Detaylı

İSTATİSTİK HAFTA. ARAŞTIRMA İSTATİSTİK ve HİPOTEZ TESTLERİ

İSTATİSTİK HAFTA. ARAŞTIRMA İSTATİSTİK ve HİPOTEZ TESTLERİ ARAŞTIRMA İSTATİSTİK ve HİPOTEZ TESTLERİ HEDEFLER Bu üniteyi çalıştıktan sonra; Araştırma türlerini öğreneceksiniz. Araştırmaları zamana, yere ve veri toplama şekline göre sınıflandırabileceksiniz. Araştırma

Detaylı

5.HAFTA. Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi

5.HAFTA. Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi 5.HAFTA Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi Bu sunumda kullanılan verimizde bulunan değişkenler: İsim CİNSİYET KİTAP YAŞ VİZE VİZE2 FİNAL DÖNEMSONUNOTU Bu dersimizde daha önce hesapladığımız basit

Detaylı

BİLİMSEL BİLGİ BİLİMSEL ARAŞTIRMALARLA ÜRETİLİR. İSTATİSTİKSEL YÖNTEMLERE BİLİMSEL ARAŞTIRMA TAMAMLANDIĞINDA DEĞİL, DAHA PLANLAMA

BİLİMSEL BİLGİ BİLİMSEL ARAŞTIRMALARLA ÜRETİLİR. İSTATİSTİKSEL YÖNTEMLERE BİLİMSEL ARAŞTIRMA TAMAMLANDIĞINDA DEĞİL, DAHA PLANLAMA BRADFORD HILL BİLİMSEL BİLGİ BİLİMSEL ARAŞTIRMALARLA ÜRETİLİR. İSTATİSTİKSEL YÖNTEMLERE BİLİMSEL ARAŞTIRMA TAMAMLANDIĞINDA DEĞİL, DAHA PLANLAMA AŞAMASINDA BAŞVURULMALIDIR. 2 BİLİMSEL MAKALELERDE YAPILAN

Detaylı

Hastane Yönetimi-Ders 8 Hastanelerde İstatistiksel Karar Verme

Hastane Yönetimi-Ders 8 Hastanelerde İstatistiksel Karar Verme Hastane Yönetimi-Ders 8 Hastanelerde İstatistiksel Karar Verme Öğr. Gör. Hüseyin ARI 1 İstanbul Arel Üniversitesi M.Y.O Sağlık Kurumları İşletmeciliği Hastane Yönetiminde İstatistiksel Karar Vermenin Önemi

Detaylı

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri Parametrik Olmayan Testler 2 Wilcoxon ve Kruskal-Wallis Testleri İki Bağımlı Örneklemin Karşılaştırılması (Wilcoxon Bağımlı Örneklemler İşaretli Sıralamalar Testi) (Wilcoxon Matched-Samples Signed Ranks

Detaylı

ADMIT: Öğrencinin yüksek lisans programına kabul edilip edilmediğini göstermektedir. Eğer kabul edildi ise 1, edilmedi ise 0 değerini almaktadır.

ADMIT: Öğrencinin yüksek lisans programına kabul edilip edilmediğini göstermektedir. Eğer kabul edildi ise 1, edilmedi ise 0 değerini almaktadır. Uygulama-2 Bir araştırmacı Amerika da yüksek lisans ve doktora programlarını kabul edinilmeyi etkileyen faktörleri incelemek istemektedir. Bu doğrultuda aşağıdaki değişkenleri ele almaktadır. GRE: Üniversitelerin

Detaylı

ROC (RECEIVER OPERATING CHARACTERISTIC) EĞRĠSĠ YÖNTEMĠ ĠLE TANI TESTLERĠNĠN PERFORMANSLARININ DEĞERLENDĠRĠLMESĠ

ROC (RECEIVER OPERATING CHARACTERISTIC) EĞRĠSĠ YÖNTEMĠ ĠLE TANI TESTLERĠNĠN PERFORMANSLARININ DEĞERLENDĠRĠLMESĠ ROC (RECEIVER OPERATING CHARACTERISTIC EĞRĠSĠ YÖNTEMĠ ĠLE TANI TESTLERĠNĠN PERFORMANSLARININ DEĞERLENDĠRĠLMESĠ Ayça Deniz Ertorsun, Burak Bağ, Güldeniz Uzar, Mehmet Ali Turanoğlu Danışman: Dr. A. Canan

Detaylı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı ARAŞTIRMA MODELLİLERİNDE KULLANILACAK İSTATİSTİKLERİ BELİRLEME ÖLÇÜTLERİ Parametrik mi Parametrik Olmayan mı? Kullanılacak İstatistikleri Belirleme Ölçütleri Değişken Sayısı Tek değişkenli (X) İki değişkenli

Detaylı

T.C. SELÇUK ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ

T.C. SELÇUK ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ T.C. SELÇUK ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ TANI TEST ÖLÇÜTLERĠNDE ROC EĞRĠSĠ VE SINIFLAMA ANALĠZLERĠNĠN KARġILAġTIRILMASINDA KULLANIMI Mehmet Sinan ĠYĠSOY YÜKSEK LĠSANS TEZĠ Ġstatistik Anabilim Dalı

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 11 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

Hipotez Testleri. Parametrik Testler

Hipotez Testleri. Parametrik Testler Hipotez Testleri Parametrik Testler Hipotez Testide Adımlar Bir araştırma sorusuu belirlemesi Araştırma sorusua dayaa istatistiki hipotezleri oluşturulması (H 0 ve H A ) Hedef populasyoda öreklemi elde

Detaylı

Yoğun Bakım Ünitesinde Yatan Ventilatörle İlişkili Pnömonili Hastalarda Serum C-Reaktif Protein, Prokalsitonin, Solubl Ürokinaz Plazminojen Aktivatör Reseptörü (Supar) Ve Neopterin Düzeylerinin Tanısal

Detaylı

SİGARA BAĞIMLILIK ANKETİ

SİGARA BAĞIMLILIK ANKETİ Araştırma, Bilgi Sistemleri, Sağlığın Geliştirilmesi ve Halk Sağlığı Şubesi SİGARA BAĞIMLILIK ANKETİ Anketi Hazırlayan: Meryem TER İstatistik: Nurgül GİRGİN 1 Statistics TOPLAM CİNSİYETİ N Valid 123 123

Detaylı

İstatistikî İfadeyle... / Statistically Speaking...

İstatistikî İfadeyle... / Statistically Speaking... İstatistikî İfadeyle... / Statistically Speaking... DOI: 10.5455/jmood.20140707045407 Tıbbi Araştırmalarda İstatistik Teknik Seçimi Cengiz Han Açıkel 1, Selim Kılıç 1 ÖZET: Tıbbi araştırmalarda istatistik

Detaylı

Data View ve Variable View

Data View ve Variable View SPSS i çalıştırma 0 SPSS İlk Açılışı 1 Data View ve Variable View 2 Değişken Tanımlama - 1 3 Değişken Tanımlama - 2 4 Boş Veri Sayfası 5 Veri Girişi - 1 6 Veri Girişi - 2 7 Dosya Kaydetme 1 2 3 8 File

Detaylı

Sosyal Bilimlerde Araştırma Yöntemleri. Bölüm 8. VERİ İŞLEMEYE HAZIRLIK, TEMEL İSTATİSTİKİ ÖLÇÜLER VE ANALİZ TÜRLERİ Sait Gürbüz - Faruk Şahin

Sosyal Bilimlerde Araştırma Yöntemleri. Bölüm 8. VERİ İŞLEMEYE HAZIRLIK, TEMEL İSTATİSTİKİ ÖLÇÜLER VE ANALİZ TÜRLERİ Sait Gürbüz - Faruk Şahin Sosyal Bilimlerde Araştırma Yöntemleri Bölüm 8 VERİ İŞLEMEYE HAZIRLIK, TEMEL İSTATİSTİKİ ÖLÇÜLER VE ANALİZ TÜRLERİ Sait Gürbüz - Faruk Şahin Öğrenim Kazanımları Bu bölümü okuyup anladığınızda; 1. Veri

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

T.C YILDIZ TEKNĠK ÜNĠVERSĠTESĠ FEN-EDEBĠYAT FAKÜLTESĠ ĠSTATĠSTĠK BÖLÜMÜ. DĠYABET HASTALIĞINA NEDEN OLAN DEĞĠġKENLERĠN ĠNCELENMESĠ

T.C YILDIZ TEKNĠK ÜNĠVERSĠTESĠ FEN-EDEBĠYAT FAKÜLTESĠ ĠSTATĠSTĠK BÖLÜMÜ. DĠYABET HASTALIĞINA NEDEN OLAN DEĞĠġKENLERĠN ĠNCELENMESĠ T.C YILDIZ TEKNĠK ÜNĠVERSĠTESĠ FEN-EDEBĠYAT FAKÜLTESĠ ĠSTATĠSTĠK BÖLÜMÜ DĠYABET HASTALIĞINA NEDEN OLAN DEĞĠġKENLERĠN ĠNCELENMESĠ ĠSTANBUL -2011 1 ĠÇĠNDEKĠLER 1. GĠRĠġ 3 1.1. DĠYABET NEDĠR?...3 1.2. AÇLIK

Detaylı

VERĠ ANALĠZĠ 05.05.2011 NĠCEL VERĠ ANALĠZĠ ĠSTATĠSTĠK? ĠSTATĠSTĠK. ĠSTATĠSTĠK ÇEġĠTLERĠ. Betimsel İstatistik Kestirimsel Ġstatistik

VERĠ ANALĠZĠ 05.05.2011 NĠCEL VERĠ ANALĠZĠ ĠSTATĠSTĠK? ĠSTATĠSTĠK. ĠSTATĠSTĠK ÇEġĠTLERĠ. Betimsel İstatistik Kestirimsel Ġstatistik 5.5.11 VERĠ ANALĠZĠ NĠCEL VERĠ ANALĠZĠ Nicel Veri Analizi Betimsel Ġstatistik Kestirimsel Ġstatistik Nitel Veri Analizi Betimsel Analiz Ġçerik Analizi Betimsel İstatistik Kestirimsel Ġstatistik ĠSTATĠSTĠK?

Detaylı

ÖRNEK BULGULAR. Tablo 1: Tanımlayıcı özelliklerin dağılımı

ÖRNEK BULGULAR. Tablo 1: Tanımlayıcı özelliklerin dağılımı BULGULAR Çalışma tarihleri arasında Hastanesi Kliniği nde toplam 512 olgu ile gerçekleştirilmiştir. Olguların yaşları 18 ile 28 arasında değişmekte olup ortalama 21,10±1,61 yıldır. Olguların %66,4 ü (n=340)

Detaylı

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI 1. Doğum sırasının çocuğun zeka düzeyini etkileyip etkilemediğini araştıran bir araştırmacı çocuklar

Detaylı